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Abstract—The phase-space beam summation is a general analytical
framework for local analysis and modeling of radiation from extended
source distributions. In this formulation the field is expressed as a
superposition of beam propagators that emanate from all points in
the source domain and in all directions. The theory is presented here
for both time-harmonic and time-dependent fields: in the later case,
the propagators are pulsed-beams (PB). The phase-space spectrum of
beam propagators is matched locally to the source distribution via
local spectral transforms: a local Fourier transform for time-harmonic
fields and a “local Radon transform” for time-dependent fields.
These transforms extract the local radiation properties of the source
distributions and thus provide a priori localized field representations.
Some of these basic concepts have been introduced previously for two-
dimensional configurations. The present paper extends the theory to
three dimensions, derives the operative expressions for the transforms
and discusses additional phenomena due to the three dimensionality.
Special emphasis is placed on numerical implementation and on
choosing a numerically converging space-time window. It is found that
the twice differentiated Gaussian-± window is both properly converging
and provides a convenient propagator that that can readily be tracked
in complicated inhomogeneous medium.

I. INTRODUCTION

The radiation and analysis of short pulse fields are receiving increased
attention for various applications, e.g., synthesis of high energy
wavepackets, target interrogation, environmental sensing and inverse
scattering. Of particular interest for these applications are collimated
short-pulse fields (space-time wavepackets) [1–6]. Because of the wide
frequency band of such fields, the conventional route of inversion of
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frequency-domain (FD) solutions is often less convenient and physically
less transparent than direct treatment in the time domain (TD) where
the wave events are well localized. This paper is therefore concerned
with field representations directly in the time domain, with emphasis
on local spectrum representations. Localization of wave phenomena
is of fundamental significance because local models can be adapted
to complicated global events provided that the scale of complexity is
large in comparison with the local domain. Ray-based localization
provide an effective parametrization but they are limited to smooth
field structures. They are ineffective, though, in many situations, such
as transition regions, long observation times or spectrally rich sources,
in which cases one should resort to spectral representations that can
accommodate the richer spectral content of the wave.

The conventional spectral elements for wave synthesis are Green’s
functions or plane waves [7] (the generic name plane-waves should
be understood in a generalized sense for inhomogeneous medium
configurations [8]; it is also used here to denote time-dependent
plane waves [9–12]). However, tracking these global basis functions
in inhomogeneous environments or through interactions with objects
is complicated, and the resulting representation integrals are spectrally
distributed. Invoking constructive interference yields local observables
in the form of ray fields, but as mentioned above, in many situations
a wider spectral range of basis functions is required [8].

Instead of using global basis functions that lead to distributed
integrals, the representation may be localized a priori by using beams
as local basis wave-functions (the term “beam” is used conventionally
for collimated time-harmonic waves; here we use it as a generic
term also for “pulsed-beams” which are collimated time-dependent
wavepackets [5]). Each beam basis function then accounts collectively
for the radiation from a finite region in the source domain, thereby
leading to compact spectral representations. Further compactization
is due to the fact that only those beams that pass near the space-
time observation point actually contribute there. Finally, the beam
propagators can be tracked locally in complicated medium and are
insensitive to transition regions and caustics [13].

The pulsed-beam basis functions considered here belong to the
general class of the complex source pulsed-beam [5]. In addition
to providing a complete set of basis function for several types of
expansion (see discussion below) they have other favorable properties
for modeling collimated wavepacket propagation in homogeneous or
in inhomogeneous media [13] and for analysis of local scattering and
diffraction phenomena [14,15]

Several beam expansion schemes have been introduced recently.
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They may be grouped in three categories. For point source
configurations the source field can be expanded into an angular
spectrum of beams that emanate from the source in all directions.
This approach has been applied heuristically for time-harmonic fields
[16], and later [17] it has been extended to time-dependent fields and
justified as an exact identity.

A different class of expansions applies for extended source
configurations. It involves a spectrum of shifted and tilted beams
which emanate in all directions from all points in the source domain.
The beam amplitudes are determined by the local spectrum of the
source. Several alternative formulations for time-harmonic [18–23] and
time-dependent [24–26] fields have been introduced: In [20,24–26] and
also in [23] they have been placed within a unified phase-space format
wherein a phase-space distribution of beam propagators are locally
matched to the source distribution.

Alternatively, well collimated sources have been expanded by
means of a global approach. Here, greater efficiency is achieved by
matching wide beam basis functions to the entire source distribution
so that each of them now exhibits the global collimation properties of
the source with respect to near to far zone transition. This approach
have been formulated first in the FD [27] but more recently it has been
extended to the TD [28]. A forth beam expansion strategy for marching
of fields in a guiding environment has been introduced recently in [29].

The present paper is concerned with the phase-space scheme
mentioned above, which is a general mathematical framework for local
synthesis of radiation from extended source distributions. In this
approach the phase-space spectrum of local basis functions (beams) is
matched locally to the source distribution via local spectral transforms:
a windowed Fourier transform for time-harmonic fields [20] and the
recently introduced “local Radon transform” for time-dependent fields
[24,26]. These transforms extract the local radiation properties of the
source distributions, thereby emphasizing those beam basis functions
that locally coincide with these properties (see Fig. 1). It is therefore
particularly useful for spectrally rich distributions (e.g. local analysis
and inverse scattering of short-pulse scattering data [30]).

The basic concepts of the phase-space representation have
been introduced originally for 2D configurations [20, 24, 25]. The
present paper extends the formulation to 3D and discusses additional
phenomena that are incurred by the three dimensionality. This
extension is essential in particular for time-dependent problems where
the operators for 2D fields are inherently different than those for
the physical 3D fields. Special emphasis is also placed here on the
numerical implementation. This also involves choosing a properly
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Figure 1. Phase-space beam (or pulsed-beam) summation for
radiation from extended source distributions. The double arrows
represent the beam propagators. Large arrows represent beams that
are strongly excited by local features of the source distribution (i.e.,
geometrically enhanced beams).

converging space-time window function. It is found that the twice
differentiated Gaussian-± window is both properly converging and also
provides a convenient propagator that has a closed form expression.
Furthermore, this propagator is closely related to the general class
of collimated pulsed-beam fields considered in [5] that can readily
be tracked in complicated inhomogeneous medium [13]. This enables
an efficient representation for the propagated field. Indeed, the local
spectrum operation derived in this paper have subsequently been used
for the analysis of scattering data and for inverse scattering [30].

Concerning the layout of presentation, we start with the plane-
wave formulations in the FD and then in the TD (Sec. II). The
TD formulation involves the slant-stack transform (SST) which is a
Radon transform of the data in the space-time domain. We also
discuss the conditions for a spectral localization of this distributed
TD representation. Such localization is the counterpart of the high
frequency stationary phase localization in the FD. The local spectrum
formulations in the FD and TD are then described in general terms in
Sec. III, while closed-form expressions for the phase-space transforms
and propagators for specific choices of windows are given in Sec. IV.
These windows are the Gaussian and the twice differentiated Gaussian-
± windows for FD and TD formulations, respectively. These windows
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not only provide convenient kernels for numerical processing, but
they also yield convenient closed-form expressions for the propagators.
Finally, numerical examples for time-dependent plane-wave spectrum
and for time-dependent local spectrum analyses of a short-pulse field
distribution are considered in Sec. V.

