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Certain Considerations in Aperture Synthesis
of Ultrawideband/Short-Pulse Radiation

Ehud Heyman, Senior Member, IEEE, and Timor Melamed

Abstract—We consider certain characteristics of the radiation
from collimated, ultrawideband short-pulse aperture distribu-
tions. It is shown that an efficient radiation must account for the
multifrequency nature of the field. Two alternative schemes for
wideband aperture synthesis of an impulse-like radiation pattern
are examined. The first, entitled the “Iso-width aperture,” utilizes
only temporal shaping of the excitation pulse. In the other, the
“Iso-diffracting aperture,” we suggest source shaping in space-
time so that all the frequency components in the field have the
same collimation distance. The “iso-diffracting” scheme yields
higher directivity and more efficient pulsed radiation. Explicit
examples for the pulsed source distribution and for the pulsed
radiation patterns are presented, parametrized, and contrasted.

I. INTRODUCTION

ITH the trend toward increased system bandwidth there

is a growing interest in the radiation, propagation,
and diffraction of ultrawideband/short pulse fields [1]. Of
particular interest are well-collimated short pulse fields which
are referred to as pulsed beams (PB) or space-time wavepack-
ets [2]-[6]. Because they are well localized in space-time,
these wavepackets are useful in modeling applications ad-
dressing highly focused energy transfer, local (high resolution)
interrogation of targets or of the propagation environment,
secured communication, etc., that cannot be obtained by
narrow bandwidth (quasi monochromatic) pulses.

This paper explores some general characteristics of scalar
radiation from a collimated, ultrawideband short-pulse aperture
distribution. This problem can be addressed directly in the
time domain since the far zone pulsed radiation pattern is a
Radon transform of the initial time-dependent field uo(z, t)
(see discussion in Section V). Ignoring for a moment the role
of the evanescent spectrum (which should be included for
modeling of realistic sources), the problem of source synthesis
for a prescribed pulsed radiation pattern is therefore reduced
to an inverse Radon transform [7]. However, even within this
simplified framework, not any pulsed radiation pattern may be
synthesized efficiently. The time-dependence of the radiation
pattern (or equivalently, its frequency content) as a function
of the radiation direction, adds degrees of freedom that must
be addressed in order to obtain efficient wide-band radiation.
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The present paper addresses this problem from the more
traditional frequency domain point of view. It will be shown
that an efficient radiation must account for the multifrequency
nature of the field. To sharpen the question, let us consider
the time-harmonic radiation pattern. Utilizing the Cartesian
coordinate frame r = (z1, z2, 2) = (=, z), the far zone field
due to a time-harmonic aperture distribution 4g(z, w) in the
z = 0 plane is given by the well known expression

R ) e‘ikr N
W(r, w) ~ —2ik e Buo(k, w)lg—ii, (1)
where r = |r|, # = r/r is a unit vector in the direction

of r, #; = z/r is the transverse coordinate of 7, § =

sin~Y(p/r), p = |x| = /2% + 73, w is the radian frequency,
k = w/v, v is the wave speed and

g (K, w) = /dzz exp (—ik - z)lo(z, w) (2)

is the spatial spectrum of 4o(z, w). Here and henceforth, over-
caretted coordinates are unit vectors and over-caretted field
terms denote frequency domain constituents with a suppressed
time-dependence exp(—iwt). The amplitude term in (1) con-
tains a time-derivative term (—iw) which de-emphasizes the
low-frequency components in the far zone. This term must
be compensated in order to synthesize an impulse-like ra-
diation pattern. Two alternative approaches are considered
in Sections II and III below. In the first, entitled the “Iso-
width aperture,” the compensation utilizes shaping of the
temporal excitation pulse only. In the alternative approach,
the “Iso-diffracting aperture,” we suggest source shaping in
space-time. To construct this scheme we first explain the time-
derivative in (1) in terms of fundamental radiation mechanism
and show that it is due to the frequency dependence of the
aperture’s Fresnel distance F(w). It therefore follows that
synthesizing the aperture so that all frequency components will
have the same Fresnel distance yields higher directivity and
more efficient pulsed radiation. We also present and contrast
explicit examples for the pulsed source distribution and for the
resulting pulsed radiation patterns.

