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The present contribution is concerned with applying beam-type expansion to a planar aperture time-dependent
(TD) electromagnetic field in which the propagating elements, the electromagnetic pulsed-beams, are a priori

decomposed into transverse electric (TE) and transverse magnetic (TM) field polarizations. The propagating
field is described as a discrete superposition of tilted, shifted, and delayed TE and TM electromagnetic
pulsed-beam propagators over the frame spectral lattice. These waveobjects are evaluated by using TD plane-wave
spectral representations. Explicit asymptotic expressions for electromagnetic isodiffracting pulsed-quadratic beam
propagators are presented, as well as a numerical example. © 2012 Optical Society of America
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1. INTRODUCTION
Beam-type (phase-space) field expansion schemes have been
the subject of an intense research in the past two decades for
scalar time-harmonic (TH) [1–5] and for time-dependent (TD)
fields [6–10]. In general, phase-space methods for propagating
in free space are not more accurate nor faster than plane-wave
propagation or Green’s function methods. Nevertheless, these
methods are considered as a generic tool for scattering pro-
blems or for propagation in complex environments, where
other methods fail. Closed-form solutions for beam propaga-
tors that are required for the expansions have been derived in
homogeneous [11–13], anisotropic [14–18], dispersive [19–21],
and inhomogeneous media [22–28]. Beam-type expansion
methods have been applied for the analysis of large reflector
antennas [29–31], for rough surface scattering [32–35], and for
various inverse scattering applications [36–42].

This paper as well as its TH counterpart in [43] are based
on the frame-based ultrawideband (UWB) beam summation
method, which were introduced for scalar TH and TD wave
fields in counterparts [3] and [8], respectively. In [3], the TH
field is expressed as a sum of beams emerging from a sparse
discrete set of points and directions in the source domain, as
in the conventional Gabor-type representation. However, in
the frame-based method, the frame overcompleteness is uti-
lized to construct a frequency-independent lattice of beam
initiation points and directions such that only one set of
beams needs to be traced in the medium and then used
for all frequencies. Furthermore, the method utilizes isodif-
fracting (ID) beam propagators [44] whose propagation para-
meters are frequency independent so that they can be
calculated only once and then used for all frequencies. These
frequency independence properties of the TH representation
in [3] have been utilized in [8] to formulate a pulsed-beam
(PB) representation directly in the time domain. It has
been established there that the ID PBs constitute a new
frame-set that was termed the windowed Radon transform
(WRT) frame.

Recently the scalar field expansions were extended to
include electromagnetic fields by introducing exact frame-
based expansions of planar aperture TH [45] and TD [46]
EM fields. In [46] the TD EM field is described as a discrete
superposition of tilted, shifted, and delayed EM PB propaga-
tors over the frame spectral lattice. The propagating waveob-
jects are solutions of Maxwell’s equations that exhibit spatial
and temporal localization. A TH EM frame-based expansion
was introduced in [43] in which the EM field was a priori de-
composed into transverse electric (TE) and transverse mag-
netic (TM) wave polarizations, by processing the transverse
aperture field components into novel TE and TM (with respect
to constant z planes) EM beam-type waveobjects. The present
investigation extends the TH representation in [45] for TD EM
aperture fields and introduces the TE/TM EM PB propagators,
which are required for the exact expansion as well as their
asymptotic evaluation.

The paper outline is as follows: in Section 2 a brief descrip-
tion of TE and TM plane-wave decomposition of TD aperture
fields is given. A review of the general formulation of the
scalar TD frame-based beam decomposition is outlined in
Subsection 3.A with the necessary extensions that are re-
quired for the present investigation. The special case of ID
pulsed-quadratic windows is discussed in Subsection 3.B. In
Section 4 the EM field is decomposed into TE/TM EM PB pro-
pagators over the frame five-dimensional spatial-directional-
temporal lattice as well as the corresponding asymptotic
expressions for the EM PB propagators. Finally, a numerical
example that demonstrates the TE/TM EM PB expansion is
given in Section 5.

2. TRANSIENT PLANE-WAVE
DECOMPOSITION
We are concerned with obtaining a discrete exact PB spectral
representation for the TD EM field in z ≥ 0 due to sources in
z < 0, given the transverse TD electric field components over
z � 0 plane
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Et�rt; t� � Ex�rt; t�x̂� Ey�rt; t�ŷ; (1)

where x̂ and ŷ are the conventional Cartesian unit vectors and
rt � �x; y� denotes the transverse coordinates. We use the
conventional Cartesian coordinate system in which the con-
figuration space is described by r � �x; y; z�. A hat over a
vector denotes a unit vector. The propagation medium is
homogeneous with ϵ0 and μ0 denoting the free-space permit-
tivity and permeability, respectively.