II. PLANE-WAVE SPECTRAL REPRESENTATIONS

We are concerned with the field u(r, t) radiated into the homogeneous
half space z > 0 due to the time-dependent field distribution uo(x, t) in
the z = 0 plane. The adopted notations for the Cartesian coordinate
frame are r = (x1, x2, z) and x = (x1, x2). We shall start with the
analysis of the corresponding time-harmonic field û(r;!). We use
over carets to denote time-harmonic field constituents, defined by the
Fourier transform relations

û(r, !) =

∫ ∞

−∞
dt u(r, t)ei!t, u(r, t) =

1

2¼

∫ ∞

−∞
d! û(r;!)e−i!t

(1 a,b)
The !-dependence û(r)∣! is suppressed for the frequency domain

analysis. However, when inverting to the time domain, the frequency
dependence of û(r;!) is exhibited explicitly.

II.1. Frequency-domain

The plane-wave spectral distribution of the initial field ûo(x) is defined
via

ˆ̃uo(») =
∫

d2x ûo(x) e
−ik»⋅x (2)

where, anticipating extension to the TD (Sec. II.2), the wavenumber
vector » = (»1, »2) is normalized with respect to k = !/v with v
being the wave propagation speed in the medium. The plane-wave
representation for the field is therefore

û(r) = (k/2¼)2
∫

d2» ˆ̃uo(») eik (»⋅x+³z) (3)

where
³ =

√
1− ∣»∣2, Im³ ≥ 0 (4)

where we use ∣»∣2 = » ⋅». In the propagating spectrum domain ∣»∣ < 1,
the integral (3) consists of real plane-waves eik·⋅r where the unit vector
· = (», ³) is the propagation direction. In the evanescent spectrum
region ∣»∣ > 1, the plane-waves decay exponentially away from the
z = 0 plane.
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II.2. Time domain

II.2.1. Analytic signals

The TD field formulations will be derived by transforming the FD
formulations. In order to gain flexibility in the derivation, in particular
in those formulations that involve evanescent spectra, it will be
convenient to use the analytic signal representation. The final results,
however, will be expressed in terms of real signals.

The analytic signal
+
u(r, t) associated with a real (physical) signal

u(r, t) with frequency spectrum û(r;!) is defined via the one sided
inverse Fourier transform

+
u(r, t) =

1

¼

∫ ∞

0
d! e−i!t û(r;!), Imt ≤ 0. (5)

Henceforth, all analytic signals will be denoted with an over +. Clearly,
the integral in (5) defines an analytic function in the lower half of the
complex t-plane. The analytic signal may also be defined directly from
the time-dependent data via

+
u(r, t) =

1

¼i

∫ ∞

−∞
dt′

u(r, t′)
t− t′

, Imt ≤ 0. (6)

Thus, the limit of the analytic on the real t-axis is related to the real
signal u(t) via

+
u(r, t) = u(r, t) + iℋu(r, t), t real (7)

where ℋ in the Hilbert transform ℋu = (−¼t)−1 ⊗ u with ⊗ denoting
a convolution, i.e.,

f(t)⊗ g(t) =

∫
dt′ f(t′ − t)g(t′) (8)

The real signal for real t is thus recovered via u(r, t) = Re
+
u(r, t).

II.2.2. Analytic signals representation of the time-dependent
plane-wave spectrum

With uo(x, t) representing the time-dependent field in the z = 0 plane,

the analytic transient plane-wave spectrum
+

ũo(», ¿) is defined by

+

ũo (», ¿) =
1

¼

∫ ∞

0
d! ˆ̃uo(»;!) e−i!¿ , (9)
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giving, using (2)

+

ũo (», ¿) =
1

¼

∫ ∞

0
d!

∫
d2x ûo(x;!) e

−i!(¿+v−1»⋅x). (10)

Note that an important feature of the spectral formulation in (2) is
that the spatial wave number is normalized with respect to ! and thus
has a frequency independent geometrical interpretation in terms of
the plane-wave angle. Thus, inverting the order of integration in (10)
(legitimate when Imt ≤ 0 and in the limit of real t) and evaluating the
!-integration in closed form, one finds that the time-dependent spatial

spectrum is found directly from the analytic data
+
uo (x, t) via

+

ũo (», ¿) =

∫
d2x

+
uo (x, ¿ + v−1» ⋅ x). (11)

Repeating the same procedure for the field representation in (3) one
obtains

+
u(r, t) = −(2¼v)−2

∫
d2»∂2

t

+

ũo [», t− v−1(» ⋅ x+ ³z)]. (12)

and finally, the physical field is given by u(r, t) = Re
+
u(r, t)

Eq. (11) is a Radon transform of uo(x, t) in the three dimensional
(x, t) space, consisting of projections of uo(x, t) along surfaces of linear
delay t− v−1» ⋅ x = ¿ = const. (Fig. 2). It has therefore been termed
the slant-stack transform (SST) [9, 31]. It extracts from uo(x, t) the
transient plane-wave signal that propagates in the direction · = (», ³).
Eq. (12) indeed reconstructs the field in terms of an angular (»)
superposition of transient plane-waves (see Fig. 2). Their propagation
properties follow from the delay term v−1(» ⋅x+ ³z): For ∣»∣ < 1, they
propagate in a direction ·, whereas for ∣»∣ > 1, where ³ = i∣³∣ (see (4)),
they decay as z increases (recall from (5) that an analytic signal decays
monotonically as the imaginary part of its argument becomes more
negative). Finally, for z = 0, Eq. (12) is an inverse Radon transform
of (11).

II.2.3. Real signals representation of the time-dependent plane-wave
spectrum

The analytic signal representation in (11)–(12) incorporates both
the propagating and the evanescent spectra in the same analytic
framework. The real field is then obtained from the real part of (12).
It might be useful, however, to express (11)–(12) directly in terms of
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Figure 2. Transient plane-wave spectrum; (a) The transient plane-
wave transform (the slant stack transform – SST) of the initial field
uo(x, t), (b) A transient plane-wave.

the real data uo(x, t). Expressing u as the sum of the propagating and
evanescent spectra, uP + uE respectively, one immediately finds from
(11)–(12), that

uP (r, t) = −(2¼v)−2

∫

∣»∣<1
d2» ∂2

t ũo[», t− v−1(» ⋅ x+ ³z)] (13)

where ũo is the real transient plane-wave spectrum as obtained from
uo via the SST (see (11))

ũo(», ¿) =

∫
d2x uo(x, ¿ + v−1» ⋅ x). (14)

The evanescent spectrum contribution in (12) is given by

uE (r, t) = −(2¼v)−2Re

∫

∣»∣>1
d2» ∂2

t

+

ũo [», t− v−1(» ⋅ x+ ³z)]. (15)

This expression requires the calculation of
+

ũo (», ¿) for complex ¿ :
¿ = t − v−1(» ⋅ x + i∣³∣z). This can be done by transforming the
data to the frequency domain, extracting the plane-wave spectrum via
(2) for each ! and finally transforming for each » to complex ¿ via
(9). Alternatively, this calculation may be performed directly from the
time-dependent data using (6), giving

+

ũo (», ¿) =
1

¼i

∫
d2x

∫
dt′

uo(x, t
′ + v−1» ⋅ x)
¿ − t′

, Im¿ < 0. (16)

II.3. Discussion on spectral localization

The plane-wave integrals in (3) or (12) are spectrally distributed. For
high frequency signals, however, dominant contributions are generated
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Figure 3. Asymptotic evaluation of the slant stack transform: The
local radiation direction at a given x is determine by local matching
of a pulsed plane-wave to the source distribution. For a given »
this defines the stationary delay point xs(») of (18) that generates
the dominant spectral contribution. The figure also provides the
geometrical interpretation for the values of ¿ as obtained via the
Legendre transform (19). The figure also depicts the asymptotic
contributing zone (20) about the stationary point.

by localized regions in the source domain that emphasizes radiation in
a given direction.

