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UWB Beam-Based Local Diffraction Tomography—
Part II: The Inverse Problem

Ram Tuvi, Ehud Heyman , Life Fellow, IEEE, and Timor Melamed , Senior Member, IEEE

Abstract— This two-part article is concerned with the medium
reconstruction using the beam-based tomographic inverse scat-
tering. This Part II is based on the results of Part I that
has dealt with the preprocessing phase. Specifically, we defined
there the beam-frame representation of the scattered field and
the corresponding processing windows that transform the scat-
tering data to the beam domain. We have also derived the
“local time-domain diffraction tomography” relation according
to which the beam-domain data are directly related to the local
Radon transform (LRT) of the medium. This local transform
can be inverted and is used here for the local reconstruction of
the medium via beam-domain filtered backpropagation. In this
article, we define the filtered backpropagated beam waves and
then reconstruct the medium in any sub-domain of interest (DoI)
by aggregating the contributions of the backpropagated beams
that pass in or near that DoI. Specifically, we use the class of
isodiffracting beam waves, namely, the isodiffracting Gaussian
beams (ID-GBs) and the isodiffracting pulse beams (ID-PBs)
for the frequency- and time-domain formulations, respectively.
Explicit expressions for the filtered backpropagated reconstruc-
tion kernels are given. The efficacy of the beam-domain approach
for local backpropagation and reconstruction is demonstrated via
numerical examples of the synthetic noisy data.

Index Terms— Beam summation methods, diffraction tomog-
raphy (DT), inverse scattering.

NOMENCLATURE

UWB Ultrawideband.
GB Gaussian beam.
PB Pulsed beam.
ID Isodiffracting.
FD Frequency domain.
TD Time domain.
WFT Windowed Fourier transform.
WRT Windowed Radon transform.
LRT Local Radon transform.
SST Slant stack transform.
BF Beam frame.
PBF Pulsed-beam frame.
DT Diffraction tomography.
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I. INTRODUCTION

AS DISCUSSED in the extensive introduction of Part I
of this article [1], this Part II is concerned with a

beam-based approach for UWB tomographic inverse scatter-
ing. We present two inversion schemes— an FD scheme and
a TD scheme—which are used, respectively, when the data
are expressed over a wide frequency band or in the TD. We,
therefore, use the generic term “beams” for both the FD and
the TD schemes, where the beam-propagators and the resulting
processing windows are based on the isodiffracting Gaussian
beams (ID-GBs) and the isodiffracting pulsed beams (ID-PBs),
respectively.

Part I of this article has dealt with the forward and the
preprocessing problems. We defined the BF representation of
the scattered field and then the corresponding processing win-
dows that transform the scattering data to the “beam-domain
data,” which is the set of beam-amplitudes Âμ in (§§17) and
Aμ,s in (§§24)1 that describe the scattered field in the FD or
TD, respectively.2 As discussed after these equations, these
operations may be regarded, quite simplistically, as WFT or
WRT of the FD or TD data, respectively. However, since
they are not structured upon a Cartesian phase space lattice,
but rather upon the beam lattice, we refer to them as the
“BF transform” and the “PBF transform,” respectively.

Utilizing the Born approximation, we then derived analytic
expressions for Aμ,s and demonstrated that they are directly
related to local projections of the medium function onto
space–time windows that are formed by the PB propagators as
they traverse through the medium (see (§§26) and Fig. §§6).
This operation, termed there LRT of the medium,3 extracts
the local stratification of the medium and, thus, has a cogent
physical interpretation as a local generalized Snell’s law. This
basic relation between the medium and the beam-domain data
provides the basis for the “local TD DT” considered here.

Following this observation, the local reconstruction in this
article can be formulated as an inverse LRT, obtained by aggre-
gating the contributions of the beam-scattering amplitudes
Aμ,s corresponding to the given subdomain of interest (DoI).
Following [3], this reconstruction is expressed here as a filtered
backpropagation, which is calculated either in the multi-FD
(i.e., in a frequency-by-frequency fashion in Section III) or
directly in the TD (see Section IV).

1We make extensive reference to specific equations, figures, and sections
in [1] and [2], denoting them by the prefixes §§ and §, respectively.

2As defined in [1], FD constituents are tagged by an over-hat, FD beam
constituents are tagged by the phase-space index μ that defines the beam
axis, while TD beam constituents are tagged in addition by the time index s
that defines the PB’s reference times along these axes

3See footnote 3 in Part I [1] of this article for the terminology corresponding
to the WRT versus the LRT.
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Our main goal in this article is the formulation of the
beam-based filtered backpropagation and inverse scattering
algorithms within a given DoI. Accordingly, we considered
only illuminations from the z1 plane and measurement of the
reflected field within a limited aperture in the same plane.
As discussed in Sections §§III-A4 and §§III-B, these data
are insufficient for the reconstruction of a general medium,
and it is more appropriate for reconstruction of media
with strong longitudinal variation and weaker transversal
variation. The problems used in the reconstruction examples
in Sections V and VI were chosen specifically to model such
media, yet they represent a quite complex class of problems
that are of interest in many applications. It is worth noting
that our method has recently been applied successfully for a
realistic seismic inversion in [9].

We start the presentation in Sections II-B and II-C with
a short presentation of the UWB filtered backpropagation
imaging formulations in the multi-FD and the TD, respectively.
For clarity, the derivation of these formulations is deferred
to Appendix A. We proceed in Sections III and IV with the
beam-domain backpropagation in the multi-FD and the TD,
respectively, thus formulating the local inversion schemes.
The intricate analytic details of the algorithm as well as its
properties are then studied and discussed via the numerical
examples in Sections V and VI. The presentation is completed
in Section VII with an overall summary and conclusions of
Parts I and II.

