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Local Spectral Analysis of Short-Pulse Excited
Scattering from Weakly Inhomogeneous Media—
Part I. Forward Scattering

Timor Melamed, Ehud Heymargenior Member, IEEEand Leopold B. Felsenife Fellow, IEEE

Abstract—In this two-part sequence, we extend a previously which are extensively cited in what follows: [1] addresses the
formulated pulsed plane wave (PPW)-based time-domain (TD) inverse problem using the global (PPW) approach while [4]
diffraction tomography [1] for forward and inverse scattering rasents an extensive analytical and numerical study of the

from weakly inhomogeneous lossless nondispersive media to . . . . .
a more highly localized pulsed beam (PB) wavepacket-based local (PB) processing tools, which will be utilized here in

diffraction tomography. In the PPW version, the incident and Connection with the inverse problem.
scattered fields have been parameterized in the space-time After stating the problem in Section Il, we define in

wavenumber domain in terms of slant-stacked TD plane waves Section Ill the various spectral forward and inverse global
whose wavefronts move through the scattering medium at the (nonwindowed) and local (windowed) transforms and in-

ambient propagation speed, thereby accumulating information trod h t inol Wind dt f
along time-resolved laterally extended planar cuts. The PB roduce phase-space terminology. vvindowed transforms are

parameterized localization confines the laterally sampled regions treated in detail in Section IlI-B2 as the PB-parameterized
to the spatial domains of influence transverse to the relevant extensions of the previous PPW algorithms and the physical

beam axes. These localizations are performed in two stages. Theproperties in the phase space of the corresponding PB
present paper implements the PB parameterization by PB post ,rqnagators are summarized in Section 111-B3 [4]. After these

processing of the forward scattered fields excited by an incident S . .
PPW:; the companion paper [2] deals with the inverse problem by preliminaries, the previous PPW-based weak (Born) scattering

back propagation of the PB parameterized data. An “ultimate” formalism [1] is generalized in Section IV to its PB-based
localization of a space-time resolved scattering cell, achieved viawindowed extension. The general formulation is presented

scattered and incident PB’s (PB post and preprocessing) will be in Section IV-B and then interpreted phenomenologically in
addressed elsewhere, but is briefly summarized in [2]. Section IV-B. Noteworthy is the PB generalized version of the
Index Terms—Electromagnetic scattering, inverse problems, PPW “pseudoreflection rule” in [1] pertaining to the scattering

nonhomogeneous media, pulsed beams. process, which turns out to be explained more naturally in
terms of point-to-point PB-constrained ray paths instead of
|. INTRODUCTION the global PPW wavefronts. The phase-space formalism is

demonstrated for two classes of window functions (processing

A S stated in the abstract, the present two-part study is CQfigorithms): A PPW window (Section IV-D) that produces the
cerned with extending the previously .formulated puI;e,giame results as in [1] and a Gausstawindow (Section IV-

plane wave (PPW)-based global (along entire plane cuts) timgy: \hich yields analytically tractable PB propagators of the
domain (TD) diffraction tomography for forward and inversg he developed in [5][7]. In [2], these propagators will be

scattering in [1] and [3] to a highly localized transverselyseq to backpropagate the field and to produce the local
confined pulsed-beam (PB) wavepacket-based tomograpfierse. Conclusions are summarized in Section V.
Due to space limitations, we cannot present the step-by-step

evolution of the local PB from the global PPW formulation;
instead, we address both formulations directly. Accordingly, [I. STATEMENT OF THE PROBLEM

the presentation here is confined to the new material and it ;5 interrogation by a time-dependent scalar plane wave
is assumed thahe reader is familiar with referenceg], [4], fie|g w(r, t), we consider the scattering by, and reconstruc-

tion of, an inhomogeneous nondispersive lossless medium of
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Fig. 1. Physical configuration. The object functiéXr) is illuminated by a .. + - . _ t .
transient plane wavg(t — v, 1 ) propagating along the axis. The scattered via u(t) - u(t) + LHtu(t)’ where H, = (77/7rt)® is the

field u(x, t) is measured on the planes= z;, j = 1, 2 between which Hilbert transform operator wit#% denoting Cauchy’s principal
the object is situated. value and® denoting a convolution. The real field for real
t is, therefore, obtained via(t) = Rew(t). The analytic
and, for convenience, the unknown medium is described Bynal representation has been used extensively for TD wave
the object function propagation and scattering problems, in particular those that
O(r) = [vo /o(r)]? — 1. ) involve evanescent spectra identified by complex time delay
(e.g., [4]-16], [8]. [9D).
The compact object domain is assumed to be located between
two measurements planesatandz; whereon the scatteredB. Space-Wavenumber Relations

field is measured (Fig. 1). The incident time-dependent Wavel) Nonwindowed (Global) Transforms: Conventional

field is . : .

plane wave spectral analysis and synthesis of the time-
u'(r, t) = f(t — v R r) (3) harmonic fieldsi;(x, w) is performed via the global Fourier

transforms

where f(t) specifies the pulse shape aidis a unit vector in . ~ ikex

the propagation direction (henceforth, the symbadentifies %i(§) = / d i (x)e o §=(&, &), k=w/v

a unit vector). Coordinates are chosen so that tohe incident o (6a)

field propagates along the direction, i.e.,k* = z. The 2 oo

space coordinate points are, therefore, labeled(x, ») with (%) = <i> / d2£@j (&)eikex (6b)

x = (x1, z2) and the data (the scattered field) at the, 2 —oo

planes is denoted, respectively, by »(x, #). We shall use where™ identifies a wavenumber spectrum function. The di-
the index;j = 1, 2 to tag quantities pertaining to data on thenensjonality of the integration is identified by that of the

z; planes, respectively. differential d*z; infinite integration limitsoo will be under-
stood and omitted in the notation. Anticipating extension to
lll. SPECTRAL ANALYSIS AND SYNTHESIS. OPERATIONS the TD, the vector spatial wavenumkghas been normalized

