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This first part of a two-part investigation is concerned with the effects of dispersion on the propagation char-
acteristics of the scalar field associated with a highly localized pulsed-beam (PB) wave packet in a lossless
homogeneous medium described by the generic wave-number profile k(v) 5 v/c(v), where c(v) is the
frequency-dependent wave propagation speed. While comprehensive studies have been performed for the one-
dimensional problem of pulsed plane-wave propagation in dispersive media, particularly for specific c(v) pro-
files of the Lorentz or Debye type, even relatively crude measures tied to generic k(v) profiles do not appear to
have been obtained for the three-dimensional problem associated with a PB wave packet with complex fre-
quency and wave-number spectral constituents. Such wave packets have been well explored in nondispersive
media, and simple asymptotic expressions have been obtained in the paraxial range surrounding the beam
axis. These paraxially approximated wave objects are now used to formulate the initial conditions for the
lossless generic k(v) dispersive case. The resulting frequency inversion integral is reduced by simple saddle-
point asymptotics to extract the PB phenomenology in the well-developed dispersive regime. The phenom-
enology of the transient field is parameterized in terms of the space–time evolution of the PB wave-front cur-
vature, spatial and temporal beam width, etc., as well as in terms of the corresponding space–time-dependent
frequencies of the signal, which are related to the local geometrical properties of the k(v) dispersion surface.
These individual parameters are then combined to form nondimensional critical parameters that quantify the
effect of dispersion within the space–time range of validity of the paraxial PB. One does this by performing
higher-order asymptotic expansions beyond the paraxial range and then ascertaining the conditions for which
the higher-order terms can be neglected. In Part II [J. Opt. Soc. Am. A 15, 1276 (1998)], these studies are
extended to include the transitional regime at those early observation times for which dispersion is not yet
fully developed. Also included in Part II are analytical and numerical results for a simple Lorentz model that
permit assessment of the performance of various nondimensional critical estimators. © 1998 Optical Society
of America [S0740-3232(98)02805-1]

OCIS codes: 260.2030, 050.1940, 270.5530, 350.5500.
1. INTRODUCTION
Time-domain (TD) signal interaction with lossy disper-
sive materials is an important problem area that has at-
tracted the attention of analysts since the beginning of
this century. Even the one-dimensional problem of
pulsed-plane-wave propagation in such media, when ex-
plored in detail, contains a wealth of subtleties in phe-
nomenology that can be parameterized by carrying out so-
phisticated asymptotic evaluations of the spectral
integrals that result when the frequency-domain (FD) so-
lutions are Fourier inverted into the TD.1 For a compre-
hensive treatment, see Refs. 2–6. There have been much
fewer, and less comprehensive, corresponding studies of
the three-dimensional problem posed by more realistic
space–time-limited initial conditions. The present inves-
tigation is concerned with the parameterization of general
transient fields in terms of localized pulsed-beam (PB)
wave packets that, when defined as analytic signals in
complex space–time, possess the following desirable prop-
erties: 1. The PB’s form a complete basis for decompo-
sition and synthesis of actual space–time-dependent
fields.7,8 2. The PB’s are highly localized propagators
whose progress in the configuration (space–time) domain,
as well as in the spectrum (wave-number–frequency) do-
main, can be tracked analytically.8–10 3. The PB initial
0740-3232/98/051268-09$15.00 ©
conditions are space–time Gaussian window functions
that can be used for physically based preprocessing and
postprocessing of space–time input and output data; this
property is relevant for high-resolution dynamic
imaging.11–13 4. The PB’s are isodiffracting, which
means that all their frequency components have the same
collimation length and wave-front radius of curvature.14

The FD analytic signal analogs of the PB are beams gen-
erated by time-harmonic sources in complex space. They
possess the same completeness, etc., properties as the PB
and can be employed for characterization of FD portions
of the TD problem.

In this two-part sequence we treat the evolution of the
signal excited by PB initial conditions in a lossless homo-
geneous dispersive medium described generically by the
frequency-dependent wave number k(v). As for the
plane-wave case, this requires asymptotic analysis of the
Fourier inversion integral from the FD. However, unlike
the plane-wave case, the PB input also requires spectral
analysis and synthesis in the wave-number domain.
This has already been performed in previous studies8

with emphasis on paraxial asymptotics for approximating
the PB propagators. We shall employ this useful ap-
proximation in the inversion integral from the FD. Our
goal is to extract, by using simple high-frequency saddle-
1998 Optical Society of America
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point asymptotics, the effects of dispersion on the
paraxial PB propagators. These effects will be character-
ized and quantified in terms of critical nondimensional
parameters that capture the relevant wave physics per-
taining to various space–time observation domains for
various choices of PB spatial widths D and pulse lengths
T. In the well-developed dispersive regime, this can be
done for the generic k(v). The critical nondimensional
descriptors, i.e., the footprints, of various observables of
the paraxial PB-excited signal, are calibrated through
higher-order off-axis expansions beyond the second-order
paraxial range, thereby allowing quantitative limits to be
established by examination of the conditions for neglect-
ing the higher-order terms. Because the PB spectra con-
tain complex frequencies and wave numbers, many alter-
native options for off-axis exploration are available, with
different associated wave physics. The space–time-
dependent saddle-point frequency vs(r, t), where vs is
complex, and the space–time envelope E(r, t) of the sig-
nal play a central role in these explorations.