II. PLANE-WAVE-BASED BACKPROPAGATION IMAGING

A. Problem Formulation

We consider the reconstruction of a weakly inhomogeneous
medium with wave speed v(r) embedded in a uniform medium
with wave speed v0. The unknown medium is identified by
the object (or contrast) function O(r) = (v2

0 /v
2(r)) − 1

[see (§§1)]. The interrogation is the pulsed plane-wave ui (r, t)
in (§§11) that propagates in the

◦
κ i direction, and the scattering

data us
j (x, t), j = 1, 2, are measured on the plane z = z1 < 0

and/or the plane z = z2 > 0, located, respectively, before
or after the unknown object O [see Fig. §§1(a)]. Here and
henceforth, the index j = 1, 2, denote the wave constituents
associated with the data uj , r = (x, z) denotes the points in
the 3-D coordinate domain with x = (x1, x2) being coordinates
transverse to z, and overcircles are used to identify unit
vectors.

For weak scatterers, the scattered field is linearly related
to the medium via the first-order Born approximation. This
relation can be cast in a format, referred to as DT, that
directly relates O to the spectrum of the scattered field.
In the FD formulations, the DT relation is given in (§§7) and
Fig. §§2(b). As discussed in Section §§III-A(4) and illustrated
in Fig. §§3(b), Ō(K) can then be recovered by sweeping the
frequency between ωmin and ωmax so that O(r) can then be
reconstructed via an inverse K transform.

In the TD formulations with short-pulse interrogation, this
DT relation is given in (§§15) and Fig. §§4. It states that
the transient spectrum of the scattered field in a given spec-
tral direction is directly related to the Radon transform of
O(r) along a direction that bisects the angle between the

interrogation and the scattering directions. Thus, as illustrated
there, measuring the transient scattering recovers the Radon
transform of O so that O(r) can be reconstructed via an
inverse transform.

B. Filtered Backpropagation Imaging: FD Formulation

The spectral reconstruction discussed earlier may be imple-
mented by backpropagating the data to the object domain.
Backpropagation can be performed in several alternative ways,
e.g., using the Kirchhoff or plane-wave integrations. The final
reconstruction formulas can be expressed explicitly in terms of
the backpropagated fields, regardless of the method by which
they were calculated. This result will be used in Section III
where the backpropagated fields are calculated via the BF
formulation.

The plane-wave representation of the backpropagated fields
ûb

j (r, ω), j = 1, 2, corresponding to the scattering data
ûs

j (x, ω) measured on the zj planes are obtained by extend-
ing (§§5) to the backpropagation domains z > z1 and z < z2,
namely

ûb
j (r, ω) =

(
k

2π

)2∫
P

d2ξ ˆ̃us
j (ξ , ω)e

ik
◦
κj ·r (1)

where P implies that the integration covers only the propa-
gating spectrum |ξ | < 1, ˆ̃us

j (ξ , ω) is the plane-wave spectrum
of ûs

j (x, ω) normalized to the z = 0 plane, as defined

in (§§4),
◦
κj = (ξ ,∓ζ ) are the plane-wave directions, and

ζ = √
1 − ξ · ξ [see (§§5)]. Here and henceforth, upper and

lower signs correspond to j = 1, 2, respectively, i.e., to
field constituents associated with the data measured on the
zj plane.

The “filtered backpropagated” or the “imaging” fields are
now defined as [3]

Îj (r, ω) = v−1
0 k−2 ◦

κ i · ∇
[
e−ik

◦
κ i ·rûb

j (r, ω)
]
. (2)

The reconstructed media Ŏj (r) corresponding to the data ûs
j

are obtained now by summing over all the frequencies, namely
(see details in Appendix A)

Ŏj (r) = 2Re
1

π

∫ ∞

0
dω Îj (r, ω) . (3)

As discussed in Sections §§III-A(4) and §§III-B, Ŏ1 and Ŏ2

correspond, respectively, to the longitudinal and transversal
variations of O. If one has access to the data on both planes,
then the “full reconstruction” is given by

Ŏ(r) = Ŏ1(r)+ Ŏ2(r). (4)

The UWB filtered backprojection reconstruction in (2)–(4)
has been derived in [3] via a K -space formulation. For
completeness, a FD derivation is presented in Appendix A.

C. Filtered Backpropagation Imaging: TD Formulation

The backpropagated fields corresponding to the time-
dependent data us

j (x, t) on the zj planes are obtained by
extending (§27) to the backpropagation domains z > z1 and
z < z2, giving

ub
j (r, t) = −1

(2πv0)
2

∫
P

d2ξ∂2
t ũs

j

(
ξ , t − v−1

0

◦
κj · r

)
(5)
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where the TD plane-wave spectra ũj(ξ , τ ) are calculated from
the data us

j (x, t) via (§§12), and, as in (1), the index P defines
the integration over the propagating spectrum.

Following (2), the “filtered backpropagated” or the “imag-
ing” fields corresponding to measurements on the zj plane are
calculated via

Ij (r, t) = −v0 F†(t)⊗ ◦
κ i·∇∂−2

t ub
j

(
r, t + v−1

0

◦
κ i·r

)
(6)

where ∂−n
t defines the nth temporal integration. Here, F†(t)

is the deconvolution kernel of the interrogation pulse F(t)
in ui of (§§11), defined as the inverse Fourier transform of
1/F̂(ω) over the data band�. Outside �, the spectrum may be
continued quite arbitrarily and is typically chosen to converge
smoothly to zero for ω → ∞. For a short excitation pulse,
we may replace in (6) F†(t) � δ(t) leading to

Ij (r, t) = −v0

◦
κ i·∇∂−2

t ub
j

(
r, t + v−1

0

◦
κ i·r

)
. (7)

The partial images reconstructed from the data on the zj planes
are obtained now via the imaging formula

Ŏj (r) = 2Ij (r, t)
∣∣
t=0. (8)

This expression is the TD counterpart of (3). As noted
after (4), the TD formulation in (5)–(8) has been derived in [3]
via the Radon space approach.