A. Analytic Fields
In order to gain flexibility in the derivation, we apply in this
paper the analytic signal representation. This representation
can accommodate the complex time shift that describes the
evanescent spectrum in the time-domain plane-wave repre-
sentation [see Eq. (10)], and the complex time shift which
describes the off-axis PB propagators [see Eq. (43)].

Given a real field E�r; t� that is defined for real t, the
corresponding analytic field is defined by the convolution
integral [47]

Ĕ�r; t� � −1
πj

Z
∞

−∞

dt0
E�r; t0�
t − t0

; Im t ≥ 0. (2)

Here and henceforth, analytic fields are denoted by a breve
mark ( ˘ ). The limit of the analytic field on the real t axis
is related to the real field E�r; t� by

Ĕ�r; t� � E�r; t� − jHtE�r; t�; t real; (3)

whereHt � P�1∕πt� ⊗ is the Hilbert transform operator, with
P denoting Cauchy’s principal value and ⊗ denoting a tem-
poral convolution. Therefore, the real field for real t is
recovered from the analytic field via

E�r; t� � Re Ĕ�r; t�: (4)

Note that though the physical time is real, the time argument

of an analytic field can be complex [see, for example,
Eq. (10)]. Alternatively, the analytic field Ĕ�r; t� can be ob-
tained by applying a one-sided (positive frequencies) inverse
Fourier transform to the spectral (frequency domain) distribu-
tion of the real field E�r; t�. Because the present contribution
is concerned with a direct time-domain derivation, this
approach is not investigated here.

B. Time-Dependent Plane-Wave Representation
The analytic TD plane-wave spectral distribution

�~Et�κt; τ� � �~Ex�κt; τ�x̂� �~Ey�κt; τ�ŷ; (5)

of the TD aperture field over the z � 0 plane, Ĕt�rt; t�, is
defined by [7,48]

�~Et�κt; τ� �
Z

d2rtĔt�rt; τ� c−1κt · rt�; (6)

where κt � �κx; κy� are the directional spectral variables, τ de-
notes the temporal spectral variable, and c denotes the speed
of light in vacuum. Equation (6) is termed the slant stack
transform (SST), and it is identified as a Radon transform
of Ĕt�rt; t� in the three-dimensional �rt; t� space, consisting

of projections of Ĕt�rt; t� along surfaces of linear delay. The
SST in Eq. (6) extracts from Ĕt�rt; t� the TD plane-wave field
that is propagating in a κt-dependent direction [see Eq. (10)].
The inverse STT of Eq. (6) is given by [7,48]

Ĕt�rt; t� �
−1

�2πc�2
Z

d2κt∂2t �~Et�κt; t − c−1κt · rt�; (7)

where ∂2t � ∂2∕∂t2.
The aperture field is propagated into z > 0 half-space by

applying a standard plane-wave analysis. The longitudinal
spectrum, which is denoted by �~Ez, is obtained from Gauss
law ∇ · ~E � 0, yielding

�~Ez�κt; τ� � −�κx �~Ex � κy�~Ey�∕κz; (8)

where

κz �
�����������������������
1 − κ2x − κ2y

q
; �9�

with Re κz ≥ 0 in the upper Riemann sheet and Im κz ≤ 0 over
the integration contour. Thus the electric field in z ≥ 0 is given
by the plane-wave superposition

Ĕ�r; t� � −1
�2πc�2

Z
d2κt∂2t �~E�κt; t − c−1κ̂ · r�; (10)

where

�~E�κt; τ� � �~Et�κt; τ� � ẑ�~Ez�κt; τ�; (11)

and the spectral unit vector

κ̂ � �κx; κy; κz�: �12�

The TD plane-wave representation in Eq. (10) describes the
electric field Ĕ�r; t� in terms of an angular superposition of
TD EM plane-wave propagators. In the visible range where
κ2x � κ2y < 1, κz is real and each plane-wave propagator ema-
nates from z � 0 plane in the direction of the unit vector κ̂
in Eq. (12). For κ2x � κ2y > 1, the longitudinal wavenumber is
imaginary with Im κz < 0 along the integration contour so that
the time argument in Eq. (10) has a positive imaginary part
that is multiplied by z. This yields evanescent TD plane waves
that decay monotonically with z.

The representation in Eq. (10) can be rewritten as a super-
position of TE and TM plane-wave spectra with respect to
planes of constant z [49]. To that extent, two spectral unit vec-
tors are defined for a given spectral κt. Unit vector n̂�κt� de-
notes the normal to the so-called plane of incidence, and the
tangent unit vector t̂�κt� � κ̂ × n̂. Thus,

n̂�κt� � κ−1t �κyx̂ − κxŷ�; t̂�κt� � κzκ−1t �κxx̂� κyŷ� − κtẑ;
(13)

where κt �
����������������
κ2x � κ2y

q
.

