Fall 2016: Deep Learning and Its Applications to Signal and Image Processing and Analysis, 361-21120

Tammy Riklin Raviv

Time Monday, 10:00-13:00
Location Building 72, Room 122


About the course

The class will cover a diverse set of topics in signal processing, image analysis and computer vision and various Neural Network architectures. It will be an interactive course where we will discuss interesting topics on demand and latest research buzz. The goal of the class is to learn about different domains of the field, understand, identify and analyze the main challenges, what works and what doesn't, as well as to identify interesting new directions for future research.
Starting from the last week of November (the second month of the semester) we will read 1 to 4 papers every week. The papers will be presented by the students in a seminar format. The success of the discussion in class will thus be due to how prepared the students come to class. Each student is expected to read at least one paper for each class (and prepare a question or a comment for a discussion). In addition, each student will present a paper in one of the classes. There will be also talks by invited speakers and a lab. class (Nov. 14, room 330, building 33) on Tensor Flow. The Last class will be dedicated to final project presentation (about ten minutes for each project). Details on the final project will be published soon. The final project does not have to be necessarily related to the paper presented in class.

Tentative schedule and lecture notes

Oct. 31, 2016   Course overview

Nov. 7, 2016     Optimination, Stochastic gradient descent, Backpropagation, Regularization, Loss functions

Nov. 14, 2016   1. Convolutional Neural Networks (CNN)
                        2. Tensor Flow (by Ohad Shitrit)
                         location: Electrical Engineering Computer Laboratory, room 330, building 33

Nov. 21, 2016   Guest Lecture , Dr. Oren Shriki, Cognitive and Brain Sciences at Ben-Gurion University
                       ICA and Information Maximization Approach to Unsupervised Learning in Feedforward and Recurrent Neural Networks

Nov. 28, 2016   1. Dropout and mini-batch optimization
                       Guest Lecture, Prof. Jacob Goldberger, Electrical Engineering, Bar-Ilan University
                        2. Regularization for Deep Learning
                        3. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
                       L-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L Yuille
                        Presenter: Topaz Gilad

Dec. 5, 2016     Rich feature hierarchies for accurate object detection and semantic segmentation
                       L-C. Chen, G. Papandreou, I. Kokkinos, Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik
                        Presenter: Ilia Iofedov

                       Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
                       Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun
                       Presenter: Assaf Livne

                       Deep Residual Learning for Image Recognition
                       Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
                       Presenter: Felix Vilensky

Dec. 12 2016    Learning to Compare Image Patches via Convolutional Neural Networks
                       Sergey Zagoruyko, Nikos Komodakis
                       Presenter: Ilan Schvartzman

                       Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches
                      Jure Zbontar, Yann LeCun
                       Presenter: Shahar Bar

                       Automatic Segmentation of MR Brain Images With a Convolutional Neural Network
                      Pim Moeskops, Max A. Viergever, Adrienne M. Mendrik, Linda S. de Vries, Manon J. N. L. Benders, and Ivana Isgum
                       Presenter: Dr. Shiri Gordon

Dec. 19 2016    Multimodal learning with Deep Boltzman Machines
                       Nitish Srivastava and Ruslan Salakhutdinov
                       Presenter: Nir Halay

                       De-noising of Contrast-Enhanced MRI Sequences by an Ensemble of Expert Deep Neural Networks
                       Ariel Benou, Ronel Veksler, Alon Friedman and Tammy Riklin Raviv
                       Presenter: Ariel Benou

                       A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation
                      Vargas-Melendez, Leandro and Boada, Beatriz L. and Boada, MarĂ­a Jesus L. and Gauchia, Antonio and Diaz, Vicente
                       Presenter: Alon Baruch

Dec. 26 2016    Recurrent Neural Networks and Long Short Term Memory (LSTM) Networks
                       Presenter: Assaf Arbelle

                       Unsupervised Learning of Video Representations using LSTMs
                       Nitish Srivastava, Elman Mansimov, Ruslan Salakhutdinov
                       Presenter: Boris Kodner