III. BEAM-DOMAIN DT: MULTIFREQUENCY

FORMULATION

The reconstruction formulas (2)–(3) and (7)–(8) are
expressed explicitly in terms of the backpropagated fields,
regardless of the calculation method of these fields. Here and
in Section IV, we calculate the backpropagated fields via the
FD and the TD beam formulations, respectively.

A. Backpropagation

Referring to the theory in Section §III, we start with the sets
{
̂±

μ (r, ω)}μP
of forward/backward beam propagators, where

the index μP defines the subset of “propagating beams.” As
stated in Theorem §1 of Section §III-C, each set constitutes a
frame everywhere in the propagation domain, over the Hilbert
space HP of functions with no evanescent spectrum, with
{�̂±

μ(r, ω)}μP
being the dual-frame set. Explicit expressions

for these beam propagators were given in [2], along with
guidelines for constructing these sets and of choosing the
various expansion parameters.

Given the scattering data ûs
j (x, ω) on the zj plane,

j = 1, 2, the BF representation of the backpropagated fields
is obtained by extending (§§16) and (§§17) to the backprop-
agation domains z > z1 and z < z2, respectively, giving

ûb
j (r, ω) =

∑
μ∈μP

Â j
μ(ω)
̂

∓
μ (r, ω) , z ≷ zj (9)

where the expansion coefficients, defined as “the beam-domain
data,” are extracted from the data via (§§17)

Â j
μ(ω) =

〈
ûs

j (x, ω), �̂
∓
μ (r, ω)

∣∣
zj

〉
. (10)

As noted after (1), upper and lower signs correspond to
j = 1, 2, respectively.

The operation in (10) has been identified in (§§17) as a
WFT of ûs

j over the zj planes. Actually, as discussed there,
it is somewhat more complicated than a conventional WFT;
hence, it has been referred to as a BF transform.

The summation in (9) involves only the BF elements μ

in the propagating spectrum μP [see (§11) and (§§16)].
Henceforth we omit the notation μ ∈ μP in all the phase
space summations (see e.g., (11), (12) etc.), since the beam-
domain data Â j

μ(ω) residing outside this range are practically
zero.

B. Filtered Backpropagation and Imaging

The beam-domain reconstruction of the filtered backpropa-
gated fields (2) is given by (see details in Appendix B)

Îj (r, ω)� 2

iω
e−ik

◦
κ i ·r ∑

μ

Â j
μ(ω) cos2

(
γ∓

n

2

)

̂∓

μ (r, ω) (11)

where γ∓
n is the angle between − ◦

κ i and the scattered beam
◦
κ∓

n [see (§§31) and Fig. §§4)].
The partial images Ŏj are calculated now by integrating

over all ω’s as in (3). We shall not dwell further on these
expressions and will proceed to the TD formulation that has
a much richer interpretation.

IV. BEAM-DOMAIN DT: TD FORMULATION

A. Backpropagation

Given the scattering data us
j (x, t) on the zj plane, j =

1, 2, the BF representation of the backpropagated fields is
obtained by extending (§§23) and (§§24) to the backpropa-
gation domains z > z1 and z < z2, respectively, giving

ub
j (r, t) =

∑
μ,s

A j
μ,s


∓
μ,s(r, t) (12)

where the expansion coefficients that are referred to as “the
beam-domain data” are extracted from the data via

A j
μ,s =

〈
us

j (x, t),�∓
μ,s(r, t)

∣∣
zj

〉
(x,t)

. (13)

The operation in (13) has been identified in (§§24) as a WRT
of us

j in the (x, t) domain corresponding to the zj planes,
as schematized in Fig. §§6. Actually, it is somewhat more
complicated than a WRT; hence, it has been referred to as a
PBF transform.

B. Filtered Backpropagation and Imaging

The expressions for the filtered backpropagated fields are
derived by inserting (12) into (7) and using the fact that the
beams are collimated (see (11) and Appendix B), obtaining

Ij (r, t)=−2
∑
μ,s

A j
μ,s cos2

(
γ∓n
2

)
∂−1

t 
∓
μ,s

(
r, t+t i(r)

)
(14)

where t i (r) def= v−1
0

◦
κ i · r is the arrival time of the incident

pulse at r, as defined in (§§27). Note that this result can also
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be derived by transforming (11) into the TD and using the
representation in (§34).

The partial images are then calculated via (8) by setting the
imaging condition t = 0, giving

Ŏj (r) =
∑
μ,s

A j
μ,s̆

j
μ,s(r) (15)

where the “imaging kernels” are

̆ j
μ,s(r) = −4 cos2

(
γ∓

n

2

)
∂−1

t 
∓
μ,s

(
r, t i(r)

)
. (16)

Finally, if the scattering data are available on both the j = 1
and 2 planes then Ŏ = Ŏ1 + Ŏ2 as in (4).

Equation (15) expresses the reconstructed image at a
given r by aggregating the contributions of the beam-domain
data A j

μ,s weighted by the “imaging kernels” ̆
j
μ,s(r).

One readily observes from (16) that ̆ j
μ,s have essentially

the same structure as  j
μ,s(r) in (§§27). Referring to the

illustration in Fig. §§6, they are centered along the μ-axes,
with the location along the axes determined by ts via
(§§28) and (§§29) (see Fig. 1 as well). In view of the t i (r)
term in (16), the windows are rotated relative to the μ-axes
such that they are orthogonal to the direction

◦
s∓

n that bisects
the angle γ∓

n between the direction of incidence − ◦
κ i and the

μ axis [see analysis in (§§30)–(§§32)]. In view of the window
localization, it is sufficient to account only for the PBs that
pass near r. Based on previous studies on the PB summation
method, we consider only the windows whose centers are
within a three-beamwidth and three-pulsewidth zone about r.

Finally, following the discussion in Section §§V-C, one may
regard the local reconstruction formula in (15) as an inverse
of the LRT of the object, which is illustrated in Fig. §§6.