The TE and TM spectral distributions are obtained by pro-
jecting the aperture spectral distribution, ~E�κt; τ�, on the unit
vectors in Eq. (13):
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�~E�κt; τ� � �~E
TE�κt; τ�n̂�κt� � �~E

TM�κt; τ�̂t�κt�; (14)

where

�~E
TE�κt; τ� � κ−1t �κy�~Ex − κx �~Ey�;

�~E
TM�κt; τ� � �κzκt�−1�κx�~Ex � κy �~Ey�: (15)

By applying the inverse STT in Eq. (7) to Eq. (14), the aperture
field in Eq. (1) can be propagated into z > 0 half-space in a
similar manner to Eq. (10), giving

E�r; t� � ETE�r; t� � ETM�r; t�; �16�

where

ETE�r; t� � Re
�

−1
�2πc�2

Z
d2κtn̂�κt�∂2t �~E

TE�κt; t − c−1κ̂ · r�
�
;

ETM�r; t� � Re
�

−1

�2πc�2
Z

d2κt̂t�κt�∂2t �~E
TM�κt; t − c−1κ̂ · r�

�
: (17)

3. SCALAR FRAME-BASED PULSED-BEAM
EXPANSION
A. General Formulation
In order to establish the EM frame-based PB expansion, we
briefly review here the main results of the scalar TD frame-
based beam decomposition, which was introduced in [8]. The
TD beam summation is constructed in the framework of the
WRT frames, where the z � 0 scalar aperture field �u0�rt; t� is
expanded using a set of WRT functions. The aperture field is
assumed to be band-limited in the frequency interval

Ω � �ωmin;ωmax�: �18�

The PB expansion is constructed over the discrete five-
dimensional frame spectral lattice

��x; �y;�κx;�κy;�τ� � �NxΔ�x;NyΔ�y;NκxΔ�κx;NκyΔ�κy;N τΔ�τ�; (19)

where �Δ�x;Δ�y� are the unit-cell dimensions in the �x; y� co-
ordinates and �Δ�κx;Δ�κy� and Δ�τ denote the unit-cell dimen-
sions in the spectral variables �κx; κy� and τ, respectively. We
use the index N � �Nx;Ny; Nκx ; Nκy ; Nτ� to tag the lattice
points (see Fig. 1). It is convenient to chose equal-direction
unit-cell dimensions Δ�κx � Δ�κy ≡Δ�κ and equal-space unit-
cell dimensions Δ�x � Δ�y≡Δ�rt. The unit-cell dimensions
should satisfy the overcompleteness criterion

�ωΔ�κΔ�rt � 2πcν; �20�

where 0 ≤ ν ≤ 1 is termed the overcompleteness (or oversam-
pling) parameter and �ω denotes a reference frequency that
is chosen to be greater then ωmax, i.e., �ω � Kωmax with typi-
cally 2.5 < K < 3 [8]. This choice implies a K times overcom-
pleteness (redundancy) of the frame at ωmax, while for lower
frequencies the overcompleteness increases like Kωmax∕ω
{see Eqs. (20)–(21) in [3]}. The temporal unit-cell dimension
satisfies

Δ�τ < 2π∕�ωmax � ωh�; �21�

where ωh denotes the maximum frequency of the synthesis
and analysis windows that are define next {see Eqs. (13)
and (A12) in [8] and the specific example in Eq. (39)}.

Next a synthesis set is defined over the frame lattice.
This set is obtained from the synthesis (“mother”) window
ψ�rt; t� via

ψN �rt; t� � ψ �rt − �rt; t − �τ − c−1�κt · �rt − �rt��; �22�

were �rt � ��x; �y� and �κt � ��κx; �κy�. Throughout the paper, sub-
script N denotes an object over the frame spectral lattice in
Eq. (19). Similarly, a set of WRT functions is obtained from the
analysis (“dual”) window, φ�rt; t�, via

φN �rt; t� � φ�rt − �rt; t − �τ − c−1�κt · �rt − �rt��: �23�

The analysis window can be evaluated from the synthesis one
in several ways, which are listed in [8] [see Eq. (38)]. The set in
Eq. (22) constitutes a frame that can be used to expand func-
tions of �rt; t� [see Eq. (24)]. This frame property is proven in
Appendices A and B in [8]. The window function ψ can be
quite general, but it is assumed here that it is localized about
the origin in the �rt; t� plan, such that its spatial width is much
greater than its temporal width. As such, ψN in Eq. (22) are
centered about the frame lattice point �rt; t� � ��rt;�τ� in
Eq. (19) and have linear delays whose slant angle is deter-
mined by the spectral lattice coordinate �κt. Because of these
properties, ψN have the shape of the kernel of a WRT about
the point ��rt;�τ� and therefore the set has been termed the
WRT frame.

