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In Part I of this two-part investigation we presented a theory for propagation of pulsed-beam wave packets in
a homogeneous lossless dispersive medium with the generic dispersion relation k(v). Emphasis was placed
on the paraxial regime, and detailed studies were performed to parameterize the effect of dispersion in terms
of specific physical footprints associated with the PB field and with properties of the k(v) dispersion surface.
Moreover, critical nondimensional combinations of these footprints were defined to ascertain the space–time
range of applicability of the paraxial approximation. This was done by recourse to simple saddle-point as-
ymptotics in the Fourier inversion integral from the frequency domain, with restrictions to the fully dispersive
regime sufficiently far behind the wave front. Here we extend these studies by addressing the dispersive-to-
nondispersive transition as the observer moves toward the wave front. It is now necessary to adopt a model
for the dispersive properties to correct the nondispersive high-frequency limit k(v) 5 v/c with higher-order
terms in (1/v). A simple Lorentz model has been chosen for this purpose that allows construction of a simple
uniform transition function which connects smoothly onto the near-wave-front-reduced generic k(v) profile.
This model is also used for assessing the accuracy of the various analytic parameterizations and estimates in
part I through comparison with numerically generated reference solutions. It is found that both the asymp-
totics for the pulsed-beam field and the nondimensional estimators perform remarkably well, thereby lending
confidence to the notion that the critical parameter combinations are well matched to the space–time wave
dynamics. © 1998 Optical Society of America [S0740-3232(98)02505-8]
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1. INTRODUCTION
This paper is concerned with extending the investigation
of paraxial pulsed-beam (PB) wave-packet propagation in
homogeneous lossless dispersive media performed in Part
I,1 and with validating the analytic space–time results
given in Part I by application to a specific example. In
Part I the medium was characterized by a generic disper-
sion relation k(v), and the emphasis was placed on the
fully developed dispersive regime. Various critical non-
dimensional parameters were identified that expressed
the effects of dispersion in terms of physical footprints
pertaining to the PB wave objects as well as to the char-
acteristics of the dispersion surface. To extend the re-
sults of Part I from the fully dispersive regime through
the weakly dispersive and eventually nondispersive re-
gime as the observer approaches the wave front, a simple
Lorentz-type dispersion model, characteristic of a cold
electron plasma, has been adopted. This model allows
explicit closed-form construction of a uniform field transi-
tion function that patches onto the upper frequency limit
of the fully dispersive profile and reduces to the nondis-
persive PB as k(v) → v/c at the wave front. The cold
plasma model is also used for numerical evaluation of the
asymptotic solutions and estimations and for assessing
their performance by comparison with direct numerical
evaluation of the frequency inversion integral.

In Section 2 the cold plasma dispersion relation is de-
fined, and all relevant asymptotic expressions for observ-
ables and estimations derived generically in Part I are re-
produced here for the cold plasma case. In each case
0740-3232/98/051277-08$15.00 ©
numerical calculations are implemented to quantify and
calibrate the performances of the theory (see Figs. 1–5 be-
low). References to equations, figures, section headings,
etc., in Part I are identified with the prefix I [for example,
relation (17) of Part I is referenced as relation (I.17)].
Section 3 is concerned with the transitional
nondispersive-to-dispersive regime near the wave front.
The numerical comparisons are shown in Fig. 6 below.
Concluding remarks are made in Section 4.

2. PARAMETERIZATION OF THE COLD
PLASMA DISPERSION FIELD
A. Time-Domain Asymptotics
To test the performance of the various asymptotic para-
metric estimates developed for the PB wave-packet dis-
persion, we consider the simple example of a cold electron
plasma that has the Lorentz-type dispersion relation

k~v! 5
1

c
Av2 2 v0

2, (1)

where v0 is the plasma frequency. We obtain the sta-
tionary frequency of the PB exactly by inserting Eq. (1)
into Eq. (I.25). The result is

vs 5 v0YA1 2 S S

ct D
2

, (2)

so that
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k~vs! 5
v0S

c2t

1

A1 2 S S

ct D
2

,

k9~vs! 5
21
cv0

F S ct
S D 2

2 1G3/2

. (3)

From Eq. (2), the on-axis stationary frequency vs(r 5 0)
is

v̄s 5 v0V̄/AV̄2 2 1, V̄ 5
ct

z
. (4)

Accordingly,

k~v̄s! 5
v0

c
YAV̄2 2 1, k9~v̄s! 5

21

cv0
~V̄2 2 1 !3/2.