C. ID Phase-Space Processing

As discussed in Section §§V-D, we perform the phase-space
processing using the ID propagators. Explicit expressions for
these propagators in 3-D and 2-D configurations were given in
Appendixes §A–§C, along with criteria for choosing the var-
ious parameters in these expressions. Specific considerations
for choosing these parameters in the context of phase-space
processing have been discussed in Section §§V-D and also
in the numerical examples of Section §§VI-B. The same
values should be used here for the reconstruction problem.
We, therefore, present here only the expression for the imaging
kernels ̆ j

μ,s(r).
For 3-D configurations, we substitute 
∓

μ,s from (§B5)
in (16), obtaining

̆ j
μ,s(r) = −4 cos2

(
γ∓n
2

)
Re

{√
−i Fμ1

zbμ
− i Fμ1

−i Fμ2

zbμ
− i Fμ2

× eiα
+
ϒ(γ−1)

( ◦
κ i·r
v0

− zbμ

v0

− ts

− x2
bμ1
/2v0

zbμ
− i Fμ1

− x2
bμ2
/2v0

zbμ
− i Fμ2

)}
(17)

where the beam coordinates (zbμ
, xbμ

) and the collimation
lengths Fμ1,2 are defined in (§A4 and §A5).

For 2-D configurations, we use 
∓
μ,s from (§C4), obtaining

̆ j
μ,s(ρ) = −4 cos2

(γn

2

)
Re

{√
−i Fμ

zbμ
− i Fμ

×eiα
+
ϒ(γ−1)

( ◦
κ i · ρ
v0

− zbμ

v0

− ts − x2
bμ
/2v0

zbμ
− i Fμ

)}

(18)

where ρ = (x, z), as defined in (§20).
The various parameters used in (17) and (18) are explained

after (§§34) in the context of the phase-space processing
windows, along with the considerations for choosing these
parameters. As noted earlier, the same values should be
used for the imaging kernels considered here. Specifically,
as discussed after (§§34), the preferred values for (α, γ ) are
α = π/2 or 0 for even or odd γ , respectively. Following
similar analysis, one may show that these values render the
kernels in (17) and (18) localized and symmetric about their
axes, as desired.

V. NUMERICAL EXAMPLE A: SPARSELY

INHOMOGENEOUS MEDIUM

This example is a continuation of the example in
Section §§VI of Part I of this article, where we calculated the
beam-domain data via phase-space processing. The inhomo-
geneity here is taken to be rather sparse in order to simplify the
interpretation of the results. In Section VI, we shall consider
a more complicated medium as well as the use of several
illumination directions to achieve a better resolution and to
filter out the noise.

A. Problem Setup

We refer to the 2-D configuration described in
Section §§VI-A and Fig. §§7, where the [−20, 20] ×
[−20, 20] DoI is marked as a black rectangle. Space–time
units are taken such that the background wave speed v0 = 1.
As defined in Part I of this article, the illumination is the
pulsed plane wave in (§§11) that propagates along the z-axis,
whose frequency band is � = [ωmin, ωmax] = [0.1, 1] so that
its pulselength is T0 ≈ 2π . Note that the problem is large on
the pulselength scale and that the contrast is quite large and
is of the order of 40%.

We consider here only the reflection data at z1 = −150
within the measurement aperture |x | < 250. These data have
been calculated via the method of moments (MoM).

Finally, we remark, again, that these data are insufficient
for reconstructing general medium, but it is appropriate for
the media in this section and in Section VI that are charac-
terized by strong longitudinal variation but a weak transversal
variation.

Our main goal in this article is the formulation of the
beam-domain processing and filtered backpropagation algo-
rithms within the DoI. Accordingly, we considered only illu-
minations from the z1 plane and measurement of the reflected

Authorized licensed use limited to: Timor Melamed. Downloaded on November 04,2020 at 10:39:09 UTC from IEEE Xplore.  Restrictions apply. 



7162 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 68, NO. 10, OCTOBER 2020

Fig. 1. Imaging kernels ̆ j
μ,s (r) for a fixed μ and several values of s.

field within a limited aperture in that plane. As discussed
in Section §§III-A4 [see also Fig. §§3(b)], these data are
insufficient for the reconstruction of a general medium, and it
is more appropriate for reconstruction of media with dominant
longitudinal variation and weak transversal variation. Thus,
the numerical examples chosen in Sections V and VI are
aimed at exploring the features of reconstruction subject to
these constraints. Note that this class of problems is of interest
per se in many applications.

B. Phase-Space Processing: Beam-Domain Data

The phase-space processing of the data has been discussed
in Section §§VI-B, along with a detailed discussion regarding
the choice of the various parameters used for the process-
ing windows [i.e., (x̄, ξ̄ ), νmax, b, and (α, γ )]. The resulting
beam-domain scattering data have been discussed and inter-
preted in Section §§VI-C and Figs. §§9 and §§10.

C. Imaging Kernels

The 2-D imaging kernels ̆ j=1
μ,s(ρ) of (16) are given in (18).

As noted earlier, we use the same parameters as those used in
the phase-space processing of the data in Section §§VI-B.

Fig. 1 depicts a few examples of ̆ j=1
μ,s for a fixed μ and

several values of s. As discussed after (16), ̆ j
μ,s are localized

along the beam axis and are tilted in the
◦
s−

n direction (blue
arrow) that bisects the angle between the μ beam-axis and the
interrogation direction − ◦

κ i .

D. Local Reconstruction: Single Illumination

The reconstructed medium inside the DoI is calculated
via (15), where only those PB backpropagators that pass within
a three beamwidths distance from the DoI were included in
the (μ, s) summation. As noted in Section V-A, we calculate
only Ŏ1 using the reflection data at z1 = −150.

The reconstructed medium Ŏ1(ρ) within the DoI is depicted
in Fig. 2(b), along with the reconstruction error in Fig. 2(c).
Inside the DoI, Ŏ1(ρ) agrees quite well with the scattering

Fig. 2. Local reconstruction of example A. (a) Original medium O(ρ).
(b) Reconstructed medium Ŏ1(ρ) (i.e., using only data at z1). (c) Reconstruc-
tion error O(ρ)− Ŏ1(ρ). Note the large “error” outside the DoI, as expected.

medium in Fig. 2(a), while outside the DoI, Ŏ1(ρ) gradually
vanishes, as expected.