The “iso-width” aperture models several high-power pulsed
radiation systems [8]-[10] (the so called impulse radiating
antenna (IRA); e.g., a quasi TEM horn). Realization of the
“iso-diffracting” aperture requires an array of pulsed sources
whose amplitude distribution, as well as the their initiation
times and pulsewidths, should be tuned per the specifications
(e.g., the collimation). Possible candidates to realize this
distribution are the new optically triggered photoconducting
antennas [11]-[13] (see also articles in {1]). Some general
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(a) ®
Fig. 1. Radiation from an ultrawideband iso-width aperture with width . (a) Beamwidth in the (. =) plane. (b) Field amplitude
on the z-axis. The plots are shown at three frequencies: w1, wo = 3w, and =. Parameters: Wy = 1, F(w;) = 3W5. F(ws2) = 9Wh.

system parameters of a pulsed driven array have been defined
in [3]. The reader should make a clear distinction, however,
between possible time-derivatives that characterize small radi-
ating elements (see, e.g., [3]) and between the time-derivative
considered in (1). As will be discussed in Section II, the
latter is a global property of the aperture and is related to
the frequency dependence of the Fresnel distance.

II. ISO-WIDTH APERTURE

A. General Considerations

It is assumed that tg(z, w) can be separated essentially in
the form

io(x, w) = f(w)A(z) 3)

where the spatial distribution A(x) is frequency independent.
To generate an impulse-like radiation pattern, the excitation
signal f(w) must compensate the (—iw) term in (1), namely
[81-[101]

fo (—iw)™h

where wy 2 define the usable frequency band. Although this
signal emphasizes the low frequencies, it will be explained
below that the effective gain of the pulsed aperture (3)
is determined by the high-frequency end of the spectrum.
Consequently, most of the lower frequency energy in the
excitation signal (4) is lost by diffraction.

To understand the difficulties in the realization (3) we now
explain the time-derivative in (1) in terms of fundamental
wave process. We assume that the spatial distribution A(z)
is localized about £ = 0 with an rms width A,, and that it is
well collimated, namely that A, > A = 27 /k for all w in the
frequency band. The Fresnel length and the diffraction angle
are given, respectively, by

F(w) = kA2,

w1 < w < wo 4

O(w) ~ (kA,)™? (5a,b)

(Equation (5b) follows from (1) upon using the uncertainty
principle A, > AZ! where A, is the spectral width.) Under
these conditions, one finds that for z < F(w) the radiated
field stays essentially collimated in a beam fashion while for
z > F(w), the field decays like z~! and diverges along the

diffraction angle © [Fig. 1(a)]. Along the beam axis, the field
amplitude may therefore be roughly described by

la(z, w)] = fdo(w)|F(w)/V F?(w) + 22 (62)
= lio(W)|F(w)z™" = [ (w)[kAZz™" (6a)

where (6b) is the limit of (6a) for = > F(w). Equation (6b)
clearly shows that the time-derivative term —:k in the far
zone amplitude (1) is a direct consequences of the shorter
collimation distance F'(w) and the resulting stronger decay at
lower frequencies, as illustrated in Fig. 1(b). This figure also
demonstrates how the pulse spectrum in (4) compensates for
the shorter collimation distance and for the resulting stronger
decay at low frequencies.

The discussion above illustrates the main disadvantage in
the iso-width realization of the impulse antenna. The relatively
strong energy which must be supplied at low frequencies is lost
by large angle diffraction at relatively short distances and does
not contribute to the impulse-like wavepacket along the z-axis.
The amplitude of the axial pulse is determined essentially by
the magnitude of the high-frequency components in the source.
Furthermore, for certain applications the strong (parasitic)
radiation field at large angles is undesirable and should be
avoided. On the other hand, for certain radiating systems, the
strong low-frequency fields which are lost by diffraction, are
generated relatively easy and at a low cost. Several high power,
wide-band radiating systems (e.g., the large quasi TEM horn
[10]) are modeled by the iso-width realization.