We assume that the source distribution has the short-pulse form
(Fig. 3)

uo(x, t) = Ao[x, t− v−1Φo(x)] (17)

where Ao(x, t) is a short temporal pulse and v−1Φo(x) is a delay
function, both with slow spatial x variation (i.e., ∣∂jAo∣ and ∣∂jΦo∣
are much smaller than v−1∂tAo). It is then found that the dominant
contribution to the plane-wave spectrum ũo(», ¿) in (11) comes from
the region of the stationary delay point xs(»), defined by

∇Φo(x) = », at xs(»). (18)

For a given x, this condition defines the local radiation direction if a
pulsed plane-wave is locally matched to the source distribution (see
Fig. 3). In view of (14), ũo(», ¿) is concentrated about ¿(») as given
by the Legendre transform [9]

¿(») = v−1[Φo[xs(»)]− » ⋅ xs(»)]. (19)
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Its geometrical interpretation is schematized in Fig. 3. An illustrative
numerical example will be considered in Sec. V.2.

The asymptotic localization above is valid only if the contributing
zone around the stationary point is small with respect to the transverse
variations of the field. As now follows from the local geometry in Fig. 3,
if the pulse length of the data vTo is much smaller than Ro (the local
radius of curvature of the wavefront in the data plane (x, vt)) then the
asymptotic contributing zone (ACZ) is given by

ACZ ∼ 2
√

2vToRo ∼
√

vTo/det ∂2
ijΦo, (20)

where we have also quantified Ro ∼ 1/
√

det ∂2
ijΦo.

Likewise, the transient plane-wave superposition (12) can be
localized by the stationary delayed evaluation: For a given observation
point r, the main contribution comes from the spectral direction »
corresponding to the ray that emanates from the point xs(») in the
z = 0 plane and passes through r.

We shall not go through the compete asymptotic manipulations
here as our goal is not to derive analytic ray-type local approximations.
Instead in the next section we shall show how the phase-space
representations yield spectral representations that are a priori localized
about the ray skeleton define by (18)–(19).

III. LOCAL SPECTRA: PHASE-SPACE
REPRESENTATION

III.1. Frequency-domain: Beam summation

III.1.1. Local spectrum of the data

We introduce the function Ûo as a windowed transform of the initial
field

Ûo(x̄, »̄) =

∫
d2x ûo(x)ŵ

∗(x− x̄) e−ik
¯»⋅x (21)

where ŵ(x) represents a spatial window function and the asterisk
denotes a complex conjugate. Assuming ŵ(x) to be localized around

x = (0, 0), one may interpret Ûo as the local spectral distribution of ûo
in the vicinity of x̄. We shall therefore refer to (x̄, »̄) as phase-space
coordinates, and adopt the notation X = (x̄, »̄). Eq. (21) may now be
written in the abbreviated form

Ûo(X) =

∫
d2x ûo(x) Ŵ

∗(x;X) (22)
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with the kernel

Ŵ (x;X) = ŵ(x− x̄)eik
¯»⋅x. (23)

Alternatively, the local spectrum Ûo can be evaluated from the plane-
wave spectrum

Ûo(X) = (k/2¼)2
∫

d2» ˆ̃uo(») ˆ̃W ∗(»;X) (24)

where
ˆ̃
W (»;X) = ˆ̃w(»− »̄)e−ik(»−¯»)⋅x̄ with

ˆ̃
W and ˆ̃w being the spatial

spectra (2) of Ŵ and ŵ, respectively. Thus, assuming also that ˆ̃w(»)
is localized around » = (0, 0), Ûo may also be considered as the local

field corresponding to a sample of ˆ̃uo around »̄.
The degree of spatial and spectral localization achieved can be

quantified in terms of the spatial and spectral RMS widths of the
window, defined, respectively, by

Δx =
1

N̂

[∫
d2x∣x∣2 ∣ŵ(x)∣2

]1/2
,Δ» =

k

N̂2¼

[∫
d2»∣»∣2 ∣ ˆ̃w(»)∣2

]1/2

(25 a, b)
where ΔxΔ» ≥ 1/k according to the uncertainty principle, and

N̂ =

[∫
d2x∣ŵ(x)∣2

]1/2
= (k/2¼)

[∫
d2»∣ ˆ̃w(»)∣2

]1/2
(26)

is the ℒ2
x norm of ŵ.

By a straightforward extension of the 2D representation [20, 32],
the inverse phase-space transform may be written formally as

ûo(x) = (k/2¼)2N̂−2

∫
d4X̄ Ûo(X) Ŵ (x;X). (27)

Note that this representation is not unique as there are many four

variable kernels that can replace Ûo in (27) and still represent ûo. Of
particular interest is the Gabor kernel [18–20, 23, 32]. However, the

function Ûo of (21) yields the minimum energy representation [32].

III.1.2. The radiating field

The phase-space superposition (27) of the initial field can be
propagated into the region z > 0, giving

û(r) = (k/2¼)2N̂−2

∫
d4X̄ Ûo(X)B̂(r;X) (28)
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where the phase-space propagator B̂ is the field radiated by each

window element Ŵ (x;X). B̂ can be expressed by several alternative
ways (e.g. by Green’s functions or plane-wave representations). In
the present context it is convenient to express it by the plane-wave
representation (3), i.e.

B̂(r;X) = (k/2¼)2
∫

d2»
ˆ̃
W (»;X) eik(»⋅x+³z). (29)

If ŵ is wide on a wavelength scale then the spatial and spectral

distributions of Ŵ are localized around x = x̄ and » = »̄, respectively.

Consequently, B̂ behaves like a collimated beam whose axis emerges
from the z = 0 plane at x = x̄ with a direction

·̄ = (»̄, ³̄), ³̄ =
√
1− ∣»̄∣2 (30)

where ∣»̄∣2 = »̄ ⋅ »̄. Propagating beams occur only for ∣»̄∣ < 1 or more
precisely, for ∣»̄∣ < (1−Δ») where Δ» is defined in (25b). For ∣»̄∣ > 1,

B̂ decays exponentially with z.
The representation in (28) describes the radiated field as a

continuous superposition of shifted and tilted beams, centered at and
directed along x̄ and »̄, respectively (see Fig. 1). The phase-space

function Ûo defines the excitation strengths of these beams via local
matching to the aperture field ûo(x).

III.1.3. Spectral localization

An important feature of the representation above is the a priori
localization around well defined regions in the X domain. This

localization is affected by both Ûo and B̂ in (28). Since each beam
has a finite spatial and spectral widths in the aperture plane, it senses

via (21) the local radiation properties of ûo(x) at x̄. Accordingly Ûo

favors a priori the beams that emanate from x̄ along the local preferred
direction (see Fig. 1). If for example, ûo(x) has the high frequency form
(c.f. (17))

ûo(x) = Âo(x)e
ikΦo(x) (31)

then Ûo and thereby the integration domain in (28) are limited to the
vicinity of the radiation direction constraint

»̄ = ∇Φo(x̄). (32)

This constraint defines the local direction of radiation (see (18)).
In many situations, however, the form of the constraint may be more
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complicated. For example, if ûo represents the scattered field data due
to several localized scatterers, then it consists of several additive terms
like (31) and the integration domain in (28) involves several constraints
like (32), with possible overlap.

The effective domain of integration in (28) is limited further
because only those beams that pass near r actually contribute. For
a given r this localizes the contributions in (28) to the vicinity of a
hyper-plane in the X-domain, defined by

(x− x̄)/R̄ = »̄, R̄ ≡
√
∣x− x̄∣2 + z2. (33)

This observation constraint defines the phase-space beams that pass
through r.

Thus, unlike the plane-wave superposition, the phase-space beam
representation is localized a priori in the X-domain about the skeleton
as schematized in Fig. 1. It emphasizes only those beam that
emanate along the local radiation direction (32) and also pass near
the observation point as defined in (33).