A more detailed analysis is depicted in Fig. 3, where we
plot cross-sectional cuts of Ŏ1(ρ) along the lines x = 0 and
x = 5 ≈ x̄/2, respectively. The results are shown only within
the DoI z ∈ [−20, 20]. As can be discerned, the reconstruction,
referred to in the figures as “iter-1” (purple dashed lines),
recovers pretty good both the shapes and composition of the
layers, but it suffers from an axial displacement error. This
error stems from the fact that the imaging kernels are based on
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Fig. 3. Cross-sectional cut of the reconstruction along the lines. (a) x = 0.
(b) x = 5. Blue solid lines: the physical medium. Purple dashed and red
dashed-dotted lines: reconstruction based on the MoM data after one and two
iterations, respectively.

free-space propagation, whereas, in reality, the scattered waves
propagate in an inhomogeneous medium, and it is significantly
large since the contrast in our example is much larger than
what is typically used in the Born approximation.

This displacement error is partially mitigated by employing
an iterative scheme where the travel time along the axis of
each backpropagated beam is corrected using the medium
reconstructed in the previous iteration. Specifically, we use
the velocity that is reconstructed from Ŏ1(ρ) to fix the travel
time along the axes of the backpropagated beams 
−

μ,s(ρ, t)
and of the imaging times t i (ρ), which together defines the
imaging kernels ̆ j=1

μ,s (ρ) of (16) used in the reconstruction
formula (15). One readily observes that the displacement error
is reduced in the second iteration, denoted in Fig. 3 as “iter-2”
(red dashed-dotted lines). Note, though, that the improvement
is limited since we use the corrected wave speed only inside
the DoI.

To clarify the source of errors in the imaging algorithm,
we compare the beam-based approach to the conventional
plane-wave approach. The latter can be implemented via the

Fig. 4. Comparison of the beam-based inverse scattering algorithm and
the conventional plane-wave-based DT. (a) Reconstructed medium using
plane-wave processing. (b) Cross-sectional cuts of the medium along the line
x = 0. Blue solid lines: physical medium. Purple dashed and red solid lines:
reconstruction using the first iteration in the beam-based algorithm and using
the plane-wave algorithm, respectively. In both cases, we used exact MoM
data.

spectral reconstruction approach discussed in Section II-A,
but, here, we used the equivalent filtered backpropagation
algorithm of [3] discussed in Section II-B. We use the same
data set discussed in Section V-A. The imaging results are
depicted in Fig. 4(a). The beam-based and the plane-wave
processing results are compared in Fig. 4(b), where, for
the former, we consider only the first iteration in Fig. 3(a).
Note the good agreement inside the DoI, while outside the
DoI, the beam-based image is irrelevant since it actually
excludes the beam-backpropagators there. Note that a clear
advantage of the beam-based approach is that it is amenable
for an iterative correction of the travel time along the beam
axis, as done in Fig. 3.

Further insight into the sources of error is obtained by
comparing in Fig. 5 the reconstructions using the exact
data and the Born approximated data (which is calculated
analytically, see Appendix C). In principle, using this synthetic
data, we should have obtained an exact reconstruction if
the data were known for all x at both the z1 and z2

planes. Thus, the reconstruction error is mainly due to the
limited view angles (only reflection data at an aperture of
approximately ±45◦), while the small dc error is attributed
also to the missing low frequencies as also follows from the
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Fig. 5. Cross-sectional cut of the reconstruction along the line x = 0. Blue
solid line: physical medium. Red dashed-dotted lines: reconstruction based on
the exact MoM data after two iterations. Green dotted lines: reconstruction
using plane-wave processing and Born-approximated data.

TABLE I

PARAMETERS OF THE MEDIUM IN FIG. 6(a)

basic DT considerations in Section §§III-A(4) and Fig. §§3(b)
(see the missing K -space data in Fig. 8). The reader is also
referred to as the TD interpretation of the data in Fig. §§4.

Finally, we note that we do not provide here a quantitative
measure of the error in terms of its norm. As discussed earlier,
the main error in our examples is a displacement error that is
due to the relatively large contrast used (see also the more
complicated examples in Figs. 7–9). Quantifying such dis-
placement error using L1 or L2 norms is somewhat irrelevant,
whereas the cross-sectional cuts of the error in Figs. 3 and 4(b)
provide a clearer qualitative understanding of the error.

VI. NUMERICAL EXAMPLE B: DENSER INHOMOGENEOUS

MEDIUM AND NOISY DATA

A. Problem Setup

In the example given in Section V, we considered a sparse
inhomogeneity; in that case, the interpretation of the results is
simple. Next, we consider a denser inhomogeneity, as shown
in Fig. 6(a). Specifically, the medium is given by (§§35)
where the parameters are now described in Table I (compare
Table §§I for the parameters of the example of Section V).
As defined in Section V, the units are taken such that the
background wave speed v0 = 1, with the [−20, 20]×[−20, 20]
DoI marked as a black rectangle in the figure.

In order to enhance the resolution and to filter out the noise,
we shall use several independent illumination directions. Such
data can be synthesized by using an array of point transducers
located at the points x p on the z1 plane and measure the
scattered fields us

q,p(t) at the q receiver due to an excitation

Fig. 6. Reconstruction of the medium in Table I using single-axial
illumination. (a) Original medium O(ρ). (b) Reconstructed medium Ŏ1(ρ)
in the DoI.

of the p source, where (p, q) are indexes. Specifically, we use
z1 = −150 and x p = pd with the interelement spacing d =
1.15π and p = −(P − 1)/2, . . . , (P − 1)/2, P = 139, such
that the measurement aperture is |x | < D/2 with D = 500.
The sources are excited individually by a pulse F �(t) whose
frequency band is � = [ωmin, ωmax] = [0.1, 1], as discussed
in Section V-A. Note that since the array is “far” from the
tested medium, the interelement spacing can be parser than
the Nyquist condition d = λ. Without loss of generality,
we use the same array to measure the scattering data, which
is calculated numerically via the MoM.