The WRT frame representation of the scalar aperture field
is given by

u0�rt; t� �
X
N

aNψN �rt; t�; �24�

Fig. 1. Discrete frame spectral lattice. The fields in z ≥ 0 are evalu-
ated by superposition of tilted, shifted, and delayed PBs, which are
emanating from the aperture distribution plane over the discrete
frame spatial-directional-temporal lattice in Eq. (19). Each beam pro-
pagator emanates from a lattice point ��x; �y�, in a direction of
��ϑx;

�ϑy� � cos−1���κx; �κy�� with respect to the corresponding axis and
in delay time of �τ.
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where the expansion frame set, ψN �rt; t�, is given in Eq. (22). If
the window function φ�r; t� is chosen properly, then the sets in
Eqs. (23) and (22) constitute a dual frame sets. Because of the
overcompleteness of the representation, the coefficient set aN
is not unique and can be calculated in various ways. One
option is to use the dual set in Eq. (23). Thus, the expansion
coefficients aN are evaluated by the inner product of the aper-
ture distribution with the analysis set in Eq. (23), namely,

aN �
Z

dt
Z

d2rtu0�rt; t�φN �rt; t�: (25)

Recalling the discussion following Eq. (23), the operation in
Eq. (25) has been termed a WRT, which extracts from the
aperture field the local (directional) radiation properties.

In order to adjust the scalar theory to the EM vectorial case,
it is beneficial to evaluate the frame expansion coefficients
directly from the field’s PW spectral distribution �~u0�κt; τ�
[see Eq. (47)]. First we replace u0�rt; t� in Eq. (25) by its in-
verse STT

u0�rt; t� �
−1

�2πc�2
Z

d2κt∂2t ~u0�κt; t − c−1κt · rt�: (26)

By changing the integration variable to τ � t − c−1κt · rt and
inverting the order of integrations we obtain the desired
expression for the expansion coefficients

aN � −1
�2πc�2

Z
dτ
Z

d2κt∂2τ ~u0�κt; τ�~φN �κt; τ�; (27)

where

~φN�κt; τ� � �τ ~φ�κt − �κt; τ − �τ� c−1κt · �rt�: �28�

The scalar field in z ≥ 0 due to sources in z < 0 is obtained
by propagating each ψN �rt; t� window element in summation
Eq. (24) into z ≥ 0 half-space. Therefore, the frame-based re-
presentation of the field is given by

u�r; t� �
X
N

aNPN �r; t�; �29�

where each beam propagator, PN�r; t�, satisfies the scalar
wave equation

�∇2 − c−2∂2t �PN �r; t� � 0; �30�

subject to causality boundary conditions. The beam propaga-
tor can be evaluated in several ways, such as TD Green’s func-
tion (Kirchhoff’s) integration [47]

PN �r; t� �
Z

d2r0t
z

2πR2 �R−1 � c−1∂t�ψN �r0t; t − R∕c�; (31)

where rt 0 � �x0; y0� and R �
������������������������������������������������������
�x − x0�2 � �y − y0�2 � z2

p
. Alter-

native representation is obtained by applying a TD plane-wave
spectral decomposition of the form in Eq. (10), i.e., PN�r; t� �
Re �PN �r; t� with

�PN �r; t� �
−1

�2πc�2
Z

d2κt∂2t �~ψN �κt; t − c−1κ̂ · r�; (32)

where �~ψN denotes the (analytic) TD plane-wave spectrum
Eq. (6) of �ψN �rt; t�

�~ψN �κt; τ� �
Z

d2rt�ψN �rt; τ� c−1κt · rt�: (33)

By inserting Eq. (22) into Eq. (33), we identify

�~ψN �κt; τ� � �~ψ�κt − �κt; τ − �τ� c−1κt · �rt�: (34)

The spectral representation in Eq. (29) describes the field
as a discrete superposition of PB propagators that emanate
from points ��x; �y� on the frame spectral lattice, in a discrete
set of directions [that are determine by the spectral wavenum-
bers ��κx; �κy�] and in a discrete set of delays �τ (see Fig. 1). As-
suming that ψ�rt; t� is a short pulsed window, the spatial-
temporal and spectral distributions of ψN are localized about
�rt; t� � ��rt;�τ� and �κt; τ� � ��κt;�τ − c−1�κt · �rt�, respectively.
Consequently, �PN�r; t� are collimated scalar PB propagators
whose axes emerge from the processing-dependent point rt �
�rt over z � 0 plane, at the (processing-dependent) time t � �τ,
and in the (processing-dependent) direction

�̂κ � ��κt; �κz�; �κz �
�������������
1 − �κ2t

q
; �35�

where �κ2t � �κx2 � �κy2. Propagating PBs occur for �κt < 1 −Δκt ,
whereΔκt denotes the (plane-wave) spectral width of ~ψ�κt; τ�.
For �κt > 1�Δκt , the spectral distribution is localized in the
evanescent spectral range, and the corresponding beam pro-
pagators decay with z (see specific examples for pulsed-
quadratic windows in Subsection 3.B).