In this section, we summarize the phase-space analy4iéh respect to the ambient medium wavenumbet w/v,
and synthesis formalisms that parameterize the fields on fife that{ has a frequency-independent direct geometrical
observation planes;, j = 1, 2 and transport them from theseinterpretation in terms of the spectral plane wave propagation

planes into the unperturbed environment. angles. Specifically,ﬁj(g) describes the scattered spectral
plane wave arriving at the;; plane along the unit vector
A. Time-Frequency Relations direction
Our TD and frequency-domain (FD) constituents are related rj =(& F¢)
via =(sin ¥, cos g;, sin 9, sin ¢;, cos ;)
u(t) = % /C:; (w)e™ ™" dw 4) (= m (7)

] o ) where( is the z directed spectral wavenumber. As defined in
where the caret denotes time-harmonic field constltuent5f7),(19j’ o,) are the conventional spherical angles with respect

throughout. o _ to the positivez axis (Fig. 2). Here and henceforth, upper or
In certain cases it will be convenient to use the analytig,er signs correspond tp= 1 or 2, respectively.

signal counterpart, to be denoted by the symbaind defined gy anpiving (4) to the plane wave spectral representation
by the one-sided Fourier inversion in (6a) and inverting the order of integrations, one obtains for

TN S the time-dependent plane wave spectrum of the data, t)
ult) = ~ /0 dwe™ " w),  Imt <0 () the “slant stack transform” (SST)
This integral representation can accommodate compieih (€, ) = / d*zu; (x, T+ v; 1€ x). (8)
Imt¢ < 0; the limit for realt is related to the real signal(¢)
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Fig. 3 Transient plane wave spectrum. (a) Slant-stack transform (SST)m{). 4. Local (pulsed-beam) spectrum. (a) Local SST of the figlgk, t).
the field u;(x, t). (b) Pulsed plane wave (PPW). (b) Radiating pulsed beam (corresponding FD beam shown dashed).

The operation in (8) can be interpreted as a Radon transfogy not be considered here since the evanescent fields are not
in the 3-D (x, t) domain, consisting of projections of theiized in our imaging schemes

_ -1 . : -
datau; onto the surfaces = 7 + v;°¢ - x. Interpreted 5y windowed TransformFor the desiredlocal spectral
physically, for a given normalized wavenumbgrthe SST 4naiysis of the data, we generate the FD local plane wave

synthesizes the time-dependent spectra as a superpositiogictrum via a windowed Fourier transform of the data in
linearly time-delayed (slant-stacked) signals on the planes configuration space

thereby extracting the TD plane wave information pertaining to
the propagation directiog [Fig. 3(a)]. Note that the spectral ig
range || < 1 describespropagatingtransient plane waves, J
whereas the rangé| > 1 describegvanescentransient plane _ _
waves that decay away from the initial plane. The inverd¥here the asterisk denotes the complex conjugate and the
SST is obtained by inversion of the FD plane wave spectiggrnel is given byW (x; X) = (x — i)e“‘{'x with X =
representation in (6b) (X, ). Here,(x — X) is a spatial window function, centered
1 atx = (T, T») with linear phasing specified b= (¢,, &,).
uj(x,t) = —5 / d?e07u;(€,t— v '€ -x).  (9) The vectorX incorporates the configuration-spectrynase-
(27mv,)? . R - .
space coordinatesx, §), whencel;(X) is referred to as a
This result establishes the field at any space-time gaint); phase-space distributioof the dataii;(x). The inverse phase-
on thez; planes as the sum of contributions from plane wavepace transform is given formally by [12] and [13] and [4, eq.
with time-delayed (slant-stacked) initial tilt angles specifie(7)]
by &.
The plane wave spectral representation (9) of the datamay . .., _ ([ k 7 9 4y Fr —
readily be modified to describe the field away from the () = <§) N / TXUXW (x; X) (12)
planes. Although scattering plays no role here, we shall retain A
a notation that makes the formulation directly applicable twwhere N = [[ d?z|(x)[?]*/? is the £2 norm of ©. The
the scattering problem in Section IV. Since the scatterer ilgegral representation in (12) synthesizes the data as a phase-
locatedbetweery; andz (Fig. 1), scattering takes place alongspace superposition of all local spectral contributigrisom
the negativer axis with respect ta;; and along the positive all points X. The transform (11) extracts froria; the local
z axis with respect toz,. Thus, extension of the field dataspectrum around thé-directed propagation at the window
away from the “initial” planesz; and z; covers the regions centerX. In typical scattering problems, the spectrum at a
z < z andz > z,, respectively. The resulting plane wavegivenx is localized about a preferred spectral direct{o(x)
spectral integrals span both the propagating and evanesdbat describes the direction of arrival of the scattered field
spectral rangeg£|S1, respectively. The contribution of theat this point. Consequently, the local spectrﬂ})(X) [and,
propagating spectrum by straightforward extension of (9) givésus, the inverse transform (12)] is localizagbriori about the