These data are now stacked as

us
q,i (t) =

∑
p

2dv−1
0 ζ i us

q,p

(
t − v−1

0

◦
κ i·ρ p

)
(19)

where ρ p = (x p, z1) are the source coordinates, and κ i =
(ξ i , ζ i) = (sin θ i , cos θ i) is the desired wave-direction with i
being an index. It can be shown that us

q,i (t) of (19) represents,
synthetically, the response at sensor q due to an incident plane
wave of the form

ui (ρ, t) = F
(

t − v−1
0

◦
κ i·ρ

)
(20)

where, as in (§§11), the plane wave is normalized with
respect to the origin. In Section VI-C, we shall apply (19)
for several wave-directions

◦
κ i . Note that due to the finite
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Fig. 7. Cross-sectional cuts of the reconstruction along the line x = 0.
(a) Reconstruction from a single illumination at θ i = 30◦ . Red dotted line:
MoM data. Green solid line: Born data. In both cases, we used the beam-based
algorithm with two iterations. (b) Reconstruction using several illuminations
θ i = 0◦ , ±15◦, and ±30◦ . In the legend of both (a) and (b), write MoM data,
iter = 2 for the red line and Born data for the green line.

size of the array, the plane wave angles will be limited to
θ i ≈ ±40◦. The synthetic plane-wave data in (19) are then
processed and backpropagated to form the image using the
phase-space kernels discussed in Sections V-B and V-C and
the second-order iterative scheme discussed in connection
with Fig. 3.

B. Single Illumination

We consider first a single illumination at an angle
θ i = 30◦ with respect to the z-axis. The reconstruction
results are shown in Fig. 6(b), with a cross-sectional cut
of the reconstructed medium in Fig. 7(a). One observes a
good reconstruction for the layers with positive O but a large
error for those with negative O. This difference is clearly
explained physically in terms of the missing data. We note
that the layers with positive and negative O [marked yellow
and blue in Fig. 6(a)] have a positive and negative slant of
+20◦ and −30◦, with respect to the x-axis, respectively (see
column 5 in Table I). Taking into account the generalized Snell
law discussed in Figs. §§4 and §§6 and the direction of the
incident plane wave, it follows that the PB is scattered by
the positively slanted layers (yellow) that propagate essentially
at angles around −10◦ with respect to the −z-axis, whereas
those that are scattered by the negatively slanted layers (blue)

Fig. 8. K -space distribution of the object. (a) Original medium Ō .
(b) Reconstructed medium ¯̆O1.

propagate at an angle around 80◦ and are, therefore, outside
our measurement aperture, so there is only weak data on these
layers.

In order to explain this difference further, we compare
in Fig. 8(a) the K -space distributions Ō(K) and Ō1(K)
where the former is the K -space distributions (§§8) of O(ρ),
while the latter is the distribution corresponding only to the
data on the z1 plane, as defined in (§§7) [see Figs. §§2(b)
and §§3(b)]. One readily discerns that the main difference is
in the range |K| ≈ 0, which cannot be recovered from the
“reflection-type” measurements on the z1 plane, as discussed
in Fig. §§3(b) and (§§9). Recovering these data requires
“transmission-type” measurements on the z2 plane or multiple
illumination angles, as will be done next.

C. Using Several Illuminations: Noise Cancelation

The single illumination reconstruction error noted
in Fig. 7(a) may be mitigated by superimposing the
reconstructed media due to several illumination directions.
An example is shown in Fig. 7(b) where we used θ i = 0◦,
±15◦, and ±30◦. Here, the upward-/downward-propagating
waves contribute to the reconstruction of the layers with
positive/negative slopes, respectively. As earlier, we also show
the reconstruction using the Born approximated data, which
can be regarded as the theoretical limit of the reconstruction.
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Fig. 9. Reconstruction from noisy data, plotted only along the x = 0 line.
Blue solid line: physical medium. Green dashed lines: reconstruction from a
single illumination at θ i = 0◦. Red dashed lines: reconstruction using five
independent illuminations at θ i = 0◦,±15◦,±30◦ .

As discussed earlier, this error could have been eliminated if
we had also data from the z2 plane.

The use of several independent illuminations is also used to
mitigate the effect of noise in the data. The spectrum of the
data ûs

q,p in (19) is taken to be

ûs
pq = ûs0

pq (1 + nc) , nc = nr + ini , nr , ni ∼ N (
0, σ 2

n

)
(21)

where ûs0
q,p is the noiseless data calculated via the MoM. Here,

nr and ni are both normally distributed with zero mean and
σ 2

n standard deviation, such that |nc| is a Rayleigh distribu-
tion with mean σn

√
π/2 and standard deviation σn

√
2 − π/2.

Henceforth, we use σn = 10, corresponding to signal to noise
level of −22 dB.

Fig. 9 compares the reconstructed medium using a single
illumination at θ i = 0◦ to the results obtained by averaging
the media reconstructed using five independent illuminations
at θ i = 0◦, ±15◦, and ±30◦. One observes that the noise
error in the multiple illumination processing is reduced com-
pared with the single illumination case such that the result
tends to the noiseless case in Fig. 7(b). This stems from
the fact that the overall SNR of the image is governed
by 20 log σ−1

n

√
2/π

√
Nt , where Nt is the overall number

of independent illuminations and points where the data are
sampled [6, Eq. 30].

