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Local Spectral Analysis of Short-Pulse Excited
Scattering from Weakly Inhomogeneous Media—

Part II: Inverse Scattering
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Abstract—This paper is concerned with the reconstruction of
a weakly inhomogeneous scattering profile from data generated
by a short-pulse incident plane wave, which is postprocessed so
as to localize the interrogated region to a space–time resolved
scattering cell. The phase-space localization due to postprocessing
is brought about by applying local (i.e., windowed) slant-stack
transforms to the time-dependent scattered fields. In the domain
of the scatterer, this processing corresponds to applying win-
dowed Radon transforms to the induced field distribution, which,
in turn, generates pulsed-beam (PB) wave packets traveling
toward the observer. The forward analysis parameterizing this
new form of time-domain (TD) diffraction tomography has been
performed in a companion paper and furnishes the framework
for the investigation here. Via the forward parameterization,
the three-dimensional (3-D) global scattering phenomenology has
been reduced to scattering from an equivalent one-dimensional
(1-D) scattering cell oriented along the bisector between the
direction of the incident plane pulse and the direction of the
scattered pulsed beam (PB) to the observer. For the inverse
problem, this process is reversed by windowing the scattered field
and backpropagating the resulting PB’s so as to form local images
of any selected region in the scattering domain. The phase-space
signature of the scattering cell is related to the Radon transform
of the medium in the cell so that the local profile function can be
recovered by Radon inversion. An illustrative numerical example
is included. Also discussed is the ultimate localization achieved
by incident PB excitation and PB postprocessing of the scattered
field.

Index Terms—Electromagnetic scattering, inverse problems,
nonhomogeneous media, pulsed beams.

I. INTRODUCTION

I N this second part of the two-part presentation, we deal
with the reconstruction of a pulsed-plane-wave excited

Born-approximated scattering object in [1, fig. I] by
inversion of locally windowed (postprocessed) scattered field
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data observed on the measurement planes, , within
which the object is located.

The windowed postprocessing provides the initial conditions
for backpropagation of localized pulsed-beam (PB) wave
objects toward the object domain. Part I of this study treats the
direct (forward) scattering problem in which is assumed
to be specified and the Born-approximated time-dependent
induced sources in the pulsed plane wave illuminateddo-
main are known. These induced sources, when subjected to
space–time windowed transforms, radiate a highly localized
phase-space PB that can be steered to any space–time point

on the measurement planes. The induced scatter-
ing cell, which generates the scattered PB, is an equivalent
one-dimensionally (1-D) stratified region oriented along the
bisector between the direction of incidence and observation
[1] (also see [2]). When applying the PB parameterization for
the forward problem to the profile inversion, the space–time
windowed portions of the data are “back propagated”
as phase-space PB’s toward the object domain . The PB
backpropagated data contains the phase-space footprints of that
localized region around a point in , sampled at time ,
which establishedthe data on . The phase-
space footprints are now processed so as to extract from them
theexplicit physical profile in the vicinity of . In view
of the results of Part I, this reconstruction strategy yields the
local profile along the bisector in [1, fig. 6].

This brief and qualitative description of the inversion
process is formalized in the body of this paper by detailed
analysis and synthesis. Most of the necessary operations shall
be performed directly in the time domain (TD). Whenever
desired, the frequency-domain analog of the inversion process
here can be inferred from the corresponding frequency-domain
forward processing in Part I, where the time and frequency
domains are treated side by side. In the text that follows,
backpropagation as such is considered in Section II-A, while
in Section II-B, we discuss localized (windowed) spectra,
summarizing in Section II-B1 the relevant forward results
from [1], which are then transformed in Sections II-B2 and
II-B3 into their backpropagated analogs. Special attention is
given to the TD Gaussian windows which generate the
PB’s. Object reconstruction, using the phase-space footprints
in Section II, is performed in Section III. After providing
the formally exact (but very massive) global phase-space
inversion algorithms, emphasis is placed (in Section IV) on
the substantial simplifications, which result due to the space-
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time localization of PB processing and use of asymptotic
techniques. Numerical examples implementing the forward
algorithms in [1] and the inverse algorithms in the present
paper are discussed in Section V, with attention paid to the
sensitivity of the results with respect the pulse and processing
window parameters. Conclusions are presented in Section VI.