III.2. Time-domain: Pulsed-beam summation

III.2.1. Local spectrum of the data

The time-dependent local spectral distribution of the initial field is

defined as an inverse Fourier transform of the Ûo(X) in (21)

Uo(Y) =
1

2¼

∫ ∞

−∞
d! Ûo(X;!) e−i!(t̄−v−1 ¯»⋅x̄), (34)

where t̄ denotes the phase-space time variable in the five dimensional
phase-space Y ≡ (x̄, »̄, t̄). The time shift,v−1»̄ ⋅ x̄, in the exponent of
(34) has been introduced for a convenient interpretation of the results
(see discussions following (39) and (46)).

In order to express Uo(Y) directly in terms of the time-dependent
data we apply (34) to (22), to obtain

Uo(Y) =
1

2¼

∫ ∞

−∞
d!

∫
d2x ûo(x;!)Ŵ

∗(x;X;!) e−i!(t̄−v−1 ¯»⋅x̄). (35)

Inverting the order of integrations and using the convolution theorem
we obtain

Uo(Y) =

∫
d2x

∫
dt uo(x, t) W (x, t;Y) (36)
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where the phase-space kernel W (x, t;Y) is related to Ŵ (x;X) of (23)
via

W (x, t;Y) =
1

2¼

∫ ∞

−∞
d! Ŵ ∗(x;X;!) e−i!(t̄−t−v−1 ¯»⋅x̄) (37)

Substituting Ŵ (x;X) = ŵ(x− x̄)eik
¯»⋅x (23) and noting that w(x, t) is

real so that ŵ∗(!) = ŵ(−!) we obtain

W (x, t;Y) =
1

2¼

∫ ∞

−∞
d! Ŵ (x;X;!) e−i!(t−t̄+v−1 ¯»⋅x̄) (38)

and finally from (23)

W (x, t;Y) = w[x− x̄, t− t̄− v−1»̄ ⋅ (x− x̄)] (39)

where the window functions w(x, t) is the TD counterpart of the FD
window function ŵ(x) via (1 b). Typical parameters for the space-time
support of this window function will be considered in Sec. IV.2.

It is assumed that w(x, t) is localized about the origin, hence
the phase-space window W of (39) is localized about x = x̄ and
t = t̄ + v−1»̄ ⋅ (x − x̄). Thus (36) is readily identified as a windowed
Radon transform localized about (x, t) = (x̄, t̄) with the spectral tilt
»̄ (see Fig. 4a). This interpretation identifies Uo as the local time-
dependent spectrum of uo (compare Fig. 2). For proper numerical
implementation of the local transform in (36) we shall demand that w
is in ℒ1

(x,t), namely
∫

d2x

∫
dt ∣w(x, t)∣ = finite. (40)

The inversion formula corresponding to (36) is found by
transforming (27) into the TD and following essentially the same
analytic procedure. The result is

uo(x, t) = −(2¼v)−2

∫
d5Y Uo(Y)WN (x, t;Y) (41)

where
WN (x, t;Y) = N †(t)⊗W (x, t;Y) (42)

and

N †(t) =
1

2¼

∫
d! (−i!)2N̂

−2
(!) e−i!t. (43)

Note that N̂ may tend to zero as ! → ∞, in which case the integral
in (43) does not converge. Nevertheless, in the case of band limited
signals the integration domain in (43) may be limited to the maximum
frequency of the excitation so that (43) is well define (see also discussion
preceding (69)).



Phase-space beam summation 753

Figure 4. Local (Pulsed-beam) spectrum; (a) The local Radon
transforms of the initial field uo(x, t), (b) A radiating pulsed-beam.

III.2.2. The radiating field

Eq. (41) can be propagated to z > 0, giving

u(r, t) = −(2¼v)−2

∫
d5Y Uo(Y)B(r, t;Y) (44)

where the propagators B(r, t;Y) describes the radiation into the half
space z > 0 due to field distribution WN (x, t;Y) in the z = 0 plane.
In view of (28) and (34) they are related to the FD beam propagators

B̂(r;X) of (29) via

B(r, t;Y) =
1

2¼

∫ ∞

−∞
d! (−i!)2N̂

−2
(!)B̂(r;X;!) e−i![t−t̄+v−1 ¯»⋅x̄].

(45)
B(r, t;Y) may also be calculated directly from field distribution
W (x, t;Y) in the z = 0 plane via several alternative TD formulations
(e.g. Kirchhoff integral). Following (29) we shall represent it here by
a transient plane-wave integral. Since B may contains an evanescent
spectrum, in addition to the propagating spectrum, we shall utilize the

analytic signal representation (12). Thus B(r, t;Y) = Re
+

B (r, t;Y)
with

+

B (r, t;Y) = −(2¼v)−2

∫
d2»

+

W̃N (», t− v−1(» ⋅ x+ ³z);Y) (46)

where
+

W̃N(», ¿ ;Y) is the analytic transient plane-wave spectrum (11)

of WN (x, t;Y). In view of (39) it is given by
+

W̃N (», ¿ ;Y)= N †(t)⊗
+

w̃
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(»− »̄, ¿− t̄+v−1» ⋅ x̄) where
+

w̃ (», ¿) denotes the analytic plane-wave

spectrum (11) of
+
w (x, t).

Since from (39)
+

W is localized about (x, », t) = (x̄, »̄, t̄) = Y,
+

B
describes a space-time wavepacket (pulsed-beam - PB) that emerges
from the z = 0 plane at (x, t) = (x̄, t̄) in the direction ·̄ of (30) (see

Fig 4a). Closed form expressions for
+

Bwill be considered in Sec. IV.2.

III.2.3. Spectral localization

The representation in (44) describes the field as a continuous spectrum
of shifted, tilted and delayed PB (Fig. 1). The PB amplitude is
described by the local spectral function Uo that matches this spectrum
to the given aperture distribution. If the aperture is smooth enough,
then Uo senses the local radiation properties of the aperture around
x̄ and therefore excites only those PB propagators that match those
properties (Fig. 4). The integral representation (44) is therefore
localized a priori in the Y domain (without recourse to asymptotic
analysis).

Assuming for example that uo is a short-pulse distribution of the
form (17), then Uo enhances PB whose phase-space coordinates Y are
in the vicinity of the radiation constraint (see (32) and Fig. 1)

»̄ = ∇Φo(x̄), t̄ = v−1Φo(x̄) (47)

This limits the effective domain of integration in (44) to phase-space
regions adjacent to that constraint. The integration domain is limited
further due to the fact that the PB propagatorsB are confined in space-
time, so that non-negligible contributions are obtained only from PBs
that pass near the observation point. For a given (r, t) this constraints
the relevant phase-space coordinates to the vicinity of the observation
constraint (see (33))

(x− x̄)/R̄ = »̄ , t̄ = t− R̄/v. (48)

Thus, the actual integration domain in (44) is confined, a priori to
compact domains around the intersection of the constraints in (47) and
(48). The degree of localization depends on the choice of the proper
window function w which minimizes the phase-space support of both
Uo and B for a given class of initial distributions, and for a given
observations range. This subject will be addressed next by considering
special window functions.
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IV. GAUSSIAN WINDOWS

Gaussian windows have several important properties: (a) they
maximize the phase-space localization implied by the uncertainty
principle; (b) they generate tractable beam propagators which are
related to the conventional Gaussian beams; (c) they are well suited to
performing analytic approximations; (d) they furnish convenient basis
functions for time-dependent representations (see Sec. IV.2).