D. Phase Space Filtering

The beam-domain backpropagation and imaging may be
used to focus on specific local wave mechanisms in the
medium. As an example, we refer, again, to the configuration
in Fig. §§7, which is illuminated by a pulsed plane wave along
the z-axis as in Section V-A. The beam-domain scattering
data A j=1

μ,s have been presented and discussed in Fig. §§9.
Here, we would like to identify only on the downward sloping
layers; hence, we keep in (15) only the subset of negative n
coefficients in Fig. §§9. The resulting reconstruction in Fig. 10
clearly demonstrates the spatial filtering of the desired features.

Fig. 10. Reconstruction using only the beams with negative n.

VII. CONCLUSION AND OVERALL SUMMARY

In this two-part article, we considered an UWB local
DT where beam-waves are used for local (phased-space)
processing and expansion of the scattering data and then
for local backpropagation and imaging. The key feature of
the beam approach is that it enables backpropagation over
an inhomogeneous medium while focusing on any desired
subdomain of interest (DoI). We derived two algorithms: one
is expressed in the multi-FD, and the other is applied directly
in the short-pulse TD.

The key features that facilitate the beam-expansion approach
are as follows:

1) the use of an ID beam set where both the
beam skeleton and the propagation parameters are
frequency-independent so that they can be calculated
once and then used for all frequencies or expressed
directly in the TD;

2) the fact that the phase-space beam sets constitute frames
everywhere in the propagation domain so that these BFs
can be used to expand both the medium and the scattered
fields.

The beam-based imaging algorithm consists of two phases: a
preprocessing phase where the scattering data is transformed
into the beam domain, and an imaging phase where these data
are backpropagated locally to reconstruct the medium. These
two phases are studied in Parts I and II.

Part I of this article deals with the representation of the data
in the beam domain. The expansion coefficients A j

μ,s , referred
to as the beam-domain data, are calculated from the scattered
fields using windowed phase-space transforms, the generalized
WFT in (§§16) and (§§17), and the generalized WRT in
(§§23) and (§§24) for the multifrequency and the TD formu-
lations, respectively. In these expressions, the sets {
±

μ,s(r, t)}
and {�±

μ,s(r, t)} are shown to be dual-frame sets and used,
respectively, as the forward/backward beam propagators and
corresponding processing windows. Specifically, we use the
ID beam sets that are given explicitly in Appendixes §A–§C.

A key result of Part I of this article has been the deriva-
tion of the “local TD DT identity,” according to which the
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beam-domain data noted earlier is directly related to local
projections of the medium function onto windows that are
formed by the PB propagators as they traverse through the
medium (see (§§26) and Fig. §§6). This operation, termed
there LRT of the medium (see footnote 3 for a comment on the
terminology), extracts the local stratification of the medium.
As such, it has a cogent physical interpretation as a local
generalized Snell’s law, according to which the PBs that are
scattered at any given point and direction are generated by
the local stratification of the medium used there in a direction
that bisects the angle between the directions of incidence and
scattering.

This fundamental result has been used in this Part II for the
local reconstruction of the medium via beam-domain filtered
backpropagation. This operation is defined in (11) and (14) for
the multifrequency and the TD formulations, respectively. The
reconstructed medium at any point is then obtained by aggre-
gating the contributions of the backpropagated beams that pass
near that point [see (15) and (16)]. Specific expressions for the
ID imaging kernels ̆ j

μ,s(r) are given in (17) and (18) for 3-D
and for 2-D configurations, respectively.

The local processing approach enables the user to con-
centrate on any desired DoI and filter out the scattering
data (and noise) arriving from other regions in the scatter-
ing domain. Furthermore, utilizing the local structure of the
beams, we introduced an iterative correction scheme where
the reconstruction results are used to fine-tune the beam back-
propagators. The implementation of this approach is actually
simpler than that of the distorted Born reconstruction [8] since
it requires only simple corrections along the axes of the beam
backpropagators. The beam approach may, therefore, be used
for complicated objects with relatively large contrast compared
with conventional plane-wave-based DT.

The intricate analytic details of the algorithms and the
choice of the expansion parameters have been thoroughly
discussed and demonstrated in the numerical examples in
Parts I and II, as well as in [2]. These examples also elucidate
the physical interpretation and the content of the beam-domain
data. Specifically, we considered reconstruction using only
reflection data from a limited spectrum of illumination direc-
tions; in that case, it follows from the basic theory of DT
(see Sections §§III-A(4) and §§III-B) that the objects that can
be reconstructed are quasi stratified, such as those depicted
in Figs. §§2(a) and §§6(a). It has been shown that the beam
approach with the first-order correction leads to a better
reconstruction of objects with large contrast compared with
the conventional plane-wave approach.

Finally, we note that the imaging problem of sparse point
scatterers can be addressed also by SVD-based formulations,
such as MUSIC and time reversal (see a literature survey
in [7]). These methods typically do not scale well with
the problem size, but by performing this analysis on the
beam-domain data, as in [7], one may focus a priori on the
data corresponding to a given DoI and, thus, mitigate the size
difficulty. In that context, it should be noted that our method
beam-based filtered backpropagation imaging algorithms have
recently been applied successfully for a realistic seismic
inversion in [9].

APPENDIX A
DERIVATION OF (3)

A. Backpropagated Field

As noted in (1), the backpropagated fields ûb
j (x) have only

propagating spectral constituents. Their K -space distribution,
defined via (§§8), are, therefore, confined to the Ewald sphere
|K| = k = ω/v0, i.e., they have the form

ˆ̄ub
j (K) = ˆ̄ub

j (K) δ (|K| − k) , K = (
Kx1 , Kx2 , Kz

)
(A.1)

where, as in (§§8), the overbar denotes the functions in the
3-D K -domain. Next, we note that

δ (|K| − k) = k

kz
[δ (Kz − kz)+ δ (Kz + kz)] (A.2)

with

kz(Kx) =
√

k2 − |Kx |2, Kx = (
Kx1 , Kx2

)
(A.3)

where the square root is defined to be positive. We, therefore,
identify

ˆ̄ub
j (K) = k

kz

ˆ̄ub
j (K)δ (Kz ± kz) (A.4)

where, as noted earlier, upper and lower signs correspond to
j = 1, 2, respectively.