(5)

Using a second-order Taylor-series approximation for vs
in Eq. (2), we obtain

Dvs
~z, r, t ! [ vs~z, r, t ! 2 v̄s~z, t !

5
v0zr2

2c2t2~z 2 ib!

1

A1 2 S z

ct D
2 3 1 O~r4!.

(6)

Using Eqs. (5) in Eq. (6), we obtain

Dvs
~z, r, t ! 5 2

1

2
r2

1

z 2 ib

t

k9~v̄s!z
2 1 O~r4!. (7)

By separating 1/(z 2 ib) into real and imaginary parts,
we find that Eq. (7) is exactly the same as Eq. (I.38) [up to
O(r4)].
The asymptotic expression of the field in Eqs. (I.18) is
given by relation (I.33). For the dispersion model in Eq.
(1), we may use the exact stationary frequency vs in Eq.
(2), evaluating

C~r, t ! 5 F~vs! 5 vst 2 k~vs!S~r!,

A~r, t ! 5
2ib

z 2 ib F 22
pik9~vs!S

G1/2

. (8)

Using Eqs. (2) and (3), we obtain

C~r, t ! 5 v0tA1 2 S S

ct D
2

. (9)

By expanding C in Eqs. (8) in a Taylor series up to fourth
order and using Eqs. (I.13), (4), and (5), we obtain

C 2 C~ r 5 0 ! [ DC

5
1

2
r2

1

z~z 2 ib!
F1

4
r2

1

z 2 ib

t2

k9~v̄s!z
2

2 k~v̄s!zG 1 O~r6!. (10)

Comparing this result with the approximate phase in Eq.
(I.43), one finds that the results are exactly the same up
to the sixth-order term. The amplitude in Eqs. (8) differs
from the approximate form in Eq. (I.35) only in that k9 is
evaluated at vs rather than at v̄s ; thus both results have
the same zero-order r term.

The off-axis field evaluated via the asymptotic solution
in Eqs. (I.57) with Eqs. (4) and (5) is compared with the
reference solution obtained by fast-Fourier-transform
evaluation of Eqs. (I.18) for values of r/c 5 0, 0.1, 0.2 in
Fig. 1. This figure clearly demonstrates the accuracy of
the asymptotic result with the approximated paraxial
Fig. 1. Off-axis PB field for the cold plasma dispersion. Solid curves, fast-Fourier-transform reference solution; dashed curves,
paraxial approximation in relation (I.57) (both sets coincide on the scale of the plots). Problem parameters: z/c 5 2, T 5 0.005,
b/c 5 5, v0 5 40A2.
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Fig. 2. Envelope function E(t, z) (dashed curve) with constant z for the cold plasma dispersion. The thick line describes the approxi-
mated temporal width at 1/Qd 5 1/5.4 of the envelope maximum. The horizontal axis is in units of time, and all other parameters bear
the same normalization.
phase in Eqs. (I.57); both solutions coincide in these plots.
The problem parameters are z/c 5 2, T 5 0.005, b/c
5 5, and v0 5 40A2.

B. Parameterizations via the Envelope Function
The envelope function in relation (I.61) for the PB field
may be evaluated in the plasma medium by use of Eqs. (4)
and (5):

E~z, t ! 5
ubu

uz 2 ibu S 2cv0

pz D 1/2

3 exp~2v0TV̄/2AV̄2 2 1 !/~V̄2 2 1 !3/4.