~

(X) = / ' Paiy ()W (x; X) (11)

[4], [8]-[11] subdomainx, £) = (X, &(X)) in the X domain (see synthetic
on -1 ) examples in [4] and [13]; also see Fig. 4).
uﬂ Pr, t) = 72/ The time dependeribcal spectrum of the data is defined
(2mv5)? Jig1<1

B - as the inverse Fourier transform (4) 6% (X; w)c*¢= (see
;€ t — vy (€ xF (2 — %)) i i | i
t i 1S o g interpretation of the linear phase after (15) and in [9])
z< 21, 2> 2. (20)

1 ) iw(t—v X
This expression synthesizes the field(at#) in terms of an U;(Y) = I / dwl;(X; w)e™ ™% 89 (13)
angular superposition of time-dependent plane waves [pulsed

plane waves (PPW); see Fig. 3(b)]. The expression for tiahere ¢ denotes the phase-space time variable in the five-
contributionw$" of the evanescent spectrum is more compldimensional phase-space domain= (X, &1 =(X,7.To
cated and may require the use of analytic signals as discusdeducel/;(Y) directly from the TD data, we insert (11) into

after (5) (see, e.g., details in [9] and in [4, sec. 2.2.2]). Th{@3) and interchange the orders of integration to obtain (see
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[9] and [4, eq. (36)] time £. The field representation is the same as in (16) but
with the window functionWy(x, ¢; Y) replaced by the
Uy(Y) = / d*z / dtui(x, ’W(x,t; Y)  (14) PB propagatorsB;(r, t; Y) [4, eq. (44)], i.e., the field is
expressed as a phase-space spectrum of PB’s emerging from
where the space-time dependent window functins given all points on the initial planes at all initial times and in
by all directionsé with excitation amplitude given by the local
Wkt Y)=wx—% t—f— vIYE - (x — %] (15) s.pect.ru_rTUj (S_{) f[hat.matches. the PB to the phase-space space-
time initial distribution. Explicit expressions faB; may be
and the time-dependent window(x, t) is the TD analog of found in [4, Egs. (45), (46), and (69)], which are used in
w(x) obtained via (4). The space-time and spectral dependefi2e eq. (6)] in connection with the forward and backward
in the phase-space winddi# of (15) implies that the window propagation of the measured data.
is localized aboutx, ) with spectral tilté as schematized As discussed in connection with (16), the TD phase-space
in Fig. 4(a). The operation in (14) can be referred to asrapresentation is localized priori around the coordinates
“local slant-stack transforinthat extracts the local spectral(X, £(X), #(X)) since the local spectrum of the ddta(Y) is
information from the time-dependent data. Note that the linee@ncentrated there. Further localization is effected by the PB
phase introduced in (13) causes the TD local transform to peopagatorsB;(r, t; Y), which are concentrated around the
localized aboutx, t) = (X, ). trajectories in (17). This constrains the phase-space integration
To synthesize the data from the phase-space distribution (f¢)ymain to the vicinity of the “observation constraif¥(r, ¢)
[i.e., to invert (14)], we apply (4) to (12) and follow essentiallwhose (%, &, £) coordinates are defined by
the same analytic steps as in (13)—(15), to obtain

, b= t—vo_l\/|x—§|2 + (2 — z)%. (18)

Ealilarl

X—X
(%, 1) = —(20,) "2 / FYU(Y)Wr(x & Y) (16) Fz—2)

IV. SPECTRAL ANALYSIS AND SYNTHESIS

t t
. . — ¥ . ;
where Wi(x, t; Y) = N'©oW(x & Y) with @ IN A WEAKLY PERTURBED ENVIRONMENT

defined after (5) being a time-convolution an¥’(t) =

1/27 [ dw(—iw)? [N(w)]"2e~t with N(w) defined after ~ Next we apply the spectral analysis tools described above

(12). Any formal convergence problems M that may arise {0 explore weak scattering by compact inhomogeneities which

asw — oo are avoided for practical finite-bandwidth signal§an be characterized by the Born approximation. The resulting

with upper frequency limits. Born-approximated data will be analyzed with a view toward
The windowed integral representation in (16) synthesiz€§tablishing spectrum-object relations that lead in [2] to inver-

the space-time data as a phase-space superpositicail ofSion of the scattered field data gathered on:thebservation

local spectral contributiond from all pointsx. Recalling the Planes of Fig. 1.

discussion following (12), the windowed spectrum at a p&int

is typically concentrated around a tinigx) and wavenumber A. The Born Approximation

(or wave-tilt) £(X) that describe the arrival time and direction The scattered field at; due to an inhomogeneity as in (2)
of the sc_attered field at that point_. The inverse transform (1&)th bounded support between the data planes (Fig. 1) can be
at(x, t) is, therefore, localized priori about the phase-spaceexpressed as a superposition of the fields radiated by induced
subdomainY (%) = (X, £(X), #(X)). volume sources whose strength is determined implicitly by an
~ 3) Phase-Space Propagatiorthe phase-space superpoSimtegral equation that defines the field in the medium [14].
tions in (12) can be used to track the FD field from the initigtor weak scattering scenarios, the induced source strengths at
condition on thez; planes forward and backward through the i the object domain are taken to be proportional to the
medium. For outward propagation in thedomain €=z;), incident field at’ in what constitutes the lowest order (Born)
each window kerneW (x; X) gives rise to a propagating approximation. Following this route, the Born-approximated
beam field3;(r; X) whose axis emerges fromon the initial  scattered time-harmonic field or is given by
plane &;) in a direction determined bg via (cf. 7)

