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Beam Frame Representation for Ultrawideband
Radiation From Volume Source Distributions:

Frequency-Domain and Time-Domain Formulations
Ram Tuvi, Ehud Heyman , Life Fellow, IEEE, and Timor Melamed , Senior Member, IEEE

Abstract— We present two novel beam-summation schemes for
radiation from time-harmonic or time-dependent volume source
distributions, where the field is expanded using a discrete phase-
space set of beam-wave propagators. The generic term “beams”
is used here for both the frequency-domain and the time-domain
formulations where the propagators are isodiffracting Gaussian
beam or isodiffracting pulsed beams, respectively. The formula-
tions are structured upon the recently formulated “beam-frame”
theorem that establishes these phase-space beam sets as frame
sets everywhere in the propagation domain and not only over
the aperture plane as in previous formulations. The expansion
coefficients are obtained by projecting the source distributions
over the dual beam-frame sets that have essentially the same
structure as the basic sets. As such, these formulations constitute
local generalization to the conventional plane waves or Green’s
function formulations, and also reduce the overall degrees of
freedom needed to describe the radiated field. As demonstrated
by the numerical examples, they resolve the local features of the
source distributions in space time, and hence provide a basis for a
new local inverse scattering theory to be presented subsequently.

Index Terms— Beam-summation (BS) methods, Gaussian
beams (GB), phase-space representations, pulsed beams (PB),
radiation theory, time domain (TD), ultrawideband (UWB).

NOMENCLATURE

UWB Ultrawideband.
GB Gaussian beam.
PB Pulsed beam.
ID Isodiffracting.
FD Frequency domain.
TD Time domain.
WFT Windowed Fourier Transform.
WRT Windowed Radon transform.
BF Beam frame.
PBF PB frame.
UWB-PS-BS UWB phase-space

beam-summation method.
PS-PBS Phase-space PB summation method.
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I. INTRODUCTION

BEAM-summation (BS) methods have long been utilized
for modeling wave propagation in complex environments

due to their unique properties, combining: 1) local resolution
of the (real or induced) source distributions; 2) asymptotically
uniform spectral representation; and 3) algorithmic ray-based
structure. We use the generic term “beams” for both FD and
TD formulations where the propagators are ID-GB or ID-PB,
respectively.

Several schemes for expanding time-harmonic or time-
dependent source-excited fields in terms of a spectrum of
beam waves have been introduced in the past (see a review
in [1]). This paper is related to the UWB-PS-BS that has
been introduced originally in the context of radiation from an
aperture-source distribution [2]. In the UWB-PS-BS, the field
is expanded using an overcomplete phase-space set of GBs
that emanate from a discrete set of points and directions over
the aperture. As such, this method is related to the Gabor-
series expansion [3]–[6]. The main drawbacks of the Gabor
series are the coefficients instability, even at a single frequency,
and the fact that the beam lattice needs to be recalculate
for each frequency [7], rendering the method inapplicable
for UWB applications. These obstacles were removed in the
UWB-PS-BS which is structured on Gabor frame (also termed
WFT frame). Here, the frame overcompleteness has been used
in a unique fashion that renders the beams’ trajectories and
their propagation parameters frequency independent. Thus,
the beam set is calculated only once and then used for all
frequencies. It should be noted that the WFT frame formula-
tion has been introduced originally in [8] in order to stabilize
the Gabor series formulations mentioned above.

These properties were used also to extend the formulation
into the TD, giving rise to the so-called PS-PBS [9], in which
the field is expressed as a sum of ID-PB propagators. This
method has been structured upon a new class of frames, termed
the WRT frames. The use of frames theory provides a rigorous
framework for the expansions and, at the same time, offers the
wave-modeler certain degrees of freedom in choosing the most
appropriate beam set for a given problem. These scalar for-
mulations have also been extended for vector electromagnetic
waves in the FD and TD [10] and [11], respectively.