(11)

The envelope peaks at the value Vm , which satisfies Eq.
(I.63) for the dispersion relation in Eq. (1), giving

Vm 5 H 1
2

1
1
2 F1 1 4S v0T

3 D 2G1/2J 1/2

. 1 1
1
2 S v0T

3 D 2

,

(12)

where the last equality is valid for v0T ! 9/4. One finds
the peak value by inserting relation (12) into Eq. (11):

Emax 5
ubu

uz 2 ibu S 2cv0

pz D 1/2

~ev0T/3!23/2. (13)

1. On-Axis Temporal Width
One may find the temporal width of the PB field in Eqs.
(I.57) by solving

E~Vd! 5 Emax /d, (14)

where d is a nondimensional attenuation factor. Solving
this equation for any d is complicated. One may find a
simple analytic solution by approximating the exponent
in Eq. (11) by exp(2Tv0/2). The range of validity for this
approximation is determined by the condition
exp~2v0TV̄/2AV̄2 2 1 ! . 0.9 exp~2v0T !. (15)

Solving inequality (15) with the condition v0T ! 9/4
above yields

V̄ . 1 1
1
2 S 1 1

1
5v0T D 22

. (16)

Using this approximation in Eq. (14), we obtain

Vd 5 F1 1 d4/3S v0Te
3 D 2

expS 2
2
3

Tv0D G1/2

. 1 1
1
2

d4/3S v0Te
3 D 2

expS 2
2
3

Tv0D , (17)

where the last equality is valid for

d ! S v0Te
3 D 23/2

expS 1
2

Tv0D . (18)

The temporal width D t with respect to the wave front may
be approximated via

D t .
z
c

~Vd 2 1 ! 5
1
2

z
c

d4/3S v0Te
3 D 2

expS 2
2
3

Tv0D .

(19)

Comparing inequality (16) with relation (17), we find that
the minimum value of d for which relation (19) is valid is
given by

d . Qd [ FexpS 2
2
3

Tv0D S v0Te
3 D 2S 1 1

1
5v0T D 2G23/4

,

(20)

where Qd is the critical nondimensional parameter for the
minimum attenuation d. Note that, in cases for which d
does not satisfy the condition in inequality (18), D t may be
evaluated by the first equality in relation (19) with Vd
evaluated by the first equality in relation (17).
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The on-axis PB field obtained from Eqs. (I.57) (solid
curve) for the dispersion relation in Eq. (1) as well as its
envelope (dashed curve) in Eq. (11) are presented in Fig.
2. The PB parameters are T 5 0.005 and b/c 5 5, the
dispersion parameter is v0 5 20A2, and the field is
evaluated at z/c 5 2. Using relation (12), we find that
the envelope peaks at Vm 5 1.0011, which corresponds to
tm 5 Vmz/c 5 2.0022. The peak value is found from Eq.
(13), giving Emax 5 60.73 (note that here v0T 5 0.14
! 9/4). Using these parameters, we find that the theo-
retical minimum value [Eq. (20)] for d is Qd 5 5.4 and
that the temporal width in relation (19) corresponding to
d 5 5.4 is D t 5 0.1416. This result is also shown in Fig.
2 by the thick line of length D t , at the corresponding
value of Emax /d. This figure validates the result in rela-
tions (19) and (20).

2. On-Axis Spatial Width
Following the discussion in Subsection I.4.B.2.b, the on-
axis envelope peaks at zm 5 ct/Vm , with Vm being given
in relation (12) and its peak value being given by [cf. Eq.
(13)]

Emax 5
b

Azm
2 1 b2

S 2cv0

pzm
D 1/2

~ev0T/3!23/2, zm 5
ct

Vm
.

(21)
One may now find the on-axis spatial width of the field in
Eqs. (I.57) by solving Eq. (14). Following the procedure
given in relations (14)–(17), one finds that the on-axis
spatial width Dz is

Dz . ctS 1 2
1

Vd
D , (22)

with Vd being given as in relation (17). The on-axis field
(solid curve) for the same PB and dispersion parameters
as in Fig. 2 but evaluated at ct 5 2, as well as its enve-
lope (dashed curve) in Eq. (11), are presented in Fig. 3.
Using relation (12), we find that the envelope peaks at
Vm 5 1.0011, which corresponds to zm 5 ct/Vm
5 1.9978. The peak value Emax 5 60.73 is found from
Eq. (13). As in Fig. 2, the theoretical minimum value
[Eq. (20)] for d is Qd . 5.4, and the on-axis width is Dz
5 0.1322 from relation (22). This result is also repre-
sented in Fig. 3 by the thick line of length Dz and at the
corresponding value of Emax /d. This figure validates the
results given in relations (22) and (20).