The spatial representation of the backpropagated field is
obtained by inverting (A.4) via (§§8), obtaining

ûb
j (r) = 1

(2π)3

∫
d3K eiK·r ˆ̄ub(K)

= 1

(2π)3

∫
d2Kx eiKx ·x

×
∫

dKz
k

kz

ˆ̄ub
j (K)δ (Kz ± kz) ei Kzz

= 1

(2π)3

∫
d2Kx eiK±·r k

kz

ˆ̄ub
j

(
K±)

(A.5)

where K±(Kx) = (Kx,±kz(Kx)), with |Kx | < k, denote the
respective points on the right and left Ewald hemispheres,
respectively [see Fig. §§2(b)]. Replacing Kx → kξ and
kz → kζ , assuming k > 0, and comparing (A.5) to (1), we find
that

ˆ̄ub
j (K) = 2πζ ˆ̃us

j (ξ ) for K = k
◦
κj (A.6)

with
◦
κj defined in (1).

B. Data-Object Relation in the Weak Scattering
Approximation

Next, we use the weak scattering (Born) approximation for
the data whose K -space representation is given (§§7). Inserting
into (A.6), we obtain

ˆ̄ub
j (K) = iπk Ō

(
K − k

◦
κ i

)
δ (|K| − k) , K = k

◦
κj . (A.7)

We rewrite (A.7) as

ˆ̄ub
j

(
K + k

◦
κ i , ω

)
= iπk Ō(K) δ

(
|K + k

◦
κ i | − k

)
, Kz ≶ −kζ i (A.8)

where the last condition applies to j = 1, 2, respectively,
implying that ˆ̄ub

j corresponds to the dashed and the solid-line
hemispheres in Fig. §§2.
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C. Proof of (2) and (3)

The K -space representation of the imaging field, defined
in (2), is obtained by substituting (A.1)

ˆ̄Ij (K, ω) = i

v0k2

( ◦
κ i·K

) ˆ̄ub
j

(
K + k

◦
κ i

)
δ
(
|K + k

◦
κ i | − k

)
,

Kz ≶ −kζ i, k > 0. (A.9)

Substituting the weak scattering model (A.8), we obtain

ˆ̄Ij (K, ω) = −π
ω

( ◦
κ i·K

)
Ō(K) δ

(|K + kκ i | − k
)
,

Kz ≶ −kζ i , k > 0. (A.10)

Combining ˆ̄I1 and ˆ̄I2, we yield

ˆ̄I (K, ω) = −π
ω

( ◦
κ i·K

)
Ō(K)δ

(|K + kκ i | − k
)
, k > 0.

(A.11)

Next, we calculate the transient imaging field

+
I (r, t) = 1

π

∫ ∞

0
dω e−iωt I (r, ω) . (A.12)

Inserting the weak scattering model for
+
I in (A.11), we obtain

+
Ī (K, t) = −

∫
dω e−iωt

◦
κ i·K
ω

Ō(K) δ
(|K + kκ i | − k

)
.

(A.13)

For positive ω, the δ function can be expressed as

δ
(
|K+k

◦
κ i |−k

)
= δ

(√(
Kx + kξ i

)2 + (
Kz + kζ i

)2 − k

)

= v0|K|2
2
( ◦
κ i·K

)2 δ

(
ω+v0

|K|2
2

◦
κ i·K

)
(A.14)

where we used
◦
κ i from (§§3). Substituting (A.11) into (A.10),

we find that
+
Ī (K, t)

∣∣∣
t=0

= Ō(K). (A.15)

Equation (A.15) applies only for K in the left-hand side
Kz < 0 of the K -space. Since O is real, the value of Ō
on the right-hand side is symmetric. It follows that:

Re
+
Ij(r, t)

∣∣
t=0 = 2O(r) (A.16)

which is our final result.

APPENDIX B
DERIVATION OF (11)

The imaging fields are given by (2). Substituting their
spectral representation [see (1)], they are given by

Îj (r, ω) = v−1
0 k−2

× ◦
κ i·∇

[
e−ik

◦
κ i·r

(
k

2π

)2∫
P

d2ξ ˆ̃uj (ξ) eik(ξ ·x∓ζ z)

]
.

(B.1)

Next, we use the BF representation of ˆ̃uj (ξ ). By using (9) and
changing the order of integration and differentiation, we obtain

Îj (r, ω) = (iω)−1 e−ik
◦
κ i ·r ∑

μ

Â j
μ

×
(

k

2π

)2 ∫
d2ξ

(
1 − ◦

κj · ◦
κ i

) ˆ̃ψμ(ξ ) e∓ikζ zeikξ ·x.

(B.2)

Finally, by evaluating the integral asymptotically and using
the well-collimated approximation as in (§§9), i.e., (ξ , ζ ) �
(ξn, ζn), we end up with the final result of (11).

APPENDIX C
CLOSED-FORM EXPRESSION FOR THE SCATTERED

FIELD IN THE BORN APPROXIMATION

To clarify the system’s performance, we have explored
in Figs. 3 and 7 the imaging using Born-approximated data
that can be calculated in a closed form using (§§7), where
Ō(K) corresponding to O(r) of (§§35) is given by

Ō(K) = 2π
∑

l

Olσ1lσ2l e
− 1

2

(
K 2

1σ
2
1l

+K 2
2σ

2
2l

)
−i(Kx xl +Kzzl ) (C.1)

where the parameters (σ1l , σ2l ) and (xl, zl) define the width
and the centers of the l-Gaussian in (§§35), while (K1, K2)
are the spectral parameters associated with (η1, η2) in (§§36)
and are related to the global spectral parameters (Kx , Kz) via(

K1

K2

)
=

(
cos θl − sin θl

sin θl cos θl

) (
Kx

Kz

)
(C.2)

with θl denoting the rotation of the Gaussians. The specific
parameters taken are listed in Table §§I.
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