The pulsed plane wave input employed in this study sets
the stage for an implementation of the “ultimate” localization
wherein the incident field is preprocessed via localized phase-
space windowing so as to generate a PB input, and the
scattered field is postprocessed so as to generate a PB output.
This ultimate a priori localization favors modeling of the
scattering process in terms of Fermat ray paths from the
launch points on (via the object domain) to the observer on

, with the scattering strength determined by the profile
sampled at time along the bisector between the incident
PB direction and the direction of scatteringtoward .
This process is schematized in Fig. 9 and it is quantified for
the forward and inverse scenarios as part of the conclusions
in Section VI.

II. PHASE-SPACE BACKPROPAGATION

A. Time-Dependent Plane Wave Representation

The spectral characteristics that distinguish backpropagation
from forward propagation are demonstrated most directly for
plane waves. We shall retain the notation used in Part I, which
makes the formulation directly applicable to thescattering
configuration depicted in [1, fig. I]. Since the scatterer is
locatedbetweenthe “data” planes and , scattering toward

takes place along the negative axis and toward
along the positive axis. Thus,forward propagation away
from data planes and covers the regions and

, respectively, with corresponding upper and lower signs
as shown in [1, eq. (10)] (here and elsewhere the subscript

denotes constituents corresponding to data taken
on the plane). Backpropagation,defined by tracking the
scattered field back to the source domain is, therefore, given
by the same expressions as in [1, eq. (10)] but for ,
respectively. In Part I, [1, eq. (10)] is written directly in the
TD as an angular superposition of time-dependent plane waves
[or pulsed plane waves (PPW)]. Here is the TD plane
wave spectrum, calculated from the data field by the
slant stack transform (SST) in [1, eq. (8)] with
and , Im being the normalized transverse
and longitudinal wavenumbers, respectively.

In Part I, [1, eq. (10)] incorporates only the contribution of
the propagating spectrum wherein is real. Extending
to account for the contribution of the evanescent spectrum

, wherein , can be implemented by utilizing
analytic signals that accommodate the complex time delay
implied by imaginary [3]. The total analytic field is thus
given by the right-hand side of [1, eq. (10)] wherein is

replaced by its analytic counterpart and the integration
domain now extends over the entireplane (the real field is
given by the real part of ). One finds that the evanescent
spectrum contribution decays whenforward-propagated away

from the initial plane, but grows whenbackpropagatedtoward
the object domain. In order to avoid numerical amplification
of measurement errors or noise, the backpropagated fields

are defined only with respect to the propagating
spectrum, i.e., by [1, eq. (10)] extended to the range .
These rules apply to all conversions of forward propagated TD
spectra in [1] into the backpropagated spectra required here.

B. Local Spectrum Analysis and Pulsed-Beam
Backpropagation

Local spectral analysis of a given space–time-dependent
field distribution is effected by application of windowed SST.
We summarize first the relevant results from the forward
analysis in [1, sec. III-B2] and [1, sec. III-B3] and proceed
then to backpropagation.

1) Transform Relations:The time-dependent local spec-
trum of the field data on the planes of [1, fig. I]
is defined by [1, eq. (14)]

(1)

with being a space–time window [1, eq. (15)]. The
space–time and spectral dependence in imply that the
window is localized in the data plane about ,
with spectral tilt (see [1, fig. 4]). The operation in (1)
has, therefore, been referred to in [1] as a “local slant stack
transform” that extracts the local spectral information from
the time dependent data. Thus, is localizeda priori
around a time and wave-tilt that describe the arrival
time and direction of the scattered field at that point.