It is known that space–time wave asymptotics in dis-
persive media can be interpreted graphically in terms of
space–time ray theory and the simultaneous use of the
wave-number–frequency dispersion surfaces. In gen-
eral, this visualization involves the four-dimensional com-
plex (space–time)–(wave-number–frequency) phase
space. For asymptotic wave processes described by real
spectra in lossless dispersive media, the phase space is
real, and its utilization can be found, for example, in Ref.
15. The wave dynamics are closely tied to the radius of
curvature Rc of the dispersion surface and to the radius of
curvature R of the incident signal wave front. These pa-
rameterizations are utilized and extended in the present
treatment to account for the complex spectra associated
with the paraxial PB. Accordingly, R and Rc appear in
the nondimensional measures that quantify the correc-
tions attributed to the complex spectra in the PB.

The layout of this two-part sequence is as follows. The
present paper, Part I, addresses the fully dispersive
asymptotic regime for a generic k(v) dispersion relation.
The statement of the problem is given in Section 2.
Wave-number analysis and synthesis in the FD, followed
by asymptotic evaluation, is given in Section 3. Inver-
sion from the FD to the TD and the associated asymptot-
ics is presented in Section 4. Two basic cases are treated
there depending on the spectral amplitude f̂(v): 1. f̂(v)
treated as an amplitude, 2. f̂(v) incorporated into the
phase. Case 2 pertains to the PB input and occupies the
major portion of this section. Defined and quantified
here are various measures of the effect of dispersion on
the PB signal. Conclusions are given in Section 5.

The companion paper, Part II,16 treats the transition
regions, close to the wave front, where the high frequen-
cies in the pulse spectrum predominate and where full
dispersion has not yet been established. Here it is nec-
essary to resort to a specific model of k(v). Our specific
model is for a lossless Lorentz-type medium,2 and a
closed-form transition function is developed that traces
the evolution from the nondispersed regime very near the
wave front to the fully dispersed regime sufficiently far
behind the wave front. Also included there for the same
medium are calculations of the various asymptotic mea-
sures developed in the present paper and comparisons
with numerical reference data to assess their validity and
accuracy.

2. STATEMENT OF THE PROBLEM
The problem of PB wave-packet propagation in a lossless,
homogeneous, isotropic dispersive medium is defined by
the PB-matched initial distribution in the FD and is Fou-
rier inverted from there into the TD. The time–
frequency and space–(wave-number) transform relations
required for implementation are listed in Subsections 2.A
and 2.B, respectively, and the FD initial distribution for
generalizing the PB is given in Subsection 2.C.

A. Time–Frequency Transforms
Given a TD field, u(r, t), the corresponding FD field
û(r; v) is defined by the Fourier-transform relations

û~r, v! 5 E
2`

`

u~r, t !exp~ivt !dt, (1a)

u~r, t ! 5
1

2p E
2`

`

û~r, v!exp~2ivt !dv, (1b)

where r 5 (x1 , x2 , z) are conventional Cartesian coordi-
nates. Here, and henceforth, FD fields are denoted by a
caret ( ˆ ) above the variable. Throughout, we shall uti-
lize the analytic signal formulation for time-dependent
fields to accommodate wave constituents with evanescent
(i.e., complex) spectra, as encountered in the PB. The
analytic field

1
u (r, t) (denoted by a plus sign above the

variable) corresponding to the FD field û(r, v) is ob-
tained by the one-sided Fourier inverse transform

1
u ~r, t ! 5

1
p E

0

`

û~r, v!exp~2ivt !dv, Im t < 0, (2)

where û(r, v) is defined as in Eq. (1a). The real field is
obtained in this formulation from the real part of the ana-
lytic field:

u~r, t ! 5 Re
1
u ~r, t !. (3)

B. Space–(Wave-Number) Transforms
As noted above, the TD initial distribution u0(x, t) for the
PB on the z 5 0 plane will be synthesized via inversion of
the corresponding FD distribution û0(x, v). The FD
wave-number spectral amplitude on the initial surface is
given by

û̃0~j, v! 5 E
2`

`

d2xû0~x, v!exp@2ik~v!j • x#, (4a)

where j 5 (j1 , j2) is the normalized spatial wave-
number vector; x 5 (x1 , x2); k(v) is the frequency-
dependent wave number in the ambient medium; and ˜
identifies a wave-number spectral function. The recon-
struction of the FD initial field is, accordingly,

û0~x, v! 5 @k~v!/2p#2E d2j û̃0~j, v!exp@ik~v!j • x#.