B. Example: Gaussian Distribution
This close-form example demonstrates the general consid-
erations discussed above. Let

fo(z. w) = flw)e 72V )

where the aperture width W)y is frequency independent. As-
suming that kW, > 1, the radiating field in the paraxial
region is given by

a(r, w) = f(w)%exp{ik(z%— %‘ﬁ(w))] (®)
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with

F(w) = kW§. (8a)

Expression (8) is a Gaussian beam whose cross-sectional width

is
W(z, w) = Woy/1+ 22/F%(w). 9

Thus, for 2 < F(w) the beam stays collimated, but for z >
F(w) it diverges along the diffraction angle O(w) = (kW) ™!,
The amplitude in (8) behaves like —iF(w)/[z — iF(w)] —
—iF(w)r~! = —ikWgr~! where the last term applies for
z > F(w). This behavior is in agreement with (6a, b).
In the exponent of (8) we may use for z > F(w): z +
(1/2)2)[z — iF(@)] — 2+ 1/20%/z + (i/2p*F(w)/2* =
r + (¢/2)F(w)sin 8. The result for small 6 is

~ ikr 1,9 9 . 2
ifr. w) & ik o)W ez Wosinl

(10)

which is in agreement with (1) since from (8): ug(k, w) =
f(w)27rW026‘(1/2)‘2W02 where x = |k|. However, the deriva-
tion of (10) directly from (8) demonstrates, again, that the
time-derivative term (—:k) in (1) is a direct consequences of
the shorter Fresnel distance and the resulting greater decay at
low frequencies.

C. Example: Time-Domain Expressions

As an explicate example we consider an excitation pulse
that generates a band-limited impulsive radiation pattern in
the main beam direction. We choose

R Q
flw) = —p(w: wy. w2) (1
—w
where p(w; a, b) = 1 if a < w < b and zero otherwise. We
use 2 as a normalization constant.
To evaluate the resulting fields it is convenient to utilize the

analytic inverse Fourier transform

+ 1 [ it :

fit) = —/ dwe™ ™" f(w). (12a)

TJo
+ . . . .

The function f(t) is the analytical signal associated with
the frequency spectrum f(w). From (12a), it is analytic in
Im¢ < 0. The real signal f(t) is recovered from the real ¢

+
limit of f via
F(t) = £ + M (),

where H is the Hilbert transform.
The excitation pulse corresponding to the frequency spec-
trum (11) is given by

t real (12b)

t
f(t) = / At i, wn) (13)

where p(t; wyi, wa) is
Plw; wi, wa),

the time-domain counterpart of

sin} Bt
1 Bt

2
W= %(wl + wa).

p(t: wi, wo) =7 'B cos wt,

BEwQ—wl. (14)

(Note that p(t) is an even function and that [~ p(t')dt’ =0
hence the lower integration limit in (13) can be set to 0.)
Plots of f(t) for two values of the fractional bandwidth
B = 1B/w, as a function of the normalized time ¢ = Wt
are depicted in Fig. 2(a). Note that as § — 1 the signal tends
to sgn(t)*sinc(2wt) where * denotes a convolution. (Also note
that the limit 8 — 1, with & kept constant, implies w1 — 0
and wy — 2w. The reader may therefore prefer different
normalizations of the results, say keeping w; constant.)
The far zone field has the form

u(r, t) ~r~tg(t —r/v, ) (15)

where the pulsed radiation pattern is found by applying (12a)
to (10) with (11). In view of (12b) it may be expressed
conveniently as g(¢, §) = Re E(t. ) where the analytic signal
E is given by

3t 8) = (Q)0)WE(Vam B) et/

{erfe[(itB " +w18)/V2] — erfe[(ith | + wyB)/V2)}. (16)
In this expression

9 =v 'Wysiné, (17)

so that w;@ = sinf/O(w;). j = 1, 2, measures the obser-
vation direction relative to the diffraction angle O(w;) =
(k;Wo)~1 at frequency wj [cf. (5)]. Also in (16)

R 2
erfc(o) = —\/:/ dye™
7r o

is the complementary error function. To understand the signal
in (16) we make use of the large argument approximation

(13)

erfc(o) ~ 2H(—Re o) + (oym)le™ (19

where the Heaviside function H equals to 0 or 1 for positive
or negative argument, respectively. Noting that the arguments
of the erfc functions in (16) have positive real parts it follows
that for wi1f > 1,

?]’(t, 9) = (Q/v)Wir™?