2) Pulsed-Beam Propagation:The scattered fields
in the regions can be expressed by propagating
away from the data planes. This forward propagation into the
regions is obtained by replacing the window functions

in the local representation [1, eq. (16)] by the
phase-space propagators , i.e., [4, eq. (44)]

(2)

To synthesize from its initial field distribution
on the plane, we use the transient plane wave

representation in [1, eq. (10)], but in order to accommodate
both the propagating and the evanescent spectra we employ the

analytic signal extension, i.e., Re
with (see [4, eq. (46)])

(3)

where is the analytic SST of , calculated
via the analytic signal extension of [1, eq. (8)]. For of [1,
eq. (16)], it is given by

(4)
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and denotes SST of . Since is
localized about , is a space–time wavepacket, a
PB that emerges from the plane at in the
direction where [1, eq. (17),
fig. 1]. An asymptotically approximated explicit form for
is given in (8) below.

For properly chosen window parameters, the PB’s remain
collimated and well localized about theobservation constraint
defined in [1, eq. (18)]. For a given phase-space point

, this constraint defines the space–time trajectory of
the PB, which emerges from on the data planes
with spectral direction . Alternatively, for a given space-
time observation point , [1, eq. (18)] defines the center
coordinates of the phase-space region that contributes
significantly at . Further localization of the phase-space
integral (2) is due to the fact that the local spectrum
of the data is localized as discussed after [1, eq. (17)].

3) Pulsed-Beam Backpropagation:Referring to Section II-
A, we construct the backpropagated counterpart of (2) by

extending the definition of in (3) to the range ,
respectively, i.e.,

(5)

This expression is similar to (2) except that the backpropaga-
tors are now obtained by extending the definition of in
(3) to the range ; recalling the discussion in Section II-A,
the spectral integration range in (3) is now restricted to .
The formal representation in (5) may be further simplified

if we note from (4) that the kernel in (3) is localized
about , so that only PB’s with are significantly
excited by (3). Consequently, the phase-space integration in
(5) becomes

(6)

Equation (5) [or (6)] expresses the backpropagated fields
as a superposition of backpropagated PB’s weighted

by the local spectrum and emanating from the data
planes in all directions toward the object domain. As discussed
after [1, eq. (16)], the phase-space data is localized
and thus the integration domain in (2) may be limiteda
priori to the relevant phase-space regions. Further localization
is effected by the PB backpropagators via theobservation
constraint, which, for a given observation point in the
object domain, becomes (cf. [1, eq. (18)]; noe the different
sign in )

(7)

This constraint is used in Section III-B to further simplify the
phase-space integration in (5).

Fig. 1. Backpropagated beams.

4) Special Case: GaussianWindows: Closed-form ex-
pressions for the backpropagated PB’s can be found for the
class of TD Gaussian windows [1, eq. (38)] discussed in [1,
sec. IV-E]. This window is localized around .
Its properties and the role of the parametersand have
been discussed in [1, eqs. (37)–(43)]. Note that the window is
multiplied by a complex parameter whose role will become
apparent in (23) in connection with the imaging algorithm.

Near the beam axis, the spectral integral in (3) can be
evaluated asymptotically via the procedure in [4, Appendix],
which consists of transformation to the beam coordinates
followed by saddle-point integration of the Fourier inversion
to the TD. The resultingforward paraxial propagators for

are given in [4, eq. (69)]. In view of the discussion
above, the paraxialbackpropagators are given by the same
expressions extended to the region , i.e.,

(8)

with (contrast [1, eq. (45)])

(9)

Referring to Figs. 1 and [1, fig. 7], the beam coordinates
are defined for a given phase-space point

by the transformation in [1, eq. (46)]. Thus, (8) represents
forward propagation for and backpropagationfor

. Following the same analysis as in [4] (see also [1,
eqs. (48)–(52)]), we find that the PB in (8) is astigmatic with
major axes along the directions ; its waist in the

plane is located at , with collimation length
, where and are defined in [1, eq. (49)].