Finally we obtain a frame spectral representation for the
TD plane-wave spectrum of the aperture field �~u0�κt; τ�, which
is required in order to obtain the discrete TE/TM vectorial
frame-based representation in the next section. By applying
the analytic signal continuation in Eq. (2) to the summation
in Eq. (24) and then applying the STT operator in Eq. (33)
to the resulting �u0�rt; t�, we obtain, after inverting the order
of integration and summation,

�~u0�κt; τ� �
X
N

aN
�~ψN �κt; τ�; (36)

where ~ψN is given in Eq. (34) and the expansion coefficients
are evaluated from the aperture field via Eq. (25) or (27).

B. Isodiffracting Pulsed-Quadratic Frames
The general frame representation in Subsection 3.A is applied
here for the special case of ID pulsed-quadratic synthesis
windows [44]. These window functions exhibit frequency-
independent collimation (Rayleigh) lengths, they maximize
the localization as implied by the uncertainty principle and
yield analytically trackable beam-type propagators. There-
fore, ID windows have been used extensively for modeling
beam propagation [6–8,18,24,27,46].

The ID pulsed-quadratic synthesis spatial and spectral
windows are given by
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ψ�rt; t� � Re��g0�t − jr2t ∕2bc��;
~ψ�κt; τ� � 2πbc Im��g�τ − jbκ2t ∕2c��; (37)

where �g is an analytic function with a frequency band of
�ωl;ωh� with ωl ≤ ωmin, ωh ≥ ωmax, b is a real parameter,
r2t � rt · rt, and the prime denotes a derivative with respect
to the argument. The (temporal) spectrum of �g�t� equals 1
over the frequency band Ω in (18) where the data resides. The
parameter b sets the synthesis window width to the order of�����������
cTbb

p
where Tb denotes the temporal support of �g0�t�. This

parameter determine the beam propagator’s collimation dis-
tances [see Eq. (44)]. In order to obtain a “snug” frame over
the entire frequency band Ω, the collimation distance b should
be on the order ofΔ�rt∕Δ�κ; {For further details, please refer to
Eq. (24) in [8] and the discussion thereafter}.

The analysis spatial-temporal window and its PW spectral
distribution can be approximated in the high oversampling
regime by [8]

φ�rt; t�≃ −
2

�ω3Δ�rt
2 Im��g00�t − jr2t ∕2bc��;

~φ�κt; τ�≃
4πbc
�ω3Δ�rt

2 Re��g0�τ − jbκ2t ∕2c��: (38)

The frame expansion coefficients can be evaluated directly
in the spectral domain by inserting ~φ�κt; τ� in Eq. (38) into
Eqs. (27) and (28).

In the present investigation, we apply the linearly tapered
bandpass filter that was introduced in [8]

�g�t� �
�

1
πjt �sinc�ΔLt�e−j�ωL−ΔL�t − sinc�ΔHt�e−j�ωH�ΔH �t�

�
;

(39)

where sinc�t� � sin t∕t, ωH and ωL are the maximum and
minimum frequencies of the bandpass and ΔH , ΔL denote
the tapering frequencies (see [8] Fig. 4). Thus the maximum
frequency of the frame windows in Eq. (21) is identified
as ωh � ωH � 2ΔH .

The paraxial (short-pulsed) asymptotic ID PB propagators
that correspond to the synthesis windows in Eq. (37) are
obtained by utilizing the local beam coordinates rbN �
�xbN ; ybN ; zbN � that are defined, for a given spectral point
��x; �y;�κx; �κy� on the frame lattice, by the rotation transforma-
tion [7]

0
BBB@
xbN

ybN

zbN

1
CCCA �

0
BBB@
cos �ϑN cos �φN cos �ϑN sin �φN − sin �ϑN

− sin �φN cos �φN 0

sin �ϑN cos �φN sin �ϑN sin �φN cos �ϑN

1
CCCA

×

0
BBB@
x − �x

y − �y

z

1
CCCA; (40)

where ��ϑN; �φN� are the spherical angles that define the
spectral unit vector �̂κ in Eq. (35), i.e.,

cos �ϑN � �κz; cos �φN � �κx∕�κt; sin �φN � �κy∕�κt: (41)

Thus, on-axis observation points, for which

rt − �rt � z tan �ϑN�cos �φN x̂� sin �φN ŷ�; (42)

are identified by xbN � ybN � 0. By utilizing the beam coordi-
nates, the PB propagators are evaluated asymptotically by

PN �r; t� ∼ Re

2
4

����������������������������������������������
−jFN1

zbN − jFN1

−jFN2

zbN − jFN2

s

× �g0
 
t − �τ − zbN

c
−

x2bN∕2c

zbN − jFN1

−
y2bN∕2c

zbN − jFN2

!35: (43)

The PBs waists are located at zbN � 0 with collimation dis-
tances of

FN1
� b cos2 �ϑN; FN2

� b; (44)

in xbN and ybN , respectively.