IV.1. Time-harmonic Gaussian window

IV.1.1. Properties of the window function

A 2D Gaussian window has the general form

ŵ(x) = e−
1
2
k x⋅¯−1⋅x (49)

where ¯−1 is symmetrical complex matrix so that x ⋅ ¯−1 ⋅ x is a
quadratic form. For convergence at large x, Re¯−1 should be positive
definite for ! > 0. Henceforth we shall only consider rotationally
symmetric windows where ¯ = ¯I with I being the identity matrix
and ¯ = ¯r + i¯i with ¯r > 0 for ! > 0. These spatial and spectral
window functions have the form

ŵ(x) = e−
1
2
k ∣x∣2/¯, ˆ̃w(») = (2¼¯/k)e−

1
2
k ¯∣»∣2 (50)

with the norm and width (see (25)–(26))

N̂2 = (¼/k)∣¯∣2/¯r, Δx = ∣¯∣/
√
¯rk = Δ»∣¯∣. (51)

Note the uncertainty principle ΔxΔ» = ∣¯∣/¯rk ≥ 1/k with an equality
for ¯ = ¯r. Note also that we have kept the frequency parameter
k explicit in the exponent of (50). The resulting beam propagator
will have frequency independent collimation distance but frequency
dependent widths (see (57), (58)). This will have a major effect on
the shape of the TD window and propagators (see Sec. IV.2).

IV.1.2. Properties of the propagators

The phase-space propagators B̂(r;X) are calculated by substituting
(50) in (29). For large k¯r the integral can be evaluated asymptotically
as detailed in Appx. VI. The result is listed below. We utilize the beam
axis coordinates (xb1 , xb2 , zb) defined, for a given phase-space point X,
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Figure 5. The beam field in the configuration space. The beam
emerges from x̄ along the ·̄ direction identified by the spherical angles
(#̄, '̄). The zb axis coincides with the beam axis while the transverse
beam coordinates (xb1 , xb2), defined in (52), are rotated such that xb1
lies in the plane (»̄, ·̄). Consequently xb2 is parallel the z-plane.

by the transformation

[
xb1
xb2
zb

]
=

⎡
⎣

cos #̄ cos '̄ cos #̄ sin '̄ − sin #̄
− sin '̄ cos '̄ 0

sin #̄ cos '̄ sin #̄ sin '̄ cos #̄

⎤
⎦
[

x1 − x̄1
x2 − x̄2

z

]
(52)

where (#̄, '̄) are the spherical angles that define the beam direction
·̄ = (»̄, ³̄) (Fig. 5), i.e.

cos #̄ = ³̄, cos '̄ = »̄1/∣»̄∣, sin '̄ = »̄2/∣»̄∣. (53)

Thus, the zb axis coincides with the beam axis while the transverse
coordinates xb = (xb2 , xb1) are rotated such that xb1 lies in the plane
(»̄, ·̄) (see Fig. 5). Accordingly, the linear phase »̄ ⋅ x implied by the
window function in the z = 0 plane (see (21)) is operative in the xb1
direction but not in the xb2 direction. Utilizing the beam coordinates
we obtain by saddle point integration (see Appx. VI)

B̂(r;X) ∼ B̂s =

√
det Q(z)

det Q(0)
eik (x̄⋅¯»+zb+

1
2
xb⋅Q⋅xb) (54)

where

Q =

[
(z³̄−1 − i¯³̄2)−1 0

0 (z³̄−1 − i¯)−1

]
. (55)
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In view of (55), the quadratic form xb ⋅ Q ⋅ xb in (54) is given by
x2b1Q11 + x2b2Q22.

The properties of B̂ either as a configuration-space object, where

X is kept constant and B̂ is regarded as a function of r, or as a phase-
space object, where r is kept constant and X is varied, are discussed

next. Regarded as a function of r, B̂s of (54) has essentially the form of
a Gaussian beam (GB), propagating along the beam axis zb. However,
in the conventional GB the elements of Q depend only on the location
along the beam axis (i.e. on zb; see (56)–(59)), whereas in (55) they
depend on z = ³̄zb−∣»̄∣xb1 . This difference is due to the fact that in the
conventional GB, the Gaussian initial conditions are given on a plane
normal to the beam axis, whereas here they are defined on a plane of
constant z which is generally inclined with respect to the beam axis. It

is important, therefore, to observe that B̂s in (54) conforms smoothly

to the specified Gaussian distribution Ŵ (x;X) in z = 0 plane.

IV.1.3. Paraxial form

For large zb or near the beam axis, B̂s of (54) changes smoothly into
a conventional GB. It is described by (54)–(55) wherein we substitute,
from (52), z³̄−1 = zb−xb1 tan #̄ ≃ zb. Under this paraxial substitution,
we express the elements of Q in (55) in the form

(z³̄−1 − i¯³̄2)−1 → (zb − i¯³̄2)−1 = (zb −Z1 − iF1)
−1 = 1/R1 + i/kD2

1

(56 a)
(z³̄−1 − i¯)−1 → (zb − i¯)−1 = (zb − Z2 − iF2)

−1 = 1/R2 + i/kD2
2

(56 b)
where the parameters

Z1 = −¯i³̄
2, F1 = ¯r ³̄

2, Z2 = −¯i, F2 = ¯r (57)

will be interpreted below. Furthermore, for j = 1, 2 we obtain from
(56)

Dj =
√
Fj/k

√
1 + (zb − Zj)2/F 2

j
(58)

Rj = (zb − Zj) + F 2
j
/(zb − Zj). (59)

By substituting (56 a,b) into (54) one readily identifies Dj as the
beam width in the (z, xbj ) plane, while Rj is the phase front radius
of curvature. The resulting GB is therefore astigmatic; its waist in
the (z, xbj ) plane, is located at zb = Zj , while Fj is the corresponding
collimation length. This astigmatism is caused by the beam tilt which
reduces the effective initial beam width in the xb1 direction.
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Regarding B̂ as a function of X for a fixed r one finds from (54)

that B̂s exhibits a Gaussian decay away from the constraint plane of
(33). Keeping »̄ constant, one finds that the Gaussian widths as X is
displaced from this constraint in the xb1 and xb2 directions are given
by

D̄1 = D1/³̄, D̄2 = D2. (60)

This also determined, via (33), the Gaussian widths of the decay as X
displaced in the »1 and »2 directions.

IV.2. Time-dependent Gaussian-± window

IV.2.1. Properties of the window function

A convenient TD window is obtained by transforming the FD Gaussian
window (50), with ¯ being frequency independent. Note though that
convergence of the window in (50) implies ¯∣!<0 = −¯∗∣!>0, so it
is convenient to utilize the analytic signal representation (5). Thus,
applying (5) to ŵ of (50) we obtain

w(x, t) = Re
+
w (x, t) = Re

+

± [t− v−1 i

2
∣x∣2/¯] (61)

where
+

± is the analytic delta function

+

± (t) =

{
(¼it)−1, Imt < 0
±(t) + P(¼it)−1, Imt = 0

(62)

with P indicating Cauchy’s principal value. This window is localized
around (x, t) = (0, 0). For ∣x∣ = 0, it is impulsive at t = 0 and decays

thereafter like t−1. For ∣x∣ ∕= 0, the argument of the
+

± function in (61)
has a negative imaginary part and thus the window has the form of a
smooth Lorentzian pulse.

One may readily verify that the decay rate of the window in (61)
is not fast enough in t and x and thus it is not in ℒ1

(x,t) (see (40)). In

order to obtain a window in ℒ1
(x,t) we shall differentiate this window

twice. Furthermore, as noted above, the window in (61) is impulsive
for x = 0. In a numerical processing, one may analytically extract the
contribution of the ±-singularity in the local Radon transform integral
(36). In general, however, it is convenient to use a smooth window.

Such a window is obtained if an exponential decay e−!T/2 is added to
ŵ in (50), where the parameter T > 0 is chosen to satisfy

T ≪ !−1
max (63)
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with !max denoting the upper frequency in the data uo(x, t). The
reason for condition (63) will be discussed in connection with (69).