5 a;(r) = | &rEPoE)al(r)G(r; ).

e a0 / ()i ()G ¥)e, planes (19)
The resulting field representation is the same as (12) but witith @'(r) = f(w)e™™* being the FD counterpart of the
the window functioni¥ (x; X) replaced by the beam propa-incident plane wave in (3) an@(r; r') = ¢*F=*'l /47|r —
gatorf}j(r; X) (see Fig. 4(b); for detailed expressions see [4;| being the free-space Green’s function. The conditions
eg. (28)] and [13]). Thus, the fields afz; are synthesized under which this approximation is valid are discussed in
via a phase-space superposition of beams emerging from[&f]. Likewise, the time-dependent Born approximation of the

pointsX on the initial surfaces in all directions. scattered field data is given by
In the TD, each window kerneWyx(x, ¢t; Y) in (16) ‘
gives rise to a propagating PB fiel®;(r, ; Y) in the u;(x, t) = —110_233/ dgT’/ dt' O(x"yu'(r', ')

(r, t) domain, whose axis emerges from on the initial Glr o ¥ 20
(z;) plane in a direction determined L at the excitation (G(r, 6 1 8)lce, planes (20)
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Fig. 5. FD local spectrum—obiject relation in (21). For speciﬁédlf"j(X)
accounts only for contributions fron®(r') sampled over the domain of Fig. 6. TD local spectrum—object relation in (26). The figure shows the
influence of ¥;(r'; X). incident pulsed plane wave® and a scattered pulsed beah (r, ¢; Y)

in the %1 direction. This scattered PB is related via (26) to the local Radon
WhereG(r, t: r’, t’) _ 6(t ¢ UO_1|I‘ _ r’|)/47r|r _ r’| and transform of O sampled over the domain of influence &f (r'; Y).
1" is the incident pulsed plane wave in (3).

X

Inserting (22),
B. Phase-Space Scattering Propagators

Y 2

Using (19) or (20) to express the scattered fields on-the U, £ Y) = / d x/ dtW(x, t; Y)
planes generated by the Born-approximated induced sources, CG(r, t; Y, t/)|r€z- plane (25)
we can now apply all of the phase-space manipulations in ’
Section lll pertaining to such fields. In particular, we shall behich represents the local spectrum@fsampled on the;
interested in the scattered field representations as establispkede. [In the Appendix we also present a TD plane wave
by the local spectral analysis in Section 11I-B2. Applying (11ppectrum expression fo¥;, which will be used in (29) to
to (19), we obtain after inverting the order of thé andx determine the properties of the spatial sampling of the object
integrations implied by this window.] From (23), the phase-space scattering
R R . _ propagators¥; map the field excited by the induced space-
U;(X) = /fo(w)/ 'O U;(r'; X), X =(X &) time source®(r')f@ (¥ —v 1) in the(r', #') domain onto

1) the local spectrum of the data. The formulation in (23) can be

recast so as to facilitate formal inversion of the object function.

where\ffj(r’; X) is the local spectrum off sampled on the We rewrite (23) in the form
planesz = z;, i.e.,

~

U(Y) = f(7)é / B O A (r'; Y 26
\I/J(I'/7 X) _ / dQ.Z'VT/u(X’ }()C‘_}«(r7 I‘/)|rczj p|anes (22) J( ) f( )® ( ) J( ) ) ( )
. where A(r’; Y) is a sampling window in the objectr’]
In (21), the phase-space scattering propagakg(s’; X) map domain given by
the induced sources® f(w)O(r’)e’**’ from the object domain , P .
r’ onto the local spectruni;(X). Alr Y) = —0, 70y 0, £ Y) (27)

If the window functionw is “wide” on a wavelength scale, Equation (26) is termed here the local (phase space) TD
then for|¢| < 1, the windowed phase-space objegtsbehave (giffraction tomography relation: it represents the local spec-
like collimated beams in the domain V\{)hose axes reach point$yym of the time-dependent data in terms of local samples
X on thez; planes along the directions; in (17). In view of of O(r) (Fig. 6). While in the FD relation (21), the kernel
(21), the local spectrum of the daf@(X) accounts only for \ffj(r’, w; X) has the form of a beam that provides windowing
contributions from the object domai@(r’) sampled by the of O(r") only transverse to the beam axis defined Xy;
domain of influence ofifj in the vicinity of the beam axis in (26) provides windowingalso alongthe beam axis as
corresponding taX (Fig. 5). determined by the phase-space param¥ten order to clarify

In the TD, Fourier inversion from the FD yields, by applyinghe properties of this sampling, we explore the kerfelin
(13) to (21) and performing the integration first (or directly detail in the next section.
in the TD by applying (14) to (20), see also [3])

Uj(Y) = —v)? / d*'0(r') / dt’

-1
t'=v, 2z’

C. Phase-Space Scattering Phenomenology
The localization effected by the PB propagators takes place

FOW — v (YY) (23) along the beam axis, which is completely specified by the
_ phase-space coordinat®s of the processing window on the
where f(t) = opf(t), and the wave functions yata plane. In addition, the window orientation in the object
W,(r', #; Y) are the TD counterpart oft;(r’; X) of gomain is of interest. These aspects are best explored in the
(22), e, beam-centered coordinatgs, , x}, ., x3,.) in Fig. 7, which

are oriented along the beam axis and along the two orthog-
onal directions perpendicular to the beam axis, respectively.
(24) The subscriptj appended to the beam-centered coordinates