4. VECTORIAL EM FIELD DECOMPOSITION
In order to obtain a TE/TM frame-based representation of the
electric field, E�r; t�, we introduce the TE/TM coefficients

a
TE∕TM
N �

Z
dt
Z

d2rtETE∕TM�rt; t�φN �rt; t�; (45)

where φN are the analysis set in Eq. (23) and ETE and ETM are
obtained by applying the inverse STT in Eq. (7) to the spectral
distributions in Eq. (17), i.e.,

ETE∕TM�rt; t� �
−1

�2πc�2
Z

d2κt∂2t ~ETE∕TM�κt; t − c−1κt · rt�: (46)

It is beneficial to evaluate these coefficients directly from the
PW spectral distributions in Eq. (15) without evaluating the
TE/TM aperture fields. By applying the formulation in Eq. (27)
to either aTEN or aTMN in Eq. (45), we obtain

a
TE∕TM
N � −1

�2πc�2
Z

dτ
Z

d2κt∂2τ ~ETE∕TM�κt; τ�~φN �κt; τ�; (47)

where the spectral distributions ~ETE and ~ETM are given in
Eq. (15) and ~φN is given in Eq. (28). Thus, by using Eq. (36)
for each TE/TM electric field spectral component, we can
write

�~E
TE∕TM�κt; τ� �

X
N

a
TE∕TM
N

�~ψN �κt; τ�; (48)

where �~ψN �κt; τ� are given in Eq. (34).
The expansion coefficients in Eq. (45) are used next in or-

der to obtained a frame-based spectral representation for the
TE/TM electric fields in z ≥ 0. By inserting Eq. (48) into
Eq. (17) and inverting the order of integration and summation,
we obtain, for each field component in Eq. (16),

ETE∕TM�r; t� �
X
N

a
TE∕TM
N ETE∕TM

N �r; t�; (49)

where ETE∕TM
N � Re ĔTE∕TM

N with
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ĔTE
N �r; t� � −1

�2πc�2
Z

d2κt∂2t n̂�κt��~ψN�κt; t − c−1κ̂ · r�;

ĔTM
N �r; t� � −1

�2πc�2
Z

d2κt∂2t t̂�κt��~ψN �κt; t − c−1κ̂ · r�; (50)

denoting the analytic TE/TM electric field of the EM PB pro-

pagators over the frame spectral lattice in Eq. (19). For short-
pulsed ψ�rt; t� windows, ETE

N and ETM
N are collimated EM PB

propagators whose axes emerge from the space–time point
�rt; t� � ��rt;�τ� over the z � 0 plane, in the direction �̂κ in
Eq. (35).

Equations (16), (49), and (50) represent the electric field
E�r; t� as a discrete superposition of EM PB waveobjects,
ETE
N and ETM

N , which are exact solutions of Maxwell’s equa-
tions. The excitation amplitudes of these EM propagators,
aTEN and aTMN , are obtained from the aperture field spectral dis-

tribution ~Et via Eqs. (47) and (15). The EM PB propagators are
characterized by both transversal and longitudinal localiza-
tion and high directivity. Each of these propagators consists
of only TE or TM polarizations thus they are pure TE/TM EM
propagators.

In order to gain insight on the structure of the EM PB pro-
pagators, we note that in the short-pulsed regime n̂�κt� and
t̂�κt� in the integrand of Eq. (50) are sampled at the on-axis
stationary point κt � �κt [7] (see also [46]). Hence, the result-
ing plane-wave spectral integrals can be evaluated asympto-
tically by

ETE
N �r; t� ∼ n̂��κt�PN �r; t�; ETM

N �r; t� ∼ t̂��κt�PN�r; t�; �51�

where n̂ and t̂ are defined in Eq. (13) and PN �r; t� is the (short-
pulsed) asymptotic evaluation of the scalar PB propagators in
Eq. (32). Each of the EM PB propagators in Eq. (51) is either
TE or TM polarized with respect to the beam axis direction
that is determined via Eq. (35) by the frame spectral direc-
tional variable �κt.