(4b)
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The normalization with respect to the wave number k(v)
anticipates inversion to the TD, rendering j frequency in-
dependent, with direct geometrical interpretation in
terms of the spectral plane-wave propagation angles.
For simplicity, the v dependence of k 5 k(v) and of
û(r) 5 û(r, v) shall be suppressed unless specifically re-
quired for clarity. Also, integration limits are omitted on
all integrals extending from 2` to 1`.

By inclusion of the plane-wave spectral propagator
exp(ikz z), the plane-wave representation for the FD field
away from the initial plane is

û~r, v! 5 ~k/2p!2E d2j û̃0~j!exp@ik~j • x 1 zz !#,

(5)

where

z 5 A1 2 j 2, j 2 [ j • j, Im z > 0. (6)

Inserting Eq. (5) into Eq. (2), we obtain the formal plane-
wave spectral representation of the TD analytic field at
any observation point r:

1
u ~r, t ! 5

1

p
E

0

`

dvFk~v!

2p
G2E d2j û̃0~j, v!

3 exp@2ivt 1 ik~v!~j • x 1 zz !#. (7)

C. Initial Distribution
The initial field distribution is chosen so that it generates
a PB wave packet in the dispersive environment. For
purposes of focusing such a wave packet at a particular
space–time point, it is desirable to select the beam pa-
rameters in such a way that the focusing distance is in-
dependent of frequency. In the FD such isodiffracting
initial distributions have the form14

û0~x, v! 5 f̂~v!exp@2~1/2!k~v!r2/b#, (8)

where r2 [ x • x, f̂ is some frequency-dependent func-
tion, and b 5 br 1 ib i (with br . 0 for v . 0) is a
frequency-independent parameter. The corresponding
plane-wave spectrum û̃0 of the above distribution, ob-
tained by inserting Eq. (8) into Eq. (4a), is

û̃0~j, v! 5 ~2p f̂b/k !exp@2~1/2!kbj 2#. (9)

The TD initial distribution is obtained via the Fourier in-
version in Eq. (2), yielding u0(x, t) 5 Re

1 3q

u 0(x, t), with

1
u 0~x, t ! 5 E

0

`

dv f̂~v!expF2ivt 2
1

2
k~v!r2/bG .

(10)

Note that the integral in Eq. (10) depends on the details of
the dispersive medium, which is thus far described by the
generic dispersion relation k 5 k(v).

In evaluating the integral given in Eq. (7), two ap-
proaches may be considered: (1) FD first, in which one
evaluates the FD field by d2j integration before trans-
forming the result into the TD with Eq. (1a); and (2) TD
first, which involves interchanging the order of integra-
tion in Eq. (7) and evaluating the dv integral first,
thereby yielding a transient plane-wave spectral repre-
sentation for the field in the dispersive medium. The sec-
ond approach is the subject of a separate discussion and is
not included here.

3. FREQUENCY-DOMAIN SPECTRAL
INTEGRAL AND PARAXIAL ASYMPTOTICS
The FD field, corresponding to the FD initial distribution
in Eq. (8), is given by the plane-wave spectral integral in
Eq. (5):

û~r, v! 5 @bk~v! f̂~v!/2p#E d2j expF 2ivt 1 ik~v!

3 S i
2

bj 2 1 j • x 1 zz D G . (11)

Using the saddle-point technique, as well as a paraxial
approximation, we can evaluate this integral asymptoti-
cally. The result is8

û~r, v! ; f̂~v!
2ib

z 2 ib
exp@ik~v!S~r!#, (12)

where

S~r! 5 z 1 1/2r2/~z 2 ib! (13)

is the normalized paraxial phase.
From relation (12) with Eq. (13), the field is identified

as a paraxial Gaussian beam (GB) propagating in the z
direction. To parameterize the beam field, we write the
real and the imaginary parts of S as follows:

S 5 z 1 1/2r2/~z 2 Z 2 iF !

5 z 1 1/2r2~1/R 1 i/I !, I 5 kD2, (14)

where

Z 5 2b i , F 5 br , (15)

D 5 AF/k@1 1 ~z 2 Z !2/F2#1/2, (16)

R 5 ~z 2 Z ! 1 F2/~z 2 Z !. (17)

By substituting Eq. (14) into relation (12) one readily
identifies 2A2D and R as the 1/e beam width and the
phase-front radius of curvature, respectively. The GB
waist is located at z 5 Z, and its collimation length is F.
Note that the waist location Z, the collimation length F,
and therefore I as well as the phase S as a whole are fre-
quency independent, as intended. However, the beam
width D is frequency dependent, being proportional to
k21/2.

4. TIME-DOMAIN INVERSION AND
PARAXIAL ASYMPTOTICS
The TD representation for the PB field, corresponding to
the asymptotic (paraxial) FD field in relation (12), is ob-
tained by the one-sided Fourier inversion in Eq. (2), i.e.,
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1
u ~r, t ! 5

2ib

z 2 ib

1

p
E

0

`

dv f̂~v!exp@2iF~v; r, t !#,

(18)

F~v; r, t ! 5 vt 2 k~v!S~r!, (18a)

where S is defined as in Eq. (13).