                       Convolutional Neural Networks for No-Reference Image Quality Assessment
                       Le Kang, Peng Ye, Yi Li, David Doermann
                       Presenter: Tsachi Hershkovitch

Jan. 2, 2017
                       Where Are They Looking?
                       Adria Recasens, Aditya Khosla, Carl Vondrick, Antonio Torralba
                       Presenter: Nir Regev

                       FaceNet: A Unified Embedding for Face Recognition and Clustering
                       Florian Schroff, Dmitry Kalenichenko, James Philbin
                       Presenter: Omri Bar

                       Guest Lecture Yaron Gurovich, FDNA
                       Deep Learning for Facial Recognition

Jan. 9, 2017, Building 33, room 330 -- Note the unusual location
                       Generative Adversarial Networks
                       Ian J. Goodfellow, Jean Pouget-Abadie ,Mehdi Mirza, Bing Xu, David Warde-Farley,Sherjil Ozair, Aaron Courville, Yoshua Bengio
                       Presenter: Nimrod Shenor

                       Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
                      Alec Radford, Luke Metz, Soumith Chintala
                       Presenters: Shay Ben-Sasson and Gideon Rosenthal

                       A Practical Guide to Applying Echo State Networks
                       Mantas Lukosevicius
                       Presenter:Eyal Zakkay

                       Guest Lecture: Nir Lotan and Itamar Ben-Ari, Electronics Ltd. Intel
                       Fast and easy deep learning solutions on CPU

Jan. 16, 2017
                       Deep Knowledge Tracing
                       Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas Guibas and Jascha Sohl-Dickstein
                       Presenter: Avi Segal

                       A Neural Algorithm of Artistic Style
                       Leon A. Gatys, Alexander S. Ecker, Matthias Bethge
                       Presenter: Amit Diamant

                       Convolutional Neural Network for Multi-Category Rapid Serial Visual Presentation BCI
                       Ran Mnor and Amir Geva
                       Presenter: Yehu Sapir

                       DRAW: A Recurrent Neural Network For Image Generation
                       Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende and Daan Wierstra
                       Presenter: Itay Benou

                       EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation
                       Suwicha Jirayucharoensak,1,2 Setha Pan-Ngum,1 and Pasin Israsena2
                       Presenter: Dror Haor

Jan. 23, 2017     Looking into Deep Neural Networks

                       A First Look at Music Composition using LSTM Recurrent Neural Networks
                       Douglas Eck and Jurgen Schmidhuber
                       Presenter: Tuvy Lemberg

                       Caffeinated FPGAs: FPGA Framework For Convolutional Neural Networks
                      Roberto DiCecco, Griffin Lacey, Jasmina Vasiljevic, Paul Chow, Graham Taylor and Shawki Areibi
                       Presenter: Nir Hasidim

                       Multi-input Cardiac Image Super-Resolution Using Convolutional Neural Networks
                       Ozan Oktay, Wenjia Bai, Matthew Lee, Ricardo Guerrero,Konstantinos Kamnitsas, Jose Caballero, Antonio de Marvao,Stuart Cook, Declan ORegan
                       and Daniel Rueckert

                       Presenter: Lena Shulmanovich

Links

Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press Online

Convolutional Neural Networks for Visual Recognition, Stanford Course cs231n, see also Lectures

Neural Networks for Machine Learning, Coursera course by Jeff Hinton

ConvNet Arithmetic

ConvNet Demo by Stanford

Tensor flow course

Tensor flow official site

Tensor flow code

Tensor flow playground

Student Presentations

Each student will need to present a paper in class. Please refer to the list of papers below and note time schedule to be presented. Ideas for papers not in the list need approval. The presentation should be clear and practiced and the student should read the assigned paper and related work in enough detail to be able to lead a discussion and answer questions. A presentation should be roughly 30 minutes long including time for questions and a discussion. Typically this is about 25 to 30 slides. In the presentation provide the citation to the paper you present and to any other related work you reference.
Deadline:The presentation should be handed in one day before the class (or before if you want feedback).
Structure of presentation: High-level overview with contributions, Main motivation, Clear statement of the problem, Overview of the technical approach, Strengths/weaknesses of the approach, Overview of the experimental evaluation, Strengths/weaknesses of evaluation, Discussion: future directions, links to other works.

