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Abstract—Macroscopic Maxwell’s theory for electrodynamics is an
indeterminate set of coupled, vector, partial differential equations.
This infrastructure requires the supplement of constitutive equations.

Recently a general framework has been suggested, taking into
account dispersion, inhomogeneity and nonlinearity, in which the
constitutive equations are posited as differential equations involving
the differential operators based on the Volterra functional series.

The validity of such representations needs to be examined.
Here it is shown that for such representations to be effective, the
spatiotemporal functions associated with the Volterra differential
operators must be highly localized, or equivalently, widely extended
in the transform space.

This is achieved by exploiting Delta-function expansions, leading
in a natural way to polynomial differential operators.

The Four-vector Minkowski space is used throughout, facilitating
general results and compact notation.
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1. INTRODUCTION

Although our discussion applies to other models of physics based on
an Eulerian [1] spatiotemporal description, we specifically focus on the
macroscopic Maxwell model of electromagnetism, given by

∂x ×E = −∂tB − jm
∂x × H = ∂tD + je
∂x · D = ρe

∂x ·B = ρm

(1)

where ∂x and ∂t denote the space derivative (usually referred to
as “Del” or “Nabla”), and the partial time derivative, operators,
respectively. All the fields are space and time dependent, e.g., E =
E(X). Here

X = (x; ict) (2)

symbolizes the space-time dependence, where the Minkowski-space
location vector notation is used, with c denoting the universal constant
of the speed of light, and i is the unit imaginary complex number
i2 = −1, but in the present study there is no attempt to include
any relativistic considerations, and the same notation could also apply
to other models, e.g., continuum mechanics. For symmetry and
completeness, in the present representation, the Maxwell equations
include the conventional electric (index e), as well as the fictitious
magnetic (index m), current and charge density sources.

The Spatiotemporal functions (1) dependent on X can be
represented in an associated spectral space K in terms of the four-
dimensional Fourier transform pair, e.g., for some function f(X) we
have

f(X) = α

∫
(d4K)f(K)eiK·X (3)

where α = (2π)−4, and the bar denotes the transformed function, and
we effect a four-fold integration over the infinite spectral space,

K = (k, iω/c) (4)
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where K is a new quadruplet, once again constituting a Minkowski
four-vector where k is the propagation vector and ω is the (angular)
frequency. Associated with (3) is its inverse transformation

f (K) =

∫
(d4X)f(X)e−iK·X (5)

In (3), (5), K · X = k · x − ωt is a plane wave appropriate phase, but
care must be exercised, because thus far (3), (5) refer to arbitrary
functions, without reference to any specific wave equation. In an
obvious manner, derivatives affect the exponential, yielding

∂Xf(X) = α

∫
(d4K)iKf(K)eiK·X (6)

where (e.g., see [2]), the four-gradient vector

∂X =

(
∂x,−

i

c
∂t

)
(7)

once again constitutes a Minkowski space four-vector, due to the fact
that in (6) we have a factor K on the right-hand side, which is a four-
vector. Subsequently we use the same symbol for the function and
its transform, and the distinction between f(X), f(K) will be based
on the argument, or on the context where the function is used. Thus
by comparing (4), (7), we derive from (1) the Fourier transformed
Maxwell’s equations

ik× E = iωB− jm
ik×H = −iωD + je
ik · D = ρe

ik · B = ρm

(8)

where now the transformed fields, e.g., E = E(K) etc. are dependent
on K space coordinates, as can be deduced from the K space
coordinates involved in (8).

2. DISPERSIVE HOMOGENEOUS LINEAR MEDIA

Consider first the case of linear dispersive homogeneous media.
Starting from (8), constitutive relations must be propounded. As
a prototypical case, an anisotropic dielectric constitutive relation is
stipulated, given in K space by

D(K) = ε̃(iK) · E(K) (9)
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Where “˜” denotes a dyadic (in the present case a three-dyadic)
or generically higher tensor entities as displayed subsequently. For
convenience, the argument of the constitutive parameter is written as
iK. Inasmuch as (9) constitutes a product, in the time domain we have
a four-fold convolution integral

D(X) =

∫
(d4X1)ε̃

∗(X1) · E(X− X1) (10)

Note that ε̃(iK), ε̃∗(X) constitute a Fourier transform pair.
The convolution (10) constitutes a functional, or an integral

operator acting on the field E(X), which yields D(X). We are now
going to replace (10) with a symbolic differential operator. Although
this formal transition has been shown before [3], the range of validity
of the so-called Volterra differential operators has not been discussed
thus far.