III. OBJECT RECONSTRUCTION

A. Inversion Strategy

As outlined qualitatively in Section I, localized object re-
construction from the scattered field data on the
planes is based on backpropagation of the “footprint” in the
data. In the local analysis approach, the footprints
are extracted from the data in (1) via the time-dependent
window and are transported toward the object domain by
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the PB backpropagators so as to synthesize via (6) the
backpropagated field . As has been shown in [1] and
[2], the local spectra are also related to local samples
of the object function via [1, eq. (26)]; thus, the local
samples can be recovered from by deconvolution and
inversion.

The relation between the backpropagated fields and the
reconstructed object function has been established in [5]:

is a sum of two terms , where
, are the partial images reconstructed by the

backpropagated fields from the planes

(10)

with related to the backpropagated fields via

(11)

The convolution in (10) with

(12)

deconvolves the exciting signal from the data, being
the upper frequency considered. If is short with respect
to the scale of the object and for , then

and (10) may be simplified to

(13)

Further particulars in implementing the inversion sequence
are given below.

1) The window in (1) is the twice-differentiated
Gaussian window in [1, eq. (38)]. This window con-
tains three parameters:; ; and . is chosen to
be of the same order as (or smaller than) the exciting
pulse length. The choice of the factordepends on the
processing scheme [see (23)]. Forwe may consider
two options:

a) pure real with being of the same
order as the distance from the data plane to the object
(image) domain; the resulting PB backpropagator
will have its waist at the data plane while the object
domain will still be in the collimation (Fresnel) zone
[1, eq. (49)];

b) , with defined as in option a) while
; this yields a converging PB backpropagator

that has its waist in the image domain, while the
data plane will still be in the collimation zone [1,
eq. (49)].

2) When calculating the backpropagated field in (6), only
those PB’s whose beam axes pass nearcontribute.
These beams satisfy the “observation constraint” in (7).
Consequently, only those phase-space regions near the
observation constraint contribute to the integration.

3) In view of the restrictions in 2), the PB backpropagators
are approximated by their explicit asymptotic forms in
(8).

The inherent localizations enumerated above simplify the
formal inversion steps substantially.

B. Implementation via Constrained Evaluation

Since the phase-space backpropagation integral (6) for
is localized about the vicinity of the observation

constraint (7), one may try to evaluate part of this integral
analytically, thereby reducing the computational complexity.
We shall briefly present such a scheme, referring for details
to [6, sec. 6.2].

In view of the “imaging condition” in (13), the
integral (6) can be localized about the observation constraint
(7) with . For a given object point, this constraint
defines and as functions of . Noting
that the local spectrum is due to volume scattering [1,
eq. (26)] and is thus typically less localized than ,
it may be approximated in (5) by the constrained value

where the superscript “” iden-
tifies data associated with the constraint relation. Combining
(2) with (11) we obtain

(14)

where the propagator

(15)

accounts for the integration in (2). Expressing
by its plane wave spectrum representation (3) and inverting the
order of integrations, one may obtain a closed-form expression
for (see [6, sec. 6.2]).

IV. PROCESSING ANDINVERSION ALONG THE BEAM AXES

A. Forward Modeling

In this section, we utilize the local (phase-space) TD diffrac-
tion tomography relation in [1, eq. (26)], in which the local
spectrum of the data is related to a local sample of
along the PB axis, to derive an approximate closed-form
inversion formula along this axis. Theforward problem has
been analyzed in [1, sec. IV-C] and interpreted there as
follows: the local spectrum of the scattered field around the
space-time point on the plane corresponds to a
local Radon transform of at points on the beam
axis corresponding to [1, eq. (28), fig. 6]. The
local Radon transform is taken in the directiondefined in
[1, eq. (32)] and [1, eq. (33)] that bisects the angle between
the direction of incidence of the PPW and the direction of
observation along the beam axis [1, fig. 6)].