List of papers



Going deeper with convolutions
Christian Szegedy, Wei Liu, Yangqing Jia,Pierre Sermanet,Scott Reed,Dragomir Anguelov,Dumitru Erhan,Vincent Vanhoucke,Andrew Rabinovich

ImageNet Classification with Deep Convolutional Neural Networks
Alex Krizhevsky, Ilya Sutskever,Geoffrey E. Hinton


Monocular Object Instance Segmentation and Depth Ordering with CNNs
Ziyu Zhang, Alex Schwing, Sanja Fidler, Raquel Urtasun

Instance-Level Segmentation with Deep Densely Connected MRFs
Ziyu Zhang, Sanja Fidler, Raquel Urtasun

DRAW: A Recurrent Neural Network For Image Generation
Karol Gregor,Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, Daan Wierstra

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford, Luke Metz, Soumith Chintala


The Multiverse Loss for Robust Transfer Learning
Etai Littwin, Lior Wolf

Simultaneous Deep Transfer Across Domains and Tasks
Eric Tzeng, Judy Hoffman, Trevor Darrell

Ask Your Neurons: A Neural-based Approach to Answering Questions about Images
Mateusz Malinowski, Marcus Rohrbach, Mario Fritz

Auto-Encoding Variational Bayes
Diederik P Kingma, Max Welling

Tutorial: Bayesian Reasoning and Deep Learning
Shakir Mohamed

Deep learning and the information bottleneck principle
Naftali Tishby,Noga Zaslavsky

Unsupervised Learning of Video Representations using LSTMs
Nitish Srivastava, Elman Mansimov, Ruslan Salakhutdinov

Explaining and Harnessing Adversarial Examples
Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy

Recurrent Models of Visual Attention
Volodymyr Mnih, Nicolas Heess, Alex Graves, Koray Kavukcuoglu


Where Are They Looking?
Adria Recasens, Aditya Khosla, Carl Vondrick, Antonio Torralba

Generative Adversarial Nets
Ian J. Goodfellow,Jean Pouget-Abadie,Mehdi Mirza, Bing Xu, David Warde-Farley,Sherjil Ozair,Aaron Courville, Yoshua Bengio

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, Koray Kavukcuoglu, Geoffrey E. Hinton

DeepFace: Closing the Gap to Human-Level Performance in Face Verification
Yaniv Taigman, Ming Yang, Marc' Aurelio Ranzato, Lior Wolf

FaceNet: A Unified Embedding for Face Recognition and Clustering
Florian Schroff, Dmitry Kalenichenko, James Philbin

Classifying and Segmenting Microscopy Images Using Convolutional Multiple Instance Learning
Oren Z. Kraus, Lei Jimmy Ba, Brendan Frey

Multi-input Cardiac Image Super-Resolution Using Convolutional Neural Networks
Ozan Oktay, Wenjia Bai, Matthew Lee, Ricardo Guerrero, Konstantinos Kamnitsas, Jose Caballero, Antonio de Marvao, Stuart Cook, Declan ORegan, and Daniel Rueckert

Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller

We Are Humor Beings: Understanding and Predicting Visual Humor
Arjun Chandrasekaran, Ashwin K Vijayakumar, Stanislaw Antol, Mohit Bansal, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

A Neural Algorithm of Artistic Style
Leon A. Gatys, Alexander S. Ecker, Matthias Bethge

A First Look at Music Composition using LSTM Recurrent Neural Networks
Douglas Eck, Jurgen Schmidhuber


Homework assignments

Homework assignments should be submitted via moodle using a single zip file: "YourName-XX.zip" where XX is the assignment number.

Assignment #1 due to Dec. 5, 2016