1 I VAL N
\I/j(r’, t/; Y) = o / dwe™ =t v, lg'x)\lfj(r/, w; X).
s
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on the primed coordinates. To understand the geometrical
constraints implied by (30) we note from (17) th%ajt— z=

(€, ¥¢ — 1) and, thus, the plane-surface condition in (30) may
be written as

_ (EJ - Z) [ = (X, 2)] = vt — 2 (31)

where, for convenience of interpretation, ti'e coordinates
are referred to the beam axis inception poRt z;). Next,

Fig. 7. Phase-space propagators. The phase-space propafjattishave W€ note that the vectaik; — z) can be expressed as

like collimated beams generated in the domain, whose axes reach points
X on the z; planes, respectively, along the directions of the beam axis

unit—vectors%]-. The figure depicts the global fixed: (, 2, z) coordinate
frame as well as the beam-centered coordinatgzjs @glj, xgzj) (referenced o ) _ ] )
to the z; planes; = 1, 2), which extend along the beam axes and along th&/heres; is a unit vector andl,, is defined below. Equation
two orthogonal directions perpendicular to the beam axes, respectively. . e O .
9 perp P y (31) identifiess; as the unit vector normal to the surface (30)
and thus also ta\;(r’; Y) of (27). It is convenient to express

identifies the relevant data plane. For a given phase-spacegj in terms of the spherical coordinate ang(@s, , 7,,) with

but for the present discussion it is sufficient to note that< 0

for points in the object domain:(Z ;). Iy, =3(r—7;) @, =7 (33)
First, we determine the locatiar}(Y) of the center ofA;
by noting that the PB data at timeon thez; plane accounts where(ﬁj, ;) are the angles G‘%j with respect to theositive

fors.cat.tering attim¢’ = E+z;,j/vo alqng the beam axis..SinceZ axis [see (7) and (17)]. Thus, it follow from (33) that the
the incident pulsed plane wave arrives at the scattering pogrg[m lina window is oriented so that its nornal bisects the
att’ = 2’ /v,, the center ofy, is determined by’ = vof—l—z{)j_. piing T

, i , _ " angle between the direction of incidence (the negatiais)
Using the geometrical relatiofl — z; = z,. cos 9, we obtain . Lo :
, z — 7 . and the spectral scattering directisn (see Fig. 6).
7, = (ot = 2;) /(1= cos U;). In the (x, z) coordinates, the 1~ ve results imply that the interaction of the
window center is given by directed pulsed plane wave with the object domain, when
r (Y) = (%, 2) — %j(vof — 2,)/(1 = cos U;) (28) parameterized in terms of scattered PB propagators, occurs
as if each scattered PB wespecularly reflectedrom the
where(X, z;) is the intercept of the beam axis on theplane local medium inhomogeneities (Fig. 6). Each PB senses the
and the unit vecto%j denotes the beam direction in (17) (Segnedmm as if |t0were locally a plane stratified medium along
Fig. 6). the bisectionals; axis with the effective variations of the
To determine the orientation of the sampling winddy, medium along this axis being extracted frof(r) via the
we substitute the spectral representationtgffrom (59) into sampling operation in (26). This interpretation is a localized

%j —z= 2%j cos U, (32)

(27) to find version of the “pseudo plane wave reflection law” discussed
_1 1 in connection with the transient plane wave analysis in [1].
A(r'; Y) :Rem / dQSF The implications of the above will be illustrated by consid-
. ° ering in detail two special window functions: A plane wave
w® €~ € v, (€ (X — %) window (i.e., a nonwindowed transform) and a Gaussian
4+ Ct (Z/ _ Zj) + Z/)] (29) window.

wherew® (¢, r) = w andw is the analytic TD plane D. Special Case I: Plane Wave Window

wave spectrum of the analytic window(x, ¢) as calculated 1) Sampling Kernels and Scattered Field SpectFar this
via (8) [as noted e_lfter (5), the analytic s_ignal formulation ispecial case, in the FDj(x) = 1 and (11) reduces to the
used here sinc#; involves both propagating and evanescenynwindowed Fourier transform (6a) [i-@-'(f7 & — (&)
tra]. The expression in (29) synthesizgsas a spectral ) : v -
spectraj. 1 ; : _The results in this case are reduced to the conventional FD
iuperposmon along+planes weighted by the window functigfitraction tomography relation [16], or the TD diffraction
w®(€). Noting thatw peaks around the origin in thg, 7) tomography in [1]. We shall summarize here only the TD
3 g p g & graphy in [1] y
domain, the dominant spectral contribution in (29) is specifiedsults since they give important insight to the windowed
by the conditions results in Section IV-E.
— _ - In the TD, we have the impulsive plane wave window
~ _ . ! ! . !
§x¢ and & (x —X) (2 —7) + 2 =vot (B0) 4y s(4). Thus, from (14), the local spectrum reduces
For specifiedy’ = (£, X, 7), (30) defines a (real) plane surfacel© the SST in (8Y/;(Y) — u;(§, t —£-x); from (25),¥; are
which samples the object domain through its dependen®W in theg; direction and from (27) the sampling window