Thus, applying (5) to ŵ(x, !) = (−i!)2 e−
1
2
k ¯−1∣x∣2− 1

2
!T we obtains,

instead of (61), the window function

w(x, t) = Re
+
w (x, t) = Re

+

±
(2)[t− i

2
T − v−1 i

2
∣x∣2/¯]. (64)

where from (62),
+

± (2)(t) ≡+

± ′′(t) = 2/¼it3.
To clarify the properties of this window we shall rewrite it in a

standard form

w(x, t) = Re
+

±
′′[t− tp − i

2
Tp] = ∂2

t

1

¼

Tp/2

(t− tp)2 + (Tp/2)2
(65)

where

tp(x) =
1

2

¯i
v∣¯∣2 ∣x∣

2, Tp(x) = T +
¯r

v∣¯∣2 ∣x∣
2 (66)

To parameterize the properties of this window we shall consider the
expression in (65) without the second time-derivative. For a given
x this expression peaks at t = tp(x) and its pulse-length and peak-
value are given, respectively, by Tp(x) and 2/¼Tp(x). As ∣x∣ increases,
Tp increases and thus w decays (see Fig. 6). The transverse half-
amplitude diameter of the window, D, is therefore obtained by solving
Tp(x) = 2Tp(0), giving

D = 2
√
T ∣¯∣2v/¯r. (67)

Next we shall estimate the size of the integration domain around
the window center needed in a numerical implementation with the local
window transform (36). We shall consider the error in the ℒ1

(x,t) norm

of the window in (64) when the integration domain is truncated, i.e.,

∣∣w∣∣ = Re

∫ ½max

0
½d½

∫ tmax

−tmax

dt ∣w(½, t)∣ (68)

where ½ = ∣x∣. Evaluating this integral in close form for ½max → ∞ and
tmax → ∞ we obtain ∣∣w∣∣ = 3

√
3¯/¼T . When the integration domain

is truncated as in (68), the norm may also be evaluated analytically.
The resulting relative error, E, is depicted in Fig. 7. One can show that
the error is proportional asymptotically to T/tmax and to (D/2½max)

2

where D is the transverse half-amplitude diameter of the window (67).
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Figure 6. The Gaussian-± window (64) in the (x1, t) plane. The
contour levels are at 3db, 6db and 9db of the peak. The window are
depicted for x̄ = 0, t̄ = 0, T = 0.1, v = 1 and for (a) »̄ = 0 and
¯ = 1− 4i (a slightly focusing window); (b) ¯ = 1 and »̄ = (

√
2/2, 0)

(the PB radiates in 45o).

Figure 7. The relative error, E, in the norm ∣∣w(x, t)∣∣ for the
Gaussian-± window in (64) as a function of the normalized time and
space truncation t̄max = tmax/T and ½̄max = ½max/(D/2).

IV.2.2. Properties of the propagators

Next we shall calculate the beam propagators for the TD window
in (65). For well collimated windows, closed form expressions for
+

B can be obtained via an asymptotic evaluation of the spectral
integral (46) directly in the TD. For simplicity, however, we shall

derive these expressions from the asymptotic FD beams B̂s in (54).
Noting that the TD window in (64) corresponds to the FD window

ŵ(x, !) = (−i!)2 e−
1
2
k ¯−1∣x∣2− 1

2
!T , we find that the corresponding FD

propagators are given by (−i!)2e−
1
2
!T B̂s. Furthermore, using (51) we
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have for this FD window N̂2 = (−i!)4 ¼k
∣¯∣2
¯r

e−!T so that (43) for N †

does not converge for real t. However, if T is chosen according to (63)
then it has no effect over the entire frequency band of the data so

that we may use T = 0 in the expression for N̂2 (see also discussion
in (43)). Substituting in (45), we obtain for the TD propagators

B(r, t;Y) = Re
+

B (r, t;Y) where

+

B (r, t;Y) ≃ 1

¼

∫ ∞

0

k¯r
¼∣¯∣2 B̂s(r;X;!) e−i![t−t̄+v−1 ¯»⋅x̄]

=
i∂t¯r
¼v∣¯∣2

√
detQ(z)

det Q(0)

+

± [t− t̄− i

2
T − v−1(zb +

1

2
xb ⋅Q ⋅ xb)].

(69)

The last expression is written in terms of the beam coordinates
(xb1 , xb2 , zb) defined in (52) while Q is given by (55). This expression
readily establishes B as a PB field that emanates from the point
x = x̄, in the z = 0 plane at a time t = t̄, and propagates in the ·̄
direction along the zb axis. The confinement along the propagation

axis is described by the pulse shape
+

± (t − t̄ − v−1zb − i
2
T ), which

implies that the wavepacket is centered about zb = v(t − t̄). The
spatial confinement transverse to the beam axis is described by the
quadratic form −1

2v
−1xb ⋅Q ⋅ xb: Noting from (55), with ¯r > 0, that

this term has a negative imaginary part that increases quadratically

as the distance from the axis increases, it follows that
+

B decays away
from the axis.

The PB is (69) has the form of an astigmatic PB field [13].
However, in a conventional PB, the elements of Q depend only on
zb, i.e., on the location along the beam axis, whereas here they depend
on z = ³̄zb − ∣»̄∣xb1 . The reason for this has already been discussed
after (55). It follows that expression (69) conforms smoothly with the
initial field distribution WN (x, t;Y) at the z = 0 plane.

For large zb, on the other hand, we may replace in Q: z³̄−1 =
zb − xb1 tan #̄ ≃ zb, hence (69) changes gradually into a conventional

PB. In this case, the space-time structure of
+

B may be characterized
by rewriting the elements of Q in (55) in the form

(zb − Zj − iFj)
−1 ≡ 1/Rj + i/Ij (70)

where for j = 1 or 2, Rj(zb) is given in (59) and (cf. (58))

Ij(zb) = Fj(1 + (zb − Zj)
2/F 2

j
). (71)
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Expression (69) for the PB field may therefore be written in a standard
form

+

B (r, t;Y) =
i∂t¯r
¼v∣¯∣2

√
(−Z1 − iF1)(−Z2 − iF2)

(zb − Z1 − iF1)(zb − Z2 − iF2)
×

+

± [t− t̄− tp(r)− i
2
Tp(r)] (72)

where we define

tp(r) = v−1(zb + x2b1/2R1 + x2b2/2R2) (73)

Tp(r) = T + v−1(x2b1/I1 + x2b2/I2) (74)

Expression with (73)–(74) is readily identified as an astigmatic PB
whose major axes are xb1 and xb2 .

Clearly, from (72), tp(r) is the paraxial propagation delay along
the zb axis, hence Rj are the wavefront radii of curvature in the xbj

directions. Tp(r) is the temporal half-amplitude length of
+

± pulse the
and it is inversely proportional to the pulse amplitude. Thus the field
is strongest on the beam axis where Tp(r) is minimal and it decays as
Tp grows away from the beam axis. The half-amplitude beam width
in the xbj directions is found by solving Tp(xbj ) = 2Tp(0), giving

Dj(zb) = 2
√
vTIj(zb) (75)

The collimation lengths in the (xbj , z) cross sectional planes are Fj

and the waists are located at zb = Zj with the corresponding widths

2
√
vTFj . From (75) with (71) one notes that in the collimation

(Fresnel) zone ∣zb − Zj ∣ < Fj , the PB is essentially unaffected by the
propagation, whereas outside this zone, zb opens up along a far field
diffraction angle

Θj = 2
√

vT/Fj . (76)

As mentioned earlier, the propagator (72) belongs to the general
class of PB fields in [5, 13]. An important feature of these solutions
is that all their frequency components have the same collimation
distance and radii of curvature (see (57)–(59) with ¯ being frequency
independent). This implies that the beam width in the z = 0 plane

should be proportional to !−1/2 (see (58)). Such wavepackets have
been termed iso-diffracting [33] .
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V. ILLUSTRATIVE EXAMPLE