A. Nondispersive Case
For nondispersive media, the integral in Eqs. (18) can be
evaluated in closed form. Inserting k(v) 5 v/c into Eq.
(18), we obtain u(r, t) 5 Re

1
u(r, t), where

1
u ~r, t ! 5

2ib

z 2 ib

1

f H t 2 c21F z 1
1

2
r2/~z 2 ib!G J .

(19)

One can obtain a conventional waveform by choosing8

f̂~v! 5 exp~2vT/2!, (20)

which implies that

1

f ~t ! 5
1

d ~t 2 iT/2!, f~t ! 5 Re
1

f 5
1

p

T/2

t2 1 ~T/2!2 ,

(20a)

where
1

d (t) 5 1/pit is the analytic d function defined in
the lower half of the complex t plane. This waveform
peaks at t 5 0, and its pulse length and peak values are
given by T and 2/pT, respectively. Also note that the
maximum frequency of this signal may be estimated by

vmax . T21. (21)

Therefore such a band-limited pulse may be regarded as a
model for a physical (sampled) signal. Inserting Eq.
(20a) into Eq. (19), we obtain

1
u ~r, t ! 5

2ib

z 2 ib

1

d H t 2 i
T

2
2 c21F z 1

1

2
r2/~z 2 ib!G J .

(22)
This PB field has been discussed thoroughly in Refs. 8–
10. Here we summarize the main features, since they
are also relevant for the dispersive case. The PB field in
Eq. (22) propagates along the z axis. Its space–time
structure may be inferred from the elements of the
frequency-independent normalized phase S in Eq. (14),
with R(z) in Eq. (17) now being interpreted as the wave-
front radius of curvature and Tp(r) 5 T 1 c21r2/I(z) be-
ing interpreted as the temporal half-amplitude width of
the d

1

pulse, which is inversely proportional to the pulse
amplitude [see f(t) in Eqs. (20a)]. The field is strongest
on the beam axis r 5 0, where Tp(r) 5 T is minimal, and
it decays as Tp grows away from the beam axis. On the
wave front, t 5 c21@z 1 r2/2R(z)#, the field amplitude is
proportional to Tp

21(r), and one finds the half-amplitude
beam width in the r direction by solving Tp(r)
5 2Tp(0), giving

D~z ! 5 2AcTI~z !. (23)

The collimation length is given by F in Eqs. (15), and the
waist is located at z 5 Z with the width 2AcTF. From
Eq. (23) with Eq. (14) one notes that, in the collimation
(Fresnel) zone uz 2 Zu , F, the PB profile is essentially
unchanged, whereas outside this zone the profile broad-
ens and approaches the asymptotic far-field diffraction
angle

Q 5 2AcT/F. (24)

A snapshot of the nondispersive PB field [Eq. (22)] is pre-
sented in Fig. 1 for T 5 0.005, b 5 5, ct 5 2. At z
5 ct, this set of parameters yields a spatial beam width
D/2 5 0.16 in Eq. (23), a wave-front radius of curvature
R 5 14.5, and a temporal on-axis width Tp(0) 5 T
5 0.005.

In summary, the propagator in Eq. (22) belongs to the
class of isodiffracting14 PB fields whose frequency compo-
nents all have the same collimation distance and radius of
curvature.

B. Dispersive Case
When the medium is dispersive, the integral in Eqs. (18)
cannot generally be evaluated in closed form. We shall
evaluate Eqs. (18) asymptotically by continuing the inte-
grand in Eqs. (18) analytically into the complex v plane
and applying the saddle-point method, with the saddle
point being denoted by vs . Our goal is the parameter-
ization of the effect of dispersion on the paraxial PB field.
To quantify the effect, it is necessary to retain higher-
order terms in the transverse coordinate r at various
stages of the analysis. Accordingly, when necessary,
paraxial O(r2) quantities shall be identified by the sub-
script p.

Fig. 1. Nondispersive PB field [Eq. (22)] for cT 5 0.005, b
5 5, ct 5 2. At the wave front z 5 ct 5 2, this set of param-

eters yields a spatial beam width D/2 5 0.16 in Eq. (23), a wave-
front radius of curvature R 5 14.5, and a temporal on-axis width
Tp(0) 5 T 5 0.005. (a) u versus (r, z); (b) (r, z) contour plot.
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1. f̂ (v) Treated as an Amplitude
We assume first that f̂ is an amplitude function without
v-dependent phase. Setting the first derivative of the
phase F in Eq. (18a) to zero, we obtain

t
S~r!