3. Off-Axis Spatial Width
One obtains the off-axis spatial width of the PB field for
the dispersion relation in Eq. (1) by inserting Eqs. (5) into
Eq. (I.64). This yields

D~z, t ! 5 AI~z !c
v0

~V̄2 2 1 !1/4. (23)

Results for three different observation times t 5 2.008,
2.041, 2.096, which correspond to the first three (positive)
peaks, respectively, of the on-axis field in Fig. 2, are pre-
sented in Fig. 4. The corresponding off-axis spatial
widths in Eq. (23) are 2A2D 5 0.3832, 0.578, 0.717.
These results are also represented in Fig. 4 by the thick
lines of length A2D and at the corresponding values of
Emax /e. Note that these values indeed quantify the off-
axis widths of the field plots. The maximum off-axis de-
viation rmax for which the paraxial approximation in Eqs.
(I.57) is valid is given in inequality (I.52). Using Eqs.
(I.47) and (5) as well, one finds that, for the waveforms
shown in Fig. 4, rmax 5 1.90, 1.93, 2.0 for Figs. 4(a), 4(b),
and 4(c), respectively. These maximum off-axis devia-
tions rmax are much greater than the corresponding off-
axis spatial widths whence the D values above lie well
within the legitimate range.
Fig. 3. Envelope function E(t, z) (dashed curve) with constant t for the cold plasma dispersion. The thick line describes the approxi-
mated on-axis spatial width at 1/Qd 5 1/5.4 of the envelope maximum. All quantities are normalized so that they bear dimensionality
of length; i.e., cT 5 0.0005, b 5 5, v0/c 5 20A2.
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Fig. 4. Spatial (off-axis) width of the PB field for the cold plasma dispersion at various observation times.
C. Wave-Front Radius of Curvature
As noted in Subsection I.4.B.2.d, the wave-front radius of
curvature of the dispersive PB field is independent of the
specific dispersion relation and is given by Rd(z) 5 R(z)
5 (z 2 Z) 1 F2/(z 2 Z) [Eq. (I.70)]. In Fig. 5(a) we
present the dispersive PB field propagating in a cold

Fig. 5. PB field in the dispersive regime Eqs. (I.57) for the cold
plasma dispersion relation with v0 5 20A2. The field param-
eters are as in Fig. I.1). (a) PB in (r, z) plane, (b) contour plot of
the field magnitude. The wave-front radii of curvature Rd [Eq.
(I.70)] for various z values corresponding to the field maxima are
also shown (dashed curves).
plasma with dispersion relation (1) and v0 5 20A2. The
field parameters are as in Fig. I.1, i.e., ct 5 2, cT
5 0.005, and b 5 5. The contour lines of the field mag-
nitude as well as the radius of curvature Rd(z) for several
values of z (corresponding to local extrema) are presented
in Fig. 5(b). Evidently these values of wave-front radii of
curvature are in accord with the contour lines. These
plots should be compared with the nondispersive pulse
shape shown in Fig. I.1; the dispersive case exhibits pro-
longed oscillations.

D. Instantaneous Frequency
The instantaneous frequency v i(r, t) for the generic dis-
persion relation k(v) is given by [see Eq. (I.72)]

v i~r, t ! 5 v̄s~z, t ! 2
t

z2k9~v̄s!

1/2 r2

R~z !
. (24)

We obtain the instantaneous frequency for the dispersion
relation in Eq. (1) by inserting Eqs. (4) and (5) into Eq.
(24), which gives

v i~r, t ! 5
v0V̄

AV̄2 2 1
F1 1

1

2

r2

z

1

R~z !~V̄2 2 1 !
G .