V.1. The initial field

The spectral consideration for both the plane-wave spectrum and the
local spectrum are illustrated here for a typical initial field distribution
uo(x, t),

uo(x, t) = Re
+

± (t− i
2
To − i

2
∣x∣2/v®) (77)

where To > 0 and ® = ®r + i®i, with ®r > 0, are parameters. The real
distribution has the form (see (65))

uo(x, t) =
1

¼

Tpo/2

(t− tpo)
2 + (Tpo/2)

2
(78)

with (cf. (66))

tpo(x) =
1

2

®i

∣®∣2v ∣x∣
2, Tpo(x) = To +

®r

∣®∣2v ∣x∣
2. (79)

For a given x, it peaks at tpo(x) and its pulse length and peak value are
given respectively by Tpo(x) and 2/¼Tpo(x). The spatial half-amplitude
width of this distribution is given by (see (67))

Do = 2
√
vTo∣®∣2/®r (80)

This distribution is depicted in Fig. 8a for ® = 1− 4i and To = 10−4.
The field radiated by the distribution in (77) is a pulse-beam which

has the paraxial form (see (72))

u(r, t) = Re
−i®

z − i®

+

± [t− i
2
To − v−1(z + 1

2
∣x∣2/(z − i®)]. (81)

Following the analysis in (75), the waist of this PB field occurs at
z = −®i and its width there equals to

Dwaist = 2
√
vTo®r (82)

V.2. Plane-wave spectrum

Applying the transient plane-wave transform (the slant stack
transform) in (11) to (77), we obtain, exactly,

ũo(», ¿) = Re {−2i¼v®
+

±
(−1)(¿ − i

2
To − i

2
∣»∣2®/v) } (83)
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Figure 8. The initial field distribution (77) for ® = 1 − 4i and
To = 10−4. (a) Spatial distribution: The line full describes the pulse
maximum at tpo(x); (b) Spectral distribution of ũ′′(», ¿): The full line
describes the spectral peak as found via the stationary point constraint
and the Legendre transform

In this expression

+

±
(−1)(t) ≡

∫ t

−1

+

± (t
′)dt′ = 1 + (¼i)−1 ln t, −¼ ≤ arg{ln t} ≤ 0 (84)

is the analytic Heaviside (or unit step) function (i.e, Re
+

± (−1)(t real) =
H(t)). The resulting transient plane-wave propagator −∂2

t ũo(», ¿) (see
(12)) is depicted in Fig. 8b.

To parameterize this expression we separate the argument of the
+

± function in (83) into real and imaginary parts. We then find that,
for a given », the plane-wave spectrum peaks at ¿ = −1

2®i∣»∣2/v. Its

pulse-length and spectral (») width are given by T̃ = To+ ∣»∣2®r/v and

D̃ = 2
√
Tov/®r, respectively. Note that the spectral width relates to

Dwaist of (82) via D̃ = 4vTo/Dwaist.
The exact spectral results in (83) and Fig. 8b can be readily

explained in view of the spectral localization considerations in Sec. II.3,
by noting that the distribution in (77) has the short-pulse form (17)
with Φo(x) = vtpo(x). We determine first the conditions under which
these spectral localization considerations are valid. First it is required
that the pulse length vTo be much smaller than the spatial width
Do of (80). This directly implies that ®r/∣®∣2 ≪ To. Next we note
from (20) that the wavefront radius of curvature of the data in the
(x, vt) plane is given by Ro = ∣®∣2/®i hence from (20), the asymptotic

contributing zone is given by 2
√
vTo®i/∣®∣2. Requiring that this zone

will be much smaller than Do of (80) we find that ®i ≫ ®r. Clearly
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the two conditions above are compatible.
Having established the conditions for the asymptotic spectral

localization of the data we may explain now the exact results in (83).
For a given » the main contribution to ũo(», ¿) is obtained from the
stationary delay point (18) which gives here xs(») = »∣®∣2/®i, and
the peak in he spectrum is obtained from the Legendre transform (19)
which gives here ¿(») = −1

2 ∣»∣2∣®∣2/v®i. Clearly if ®i ≫ ®r then

¿(») ≃ −1
2®i∣»∣2/v which is the value of ¿ where the exact spectrum

in (83) peaks. This line is also depicted in Fig. 8b.

V.3. Local spectrum

The time-dependent local spectrum of the initial distribution (77) is
obtained via local Radon transform (36). Using also the Gaussian-±
window (65) and evaluating the integral in closed form we obtain

Uo(Y) = Re
−2i¼v

®−1 + ¯∗−1×
+

±
(1)

[
t̄− i

2
To − i

2
T − (¯∗»̄ ⋅ x̄+ i

2
∣x̄∣2 + i

2
®¯∗∣»̄∣2)/v(®+ ¯∗)

]
(85)

where from (62)
+

± (1)(t) = −1/¼i/t2. Henceforth we shall consider a
window with no curvature i.e., with real ¯. Note that for ¯ ≫ ∣®∣, ∣x̄∣
and T ≪ To, expression (85) reduces to the transient plane-wave
spectrum (83).

The phase-space location where the local spectrum is concentrated
can be determined by minimizing the imaginary part of the argument
of the ± function in (85). This defines a relation between x̄ and »̄. The
value of t̄ where the waveform in (85) peaks under this condition is
found then by setting the real part of that argument to zero. For a
given x̄ one thus finds

»̄ =
x̄®i

®r¯ + ∣®∣2 , vt̄ =
®i

∣®+ ¯∣2 (
1

2
+

¯(¯ + ®r)

∣®∣2 + ®r¯
− ¯2®2

i

2(∣®∣2 + ®r¯)2
).

If now ¯ is chosen so that ¯ ≪ ∣®∣ then this condition reduces to

»̄ =
x̄®i

∣®∣2 , t̄ =
1

2
∣x̄∣2 ®i

v∣®∣2 . (86)

As expected this final result is independent of the window parameter
¯. The constraint in (86) is depicted in Fig. 9a (full line) for the initial
field distribution with ® = 1 − 4i shown in Fig. 8a. In view of the
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Figure 9. The local spectrum (85) for the field in Fig. 8a. (a) The
phase-space radiation constraint. Contour plots of Uo(Y) in cross
sectional planes t̄/To = 0,−1/2,−1,−3/2. The contour plots are
concentrated about the radiation constraint (86) (full line). The
contour levels are 0, 3db, 6db, 9db, 12db and 15db below the peak
level of Uo(Y) at (x̄, »̄, t̄) = (0, 0, 0). (b) and (c): Snapshots of the
local spectrum for t̄ = 0 and t̄ = −To/2, respectively. The spectrum is
shown in the (x̄1, »̄1) plane for (x̄2, »̄2) = (0, 0). Window parameters:
¯ = 1 and T = 0.

cylindrical symmetry of the initial field, the constraint is plotted in
the (x̄1, »̄1, t̄) domain for (x̄2, »̄2) = (0, 0).

Expression (86) for the phase space localization of Uo(Y) can
readily be explained in terms of the general considerations in
Sec. III.2.3. Indeed, using from (79) Φo(x) = vtpo(x) =

1
2 ∣x∣2®i/∣®∣2,

we observe that (86) agrees with the radiation constraint as defined in
general in (47).