5
dk
dvU

vs

. (25)

a. On-Axis Field. Instead of solving Eq. (25) formally,
we utilize the spatial localization of the Gaussian beam in
relation (12) and examine the paraxial region around the
beam axis. Note that, for r 5 0 (on-axis field), S(z, r
5 0) 5 z is real. The on-axis TD field in Eq. (18) then
propagates like a one-dimensional plane wave. We ob-
tain the on-axis real stationary point, denoted v̄s(r, t)
5 v̄s(z, t), by solving

z
t

5 F dk
dv

~v̄s!G21

5 vg~v̄s!, (26)

where vg is the group speed. For interpretation of this
equation, see Ref. 15, Sec. 1.6, as well as Fig. 2 and Eqs.
(45).

b. Off-Axis Field. For points near the beam axis, we
can obtain an approximate expression for the field in Eq.
(18) by expanding F(r, v) in a Taylor series about the on-
axis stationary point v̄s (only the v dependence is shown):

Fig. 2. On-axis PB asymptotics, dispersion surface, and space–
time rays. (a) k(v) dispersion surface. The normal to the sur-
face [see Eqs. (45)] is parallel to the space–time ray to the obser-
vation point (z, ct). The construction determines the saddle-
point values v̄s(z, t) and k@v̄s(z, t)#. The local on-axis radius
of curvature R̄c of the dispersion curve is also shown [see Eq.
(47)]. (b) Space–time ray to the observation point (z, ct).
F~v! 5 F0 1 F1~v 2 v̄s! 1 1/2F2~v 2 v̄s!
2, (27)

where

F0 [ F~v̄s! 5 v̄st 2 k~v̄s!S~r!, (28)

F1 [
]F

]vU
v̄s

5 t 2 k8~v̄s!S 5 tS 1 2
S
z D , (29)

with the prime denoting the derivative with respect to the
argument. The last equality in Eq. (29) is obtained by
use of Eq. (26). F2 is given by

F2 [
]2F

]v2U
v̄s

5 2k9~v̄s!S. (30)

Thus, from Eq. (27), the stationary point F8(vs) 5 0 is
seen to be

vs 5 v̄s 2 F1 /F2 . (31)

Choosing Re v̄s . 0, we asymptotically evaluate the field
in Eqs. (18) by the lowest-order saddle-point formula,15

E B~v; r, t !exp@2iF~v; r, t !#dv

; F 2p

iF9~vs; r, t !G
1/2

B~vs ; r, t !exp@2iF~vs ; r, t !#

F8~vs! 5 0, (32)

to obtain

1
u ~r, t ! ; A~r, t !exp@2iC~r, t !#, (33)

where the phase is obtained by insertion of Eq. (31) into
Eq. (27):

C~r, t ! [ F~vs; r, t ! 5 F0 2 1/2F1
2/F2 , (34)

and the amplitude is given by

A~r, t ! 5
2ib

z 2 ib
f̂~v̄s!F 22

pik9~v̄s!S
G1/2

. (35)

Recall that vs and v̄s are functions of (r, t) and (z, t), re-
spectively, whereas F0,1,2(r, v̄s) depends on r explicitly
and on (z, t) implicitly through v̄s . Note that in Eq. (35)
the amplitude is evaluated with v̄s instead of vs . This
approximation is based on the reasonable assumption
that the deviation of the off-axis stationary point from the
on-axis stationary point may be neglected in the ampli-
tude. Also note that, in Eq. (34), the r dependence is not
restricted to O(r2) and therefore goes beyond the paraxial
approximation.

Stationary Frequency. In view of Eq. (31), we may
write vs 5 v̄s(z, t) 1 Dvs

(z, r, t), where Dvs
is the de-

viation of the off-axis stationary frequency from the on-
axis stationary frequency v̄s . Using Eqs. (28)–(30), we
obtain

Dvs
~z, r, t ! 5

tS 1 2
S
z D

k9~v̄s!S
5 2

1
2

r2
1

z 2 ib
t

k9~v̄s!zS
.

(36)

From Eq. (14), we find that
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Dvs
~z, r, t ! 5 2

1

2
r2

t

k9~v̄s!z
H S z2 1 1/2 r2 1 b iz

1
br

2z2

z2 1 1/2r2 1 b iz
D 21

1 iFbr z 1
~z2 1 1/2r2 1 b iz !2

br z
G21J .

(37)

Retaining the terms of O(r4) will facilitate estimates on
the range of validity of the paraxial approximation. For
r ! z or Ab iz, one may write

Dvs
~z, r, t ! 5 2

1

2
r2

t

k9~v̄s!z
H S z2 1 b iz 1

br
2z2

z2 1 b iz
D 21

1 iFbr z 1
~z2 1 b iz !2

br z G21J 1 O~r4!,

(38)

which furnishes one of the estimates.
Phase C. Inserting Eqs. (28–30) into Eq. (34), we ob-

tain

C~z, r, t ! 5 v̄st 2 k~v̄s!S~z, r!