If the window width in the local Radon transform is small
with respect to the transverse variations of , the scattering
process generating the local spectrum can be viewed as local
reflections from an equivalent plane stratified medium whose
axis of stratification is along . Thus, for a given , is
a function of that describes PB reflections by an equivalent
plane stratified medium along the beam axis corresponding to

.
Referring to Fig. 2, scattering-window-based coordinates

are introduced with origin at the center
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Fig. 2. rs coordinate system: centered atro(Y) and oriented along the

window normalsj .

of the sampling window (see [1, eqs. (28),
(33)])

(16)

The window plane is perpendicular to the direc-
tion of the normal (see Fig. 2). The coordinates are
obtained from the beam coordinates
used in (8) by rotation in the plane through the
bisector angle in [1, eq. (33)]. Using the coordinate of
the window center in (16) we obtain

(17)

The phenomenology and parameterization of the forward
scattering problem will now be utilized for theinverseproblem
of identifying the profile of the equivalent 1-D plane stratified
medium along the axis of the phase-space-processed backprop-
agated PB from the scattered field data on theplanes to the
object domain . Assuming that is approximately
constant over the window width transverse to theaxis,
the local Radon transform operation in [1, eq. (26)] can be
approximated by

(18)

where is the value of along the axis
corresponding to , with defining the window center
at . In (18) the kernel

(19)

incorporates, through the integration, the effect of the
“domain of influence” of the window in planes transverse
to . As will be shown below is a 1-D window
kernel that samples about [i.e., about ].

B. Gaussian Windows

A simple closed-form asymptotic expression for and for
the related operations in (18) may be obtained for the time-
dependent Gaussianwindow in [1, eq. (38)], which has been
used throughout this investigation. The approximate sampling

window corresponding to this window is given in
[1, eq. (56)]

Re

(20)

Using the window-centered coordinates in (17) as well as the
beam axis coordinates in [1, eq. (46)], we identify

, , and
, thus obtaining from (20)

(21)

where are the elements of in [1, eq. (45)].
Inserting (21) into (19) and evaluating the integral in closed
form we obtain (see Appendix)

(22)

Next we note from [1, eq. (39)] that for real,
, where is a Hilbert transform with respect to

as discussed in [1, eq. (5)]. Substituting into (18), we obtain an
expression that involves both the function and its Hilbert
transform. An expression that involves alone is obtained
if is real. Since while may have any value,
including zero (see guidelines for choosingin Section III-B),
we conclude that while is determined via

(23)

With this choice, (18) simplifies to

(24)

Equation (24) becomes more transparent if we consider a given
, which defines the PB axis and view as a

function of . Thus, noting from (17) that ,
(24) can be written as

(25)

where the sampling window center is resolved by the
time parameter along the beam axis defined by [see (16)].
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Equation (25) provides a simple and direct relation between
the local spectrum and the medium properties along the
corresponding beam axis and may, therefore, be inverted.
Noting from (16) that along the window center

, we obtain

(26)

where . The convolution with defined in
(12), deconvolves the incident pulse from the data and
can be omitted for short-pulse excitation [see discussion in
connection with (13)].

1) Axial and Cross-Axial Resolution:The axial resolution
of the local spectrum analysis is determined by the excitation
pulse . From (17), a short pulse with pulse length can
resolve details of order

(27)

Thus, the spectral resolution deteriorates asincreases from
best resolution for with small ( ) to worst
resolution for with small ( ). A similar
conclusion has been reached previously for transient plane
wave analysis [5] and by using asymptotic ray theory [7].
The resolution is also affected by the processing window: in
order not to hamper the axial resolution, it is required that
thewindowpulse length be shorter than theexcitationpulse
length . The cross-axial resolution is then determined by the
beam width of the backpropagators which, from [1, eq. (55)]
with [1, eq. (51)] and [1, eq. (49)], is roughly given by

(28)

2) Special Case: Backscattered Field with : Equation
(27) establishes the backscattered local spectrum with
as the optimal case for high-resolution reconstruction. This
special case corresponds to a-directed backpropagated PB,
implying that the and the axes are parallel to the axis
and . Since for a given , the center of the
PB is at [cf. (16)], (25) becomes

(29)

By inverting (29)

(30)

which is a special case of (26). For simplicity, the convolution
with in (26) has been removed.