The TE/TM ID pulsed-quadratic beam propagators that are
corresponding to the windows in Eq. (37) are obtained by in-
serting �~ψN in Eq. (34) with Eq. (37) into Eq. (50). The resulting
plane-wave spectral integrals can be evaluated asymptotically
in the short-pulsed regime by inserting the scalar ID PB pro-
pagator in Eq. (43) into Eq. (51).

The magnetic field in z ≥ 0 is obtained by applying Fara-
day’s law, H � �−jωμ0�−1∇ × E, to Eq. (49) and inserting
Eq. (50). Thus,

H�r; t� � HTE�r; t� �HTM�r; t�; �52�

with

HTE∕TM�r; t� �
X
N

a
TE∕TM
N HTE∕TM

N �r; t�; (53)

where HTE
N and HTM

N denote the magnetic fields of the TE/TM
EM beam propagators and aTEN and aTMN are given in Eq. (47).
These magnetic fields can be evaluated by applying the well-
known plane-wave spectral relation ~H � η−10 κ̂ × ~E to Eq. (50).

Thus HTE∕TM
N � Re H̆TE∕TM

N where the analytic magnetic fields
are given by the spectral representation

H̆TE
N �r; t� � 1

η0
−1

�2πc�2
Z

d2κt t̂�κt�∂2t �~ψN �κt; t − c−1κ̂ · r�;

H̆TM
N �r; t� � 1

η0
1

�2πc�2
Z

d2κtn̂�κt�∂2t �~ψN �κt; t − c−1κ̂ · r�; (54)

where η0 �
������������
μ0∕ϵ0

p
is the free-space impedance, the spectral

unit-vectors n̂ and t̂ are given in Eq. (13), and ~ψN is the spectral
synthesis set in Eq. (34).

Following the discussion preceding Eq. (51), the short-
pulsed asymptotic magnetic fields take the form

HTE
N �r; t�∼η−10 t̂��κt�PN�r; t�; HTM

N �r; t�∼η−10 n̂��κt�PN �r; t�; �55�

where n̂ and t̂ are defined in Eq. (13) and PN �r; t� is the (short-
pulsed) asymptotic evaluation of the PB scalar propagator in
Eq. (32) that is given in closed form for ID pulsed-quadratic
windows in Eq. (43).

5. ILLUSTRATIVE EXAMPLE
In the example presented here, we apply the expansion pro-
cedure in Eq. (49) and demonstrate the numerical considera-
tions in obtaining the TE/TM frame-coefficients.

A. Aperture Field
The EM field in this example is in the form of an x-polarized
complex source PB (CSPB) [50] which is given by

E�r; t� � ReV0

�f �td�
4πR x̂;

R �
h
x2 � y2 � �z − z0 − jb0z�2

i1
2;

td � t − t0 − R∕c; (56)

where t0 and z0 < 0 denote the delay and location parameters
of the complex source, b0z > 0 is a real parameter, �f �t� is some
analytic signal and V0 � 1 volt is added to adjust for the phys-
ical units. By properly choosing �f �t�, one can achieve a well
localized field in space–time with a limited bandwidth, as
required in Eq. (18). In the present example, we used

�f �t� � e−jωct

�
2 sinc

�
2πt
T

�
� sinc

�
2π�t − T∕2�

T

�

� sinc
�
2π�t� T∕2�

T

��
; (57)

where sinc x � sin x∕x. This pulse corresponds to a deriva-
tive of the modulated “raised-cosine filter” (with roll-off factor
1). This choice set the bandwidth Ω � �ωc − 2π∕T;ωc�
2π∕T�.

In this example, the modulated frequency ωc � 15T−1, and
thus Ω � �ωmin;ωmax� � ��15 − 2π�∕T; �15� 2π�∕T �. All the
temporal parameters are normalized with respect to T , which
is the typical illumination time of the aperture field and spatial
parameters are normalized with respect to cT . The complex
source parameters are z0 � −2cT , b0z � 0.3cT and t0 � −2T .
The aperture is a 8cT × 8cT square.

The aperture field is obtained by setting z � 0 in Eq. (56)
with �f �t� in Eq. (57). The aperture electric field component Ex

is plotted in Fig. 2 for t � 0. The figure demonstrates the
locality of the aperture field.
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B. Implementation of the STT
The numerical implementation of the STT in Eq. (6) is neces-
sary in order to obtain the TE/TM PW spectral distributions in
Eq. (6) and the expansion coefficients in Eq. (15). We imple-
ment the STT of Ex�rt; t� via

~Ex�κt; τ� �
Z

dt
Z

d2rtEx�rt; t�δ�t − τ − c−1κt · rt�: (58)

In Eq. (58), for each �κt; τ� the integration is performed over a
tilted plane, which is defined by t � τ� c−1κt · rt. In this im-
plementation some interpolation is necessary in order to ad-
just tilted plane to the rectangular grid of the sampled field
Ex�rt; t�. Here the interpolation is implemented by replacing

δ�t� in the second equation in Eq. (58) with the weighted
δ function, δw�t�. In the present example, the weighted δ-
function is numerically modeled by a Lorenzian pulse of

δw�t� �
1
π

Tw∕2
t2 � �Tw∕2�2

; (59)

where the temporal pulse width Tw was set to be the temporal
grid unit cell.