From the definition (3), we have

D(X) = α

∫
(d4K)ε̃(iK)eiK·X ·E(K)

= α

∫
(d4K)ε̃(iK ⇒ ∂X)eiK·X · E(K)

= αε̃(iK ⇒ ∂X)

∫
(d4K) · E(K)eiK·X (11)

in which we have replaced iK by the corresponding four-gradient
operator acting on the exponential, and pulled it outside the integral
sign. Note carefully that the new operator ε̃(iK ⇒ ∂X) possesses the
functional structure of ε̃(iK) in (9) and not its transform ε̃∗(X1) given
in (10). Henceforth we will use the notation ε̃(iK ⇒ ∂X) ≡ ε̃(∂X) in
the following form

D(X) = ε̃(∂X) · E(X) (12)

understanding that the new operator is obtained by formally
substituting the components of iK with the corresponding components
of ∂X.

A direct transition from (12) to (9) is not feasible. Thus we can
inverse-transform (12) and in accordance with (5) obtain

D(K) =

∫
(d4X) {ε̃(∂X) · E(X)} e−iK·X (13)

but if we wish to avoid substituting (3) for E(X) inside the integral
(13), then we are stuck. On the other hand, if we knew the detailed
structure of ε̃(∂X), then we could effect a repeated integration by parts.
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For a simple example, let us assume that ε̃(∂X) = ∂XF, where F is an
arbitrary four-vector, then (13) can be recast as

D(K) =

∫
(d4X)

{
∂XF ·E(X)e−iK·X

}
− (d4X)

{
∂Xe−iK·X

}
F · E(X)

(14)
and if the first integral (14) can be assumed to vanish, then we finally
obtain

D(K) = iKF · E(K) (15)

which is consistent with (9).
Consequently one expects that for the representation (12) to be

valid, the functions appearing in (10) must be appropriately qualified.

3. DELTA EXPANSIONS AND THE CONVOLUTION
INTEGRAL

We start by defining the four-dimensional delta function (distribution)
in Minkowski space

δ(X) = α

∫
(d4K)eiK·X1 =

i

c
δ(x)δ(y)δ(z)δ(t) (16)

Following Lindell [4] (see also Van Bladel [5]), an arbitrary three-dyadic
function ε̃(X) is recast in terms of differential operations on the delta-
function

ε̃∗(X) = F̃0 · δ(X) + F̃1 : ∂Xδ(X) + · · · +
(
F̃n · ·· ∂X . . . ∂X︸ ︷︷ ︸

n

)
δ(X) + · · ·

(17)

where the constant coefficients F̃0, F̃1, . . . , F̃n, are a four-dyadic,
a double-four-dyadic, and higher tensors, as required by the four-
gradient factors for the multiplication (denoted by the cluster · ·· ) to
render a three-dyadic on the left-hand side of (17). For brevity of
notation (17) will be compacted in the form

ε̃∗(X) =
(
F̃n · ·· ∂

(n)
X

)
δ(X) (18)

with the understanding that F̃n is associated with the four-gradient
operator ∂X appearing n times and that (18) describes a series, wherein
a summation on n (in the sense of the Einstein convention for repeated
indices in summations) is effected.

Now substitute (18) into (5)

ε̃(iK) =

∫
(d4X)ε̃∗(X)e−iK·X =

∫
(d4X)

[(
F̃n · ·· ∂

(n)
X

)
δ(X)

]
e−iK·X

(19)
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The first term (17) yields the constant dyadic F̃0. Similarly to the
one-dimensional formula for an integral involving the derivative of the
delta function, here the second term is dealt by effecting integration
by parts yielding

∫
(d4X)

[(
F̃1 : ∂X

)
δ(X)

]
e−iK·X

=

∫
(d4X)

[(
F̃1 : ∂X

)
δ(X)e−iK·X

]
−

∫
(d4X)

[(
F̃1 : ∂X

)
e−iK·X

]
δ(X)

(20)

Obviously, like in the one-dimensional case, the first integral on
the right-hand side (20) vanishes, while the second yields F̃1 : iK.
Consistently we find