C. Verification of the Locally Plane-Stratified Model

Here we demonstrate that the axial relations in (24) and (29)
may alternatively be obtained byassuminga plane stratified
medium whose stratification axis is along the bisectional
direction , with wave speed equal to the wave speed along
the beam axis corresponding to. For simplicity we consider
only the case of a normally reflected PB as in (29) which
implies that the medium is plane stratified along theaxis,
with . The field satisfies the 1-D wave
equation

(31)

which can be expressed alternatively as in integral equation
for the scattered field

(32)

where and the 1-D free-space Green’s
function is ,

being the Heaviside function. The Born approximation
for the reflected field at is obtained by substituting

into (32) giving after a
straightforward calculation

(33)

Next we calculate the local spectrum using the window func-
tion of [1, eq. (38)]. Substituting into (1) with and
noting that is independent of we arrive at

(34)

where and, from [1, eq. (15)] and [1, eq. (38)],

Re . Evaluating the
integral in closed form we obtain

(35)

Finally, using real as in (24) and assuming that we
obtain, by inserting (33) into (35), the final expression in (29).

V. NUMERICAL EXAMPLE

In this section, we present a numerical example which
implements the forward and inverse phase-space scattering
theories in this two-part study. For the forward modeling, the
implementation is centered around the relation in [1, eq. (26),
fig. 6] between the local spectrum of the time dependent data,

and the local sampling of the object function .
We shall compare the evaluations of performed via two
alternative routes: 1) direct evaluation from the time-dependent
scattered field via (1) and b) evaluation via the spatial sampling
of appearing on the right-hand side of [1, eq. (26)]. The
inverse modeling implements the reconstruction of via
(26), utilizing the calculated forward data for .
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Fig. 3. Cross-sectional cut through the spherically symmetric functionO(r)
used in the example.

A. Physical Configuration

We consider a three-dimensional (3-D) spherically symmet-
ric inhomogeneous object confined within the sphere ,
where . The radial dependence of is given by

(36)

A cross section of is depicted in Fig. 3. Note that the
medium is continuous at the boundary . The background
is assumed to be uniform with wave speed . The
origin of coordinates is located at the center of the sphere,
and scattered field data is taken on the measurement plane at

. The incident pulse is the Gaussian

(37)

with the pulse length chosen to be 0.01, i.e., short on the
object scale.

B. Evaluation of Scattered Field

The Born-approximated scattered field has been evaluated
directly in the TD via [1, eq. (20)], which for the sake of
numerical evaluation will be recast in the form

(38)

where simulates an impulsive incident
wave. Here is the second derivative of where the
term to the right of the convolution is the twice integrated
(with respect to ) impulse response, hereafter denoted by

. Due to the spherical symmetry of, the resulting
field depends only on where . The
impulsive behavior of the incident plane wave fieldand of

reduces the integral for in (38) to the two-dimensional
surface integration

(39)

where ,
, and . Next, the

convolution of with is performed numerically.
Since the Gaussian pulse width was taken to be short on the

Fig. 4. Gaussian pulse responseu1(�; t) under the Born approximation,
evaluated at thez1 = �2 plane.

Fig. 5. Twice-integrated impulse responseu
(�2)
�

(�; t) corresponding to the
data in Fig. 4.

scale of the integrated data, the convolution yields essentially
the second derivative of . The Gaussian pulse response
and the twice-integrated impulse response are shown in
Figs. 4 and 5, respectively.

C. Calculation of the Local Spectrum

1) Calculation from the Data Via (1):We evaluate the lo-
cal spectrum of the field in Fig. 4 for , i.e.,
for a PB propagating along theaxis. Because of the problem
symmetry, the 3-D [i.e., ] integration in (1) reduces to
a two-dimensional integral

(40)

where is the space–time processing window function
in [1, eq. (38)], which for , is given after (34). The
window parameters chosen are , and
[ was chosen to be equal to the excitation pulse of
(37)]. Different sampling rates were tested. Convergence was
achieved for temporal sampling at a rate of which
ensures a minimum of eight sampling points per window
pulse length (see discussion following [1, eq. (42)]) and for
spatial sampling at the rate of [1,
eq. (43)] which corresponds to 18 samples per window width

. The integration domain was restricted to
and for which the integral converges. These
results are in accord with a previous study on the numerical
implementation of the local spectrum [4].