(25)

The term (v0V̄)/AV̄2 2 1 is the on-axis stationary fre-
quency v̄s(z, t) in Eq. (4); therefore the second term in-
side the bracket is the normalized deviation of the instan-
taneous frequency from v̄s . Under the paraxial
approximation this deviation is proportional to r2, and it
is positive for R(z) . 0, i.e., for observers moving toward
the waist location at Z [see Eq. (I.17)], but negative for
observers moving away from Z. The result in Eq. (25)
fails at observation points close to the wave front, where
V̄ → 1 (see Section 3).
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3. TRANSITION REGIME NEAR THE WAVE
FRONT
A. Dispersion Surface
For observations near the wave front, where V̄ → 1 and
the dispersion relation approaches the high-frequency
limit k(v) → v/c, the dispersive properties undergo a
transition to the nondispersive regime, and the radius of
curvature of the dispersion surface R̄c → `. To param-
eterize the transition regime, we assume that the disper-
sion relation takes the form (Ref. 2, Section 1.6)

k~v! ;
v

c
2

va
2

cv
, v → ` (26a)

with va denoting a characteristic frequency parameter.
Dispersion relations as in relation (26a) are characteristic
of lossless Lorentz-type materials.3 We then find the sta-
tionary frequency v̄s by using relation (26a) in Eqs. (I.45),
obtaining

v̄s 5 va /AV̄ 2 1. (26b)

Since v̄s → ` as the observation point approaches the
wave front V̄ → 1, the asymptotic evaluation via the iso-
lated saddle point, which leads to Eqs. (I.57), becomes in-
valid. The corresponding transitional radius of curva-
ture of the dispersion surface is obtained through
relations (I.47) and (26a) by

R̄c 5
2va

2 S V̄2 1 1

V̄ 2 1
D 3/2

. (27)

From relations (27) and (I.52) we can assess the transi-
tional behavior of the paraxial PB wave packet, which
now satisfies the condition in relation (I.52) with

rmax 5 F32pczuz 2 ibu2

va

~V̄ 2 1 !3/2

V̄2 G 1/4

. (28)

Clearly, the paraxial off-axis range shrinks as V̄ → 1 and
is influenced as before by the beam parameters as well as
by the dispersion parameter va .

B. Transitional Beam Fields
As noted above, the transitional beam field near the wave
front z 5 ct can no longer be described by the simple
saddle-point evaluation formula. To derive the transi-
tion function we assume that

f̂~v! ; exp@2~1/2!Tv#, v → `, (29)

where T parameterizes the maximum frequency of f̂
through relation (I.21); this behavior is in accord with the
analytic wave packet in Eqs. (I.20a). For plane-wave in-
puts the k(v) dependence in relation (26a) permits a
closed-form inversion of the integral in Eq. (I.18) (see Ref.
2). We shall seek a similar closed-form result for the
beam input in Eq. (I.8), with relation (29).

To stabilize the resulting inversion integral [Eq. (I.18)]
[see discussion in relation to Eq. (31)], we include in rela-
tion (29) a low-frequency convergence factor

f̂~v! ; exp@2~1/2 Tv 1 a/v!#, v → `, a . 0,

(30)
which does not affect the v → ` limit in relation (29). In
particular, for v @ Aa/T, relation (30) reduces to relation
(29). To recover the time-domain field u(r, t)
5 Re u

1
(r, t) from the analytic signal representation, we

insert relations (26a) and (30) into Eq. (I.18) to obtain

u
1

~r, t ! 5
1
p

2ib
z 2 ib E

0

`

dv exp@2ivt 2 ib̄~1/v!#,

t 5 t 2 i
T
2

2
S
c

, b̄ 5
va

2S~r!

c
2 ia.

(31)

Note that, to ensure convergence as v → 0, we must have
Im b̄ < 0. Therefore, for a given r, where Im S > 0, a
should be chosen such that Im S < ca/va

2. Using Eq.
(I.14), we obtain

a >
1
2

r2
va

2

c H brF1 1 S z 1 b i

br
D 2G J 21

. (32)

The integral in Eq. (31) may be evaluated in closed
form in terms of a Hankel function with complex argu-
ment (Ref. 4, Section 3.6.5):

u
1

~r, t ! 5
ib

z 2 ib
Ab̄

t
H1

~2 !~2Ab̄t!, (33a)

u
1

~r, t ! ;
ib

z 2 ib
Ab

t
H1

~2 !~2Abt!, b 5
va

2S
c

.