. =2 . =2
e—lw1t~wf9 /2 e—zugt—wge /2

=5 — (20)
it + w19 it + w20
The terms inside the brackets are Lorenzian pulses ()" (¢ —
iu)j?z), j = 1. 2, modulated by exp(—iw;t). Since w;f > 1,
the 3 dB pulse length of the Lorenzian, 2wj§ is longer
than the oscillation period (w;)~!. Furthermore, the conditions
w10 = sinf/O(wy) > 1 implies that § is outside the main
beam direction at the lower frequency w;. Consequently the
amplitude exp(—wf?2 /2) of first term in (20) is exponentially
weak while, since wo 3> w, the second term may be neglected
altogether. Expression (20) is also valid if w18 < 1, provided

P +
that t6 ! > 1. In the limit § — 0, ¢ reduces therefore to
(L. 8)]omo = (Qu)WE(mit)™ (et — e2t)
+
= (Q/v)WZP(t; wy, w2) (1)
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Fig. 2.

Short pulsed radiation from an iso-diffracting aperture. (a) The normalized pulsed aperture distribution (30)

+ 4 . . o
Retg(I. t)[r/B] for the pulse f = iP in (39) and for fractional bandwidth 3 = 0.5. The excitation is shown as a
function of the normalized time ¥ = It and for several values of the normalized transverse coordinate p = p/Wo(@). (b) The

4+
normalized far zone pulse (37) Re g(t. 6[x/ BF] due to the excitation in (a). The observation angle is quantified by the normalized
coordinate © = sin8/0O(X). (c) and (d) As in (a) and (b), respectively, but for 3 = 0.8.

+
where the analytic signal P(¢) is given by [cf. (14)]

sin%Bt
I

-1

—iwt

+
Pl wy, we2) =7 (22)

The far zone pulse (16) due to the two excitation pulses
in Fig. 2(a) are shown in Fig. 2(b) and (c), respectively. The
figures show the normalized puise g(t, 6)[rv/WEQB] as a
function of the normalized time ¢ = wt. The observation angle
6 is quantified by the normalized coordinate © = sin /0 (w)
where ©(w) is the diffraction angle (5) at the center frequency
w. One observes that as a function of the normalized time
t, the field in the large 3 case is more localized with less
oscillations than for the smaller 3. Concerning the spatial
directivity, the large 3 field has slightly greater transverse
decay and a higher collimation within the main beam zone
© < 1. For large ©, on the other hand, the radiated pulse is
stronger in the large [ case and the directivity is inferior. This
readily follows from the fact that increasing 3 while keeping
w constant adds more low frequencies with shorter collimation
distance F(w) and larger diffraction angle ©(w) (see Fig. 1).
In fact, as discussed after (20), the pulsed field in this zone is
dominated by the first term in (20) and its peak at t = 0 is
given by Re §(0, 8) = (Q/v)W2r " exp(—(1/2)w?8")/w, 0.
For a given 6, this pulse increases as w; decreases. Finally,

the results in Fig. 2 will be contrasted latter on with those for
the iso-diffracting aperture in Fig. 4.

1. ISO-DIFFRACTING APERTURE

A. General Considerations

To overcome the difficulties discussed in the previous sec-
tion it is suggested to synthesize the wide-band aperture
distribution in the form [cf. (3)]

iofz ) = )4 ([ 22)

where wy is some reference frequency. To simplify the inter-
pretation of the final results it is convenient to choose wp = w»
where w» denotes the upper limit of the frequency band. It than
follows that the aperture width A, (w) is narrowest at w, and
for w < wy it is given by (see Fig. 3)

(23)

Do) = /2 As(ur). @4)
From (5), the Fresnel distance is frequency independent
F(w) = F(ws) = ko A% (w2) (25)

hence the far zone field does not contain the time-derivative
term (—iw). Indeed, by applying (2) to (23) one finds that




522 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. VOL. 42, NO. 4, APRIL 19%4