The resulting local spectrum is shown in
Fig. 6 (dashed curve). Note that this waveform exists mainly in
the range corresponding to the axial data in Fig. 4.
The slight broadening of the local spectrum with respect to
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Fig. 6. Numerical results for the local spectrumU1 as a function oft
for x = 0; ��� = 0. Dashed curve: direct evaluation by processing the
time-dependent data via (40). Solid curve: evaluation via spatial sampling
of O(r) via (41). Window parameters:� = 5, � = 1, andT = 0:01.

the range is attributed to the temporal width of the
window.

2) Calculation by Object Space Sampling Via [1, eq. (26)]:
To explain the results of the local spectrum, as calculated
above by processing the scattered data, we calculate the local
spectrum of the data from the local (phase-space) diffraction
tomography relation in [1, eq. (26)], i.e., by local sampling of

. The spatial window in [1, eq. (26)] corre-
sponding to the data window in [1, eq. (38)] is given
in [1, eq. (56)] with . Setting , the object
domain integration in [1, eq. (26)] is thus reduced to

(41)

with

(42)

where . The resulting is plotted
in Fig. 6 (solid curve) on the same scale as the calculation of

via (40). The two waveforms are almost identical. This
calibrates both the asymptotics so that [1, eq. (26)] with [1,
eq. (56)] is valid for , and the numerical algorithm
for the data processing in (1).

3) Calculation Via Beam-Axis Approximation (18):Finally,
we validate the beam-axis sampling approximation for
in (18) by comparison with the local spectrum calculation
by processing the data via (40). For the case
considered here, (18) reduces to (29); the window parameters
were taken to be and in accord with the
condition discussed after (22). The result of (29) is shown
in Fig. 7 (dotted curve) together with the results of (41) for
the same values of and , and for three values of ,

, and (solid curves). One observes that
as becomes successively shorter with respect to the scale of

, the local spectrum converges toward the result in (29).

Fig. 7. The beam-axis approximation for the local spectrumU1(Y), calcu-
lated via (19) as a function oft for x = 0; ��� = 0 (dotted). This result is
compared toU1(Y) as obtained by processing the data via (40) with three
values ofT : T = 10�4; 10�5, and10�6 (full curves). Window parameters:
� = 5 and � = �i.

Fig. 8. Reconstruction along the beam axis. The three full curves are the
results forT = 10�4; 10�5, and10�6. The dotted curve is the exact object
function (36).

An analytic bound on the validity of the beam axis approx-
imation can be found by expanding the object function
into a first-order Taylor series about the beam axis

(43)

where is the distance from the axis. The
beam axis approximation is valid if the second term in (43)
may be neglected with respect to the first term for all
where is the width of the transverse integration domain
[see discussion after (40)]. Using (43) and (36) we obtain

(44)

Recalling that numerical convergence was obtained for
, it follows using [1, eq. (43)] that should satisfy

, which is in accord with the numerical results
of Fig. 7.

D. Object Reconstruction

Finally, we use (30) to reconstruct the object function along
the beam axis (which, for the present case of ,
is simply the axis). By applying (30) to the local spectrum
shown in Fig. 7 for , and , we obtain
three reconstructions of the object function. The results in
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Fig. 8 (solid curves) demonstrate that good reconstruction is
obtained for .