Figure 3 presents the TE/TM spectral distributions in
Eq. (15) for the aperture field in Eq. (56). ~ETE�κt; τ� distribu-
tion is plotted in �κx; τ� plane for κy � 0 in Fig. 3(a), in �κy; τ�
plane for κx � 0 in Fig. 3(b), and in �κx; κy� plane for τ � 0 in
Fig. 3(c). Figures 3(d), 3(e), and 3(f) are the same as 3(a), 3(b),
and 3(c) for the ~ETM distribution. The figures show that the
spectral distributions resides mainly in the visible spectrum
range where κt ≤ 1. One can identify the spectral localization
of the CSPB field in both the directional and the temporal
spectral variables about �κt; τ� � �0; 0�.

C. Expansion Coefficients
The TE/TM coefficients of the aperture field in Eq. (56) are
evaluated by numerical implementation of the integration in

Eq. (47). The spectral analysis window, �~φ is obtained by insert-
ing the ID pulsed-quadratic window in Eq. (38) with �g in
Eq. (39) into Eq. (28). The window parameters are b � 10cT ,
ΔH � ΔL � ωmax∕8 and ωL;H � ωmin;max∓2ΔL;H . The frame
spectral grid is set to Δ�rt � 0.72cT ,Δ�κ � 0.14 and, according
to Eq. (21), Δ�τ � 0.13T . The overcompleteness parameter in
Eq. (20) was set to ν � 0.35. The corresponding spectral frame
grid �Nx; Ny; N�κx ; N�κy ; N�τ� size is 7 × 7 × 15 × 15 × 15.

The resulting TE and TM coefficients are plotted in Figs. 4
and 5, respectively, for various spectral planes as indicated in
the figure captions. Note that the spectral coefficients are
confined mainly to the propagating range �κx2 � �κy2 ≤ 1 and

to
�����������������
�x2 � �y2

p
< 2cT .
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Fig. 2. Aperture electric field Ex in Eq. (56) over z � 0 plane at t � 0.
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Fig. 3. TE and TM spectral distributions of the aperture field.
~ETE�κt; τ� distribution in (a) �κx; τ� plane for κy � 0, (b) �κy; τ� plane
for κx � 0, and (c) �κx; κy� plane for τ � 0. (d)–(f) are the same as
(a)–(c) for the ~ETM distribution.
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Fig. 4. TE expansion coefficients aTEN in various planes: (a) in ��x;�κy�
plane for �y � �κx � �τ � 0 and (b) in ��κx;�κy� plane for �x � �y � �τ � 0.
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Fig. 5. TM expansion coefficients aTMN in various planes: (a) in ��x;�κx�
plane for �y � �κy � �τ � 0 and (b) in ��κx;�κy� plane for �x � �y � �τ � 0.

Melamed et al. Vol. 29, No. 6 / June 2012 / J. Opt. Soc. Am. A 1121



D. Field Synthesis
The TE and TM electric fields were synthesized via the sum-
mation in Eq. (49) over the TE/TM asymptotic PB propagators
in Eqs. (51) and (43) over z � 2cT plane at t � 2cT . In order to
compare the resulting fields with the reference analytic solu-
tion in Eq. (56), we sum over the x components of ETE and
ETM. The reference field is plotted in Fig. 6(a), and the synthe-
sized field is plotted in Fig. 6(b). The absolute value of the
difference of the synthesized and the reference fields with re-
spect to the maximum reference PB field in dB is plotted in
Fig. 6(c). The figure shows that the error is less than −50 dB
for all observation points.

6. SUMMARY
Application of an exact beam-type expansion to TD EM aper-
ture fields was introduced, in which the EM PB propagators
are a priori decomposed into TE and TM fields with respect
to constant z planes. This procedure is essential for applying
Maxwell’s boundary conditions for solving different scattering
problems. In Eqs. (49) and (53), the propagating EM field is
described as a discrete superposition of the TE and TM EM
PB propagators that are defined in Eqs. (50) and (54). The EM
PB propagators are shifted, tilted and delayed to points and
directions according to the frame spatial-directional-temporal
frame lattice in Eq. (19). These vector waveobjects can be
obtained asymptotically in the short-pulsed regime from the
scalar PB propagators in Eq. (43) via Eqs. (51) and (55).
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