1
1
2

tF1 2
S~z, r!

z GDvs
~z, r, t !. (39)

Using 1 2 S/z 5 2r2/2z(z 2 ib) [see Eq. (13)] and ex-
panding C about the on-axis phase C̄ [ C(r 5 0) yields,
highlighting the r dependence,

C~r! 5 C̄ 1 DC~r!, (40)

where

C̄ 5 v̄st 2 k~v̄s!z,

DC~r! 5 2
1

2
r2

1

z~z 2 ib!
F1

2
Dvs

t 1 k~v̄s!zG . (41)

Using Eq. (36),

DC 5
1
2

r2
1

z~z 2 ib! F1
4

r2
1

z 2 ib
t2

k9~v̄s!zS
2 k~v̄s!zG ,

(42)
or

DC 5
1

2
r2

1

z~z 2 ib!
F1

4
r2

1

z 2 ib

t2

k9~v̄s!z
2 2 k~v̄s!zG

1 O~r6!, (43)

where Eq. (43) results on Taylor expansion (1/S) in r [see
Eq. (13)].

c. Validating the Paraxial Approximation. As noted
above, the expressions in Eqs. (38) and (43) include
higher-order terms that are to be used to determine the
range of validity of the conventional paraxial approxima-
tion. The paraxial phase is given by

Cp~r, t ! 5 v̄st 2 k~v̄s!S~z, r!, (44)
where S is the expression in Eq. (13). Next we examine
the parametric regimes for which the r4 term in Eq. (43)
may be neglected. To interpret the manipulations that
follow, we shall anchor the parametrization to the (ck, v)
dispersion surface and its relation to space–time ray
theory. The location of the on-axis stationary point v̄s on
the dispersion surface is found from condition (26):

c
dk
dvU

v5v̄s

5 V̄, V̄ [
ct
z

. (45)

In relations (45), the nondimensional descriptor
V̄ > 1 parameterizes the location of an observer at z with
respect to the wave front at V̄ 5 1, corresponding to
k(v) 5 v/c. Utilizing the radius of curvature Rc of the
dispersion curve, which is given by

Rc~v! 5 $1 1 @ck8~v!#2%3/2/ck9~v!, (46)

yields, from Eqs. (45), the on-axis radius of curvature R̄c
at v̄s :

R̄c [ Rc~v̄s! 5
~1 1 V̄2!3/2

ck9~v̄s!
. (47)

Note that Rc has the dimensionality v ; t21 (see Fig. 2).
Rewriting the phase in Eq. (39) in the form

C 5 Cp 1 Cd , (48)

where Cd is the deviation of C from the paraxial approxi-
mation Cp in Eq. (44), and using Eq. (39), one finds that

Cd 5
1
2

tF1 2
S~z, r!

z GDvs
~z, r, t !. (49)

Using Eqs. (38) and (13), one obtains

Cd 5
1

8

r4

~z 2 ib!2z2

t2

zk9~v̄s!
1 O~r6!. (50)

Note that, in Eqs. (39)–(41), S is replaced by its on-axis
value z and DC(r) accounts for all r-dependent terms,
whereas, in Eqs. (48)–(50), S contains only its paraxial
O(r2) term and Cd accounts for the O(r4) dependence.
Neglecting the r6 term and using Eq. (46), one finds that

Cd 5
1

8

r4

~z 2 ib!2cz

V̄2

~1 1 V̄2!3/2
R̄c . (51)

The phase correction Cd depends on the small parameter
r/z, the on-axis observation point z, the proximity to the
wave front parameterized by V̄, and the dispersion sur-
face radius of curvature R̄c . Cd may be neglected as
long as uCdu ! 2p, giving

Qr [
1

16p

r4

uz 2 ibu2cz

V̄2

~1 1 V̄2!3/2
uR̄cu ! 1, (52)

where Qr is the critical nondimensional parameter that
parameterizes the maximum off-axis excursion for which
the phase in Eq. (39) can be approximated by its paraxial
(quadratic) form Cp ; i.e., the maximum off-axis excursion
rmax is obtained for Qr . 1. Recall from relation (12)
with Eq. (19) that, for a nondispersive field, this deviation
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is parameterized by r ! z alone. When dispersion is in-
troduced, the parameters R̄c and V̄ play a role, in addi-
tion to z. However, the estimate in relation (52) becomes
invalid when uR̄cu → ` because Eq. (35) with Eq. (47)
shows that the asymptotic field amplitude in Eq. (35) di-
verges in that limit.

2. f̂ (v) Included in the Phase
The expression for the field in Eq. (33) is invalid when
f̂ (v) cannot be considered as an amplitude function. To
account for the pulse beam spectrum f̂ in Eqs. (20), one
should add the term 2ivT/2 to the phase and should take
this term into account when performing the asymptotics.
Using Eqs. (20) in Eqs. (18) yields

1
u ~r, t ! 5

2ib

z 2 ib

1

p
E

0

`

dv exp@2iF~v; r, t !#, (53)

F~v; r, t ! 5 v@t 2 i~T/2!# 2 k~v!S~r!. (53a)

From Eq. (53a), we find that the stationary frequency, vs
satisfies

t 2 iT/2
S

5 k8~vs!. (54)

Solving Eq. (54) even for on-axis observation points re-
quires analytic continuation of the dispersion surface
ck(v) into the complex v domain. In the following
analysis we assume that both T and r are small param-
eters with respect to z and t, respectively. Performing
essentially the same asymptotics as in Eqs. (27)–(35), we
find that the approximated off-axis stationary frequency
is given by

vs 5 v̄s~z, t ! 2
1
2 F r2t

z~z 2 ib!
2 iTG Y k9~v̄s!S

(55)

and the phase by (see Appendix A)

C~r! 5 v̄sS t 2 i
T
2 D 2 k~v̄s!S 2

1
8 F T2

k9~v̄s!S

1
2iTtr2

z~z 2 ib!k9~v̄s!S
G 1 Cd , (56)

where Cd , shown in Eq. (50), may be neglected subject to
the condition in relation (52).