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this two-part investigation, we have injected into the pre-
viously formulated plane-wave-based TD slant-stack diffrac-
tion tomography [5] the spatial resolution that results from
PB postprocessing of thescatteredfield. By this mechanism,
both the forward and inverse algorithms simplify substantially
because the interrogated portion of the scattering domain is
thereby localized to a space–time-resolved scattering cell. This
cell orients itself dynamically with respect to the directions of
incidence and observation in such a manner that it is replaced
by an equivalent one-dimensionally stratified medium. A cor-
responding scattering phenomenology in terms of Fermat ray
paths has been suggested as a better parameterizer of the highly
localized wave physics. This trend is carried to its ultimate
potential by PB preprocessing of the incident signal together
with PB postprocessing of the scattered signal. Under these
conditions, the scattering mechanism involves localized source
domains and localized observation domains, which render the
point-to-point Fermat ray paths asthe logical model. The PB
preprocessing is implemented via interrogation with a PB field
[8]

(45)

where and are the beam coordinates of the
incident field obtained via a conventional rotation transform
from to in the direction , which determines the
incident beam axis. This incident PB gives rise to the Born-
approximated induced sources which generate the scattered
field. Applying the local transform and denoting by
the local spectrum on the plane due to PB illumination in
the direction , we obtain

(46)

where the sampling window kernel is given by

(47)

Here, is the wave object defined in [1, eq. (25)]. For
the Gaussian window in [1, eq. (38)], this wave object is
evaluated in [1, eq. (47)]. Thus, is a PB propagating in
the direction determined by the phase-space (processing)
variable via [1, eq. (17)]. and the beam coordinates are
defined in [1, eq. (45)] and [1, eq. (46)]. Inserting [1, eq. (47)]

Fig. 9. (Time-domain local spectrum)—(object) relation under PB excita-
tion. The figure depicts the incident PBui propagating in the���i direction and
a scattered PBB(r; t; Y) in the���1 direction. This scattered PB is related via
(46) to the local Radon transform ofO over the spatial window�1(r0; Y).
The scattering cell is oriented along the bisectors1 between���i and���1.

into (46) we obtain

(48)

This result implies the following. The sampling window in (48)
is more localizeda priori than the one in [1, eq. (56)] because
any deviation and/or from its center coordinates gives
rise to a complex delay and therefore to spatial damping with
respect to the peak value on the incident beam
axis. Since the window center is located along the incident
PB axis, the phase-space variableshould be chosen so as
to ensure probing of the object function in the vicinity of this
axis (see Fig. 9). The orientation of can be found as in
[1], but now it bisects the angle between and , with
beam steering allowing arbitrary look angles at the equivalent
1-D profile stratification. Another important advantage of the
PB illumination is that it probes only the region relevant
for imaging and thus minimizes scattering contributions from
irrelevant zones.

It is now widely recognized that efficient and robust
modeling of wave interaction with complex environments is
aided substantially through the availability of phenomenology-
matched efficiently calculable Green’s functions, which
furnish the building blocks for representation of arbitrary
fields. The utility of such Green’s functions is enhanced further
if they also account for preprocessing and postprocessing op-
tions at their most elemental level. Within these perspectives,
the PB scattering algorithm in (46)–(48) can be regarded as
a phase-space Green’s function for weak scattering scenarios
that incorporates both the configurational (space–time) and the
spectral (wavenumber-frequency) characteristics in the form
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of analytic delta functions. Via analytic delta functions, which
model physical wavepackets rather than spherical impulses,
issues pertaining to resolution and related aspects are already
taken into account.

The very preliminary numerical results presented here illus-
trate some of the forward and inverse modeling capabilities
and efficiencies of the PB algorithm. These results look
encouraging. Further studies will have to establish how this
ultimately localized diffraction tomographic procedure com-
pares with more conventional tomographic and other forward
and inverse scattering techniques.

APPENDIX

DERIVATION OF (22)

Substituting (21) into (19) and changing variable to
we obtain

(49)

where

(50)

with and
. Next, using the standard integral

, Im we
evaluate (50) as

(51)

To evaluate the integral, we insert this result into (49)
and neglect the dependence of . Using

, we obtain from (49)
(recall that )

(52)

The width of this axial sampling window is given essentially
by . Since is small on the scale of , the

term in (52) may be neglected, giving the
result in (22).
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