1214 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 7, JULY 1999

is found to be where the parametét = 3, +4/3;, with 5,. > 0 for w > 0, and
INUTIRS with 3|, <0 = —"|w>0- Anticipating extension to the TD, (37)

J ' has been constructed so that the frequeiey w/v, appears
=~ W [g — vo_l(—z(x’ —X)£{(Z - 2z) + Z’)] explicitly in the exponent while3 is frequency independent

2v6C (except for the symmetry condition mentioned above). These
(34) features will be used later on to construct collimated TD

which defines the plane surface (Fig. 6) discussed in (30)—(34fve objects. The role of the complex parametewill be

Using (34), relation (26) reduces to dl's'cusseq in the inversion procedure in [2, eq. (42)]. The
_ window in (37) also includes the factar? exp(—w7’/2)

i (€ 1) = f (g)é__l / & Or') whose role is to generate a well behaved window in the space-
2C, time domain [see (38)] that also satisfiegx, t) € £1(x, t)

.5(g+ v;l[(%j —z)-r i@j])_ (35) as required for numerical implementation [4, sec. 4-2]. These

additional parameters have not been included in the two-

This result expresses the relation between the time-dependfifiiensional (2-D) phase-space analysis in [9] and [13]. The
plane wave spectrum of the data and the Radon transformppésent theory also involves nontrivial extensions of the 2-D
O(r’) along the directior¥; that bisects the angle between théheory because of the skewing and consequent distortion of

direction of incidences’ = z and the spectral directiog;. the beam propagators in the 3-D case. o

In [1], this relation has been identified and interpretedrls ~_ Because of the constraifit.<o = —f"|.>0, it is conve-

diffraction tomography. nient to transform (37) into the TD via the analytic signal
2) Scattering Phenomenologyfhe form of the plane wave transform in (5), giving the “Gaussiaft window

sampling kernel in (34) permits an incisive physical in- i T2 i i 5

terpretation of the scattering mechanism. The results affX: t) = Rew(x, t) = Re| a&'™\t — > T—5 [x|*/vof3

their implications for plane wave diffraction tomography have (38)

been discussed previously [1]. Here, relevant portions will be .

summarized briefly in order to provide the background for thghere § is the analytic delta function

new pulsed-beam probing in Section IV-E.

- ) * (mit) 71, Imt<O0
Summarizing from [1], we introduce phenomenology- o(t) = §(£) + P(rit)=1, Imt=0 (39)
matched coordinates. Noting from (35) that the relevant 7” ’ -
temporal coordinate is, = —(k; —2) -1’ ¥z and recalling ang 5(f) = 2/xit>. This window is localized around

(31) and (32), this condition defines a plane in thelomain,

perpendicular to théj axis whose distance from the origin
r’ = 0 is given by

(x, t) = (0, 0). Recalling that3,. > 0, the argument of thé
function in (38) has a negative imaginary part that increases
quadratically with|x|, thus generating a smooth Lorentzian
pj = —(vol + 2; cos 295,)/2 cos ¥, (36) window which is strongest fofx| = 0 and weakens a|

. . . . incr LT in sufficient resolution, th r
This condition defines a “pseudoreflection plane” that converpsC eases. To obtain sufficient resolution, the paranigter0

. . h t ti
the incident pulsed plane way&¢— z/v,) into a pulsed plane IS chosen to satisfy
° -1
wave in thew; direction arriving at the centéx = 0) of the z; T < wpax (40)
plane at timet. Thus, the spectral time-dependent plane wavgith ., .. denoting the upper frequency in the incident signal.
in the ; direction is generated by a pseudoplane-stratified To clarify the properties of the window in (38) we separate

. . . o . . +
medium whose axis is along the; direction, the spectral the argument of thé function into real and imaginary parts
arrival timet being directly related to the locatign; of the and rewrite it in a standard form as

reflecting plane along thféj axis. Furthermore, since (35) can o i
P w(x, t) =Re adP [t —t, - =T, (41)
be recast as a Radon transform @fr) along thes; axis, 2

it follows that the pseudoplane stratified medium al&}gs where
characterized by the Radon transform((fr) along that axis. 1 5 By
Further details concerning this interpretation can be found in tp(x) = 2 v|A2

v|3]?
[1]. A related result has been derived asymptotically in [17]. . . . I ,| . )
The interpretation of (41) is not compromised by ignoring

the time derivative and assuming = 1 so thatw(x, t) =

. _ _ 7 HT,/2)/[(t —tp)? + (Tp/2)?]. For givenx, the expression

1) Window Profiles:It is advantageous to use GaussmBeakS att = t,(x) and its pulse length and peak value are

windows since they yield analytically trac_:kable_ beam-typgiven, respectively, byl,(x) and 2/xT,(x). Thus, as|x|

propagators. In the FD, we use a Gaussian window whopgreases/, increases andy decays. The transverse half-

spatial and spectral distributions are amplitude diameteD of the window is, therefore, obtained
W(x) = — Wl (W/DRBT I =T /2. by solving 7,,(x) = 27,,(0), giving

W(E) = — wra(2nB/k)e” WDRORF =eT/2 (37) D = 2\/T|B%v./Br. (43)

WP L) = T4 sk (42)