Fig. 3. Radiation from an ultrawideband iso-diffracting aperture with a Fres-
nel distance F. The figure depicts the beamwidth in the (. =) plane at three
frequencies: wi. w2 = 3wy, and . Parameters: F = 9, Wy(w2) = F/9,

Wolwr) = V3Wo(wr).

fio(k, w) = flw)(wa/w)A(\/wa/wK), where A(k) is the

spatial spectrum of A(z), so that (1) yields

ikr

cos O f (w)A(r)
r K=k T,

(1, w) ~ —2iks S (26)

It now follows that for w < w, the far zone pattern (1) is
weaker by the ratio (w/ws) relative to the pattern in (26).
This is, of course, a consequence of the wider aperture needed
by the iso-diffracting realization for w < wy (see (24) and
Fig. 3). Finally, a different way to look at the iso-diffracting
distribution (23) is to consider the frequency content of the
source-elements in the aperture: At the center, for p < Ay (wz),
the high-frequency bound of these elements is wpax = wa,
but for p > A, (ws2) the frequency bound is wpax(p) =

WQ\/AJE(UJQ)//J < wa.

B. Example: Gaussian Distribution
The Gaussian distribution that satisfy condition (23) has the
form

2
(;-kp /2F

fg(x. w) = flw)e 27

where F' is now a frequency independent constant. The width
of this distribution depends on the frequency via [cf. (8a)]

(28)

The time-harmonic radiating field is given by (8) but with F
being a constant, namely

. 1,2

u(r, w) = f(w) . _LfFexp {ik (z + - iPz’F)]' (29)
For z >> F the amplitude of this term yields —iF'/(z —iF) —
—iFz~" hence, since F is frequency independent, the far zone
field is not a time-derivative of the aperture signal. Indeed,
following the procedure outlined in (10), the far zone field is
given by

. ikr 1 2
ar, w) ~ —z'f(w)TFe*iszm 0 (30)

C. Time-Domain Expressions

The field solutions in (27)—(30) may readily be transformed
to the time domain. Utilizing the analytic inverse Fourier
transform (12a) one finds that the analytical initial pulsed field
is given by

Uo(z, t) = ?(t - %pQ/vF) 31

where ;F(t) is the analytic signal associated with the frequency
spectrum f(w). The real pulsed distribution that give rise to the
real radiating field is found by taking the real part of (31). The
properties of this distribution are due to the fact that analytic
signals generally decay as the imaginary part of their argument
becomes more negative. Noting that the imaginary part of the

argument of j‘ in (31) becomes negative as p increases, it
follows that the excitation pulse is strongest at the center of the
aperture and decays away from the center. Specific example
will be considered later on.
The analytic pulsed field due to the aperture distribution
(31) is obtained by applying (12a) to (29), giving
R T )!

This expression describes a wavepacket that propagates along
the z-axis. It is identical with the paraxial approximation of
the so-called complex source pulsed beam (CSPB), which is
a globally exact wavepacket solution of the time-dependent
wave equation. The global and the paraxial properties of the
CSPB have been investigated thoroughly in the past (see, e.g.,
[51, [6], [14], [15]). Some of the most relevant properties will
be discussed below.

As discussed earlier, the transverse confinement in (32) is
due to the negative imaginary part the term —(1/2)p?/v(z —

Ur, t) = - 32)

+
iF) in the argument of f in (32). To quantify this behavior
we write (z —iF)™! = R™! +iI7L, ie,

R(z)=z+F?%/z, I(z)=F1+2%/F%) (33)
Equation (32) now has the form
i )= — L otz ) — iz ) G4

z—1F
where

r(r) = 2/v+ 32/oR(). () = 3o ful(2). (ab)

Clearly 7 defines the paraxial propagation delay hence R is
the wavepacket radius of curvature. The transverse envelope

decay of 4 is controlled by ~v(r) since the waveform amplitude
decays as «y increases away from the z-axis. The amplitude
contour lines (lines of constant ~) are described by the
condition p%/I(z) = constant. Thus the wavepacket has a
waist at the z = 0 plane where I is smallest. Near the waist,
for z <« F, I ~ F and the wavepacket stays collimated, but
for z > F, I ~ 22/F hence the amplitude contour lines
satisfy p/z = const. and the wavepacket opens up along a
constant diffraction angle. The discussion above identifies F' as
the collimation length of the wavepacket. It should be recalled
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(c)