ε̃(iK) = F̃0·+F̃1 : iK+· · ·+F̃n · ·· iK . . . iK︸ ︷︷ ︸
n

+ · · · = F̃n · ·· (iK)(n) (21)

as the Fourier transform of (17), (18).
Substituting (18) in (10), we obtain an integral similar to (19),

however the exponential e−iK·X is now replaced by E(X− X1), thusly

D(X) =

∫
(d4X1)ε̃

∗(X1) · E(X −X1)

=

∫
(d4X1)

[(
F̃n · ·· ∂

(n)
X1

)
δ(X1)

]
E(X− X1) (22)

and applying the sum of operators in brackets (22), and repeating the
repetitive integration by parts scheme, we finally derive

D(X) = ε̃(∂X) · E(X)

=
(
F̃0 · +F̃1 : ∂X + · · · + F̃n · ·· ∂X . . . ∂X︸ ︷︷ ︸

n

+ · · ·+
)
E(X)

=
(
F̃n · ·· ∂

(n)
X

)
E(X) (23)

clearly demonstrating the validity of the symbolic representation (12).

4. INTERIM DISCUSSION (1)

We have demonstrated the transition from the spectral domain
dispersive constitutive relation (9) to the spatiotemporal Volterra
differential operator representation (12), in the context of the delta
expansion representation (17).
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Obviously the (generalized) function (17), by virtue of its
composition of the delta-function and its derivatives, is highly localized
in the X domain. This means that to effectively handle an associated
physical situation the series must be truncated after a small number of
leading terms. The same situation applies to Taylor expansions: While
expressed in terms of derivatives, which act locally, the expansion (for
“smooth” functions) can (within the mathematical limitations on the
functions at hand) yields values at other locations. But to be efficiently
exploited, the series must be used as an approximation, truncated after
a small number of leading significant terms.

Corresponding to the high localization of (17) in the X domain,
the Fourier transform (21) is “flat”, i.e., widely extended in the
transform space K. Clearly a polynomial-like expression (21) is not
efficient for describing highly localized functions in the spectral domain
K, because it requires many terms, which in turn prescribes many
terms in the delta expansion (17). Nevertheless, many physically
meaningful constitutive relations (e.g., a magnetized cold plasma),
display resonances, which are best described by the poles of rational
functions. This implies that our prototypical choice (9) is inadequate.
Indeed, it has been argued [1], and shown on some simple examples,
that in general we should address a differential relation with operators
on both sides of the equation, thusly

ε̃D(iK) · D(K) = ε̃E(iK) · E(K) (24)

Consequently the poles expected on the right-hand side of (24) appear
as zeroes of the polynomial on the left-hand side. All the results given
above for (9) follow.

As an example for (9), consider the simple case of an unmagnetized
cold plasma, characterized in the spectral domain by

ε̃(iK) = ε0

(
1 − ω2

p/ω2
)

=
εE

εD
=

ε0

(
ω2 − ω2

p

)

ω2
(25)

Where ωp is the plasma frequency. In the X domain, corresponding to
(12), the structure of (25) prescribes

ε(∂X) =
εE(∂X)

εD(∂X)
=

ε0

(
∂2

t + ω2
p

)

∂2
t

(26)

This is a simple case where we deal with scalar constitutive parameters,
and the representation (25) in terms of a ratio of polynomials, the
transition to (26), and the ensuing differential form

ε̃D(∂X) · D(X) = ε̃E(∂X) · E(X) (27)
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is straightforward. In general, we can continue the discussion using
our original forms (9), (12), as long as we understand that they are
prototypical for the corresponding (24), (27), for dispersive, linear
materials. In a more general context, any constitutive expression
which supplements (1) or (8), rendering them into a determinate set
of equations, can be discussed in this context.

Finally, we introduce a new notation applying to the differential-
operator constitutive relations,

D(X) = ε̃(∂X) · E(X) ≡ ε̃(∂X1) · E(X1)
∣∣∣
X1⇒X

(28)

where the last expression (28), in an obvious way, prescribes that first
the differential operations are carried out in terms of X1 and afterwards
the substitution X1 ⇒ X is performed. What in (28) appears to be
a superfluous notation, will become significant for the nonlinear cases
discussed below.