E. Special Case Il: Gaussiah Window
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Further properties of this window, in particular those pertairt; thus contributions to the phase-space datat adrrive

ing to numerical implementation for analysis of space—tinfeom points in the (r/, ) domain near the PB center

data, have been explored in [4, sec. 4.2]. described by this trajectory. As in (41), the spatial confinement
2) Phase-Space Scattering Propagatot§:the window is transverse to the beam axis is described by the quadratic form

“large” on a wavelength scale, the FD kernei@(r’; X) —1/2v;'x) -Q,-x; , which (sinces, > 0) has a negative

in (22) yield collimated beam fields in the domain. Via imaginary bart that increases quadratically as the distance

asymptotic evaluation and paraxial approximation, one obtaifiem the axis increases. To clarify the wavepacket structure

. —iwv,or [detQ;(z) ) one should separate the argument of thiainction into real
U, (r'; X) ~ 2 dot 010 and imaginary parts and follow the procedure detailed in (41).
2 @@ Qi (0) We therefore rewrite the elements @j; in the form
. waT/QCik (f-i—zéj +(1/2)xéj ‘Qj (Zgj )'xz,,j) (44)
(=2, + Z—iF) ™t = 1/Ri 44/, (48)
where
(= - iﬁ*ZQ)_l 0 wherel = 1 or 2 correspond tary,; andxy,;, respectively,
Q;(z.) ~ { "t 0 a i) } (45) and Z; and F; are given by
J 7b J—
2 — 3.2 - B —
The derivation of this expression is similar to that presented inZ1 = —4C, =0 Zp=—f, =p. (49

the Appendix of [4] in connection with the beam propagat0|=;shus R; and I; are given by
B. In (44) we utilize the beam coordmatesb1 ,a:bz , 7b )

defined, for a given phase-space pdhtby the transformation Ri(z,) = — (%, — Z1) — Ff/(z{,j - Z) (50)
xg,lj F cos J; cos @; Fcosd;sinp; =+ sin L(z,) =k + (%, — Z)? ) Fy. (51)
x| = + sin @, F cos @ 0 . . ) )
Z{)z; i 7, cos J@’ i 7, sinJ@ cos 7, E)?rli]atmn (47) for the PB field may therefore be written in the

.Z‘ll - fl
o — T (46) T, ¢;Y)
/ .
Z =z . Revoof (Zl — LFl)(ZQ — LFQ)

where (9;, ;) are the spherical angles associated vith 20 \ (=2, + %1 —iF1)(—7,, + Z2 — il})

of (17) and upper and lower signs correspondjte- 1, 2, ol , i ,

respectively, (see Fig. 7). Thus, tlaga axes coincide with the -6 [t — () = 5 Ty(r )} (52)

beam axes in the positive (outwaiéi)dnecﬂon the transverse
coordinatesx; = (},, z;, ) are rotated such that, is where the real and imaginary parts of the argumerﬁ@fare

parallel to thez plane Whl|ea:b lies in the plan€g, nj) (see £(r') IUJI(% _ %1 /2R, — %2 /232) (53)
Fig. 7) with its positive d|rect|on defined so théit Xb > 0.
Furthermore, the systen(ss; , 7, ) are defined to be right T,y =T +wv;* (a:bl /I + a3 /12) (54)

handed. Accordingly, the linear phage x’ implied by the
window function in thez = z; planes is operative in the),
directionbut notin the z;  direction. Consequenthyg affects
only the @Q¢; term in (45) but not thel),> term, thereby
describingastigmaticbeams.

The TD phase-space scattering propagat®yér’, ¢, Y)
due to the window in (38) can be found by evaluatlng the TBMplitude length of thé pulse, which is inversely proportional
spatial or spectral integrals in (25) and (59), respectively, to the pulse amplitude. Thus, the field is strongest on the
by transforming the FD expression via (24). Near the beabeam axis wherel},(r’) is minimal and it decays ag),
axis we obtain closed-form expressions by transforming (4#icreases away from the beam axis. Analogous to (43), the
via (24), giving half-amplitude beam diameter in thxglj directions is found

U, ¢ Y) by solving T},(zs,,) = 27,(0), giving

ne) i)

solz_y 1 " Thus, the collimation lengths in ther), , 2') cross-sectional
t—t = 5T~ |~ - Xb QX planes areF, and the waists are located 8 = Z with

1
(47) widths 2/v,1F;. From (54) with (51), one notes that in the
collimation (Fresnel) zonpsbj Z;| < Fy, the PB is essentially

This expression describes a pulsed. beam ,(Space_t'mﬁhanged, whereas outside this zone the beam opens up along
wavepacket) whose center follows the trajectdry 2y, Jvo = the far-field diffraction angle®; = 2+/v,T/F,

Equation (52) with (53) and (54) is readily identified as an
astigmatic PB along thesgj axis whose major transverse
axes ardx, , x;, ), With B, representing the wavefront radii
of curvature in thea:b directions. Moreoverg,(r’) is the
paraxial propagation delay whil&,(r") is the temporal half-
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As mentioned earlier, the propagator (52) belongs to the APPENDIX
general class of PB fields in [5] and [6], termed isodiffracting TIME-DOMAIN SPECTRAL REPRESENTATION OFY/;
[7]. Thus, all frequency components of the PB's in (52) are \ye start with the well know spectral expression of the FD
Gaussian beams with treamecollimation distance and radii g een's function
of curvature. Since these beams are generated by the Gaussian )
window in (37) with frequency independept the window @(r_r/) _ < k ) / d2e 1

ik (E-(x—x")4¢lz=2"])
; [ .
width is proportional tow=1/2 . —2ik¢

27
3) The Phase-Space Sampling Kernelsserting (47) into (57)