(d)

Fig. 4. Short pulsed radiation from an iso-width aperture. (a) The normalized excitation pulse (13) f(t)[on/B] for fractional
bandwidth 3 = (1/2)B/& = 0.5 and 0.8. (b) and (c) The normalized far zone pulse (16) g(t. 6)[re/WEB] for 3 = 0.5
and 0.8, respectively. All plots are shown as function of the normalized time ¢ = &t. The observation directions are quantified

by the normalized coordinate © = sinf/O(J).

that a key feature in this wavepacket solution is that all its
frequency components have the same collimation distance F'
[see (27)].

To understand the structure of the real field we introduce
the real waveform f,(¢) via [see (12b)]

F(t = i) = fo(t) + iH L (1), (36)

From (34), the real field solution is given now by

ur ) = [1+ (/FP {1+ ZHPL(-7). 6D
Since the real waveforms f, decay as v grows, u(r,t) is
strongest on the z axis (where v = 0 and f, = f) and
decays as ~ increases away from the axis. One also observes
that the waveforms in (37) are gradually Hilbert transformed
along the propagation paths. For the special case on the z-
axis, f,(t) = f(t) and the waveform changes fromf(t — z/v)
for z « F to 27 'FHf(t — z/v) as z — oc (i.e., a Hilbert
transform of the near zone signal). Finally, from (32), using
z+ (1/2)p%/(z — iF) — r + (i/2)F sin § [see (10)], the far
zone pulsed field has the form (15) with the analytic radiation
pattern

9t 6) = —iFf(t - fro*lFsinza) (38)

2

The real radiation is obtained by taking the real part of (38).

D. Example for a Specific Pulse

As a specific example for an excitation pulse we consider
a pulse that generates the same pulsed radiation pattern in the
main beam direction as in the example of Section II-B. This
pulse has the frequency spectrum

flw) = ip(w; wr, wo) (39)
with p defined in (11), hence

+ +

f(t) =1ip(t: wy. wo) (40)

where ; is defined in (22) [see also (14)]. From (32) and
(38) the pulsed aperture distribution and the corresponding far
zone pulsed radiation pattern are given now by ug(z, t) =
Reib(t — (i/2)p?/uF: wi, ws) and g(t, 8) = FReb(t —
(1/2)v ' F'sin®0: w,. ws). Note that we intentionally intro-
duced an 7 in (39) so that g(t, 6)|g=0 = F'p(t) has the same
waveform as in the example of Section II (see (21) and Fig. 2).
With this choice, ug|,_o = —Im P(t) = —Hp(t) and is given
by (14) with cos — —sin (see Fig. 4).

Fig. 4 shows the normalized pulsed aperture distribution
uo{z. t)[w/B] and the corresponding normalized far zone
pulsed radiation pattern g(t. )/ F B]. Parts (a) and (b) depict
the aperture distribution and the radiated pulse for fractional
bandwidth 3 = 0.5, while Parts (¢) and (d) correspond to 3 =
0.8. All plots are shown as a function of the normalized time
1 = wt. The radial coordinate p in the aperture is quantified by
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the normalized coordinate 5 = p/\/@W/vF = p/Wy(w) with
Wy (w) being the aperture width (28) at the center frequency
w. The observation directions are quantified by the normalized
coordinate ® = VkFsinf = sin 6/0(w) with ©(w) being
the diffraction angle at @. From the results one may readily
confirm the Hilbert transform relation between the aperture
field in (a) and (c) and the far zone fields in (b) and (d),
respectively. Note that as mentioned earlier, the axial radiation
pattern g is proportional to p(t), while the axial excitation ug is
proportional to —Hp(t). Comparing the waveforms in Fig. 4 to
those in Fig. 2, one finds that the iso-diffracting aperture has
better directivity than the iso-width aperture. This has been
explained by the fact that the iso-width aperture radiate strong
low frequency components at relatively large diffraction angles
(cf. Figs. 1 and 3).