5. DISPERSIVE INHOMOGENEOUS LINEAR MEDIA

In a quest for a generalized approach to the problem of constitutive
relations [3], and as exemplified by some problems [1], it seems
advantageous to define inhomogeneous dispersive media in the X
domain, in terms of spatiotemporally dependent coefficients in the
following manner:

D(X) = ε̃(X, ∂X) · E(X) ≡ ε̃(X, ∂X1) · E(X1)
∣∣∣
X1⇒X

(29)

cf. (28). The analog of (23) is

D(X) =
[
F̃0(X) ·+F̃1(X) : ∂X1 + · · · + F̃n(X) · ·· ∂X1 . . . ∂X1︸ ︷︷ ︸

n

+ · · ·
]

·E(X1)
∣∣∣
X1⇒X

=
[
F̃n(X) · ·· ∂

(n)
X1

]
E(X1)

∣∣∣
X1⇒X

(30)

6. INTERIM DISCUSSION (2)

In a strict sense, in (3), (5), elements of the K and X spaces are
mutually exclusive, i.e., a function is expressed in either one of these
spaces, but not both. The exception is the eikonal approximation
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(sometimes referred to as the WKB approximation, or method of
characteristics) where expressions like

D(X, K) = ε̃(X, iK) · E(X, K) (31)

can be justified, but then K and X are not associated Fourier transform
spaces. Indeed, one finds analyses of electromagnetic problems
involving either dispersive systems or inhomogeneous (including time
transients), but not both simultaneously. This is a puzzling situation,
because spatial inhomogeneity due to the presence of structures in
an otherwise homogeneous medium, are referred to as ”geometrical
dispersion”, while macroscopic dispersion of a medium can often
be traced to its microscopic structure, involving certain structural
elements (atoms, molecules, etc.). The problem is solved by using
the definition (29), (30).

Now consider the associated representation of (29), (30), in the
spectral domain. Applying (3) to (29), (30), we obtain

D(X) = α

∫
(d4K)D(K)eiK·X

= ε̃(X, ∂X1)α

∫
(d4K1) · E(K1)e

iK1·X1

∣∣∣
X1⇒X

= α

∫
(d4K1)ε̃(X, ∂X1)e

iK1·X1

∣∣∣
X1⇒X

·E(K1)

= α

∫
(d4K1)ε̃(X, iK1)e

iK1·X · E(K1) (32)

Transforming ε̃(X, iK1) with respect to X, indicated by the diamond,
renders (32) as a double-fold four-integral

D(X) = α2
∫∫

(d4K1)(d
4K2)ε̃

♦(K2, iK1) · E(K1)e
i(K1+K2)·X (33)

Applying the inverse transform (5) to (33), and identifying the delta-
function (16), we obtain

D(K) = α

∫∫
(d4K1)(d

4K2)ε̃
♦(K2, iK1) · E(K1)

·
[
α

∫
(d4X)ei(K1+K2−K)·X

]

= α

∫∫
(d4K1)(d

4K2)ε̃
♦(K2, iK1) · E(K1)δ(K1+K2−K) (34)

which can be collapsed to a single four-integral,

D(K) = α

∫
(d4K1)ε̃

♦(K−K1, iK1) · E(K1) (35)
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or alternatively written as

D(K) = α

∫
(d4K1)ε̃

♦(K2, iK1) ·E(K1)

K = K1 + K2

(36)

Clearly, the indicated constraint on the second line (36) must be
substituted into the integral to facilitate a solution, but written in
this form it describes the relation between the interaction parameters
K1, K2 and the resulting K.

The results (35), (36) add a new dimension to our understanding
of the role of inhomogeneity in electromagnetic materials. Usually,
when material properties are discussed, the bulk homogeneous medium
is considered. When such a medium is homogeneous and linear
throughout space, no new spectral components can be created.
If the medium under consideration is homogeneous and nonlinear
(as discussed below) new spectral components, both frequencies
and propagation vectors, might emerge. This so called “mixing”
phenomenon is already known from electrical circuit theory. In a sense,
(35) constitutes a convolution in K space, which does not appear in
homogeneous linear media (9) where a local interaction in the spectral
domain is indicated. It suggests that a non-local interaction exists
in the spectral domain, i.e., in (35) the value of D(K) for some K
depends on the value of E(K) throughout the spectral domain. The
same conclusion follows from (36) and the associated constraint. This
seems to be a paradox: We are familiar with spectral interactions
in nonlinear systems, where new frequencies are created due to the
interaction of signals at other frequencies, so why does inhomogeneity
as well imply new spectral components? Some reflection reveals that
we have actually encountered such phenomena in linear systems [6].
Consider a lens embedded in an otherwise homogeneous medium, or
a reflection and reflection mechanism consisting of a dielectric plane
interface (governed by Snell’s law). Such a system is inhomogeneous
in space, new spectral components, possessing new wavenumbers, are
created everywhere in space. Similarly, moving objects or moving
boundaries can be regarded as inhomogeneities in time, leading to the
familiar Doppler effect, by which new frequencies are created due to
such inhomogeneities, in spite of the fact that the system is linear.
Consequently the paradox is not only resolved, but the results also
lend credibility to the model (29), (30), and the spectral representation
(34)–(36).