(33b)

The locally uniform result in Eq. (33a) parameterizes the
time-domain response in the near-wave-front regime of
high frequencies where relation (26a) applies, either at
the wave front where b̄t → 0 or far enough behind the
wave front so that b̄t @ 1, but within the near-wave-front
regime V̄ 5 ct/z . 1. Since the large-v contribution is
not affected by the a/v term in relation (30), we can set
a 5 0, thereby replacing b̄ by b to obtain relation (33b).

C. Transitional On-Axis Response
For on-axis points, where r 5 0, the PB propagator be-
haves like a one-dimensional plane wave. To compare
the above result with the plane-wave result given in Ref.
2, we assume that T 5 0 (impulsive response), obtaining
S 5 z, b 5 va

2 z/c. Since the argument Abt is now real,
the real and the imaginary parts of the Hankel function
are given by J1 and 2Y1 , respectively. In the plane-
wave limit the collimation length F 5 br @ z [see Eqs.
(I.15)], so we may approximate (2ib)/(z 2 ib) . 1.
Thus, by taking the real part of relation (33b), we obtain

u~z, t ! 5 2Ab/tJ1~2Abt!, (34)

which is an expression exactly the same as the one found
in Ref. 2, Eq. 1.7.49, with n 5 0.

D. Very near the Wave Front: Nondispersive Limit
To obtain a simple expression for the field very near the
wave front, we assume that u2Abtu ! 1, that is,
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u2Abtu 5 2Ut 2 i
T
2

2
S
c U

1/2Uva
2S

c U1/2

! 1. (35)

In this case we may use the small argument approxima-
tion for the Hankel function, H1

(2)(z ! 1) ; 22(piz)21,
reducing relation (33b) to

u
1

~r, t ! 5
2ib

z 2 ib
1
pi

1
t

5
2ib

z 2 ib
d
1 H t 2 i

T
2

2 c21Fz 1
1
2

r2/~z 2 ib!G J . (36)

This expression is exactly the same as the nondispersive
wave packet in Eq. (I.22) and therefore demonstrates the
range of validity of the isodiffracting initial conditions:
The field very near the wave front is a wave packet, well
localized in space–time. The parameterization of this
wave packet was discussed in Subsection I.4.A.

The approximation in Eq. (36) is valid for space–time
points that satisfy inequality (35). For on-axis observa-
tion point z 5 ct, inequality (35) takes the form

QV [ 2H va
2z

c F S t 2
z
c D 2

1 S T
2 D 2G1/2J 1/2

! 1. (37)

Using the parameter V̄ 5 ct/z in inequality (37), we ob-
tain

QV [ 2
va z

c @ ~V̄ 2 1 !2 1 ~V̄T/2!2# 1/4 ! 1, (38)

where V̄T 5 cT/z. QV is the nondimensional critical pa-
rameter that parameterizes the maximum distance V lim
behind the wave front for which the field remains local-
ized and may be regarded as a nondispersive wave
packet. With inequality (38), V̄ lim is given explicitly by

V̄ lim 5 1 1 F S c
2zva

D 4

2 ~V̄T/2!2G1/2

. (39)

For V̄ @ V̄ lim , the field is subject to dispersion as dis-
cussed in Subsection 3.E.

At the wave-front on-axis observation point z 5 ct, r
5 0, and V̄ 5 1, Eq. (39) takes the form

Qg [ QVuV51 5 vaA2Tz
c

! 1. (40)

By choosing the dimensionless parameter Qg according to
inequality (40) we ensure that all the nondispersive beam
parameterizations in Eqs. (I.22) and (I.23) remain valid in
the limit very near the wave front. Recalling relation
(I.21), we may interpret inequality (40) in the following
manner: For a given z, the maximum excitation fre-
quency required for the field to remain localized is given
by vmax @ 2zva

2 /c.

E. Behind the Wave Front: Dispersive Limit
For 2Abt @ 1, we may use the large argument approxi-
mation for the Hankel function, H1

(2)(z)
; A2/pz exp(2iz 1 3/4pi). Thus the field sufficiently
far behind the wave front (but still in the near-wave-front
range) is given by

u
1

~r, t ! ; 2
2ib

z 2 ib
Ab

t
A 1

pAbt
exp~2i2Abt 1 3/4 pi !.