IV. APERTURE EFFICIENCY

In this section we show that due to the larger low-frequency
diffraction losses, the iso-width aperture distribution is less
efficient than the iso-diffracting distribution. We shall compare
the gain G, defined in an energy sense by

27(7‘250
G=""2 4
E 41)
where
Ep = / dzlluo(z, I, So = llulr. t)]F-=  (42)

being, respectively, the total source energy and the energy
flow density of the axial radiation field, with [|f(¢)|> =
S22 | f(#)]? dt. Utilizing Parseval’s theorem, one readily finds
from (7) and (10) with (11) that in the iso-width case Fy =
QPWE(wrt — wyh)Sy = (Q/v)?)WEB/xr?, hence

Giso—width = 20 2Wwiws. (43)

Similarly, from (27) and (30) with (39) one finds for the iso-
diffracting case Ey = vF In(wa/w1)Sy = F2B/7r?, hence

Giso_diﬁ’ = QFB/U ln(wz/wl)‘ (44)

To compare the two models we shall calculate the ratio

Giso—diff

Gg= (45)

Giso-width
In order to compare the two models we also have to normalize
them by assuming that they have the same aperture width
at some reference frequency wgy. We shall consider three
alternative normalizations wherein wq is either wy, @, or
wy (note, that the first normalization implies that the iso-
diffracting aperture is narrower than the iso-width aperture
for all w > wy, while the third implies that it is wider for all
w < ws). Under these conditions, Wy in (43) and F in (44)
are related by [see (28)] F = v‘IwoWo2 where wg = w1, @,
or wq, respectively. Denoting the corresponding values of G
as G1, G, and G, respectively, we obtain
2 1 1+
(1+ﬁ§31n1+—@' 1-4 g2:gll—g'
-3
(46)

g1: §=g1

0 0.2 04 0.6 0.8 1

Fig. 5. The ratio G of the pulsed aperture gains as a function of the fractional
bandwidth 3 [see (46)].

A plot of the relative gains G as a function of the fractional
bandwidth 3 are shown in Fig. 5. Note that G — 1 for 3 — 0
(monochromatic case).

One may also be interested in comparing the axial energy
flux Sp of the two models. Defining

So

iso—diff

S =
So

(47)

iso—width

we find that S = (vF/QQWZ)%. Again, to compare the two
models we assume that they have the same aperture width at
some reference frequency wo. Consequently, F' = v~ lwo Wi
and

2
]
=

Comparing (11) with (39), this implies that in order to obtain
the same pulse energy in the main beam direction, the spec-
tral amplitude of the iso-width aperture distribution and the
spectral amplitude of the iso-diffracting field at the center of
the aperture must have the same magnitude at wg. Note from
(27), however, that the spectral amplitude in the iso-diffracting
aperture decays away from the center.

S (48)

V. CONCLUDING REMARKS

It has been demonstrated that efficient well collimated
pulsed radiation patterns can be synthesized by space-time
shaping of the aperture distribution. The effect of the frequency
dependence of the Fresnel distance has been established by
exploring in details two realizations: the “iso-width” and
the “iso-diffracting” distributions (for a different class of
realizations, see [16]). It has been demonstrated that the
axial-wavepacket excitation is more efficient in the latter. In
this paper we utilized the more traditional frequency domain
analysis but, because of the short pulsed structure of the field,
it is important to explore the radiation process directly in the
time domain. Here the governing spectral framework is the
Radon transform. Specifically, the far zone time-dependent
field has the form (15) wherein the radiation pattern g(i, 7)
can be expressed in the form

g(t. 7) = =(270) eos b0hio(€, Dle_p,  (49)
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where

ao(€, t) = /d2xu0(z. t+vlE-z). (50)

Here 4o(&, t) is the Radon transform of the pulsed source
distribution ug(z, t). It describes the transient plane waves that
propagates in the £ direction. Equations (49)-(50) are readily
recognized as Fourier transform of the time-harmonic radiation
pattern (1)—(2), but they can also be derived directly from the
time-dependent spectral integral representations as formulized
by the Spectral Theory of Transients (STT) [17].
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