By inspection of (30), the details of the integrations (34)–(36)
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become clearer: For the first term in (30) we obtain

D0(K) = α

∫
(d4K1)F̃

♦
0 (K−K1) · E(K1) (37)

which displays a four-convolution in K space. Inasmuch as the first
term does not involve a four-gradient operator, this corresponds to a
dispersion-less case. The next term yields

D1(K) = α

∫
(d4K1)F̃

♦
1 (K−K1) : [iK1E(K1)] (38)

where in the square brackets the two lumped together terms constitute
a four-dyadic and the double multiplication finally yields a three-
vector. Similarly to (37), the structure of (38) once again corresponds
to a four-convolution in the spectral domain, and this will be
characteristic of all terms, in general,

D(K) = α

∫
(d4K1)F̃

♦
n (K− K1) · ·· [(iK1)

(n)E(K1)] (39)

where the summation notation stated above is understood.
With that we are now ready to extend the present results to

nonlinear systems.

7. DISPERSIVE HOMOGENEOUS NONLINEAR MEDIA

Weak or moderate nonlinear media can be modeled by the Volterra
functional series. Rewritten for the Minkowski four-space [3],

D(X) =
∑

n

D(m)(X)

D(m)(X) =

∫
(d4X1) . . .

∫
(d4Xm)ε̃∗(m)(X1, . . . ,Xm) (40)

· ·· E(X− X1) . . .E(X −Xm)

clearly displaying various products of fields, typical of nonlinear
interactions, as well as an extended convolution structure which
provides a consistent extension from the linear case (10).

The Fourier transform of (40) is given by [3]

D(m)(K) = α(m−1)
∫

(d4K1) . . .

∫
(d4Km−1)ε̃

(m)(iK1, . . . , iKm)

· ·· E(K1) . . .E(Km) (41)
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where ε̃∗(m)(X1, . . . ,Xm) and ε̃(m)(iK1, . . . , iKm) are m-fold four-
space Fourier transform pairs, and in (41) the constraint

K = K1 + · · · + Km (42)

is incorporated. Although here we are dealing with an infinite
homogeneous medium, (42) acquires the same structure as in (36).

In terms of the delta-expansions analogous to (18), we now have

ε̃∗(m)(X1, . . . ,Xm)=
[(

F̃n1
· ·· ∂

(n1)
X1

)
δ(X1)

]
. . .

[(
F̃nm

· ·· ∂
(nm)
Xm

)
δ(Xm)

]

(43)
where the book-keeping of the tensorial rank and the associated indices
must be separately considered for specific problems. The notation (43)
can be compacted by assuming that expressions in brackets in (43) are
multiplied out and the terms regrouped according to the number (zero
or any positive integer) of differentiations involved. The general term
will serve as symbolizing the whole series, thus (43) can be rewritten
as.

ε̃∗(m)(X1, . . . ,Xm)=
[
G̃n1...nm

· ·· ∂
(n1)
X1

. . . ∂
(nm)
Xm

]
δ(X1) . . . δ(Xm) (44)

Consistent with (21) and (43), (44), we have

ε̃(m)(iK1, . . . , iKm) =
[
F̃n1

· ·· (iK1)
(n1)

]
. . .

[
F̃nm

· ·· (iKm)(nm)
]

=
[
G̃n1...nm

· ·· (iK1)
(n1) . . . (iKm)(nm)

]
(45)

describing the kernel of (41) in terms of polynomials in iK1, . . . , iKm,

where G̃n1...nm are the new coefficients after the multiplication and
regrouping..