Next we determine the condition under which the two
additional terms in the square brackets in Eq. (56) are
negligible, so that the field may be approximated by

1
u p~r, t ! 5

2ib
z 2 ib F 22

pik9~v̄s!S
G1/2

exp@2iCp~r, t !#,

Cp~r, t ! 5 v̄sS t 2 i
T
2 D 2 k~v̄s!S. (57)

In the remainder of this section we examine in detail the
critical nondimensional parameters, often referred to as
numerical distances, which characterize the behavior of
the PB asymptotic field [Eqs. (57)] in the dispersive envi-
ronment. These critical parameters quantify not only
the range of validity of Eqs. (57) but also yield measures
of the resolution of various observables of the signals as a
function of dispersion.

First, we note that Eqs. (57) are valid, providing

1
8 U T2

k9~v̄s!S
1

2iTtr2

z~z 2 ib!k9~v̄s!S
U ! 2p. (58)

For on-axis observation points, relation (58) yields T2

! 8pk9(v̄s)z. Using the radius of curvature of the dis-
persion surface R̄c in Eq. (47) yields

QT [
c

16pz
~1 1 V̄2!23/2 uR̄cuT 2 ! 1, (59)

where QT is the critical nondimensional parameter that
bounds the maximum T for which Eqs. (57) are valid.
However, as in relation (52), the estimate fails for obser-
vation points such that R̄c → ` [see Eqs. (57)]. Combin-
ing relations (52) and (59), we define

Qp [ Qr 1 QT . 1 (60)

as the general nondimensional estimator for the paraxial
approximation.

Next certain aspects of the field in Eqs. (57) can be ex-
plored by examination of the envelope of the signal. On
the axis r 5 0, the envelope function E(z, t) is defined as

E~z, t ! 5
ubu

uz 2 ibu A
2

zp
exp@Im C~z, t !#/Auk9~v̄s!u

} exp@2v̄s~z, t !T/2#/Auk9~v̄s!u. (61)

Assuming that k(v) → v/c as v → `, then, at the wave
front, E → 0 because of the dominant exponential decay.
Behind the wave front, the waveform decays essentially
because of the increasing k9(v̄s).

a. On-Axis Temporal Width. For a given observation
point z, the envelope peaks at time tmax that satisfies
dE(z, tmax)/dt 5 0. Using relation (61), one finds that
tmax satisfies

dv̄s

dt
d

dv̄s
@exp~2Tv̄s/2!/Ak9~v̄s!#ut5tmax

5 0,

z 5 const., (62)

giving

@k-~v̄s! 1 Tk9~v̄s!#ut5tmax
5 0. (63)

Equation (63) is first solved for v̄s(z, t), and then tmax is
found via Eqs. (45). The temporal width, for a given dis-
persion surface, may be found by use of this result with
the corresponding peak value.

b. On-Axis Spatial Width. For a given observation
time t, the spatial width of the field [Eqs. (57)] on the z
axis is determined essentially by the second part of rela-
tion (61), i.e., by exp@2v̄s(z, t)T/2#/Auk9(v̄s)u. Applying
d/dz 5 (dv̄s /dz)(d/dv̄s) to this expression yields that the
envelope peaks at zmax , which satisfies Eq. (63) with con-
stant t. Therefore one uses Eq. (63) to obtain v̄s , from
which zmax is obtained by use of Eqs. (45). The on-axis
spatial width for a given dispersion surface may be found
by use of this result with the corresponding peak value.
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c. Off-Axis Spatial Width. The off-axis decay of the
field in Eqs. (57) is determined by Im C(r, t). For a
given on-axis space–time observation point (z, t), the
field decay away from the axis is given by exp(Im C)
} exp$2k@v̄s(z, t)# r2/2I(z)%, where I(z) is given in Eq. (14).
Therefore the field exhibits Gaussian decay away from its
on-axis peak at r 5 0, and its off-axis (1/e) width is given
by 2A2D, where

D~z, t ! 5 H I~z !

k@v̄s~z, t !#J
1/2

. (64)

This result is similar to the beam width in Eq. (16) in the
FD, except that here k(v) in Eq. (16) is sampled at the
on-axis stationary frequency k(v̄s).

d. Wave-Front Radius of Curvature. The wave front
associated with the signal in Eqs. (57) is characterized by
the condition

Re Cp~r, t ! 5 v̄st 2 k~v̄s!z 2 1/2k~v̄s!r
2/R~z ! 5 const.,

(65)

where R(z) is given in Eq. (17). Equation (65) defines a
surface z 5 z(r), for which the wave-front radius of cur-
vature (at r 5 0) may be evaluated by the general for-
mula in Eq. (46) with the ck(v) surface now being re-
placed by the z(r) surface. By differentiating Eq. (65)
with respect to r and using d/dr 5 (d/dv̄s)(dv̄s /dr) [re-
call that, in Eq. (65), z is function of r and that therefore
v̄s(z, t) is a function of r], one finds that

dv̄s

dr
@t 2 k8~v̄s!z~r!# 2 k~v̄s!z8~r! 2 k~v̄s!r/R~z !