27), btain th li indow in tiee(object) d i o . . . .
(27), we obtain the sampling window in ta&(object) domain Substituting in (22) and inverting the order of integrations
Ai(r'; Y)

yields the plane wave representation

R det Q. Z/_ R 4 2 *
Re—C [, s %) = o [ et e x)]
20, det Q;(0) 8m2v,
. . pik(—Ex'+Clas—='1) 58
.3(3)[5—éT—v;]L(z’—zl’,j—i—%ij-Qj-xf,j)} ‘ (58)

(56)

whereW (&; X) = w(€ — €)e~*E-O% with W andw being
the spectral functions in (6a) corresponding W6 and ),
In order to show that this window satisfies the general propespectively. The TD counterpart of (58) is obtained via (24). It
erties discussed in (31) we denofe = ' — zgj + %x;)j - is convenient to use the analytic signal formulation as effected
Q; - x’bj. The window peaks at points’ satisfyings) = 0, by the one-sided Fourier inversion [see (5)]. Thus, applying
i.e., atr’'(Y) in (28) on the PB axis. Off the PB axis,the one-sided counterpart of (24) to (58) and inverting the
the window peaks at points’ satisfying Rey(r') = wv,f, order of integrations, we obtain
so that the normal to the window af can be found via w0, 5 Y)
5; = (V Re/|V Re|)|,. Calculating this expression we e 1 o1
find that §j satisfies the properties discussed in connection :Rem / d SZ
with (33) and Fig. 6. +

WWI[E ¥ +v (=€ X £ — %) Y] (59)

V. CONCLUSIONS

by + _
. L . . _ by —1l¢ ;
In this paper, which is the first part of a two-part sequenc@hereW (€, 7; Y) = w(—¢&, Tt £-X) is the analytic
we have extended the previously developed PPW-based tiransient plane-wave spectrum 8f [cf. (15)].
domain diffraction tomography for forward Born-type scat-
tering in [1] to a more localized PB-parameterized version,
which, in contrast to the global planar PPW wavefronts _ , _
fi . . f th . d . 1] T. Melamed, Y. Ehrlich, and E. Heyman, “Short-pulse inversion of
Fon Ines interrogation of the Scatte”ng. omain t.O S(_:atte ~ inhomogeneous media: A time-domain diffraction tomographyérse
ing cells centered along the beam axis. Operating in the Problems,vol. 12, pp. 977-993, 1996. _
configuration-spectrum phase space accessed by WindOW@h T. Melamed, E. Heyman, and L. B. Felsen, “Local spectral analysis of
. short-pulse excited scattering from weakly inhomogeneous media—Part
transforms, we have developed_ the PB-based mathematical . |nyerse scattering,IEEE Trans. Antennas Propagathis issue, pp.
methodology for forward scattering and have endeavored to 1218-1227.

; ; ; ; 3] T. Melamed and E. Heyman, “Spectral analysis of time-domain diffrac-
explain the results in terms of physically meaningful wave tion tomography,’Radio Sci. vol. 32, pp. 593-604, 1997.

phenomena, thereby laying the foundation for the inversio) T. Melamed, “Phase-space beam summation: A local spectrum analysis
procedure in [2]. To highlight the differences between the goggirg%defgggent radiation/J. Electromagn. Waves Applol. 11, pp.
PPW- and PB-base.d algorlthms,. the sc'attered field glor!e h&$ £ Heyman and L. B. Felsen, “Complex source pulsed beam fields,”
been decomposed into PB’s while leaving the PPW incident” opt. Soc. Amervol. 6, pt. A, 806-817, 1989.

wave intact. This hybrid global-local setting has interestind6l E: Heyman, “Pulsed beam propagation in an inhomogeneous medium,”
h logical i l . - alth h th o IEEE Trans. Antennas Propagatol. 42, pp. 311-319, 1994.
phenomenological implications; although the PPW excitatiof; E. Heyman and T. Melamed, “Certain considerations in aperture syn-

of the scattering medium gives rise to induced point radiators thesis of ultrawideband/short-pulse radiatiof?EE Trans. Antennas
ictri ira i _ Propagat.,vol. 42, pp. 518-525, 1994.
distributed along the gntlre |'nstantaneous wavefront, the P 81 E. Heyman and L. B. Felsen, "Weakly dispersive spectral theory
processed scattered field arises solely from the relevant local of transients (STT): Part |—Formulation and interpretation; Part
scattering cell, as observed along the beam axis direction. ll—Evaluation of the spectral integral; Part Ill—ApplicationdEEE
The latter feature suggests that “constrained ray” (i.e., beam) Irz"’;_)”ss_'lAzgge”?g;Pmpaga“’p'- AP-35, pp. 80-86; pp. 574-580; pp.
trajectories characterize the scattering in this scenario, therelpy B. z. Steinberg, E. Heyman, and L. B. Felsen, “Phase space beam sum-
Ieading to a reinterpretation of the PPW one-dimensional mation for time dependent radiation from large apertures: Continuous
“pseudoreflection rule” in [2] in terms of beam-constraine 0 parametrization,’J. Opt. Soc. Amer. Ajol. 8, no. 943-958, 1991.

: 2 - . ] T. B. Hansen and A. D. Yaghjian, “Planar near-field scanning in the
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