(41)

To compare this result with the asymptotic field in Eqs.
(I.57), we derive, from relations (I.54), (26a), and (31),

vs [ vs~r, t ! 5 vaFc~t 2 iT/2!

S
2 1G21/2

5 Ab
t

,

2Abt 5 ~t 2 iT/2!vs~r, t ! 2 k~vs!S, (42)

and finally

k9~vs! 5
22va

2

c
vs

23 5
22va

2

c S b
t D 23/2

. (43)

Using Eqs. (42) and (43) in relation (41), we obtain

u
1

~r, t ! ;
2ib

z 2 ib
1
p F 22p

ik9~vs!S
G1/2

exp~2iC!,

C 5 ~t 2 iT/2!vs~r, t ! 1 ik~vs!S, (44)

which is the complete asymptotic expression for the inte-
gral in Eq. (I.18). We obtain the paraxial approximation
in Eqs. (I.57) by expanding the phase in relations (44) up
to second order in r and up to first order in T and the am-
plitude up to zero order about r 5 0, T 5 0 [recall from
Eqs. (I.54) and (I.26) that vsur50,T50 5 v̄s]. Also note
that the conditions in inequalities (I.52) and (I.59) corre-
spond to neglecting the next-order nonzero terms ]4C/]r4

and ] 2C/]T2, respectively. Thus the dispersive limit for
the approximate dispersion relation in relation (26a)
blends smoothly with the full generic dispersion ex-
pressed by k(v) in the common domain within the near-
wave-front range in which both are valid simultaneously.

The bilateral matching parameterized by Qg in in-
equality (40) is presented in Fig. 6 for the dispersion re-
lation in relation (26a). The figure describes the on-axis
PB field with T 5 0.005, b/c 5 5 at z/c 5 2. The disper-
sion parameter is va 5 0.2, 5, 20, which corresponds to
Qg 5 0.071, 0.71, 2.8 [see inequality (40)]. These values
of Qg parameterize the PB field in the nondispersive,
transition, and dispersive regimes for Figs. 6(a), 6(b), and
6(c), respectively. The field is evaluated in three differ-
ent forms: by the near-wave-front uniform solution
evaluated with the analytic Hankel function in relation
(33b), by the nondispersive solution in Eq. (36), and by
the dispersive asymptotic solution in relation (41). In
Fig. 6(a) the uniform solution and the nondispersive field
are almost identical, inasmuch as here Qg 5 0.071 ! 1;
the field is also evaluated by a direct fast-Fourier-
transform integration of Eq. (I.18) to calibrate the ana-
lytic solution (both solutions coincide in the figure). By
contrast, the asymptotic solution does not reconstruct the
field. Figure 6(b) describes the field in the transition re-
gime with Qg 5 0.71. Here neither the nondispersive so-
lution nor the asymptotic solution agrees with the uni-
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Fig. 6. Bilateral matching for the on-axis PB field of relation (33b) in the medium of relation (26a): z/c 5 2; T 5 0.005; b/c 5 5, with
Qg 5 0.071, 0.71, 2.8 for (a), (b), and (c), respectively.
form field. Finally, Fig. 6(c) describes the field in the
dispersive regime (Qg 5 2.8 . 1) in which the uniform
and the asymptotic solutions coincide.

4. CONCLUSION
In this second part of a two-part investigation we have ex-
tended the theory of pulsed-beam propagation in homoge-
neous lossless dispersive media from the full dispersive
regime addressed in Part I1 to the dispersive-to-
nondispersive transition regime near the wave front. We
have also performed numerical experiments for a simple
Lorentz-type dispersion model to assess the accuracy of
the various asymptotic field representations, estimators,
and nondimensional critical parameters that quantify the
effects of dispersion on the pulsed-beam physical observ-
ables. The results confirm that the estimates on domains
of validity work, and the critical parameters are indeed
matched to the problem. While the simple test so far is
not conclusive, it does suggest that the procedures em-
ployed are on the right track.

Further studies will deal with the inclusion of dissipa-
tion in the k(v) model and with nonhomogeneous me-
dium profiles.
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