Analogously to (12) we now stipulate that

D(m)(X) = ε̃(m)(∂X1 , . . . , ∂Xm) · ·· E(X1) . . .E(Xm)
∣∣∣
X1,...,Xm⇒X

(46)

which is understood as an instruction to apply the various
differentiation operations to the fields given in terms of the
corresponding arguments, and finally substitute X coordinates for all
arguments.

In terms of the polynomial representations, corresponding to (43)–
(45), we now have in (46)

ε̃(m)(∂X1, . . . , ∂Xm) =
(
F̃n1

· ·· ∂
(n1)
X1

)
. . .

(
F̃nm

· ·· ∂
(nm)
Xm

)

= G̃n1...nm
· ·· ∂

(n1)
X1

. . . ∂
(nm)
Xm

(47)
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8. INTERIM DISCUSSION (3)

The basic equations (40)–(42) and (46) of the last subsection have been
given before [3]. It is easy to derive (46) formally: Applying the Fourier
transform (3) yields

D(m)(X) = αm
∫

(d4K1) . . .

∫
(d4Km)ε̃(m)(∂X1 , . . . , ∂Xm)

· ·· E(K1) . . .E(Km)ei(K1·X1+···+Km·Xm)
∣∣∣
X1,...,Xm⇒X

= αm
∫

(d4K1) . . .

∫
(d4Km)ε̃(m)(iK1, . . . , iKm)

· ·· E(K1) . . .E(Km)ei(K1+···+Km)·X (48)

Transforming (48) according to (5) and using (16) yields

D(m)(K) = αm
∫

(d4X)

∫
(d4K1) . . .

∫
(d4Km)ε̃(m)(iK1, . . . , iKm)

· ·· E(K1) . . .E(Km)ei(K1+···+Km−K)·X

= α(m−1)
∫

(d4K1) . . .

∫
(d4Km)ε̃(m)(iK1, . . . , iKm)

· ·· E(K1) . . .E(Km)δ(K1 + · · ·+ Km − K) (49)

in agreement with (41), (42).
Evidently the more explicit polynomial structure (47), correspond-

ing to the delta-function expansion (43), (44) could have been applied
to (48). Once again this demonstrates that the formalism is valid for
highly localized functions in the spatiotemporal domain X, or equiva-
lently, widely extended in the transform space K.

Next, we recast (49) in the form

D(m)(K) = α(m−1)
∫

(d4K1) . . .
∫

(d4Km−1)ε̃
(m)(iK1, . . . , i(K− (K1 + · · · + Km−1)))

· ·· E(K1) . . .E(K− (K1 + · · · + Km−1)) (50)

Upon freezing all integrations, except with regard to K1, (50) acquires
a structure similar to (35), demonstrating how nonlinear homogeneous
media and linear inhomogeneous media are, both display non-locality,
and the creation of new spectral components in the spectral domain.
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9. DISPERSIVE INHOMOGENEOUS NONLINEAR
MEDIA

The generalization of the above results to inhomogeneous nonlinear
media is straightforward and completes the consistent definition
of constitutive relations. Similarly to the dispersive homogeneous
nonlinear case (45), and inspired by the dispersive inhomogeneous
linear case (29), we now define

D(m)(X) = ε̃(m)(X, ∂X1 , . . . , ∂Xm) · ·· E(X1) . . .E(Xm)
∣∣∣
X1,...,Xm⇒X

(51)
Or, in terms of the delta-expansions, instead of (46) we now have in
(51)

ε̃(m)(X, ∂X1 , . . . , ∂Xm) =
(
F̃n1(X) · ·· ∂

(n1)
X1

)
. . .

(
F̃nm(X) · ·· ∂

(nm)
Xm

)

= G̃n1...nm(X) · ·· ∂
(n1)
X1

. . . ∂
(nm)
Xm

(52)

By inspection of the linear inhomogeneous case (34)–(36) and
the nonlinear homogeneous case (41), it becomes evident that
inhomogeneity introduces an additional integration in K space.

Thus by exploiting (3) in (51), similarly to (34) and (48) we now
find

D(m)(X) = αm
∫

(d4K1) . . .

∫
(d4Km)ε̃(m)(X, ∂X1 , . . . , ∂Xm)

· ·· E(K1) . . .E(Km)eiK1·X1+···+Km·Xm

∣∣∣
X1,...,Xm⇒X

= α(m+1)
∫

(d4Q)

∫
(d4K1) . . .