1 O~r2! 5 0. (66)

To further simplify Eq. (66) we note, by taking the first
derivative with respect to r of both sides of Eq. (26), that

dv̄s

dr
@t 2 k8~v̄s!z# 5 0. (67)

Using Eq. (67) in Eq. (66), one obtains

2k~v̄s!z8~r! 2 k~v̄s!r/R~z ! 1 O~r2! 5 0, (68)

and therefore z8(r)ur50 5 0. By taking the derivative of
Eq. (67) with respect to r, one finds that

z9~r!ur50 5 2
1

R~z !
. (69)

The wave-front radius of curvature may now be obtained
from the general formula in Eq. (46). Inserting
z8(r)ur50 5 0 and Eq. (69) into Eq. (46), we find that the
wave-front radius of curvature Rd(z) for the dispersive
field is given by

Rd~z ! 5 2$1 1 @z8~r 5 0 !#2%3/2@z9~r 5 0 !#21 5 R~z !,

(70)
where R(z) is as defined in Eq. (17). Note that the minus
sign in Eq. (70) was chosen in accordance with the con-
vention that the wave-front radius of curvature is positive
for a diverging wave front [see also Eq. (17)]. From the
discussion that follows Eq. (22), the wave-front radius of
curvature in the near-wave-front field is also given by
R(z). Dispersion does not affect this result [even when
the additional r4 term in Eq. (43) is taken into account]
because the beam field is isodiffracting with frequency-
independent radius of curvature of the corresponding FD
field [see Eq. (17)].

e. Instantaneous Frequency. The instantaneous fre-
quency v i(r, t) may be evaluated by means of v i
5 Re dCp /dt, where Cp is given as in Eqs. (57). Taking
the first derivative of Re Cp with respect to t and using
Eq. (14), one obtains

v i 5 v̄s 1
dv̄s

dt
@t 2 k8~v̄s!z# 2

dv̄s

dt
k8~v̄s!

1/2r2

R~z !

5 v̄s 2
dv̄s

dt
t
z

1/2r2

R~z !
, (71)

where R(z) is given by Eq. (17) and the last equality is
obtained by use of Eq. (26). Taking the first derivative of
Eq. (26) with respect to time, one finds that dv̄s /dt
5 @k9(v̄s)z#21, and Eq. (71) yields

v i~r, t ! 5 v̄s~z, t ! 2
t

z2k9~v̄s!

r2/2

R~z !
. (72)

To relate this result to local geometrical properties of the
dispersion surface ck(v), we insert Eq. (47) into Eq. (72),
which gives

v i~r, t ! 5 v̄s~z, t ! 2
1

2
r2

R̄c

zR~z !

V̄

~1 1 V̄2!3/2
,

V̄ [
ct
z

. (73)

Thus the on-axis instantaneous frequency due to disper-
sion is given by the on-axis stationary frequency v̄s . The
deviation of v i from this frequency for off-axis observation
points is proportional to r2 times the ratio between the
dispersion surface radius of curvature R̄c and the wave-
front radius of curvature R(z).

5. CONCLUSION
In this paper we have been concerned with the param-
eterization of the effects of frequency dispersion on the
propagation characteristics of a paraxially approximated
pulsed beam (PB) wave packet in a lossless medium with
generic wave-number profile k(v). Various nondimen-
sional measures—critical parameters—have been defined
to systematically assess and quantify (a) the effect of dis-
persion on various observables associated with the PB
field and thereby on the resolution of these observables,
and (b) the range of validity of the paraxial approximation
under these conditions. Relating the critical parameters
to space–time ray theory and wave-number–frequency
dispersion surfaces has further elucidated the relevant
wave dynamics. Refinement of these results for the
nondispersive-to-dispersive transition regime, as well as
specific calculations for a simple Lorentz medium, are
contained in a companion paper,16 in which we assess the
accuracy of the critical parameters.
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APPENDIX A: DERIVATION OF EQS. (55)
AND (56)
To derive the PB asymptotics when the term exp(2vT/2)
is included in the phase, we expand F(v) into a Taylor se-
ries about the on-axis stationary point v̄s as in Eq. (27),
where v̄s is defined as above by Eq. (26). Using F in Eq.
(53a), we obtain [cf. Eq. (28)–(30)]

F0 5 v̄s@t 2 ~i/2!T# 2 k~v̄s!S~r!, (A1)

F1 5 t@1 2 ~S/z !# 2 ~i/2!T, (A2)

with F2 being given by Eq. (30). Using Eqs. (A1), (A2),
and (30) in Eqs. (31) and (34), we obtain the final results
in Eqs. (55) and (56), respectively.
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