To demonstrate this phase-space localization, we show in Fig. 9a
contour plots of the function Uo(Y) at several cross sectional planes
t̄/To = 0,−1/2,−1,−3/2 in the Y domain. One observes that Uo(Y)
is localized about the radiation constraint (86). To clarify the structure
of Uo(Y) we also show in Figs. 9b,c snapshots of the distribution of
Uo(Y) for two values of t̄: t̄ = 0 and t̄ = −To/2. The distribution is
depicted in the (x̄1, »̄1) plane with (x̄2, »̄2) = (0, 0). The initial data
parameters are ® = 1 − 4i and To = 10−4. Consequently we choose
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Figure 10. The local spectrum (85) for the initial field in Fig. 8a,
shown in a cross sectional plane (x̄1, t̄) whereon »̄ is related to x̄1
via radiation condition (86). The contour lines at 3db, 6db and 9db
below the peak are shown to be concentrated along the condition
t̄ = v−1

o Φo(x̄) of (86) (dashed line). (a) ® = 1− 4i as in the examples
in Figs. 8,9 and (b) ® = 1.

a window with ¯ = 1 and T ≪ To. We observe that indeed the
distribution of the local spectrum is concentrated near the radiation
constraint (86).

Finally in Fig. 10 we demonstrate the phase space localization
from yet another point of view. The figure shows the contour lines
of Uo(Y) (85) sampled on a plane (x̄1, t̄) defined by the radiation
constraint »̄ = x̄®i/∣®∣2 (see (86)). Two different cases of initial
conditions are considered: (a) ® = 1 − 4i (as in Figs. 8,9), and (b)
® = 1. One observes that the contour plots are concentrated along the
constraint t̄ = 1

2 ∣x̄∣2®i/v∣®∣2 of (86) (dashed line).
It should be noted again that the plane-wave spectrum ũo(», ¿)

can be localized in a ray-type local contributions as in (18)–(19) only
if ∂ijΦo(x) is large so that the asymptotic contributing zone (ACZ) in
(20) is small. The local spectrum Uo(Y) on the other hand is localized
along the radiation constraint in (47) regardless of ∂ijΦo(x). As an
example, note that Uo(Y) in Fig. 10(b) is localized along the constraint
(86) even though ®i = 0 here.

VI. SUMMARY

We presented a general phase-space framework for local modeling
and analysis of radiation from extended source distribution in plane
apertures. Both time-harmonic and TD representations have been
considered. For short pulse fields, the TD representations are more
efficient and physically incisive than the conventional transformation
from the FD.
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We considered and contrasted both global plane-wave represen-
tations (Sec. II) and local (windowed) phase-space representations
(Secs. III and IV). The transient plane-wave spectrum is constructed
by a slant stack (Radon) transform of the data in the (x, t) plane (see
(11)). Using analytic signal theory, we obtained a unified represen-
tation which incorporates both the propagating and the evanescent
spectrum (12), but the final result has also been expressed in term of
real signals (13)–(16). It has also been demonstrated how the time-
dependent spectrum could be localized about the space-time ray skele-
ton via a stationary delay evaluation of the plane-wave transform (see
Fig. 3).

The general procedure for windowed phase-space representation
has been described first using general window functions (Sec. III).
Explicit expressions for Gaussian window functions have been
developed next in Sec. IV. In each section we considered first the time-
harmonic case and then the time-dependent representation. We shall
summarize below the TD representations since they are more general
than the frequency domain ones.

According to the general phase-space formulation, the transient
field is expressed in (44) as a superposition of collimated pulsed-
beam (PB) propagators B(r, t;Y) that emerge from all points x̄
in the source domain, in all directions »̄ and at all times t̄, with
Y = (x̄, »̄, t̄) representing the phase-space coordinates. This phase-
space distribution of PBs is matched to the source distribution via
the local spectral function Uo(Y), obtained via a windowed slant-
stack transform (or windowed Radon transform) of the data (36).
As schematized in Fig. 4, this transform extracts the local space-
time spectral information in the data, thereby enhancing only those
PB propagators that emerge from a source along the local radiation
direction. The resulting phase-space integral representations are
therefore localized a priori about the physical ray skeleton of the data
(see (47)). Further localization is due to the fact that only those PB
that pass near a given space-time observation point actually contribute
(see (48)).

Explicit expressions for the general phase-space operators
mentioned above have been given in Sec. IV for the special case
of the iso-diffracting Gaussian-± window. This window yields well
collimated PB propagators that could be tracked analytically through
inhomogeneous medium or interactions with complicated boundaries
[13, 15]. It also generates simple analytic expressions for the phase-
space window operators. Thus the window kernel w and the PB
propagators B are given, respectively, in (61)) and (69). The PBs are
expressed conveniently in the (xb1 , xb2 , zb) coordinate system of (52)
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that depend on the beam initiation point and direction. The physical
parameters of the PBs, i.e., the pulse and beam widths, the collimation
distance, etc., have been identified and discussed in (70)–(76).

The phase-space beam approach is currently being explored for
local analysis of short-pulse scattering data and inverse scattering.
Here the local analysis extracts the local directional information
in the time-dependent data and matches pulsed-beams that are
backpropagated to form the image of the scatterer [30]. It has further
been found that the local PB spectrum of the data is directly related
to the local Radon transform of the scattering object. This gives rise
to several local backpropagation and inversion schemes.
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Appendix: Asymptotic evaluation for the beam fields

In order to analyze B̂ we shall express (29) with (50) in the form

B̂(r;X) =
k¯

2¼
e ikx̄⋅¯»

∫
d2» e ikq(»), q(») = »⋅(x−x̄)+i∣»−»̄∣2¯/2+³z

(A.1)
where formal definition of the spectral integration domains is given in
(3). Integral (A.1) has a stationary point »s in the complex » domain,
defined by

∇» q = (x− x̄) + i¯(» − »̄)− »z/³ = 0 at » = »s. (A.2)

This equation has a real solution »s = »̄ if and only if X and r are
related by the observation constraint in (33) and ∣»̄∣ < 1. For all other
values of X and r, the solution of (2) is complex and can not be found
explicitly. However, for points near the beam axis, an approximate
expression can be obtained by a expanding q(») into a Taylor series
about the beam direction »̄:

q(») = qo + q1 ⋅ (» − »̄) +
1

2
(» − »̄) ⋅ q2 ⋅ (» − »̄) (A.3)
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where

qo ≡ q(»̄) = »̄ ⋅ (x− x̄) + ³̄z, ³̄ =
√
1− ∣»̄∣2 (A.4a)

q1 ≡ ▽»q∣ ¯» = (x− x̄)− z»̄/³̄ (A.4b)

q2 ≡ ▽»▽» q∣ ¯» =

[
i¯ − z(»̄21 + ³̄2)/³̄3 −z»̄1»̄2/³̄

3

−z»̄1»̄2/³̄
3 i¯ − z(»̄22 + ³̄2)/³̄3

]
(A.4c)

From (3), the stationary point is given by

»s = »̄ − q−1
2 ⋅ q1 (A.5)

and (A.1) yields

B̂ ∼ B̂s = (¯/
√
detq2)e

ik(x̄⋅¯»+qo− 1
2
q1⋅q−1

2 ⋅q1). (A.6)

Finally, utilizing the beam coordinates in (52) we find that the Taylor
coefficients above are given by

qo = zb, q1 =

[
³̄ »̄1/∣»̄∣+ ∣»̄∣»̄1/³̄ −»̄2/∣»̄∣
³̄ »̄2/∣»̄∣+ ∣»̄∣»̄2/³̄ »̄1/∣»̄∣

] [
xb1
xb2

]
,

− q1 ⋅ q−1
2 ⋅ q1 = xb ⋅Q ⋅ xb (A.7)

where Q is given by (55). The final result (54) is obtained by
substituting (A.7) into (6). From (5) and (A.7) we note that the
displacement of »̄s from the real value »̄ is proportional to xb, thereby
justifying the Taylor analysis above for observation points with small
∣xb∣ near the beam axis.
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