∫
(d4Km)ε̃♦(m)(Q, iK1, . . . , iKm)

· ·· E(K1) . . .E(Km)ei(Q+K1+···+Km)·X (53)

More explicitly, in terms of the delta-expansion, (52) will be used in
(53).

Similarly to (35)–(36) and (49) yields

D(m)(K) = αm
∫

(d4Q)

∫
(d4K1) . . .

∫
(d4Km)ε̃♦(m)(Q, iK1, . . . , iKm)

· ·· E(K1) . . .E(Km)δ(Q + K1 + · · · + Km −K) (54)

This completes our derivation.
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10. DISCUSSION AND SUMMARY

The question and constitutive relations and locality is of for various
areas of physics investigating yield theories, e.g., see [10]. The present
study is a continuation of a previous project [1, 3], attempting to
present a consistent framework for the constitutive relations associated
with the Maxwell model for electromagnetism (1). The tool facilitating
this approach is the Volterra functional series, in its present four-
dimensional Minkowski space representation.

Is this a general representation for nonlinear constitutive
relations? It is easy to argue that it is not: The Volterra series given
by (40) is the functional analog of the Taylor expansion for functions.
Both are useful if the series can be truncated after a few leading terms.
In the nonlinear case, the Volterra series describes a hierarchy of field
interactions. In processes where such a hierarchy cannot be displayed,
e.g., when we deal with strong nonlinearity as in the case of phase
conjugation effects, the formalism seems to be inapplicable.

The thrust of the present study was to show that the so-called
Volterra differential operators approach is valid for functions which
are highly localized in the spatiotemporal domain X, which implies
widely extended associated functions in the transform space K.

We have extensively employed the delta-function expansions [4,
5], extended to the Minkowski spaces X, K. Although no attempt
is made to introduce Special-Relativistic considerations, the four-
dimensional Minkowski space proves to be a very powerful vehicle for
our derivations, providing clear extensions from lower dimensionality,
and facilitating compact notation.

One of the results demonstrated above is that both inhomogeneity
and nonlinearity imply nonlocal behavior in the spectral domain. Thus
spatial constitutive structures produce new wavenumbers, and time
dependent constitutive parameters, including boundaries, create new
frequencies. This property is evident in (34)–(36) and appears in the
nonlinear case (54) as well. On the other hand, nonlinearity alone also
shows effects of new spectral components, as in (41), (42).

Media possessing temporal dispersion (constitutive parameters
depending on frequency) are often referred to as “media with memory”,
because, as demonstrated by (10), what happens at some time t is
determined by all previous time instances. In the present case, this
property exists in space as well as in time, or more concisely, at all
previous spatiotemporal events within the past part of the light cone.
In view of the integral representation, as in (10), this non-locality
extends throughout the regime of integration. However, the present
discussion demonstrates that for many physically interesting models,
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representable in terms of polynomials as in (24), highly localized
functions are involved in the spatiotemporal domain, which can be
efficiently be approximated by a finite number of leading terms.

To what extent is this a realistic perception of empirical
reality as gleaned from theoretical arguments and experimentation?
The answer to this question is in the regime of microscopic
electromagnetic considerations for the properties of media, see for
example Balanis’ textbook [7] for introductory discussions, and
von Hippel’s comprehensive book [8]. Advanced chiral media
are considered e.g., by Lindell, Sihvola, Tretyakov, and Viitanen
[9]. Usually such materials are based on the equations governing
electro-mechanical models for various charged particles facilitating
polarization and magnetization effects, e.g., the Debye model [7–
9]. The associated differential equations display a finite number
of resonances, for which the constitutive parameters in the spectral
domain display poles. Physically the resonances correspond to
mechanisms such as electronic polarization, ionic or molecular
polarization, or dipole orientational polarization, etc. When artificial
particles are stipulated, e.g., for a resonating helix [9], the analysis
becomes more complicated but the principle follows.

The polynomial representations described above, e.g., (24) are
patently appropriate for such cases, justifying our derivation based
on the delta-expansions discussed above. All this reflects once more on
the locality question in electromagnetism: If the differential operator
representation of constitutive parameters provides a physically sound
model, then, in the sense that differential operations are local,
in contradistinction to global integral operators, the claim that
electromagnetic behavior is local, is vindicated.
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