A major step forward has been the proof in [12] and [13]
that the beam set of the UWB-PS-BS constitutes a frame,
termed “BF,” not only over the aperture plane where it reduces
to the standard WFT frame but also over any other plane
in the propagation domain (it is interesting to note that the
BF generalizes the conventional WFT and WRT frames that
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are structured upon Cartesian phase-space lattices, to the non-
Cartesian beam-based lattices). The theory in these papers has
been derived and implemented in the context of randomly
rough medium scattering, and later on, in the context of local
inverse scattering [14], [15]. The main goal of this paper is
to demonstrate and explore the basic features of this theory
within the basic context of radiation from volume source distri-
butions. We present both UWB-FD and TD formulations. The
results will be used in subsequent publications dealing with
local beam-based tomographic inverse scattering [16], [17].

The presentation is divided into two parts. Sections II–IV
deal with the UWB-FD formulation, while Sections V–VII
deal with the TD formulation. In each part, we start
with a review of the existing aperture-based formulations
of [2] and [9] for the FD and TD parts, respectively
(Sections II and V), then proceed with the construction of
the BFs (Sections III and VI), and finally with the BF
expansion of radiation from volume source distributions (Sec-
tions IV and VII). To simplify the presentation, the main
text utilizes formal expressions for the frame elements, while
explicit expressions for the ID frame elements are given in
Appendixes A and B for the 3-D FD and TD formulations,
respectively, and then in Appendix C for 2-D configurations.

II. ULTRAWIDEBAND PHASE-SPACE BEAM-SUMMATION

METHOD (UWB-PS-BS)
We start with a brief review the UWB-PS-BS strategy [2],

which provides the basis for the BF formulation presented in
Section III. This theory deals with radiation from an aperture
source distribution. It is based on a WFT-frame expansion of
these sources, which is structured in a specific fashion so that
the final field representation has the following key features.

1) The lattice of beam axes is frequency independent,
implying that only one set of trajectories needs to be
tracked in the medium, and then used for all frequencies.

2) The method utilizes the so-called ID-GBs, whose
propagation in the inhomogeneous medium can be
calculated analytically. Furthermore, the propagation
parameters are scaled with the frequency in an “isod-
iffracting” fashion, implying that they are frequency
independent [19], [20].

3) The parameter of the ID-GB is chosen such that the
resulting frame expansion is snuggest for all frequen-
cies, yielding a stable expansion algorithm [2], unlike
the conventional Gabor expansion which is notoriously
nonlocal and unstable.

4) Properties 1) and 2) above imply that the UWB-PS-BS
can be effectively expressed directly in the TD using the
so-called ID-PBs propagators (see Section V) [9]. These
wavepackets maintain their analytic structure through
propagation in inhomogeneous media, and as such may
be regarded as eigenwavepacket solutions of the wave
equation [19].

The theory is presented in the context of radiation into the
half-space z > 0 with a uniform wavespeed v0, due to a given
time-harmonic field distribution û0(x) over the z = 0 plane
(Fig. 1). We use the coordinate convention r = (x, z), x =
(x1, x2), and an overcaret denotes fields with e−iωt harmonic
dependence. It is assumed here that û0(x) has a wide frequency
band � = [ωmin, ωmax].

Fig. 1. BS representation of radiation from an aperture source distribution
over the z = 0 plane. The figure depicts both the time-harmonic formulation
of Section II where the propagators are beams (hatched arrows), and the
TD formulation of Section V where the propagators are pulsed beam (small
ellipses). The beams (or pulsed beams) emerge from the points xm in the
directions ξn. For clarity, we plot a sparse beam lattice, but actually, the lattice
is denser in space, spectrum, and time such that the beams are partially
overlapping. zbμ and xbμ are the “beam coordinates” along and transverse to
the μ beam-axis, defined in (A4).

A. Windowed Fourier Transform Frame

We start by defining the plane wave spectral representation
of the field

û(r) =
(

k

2π

)2 ∫
d2ξ ˆ̃u0(ξ)e

ik(ξ ·x+ζ z)

with ξ = (ξ1, ξ2), d2ξ = dξ1 dξ2,

ζ = √
1 − ξ · ξ , Im ζ ≥ 0, k = ω/v0 (1)

where eik(ξ ·x+ζ z) are plane-wave propagators, and the spectral
function ˆ̃u0(ξ), denoted by a tilde is defined by

ˆ̃u0(ξ) =
∫

d2x û0(x)e−ikξ ·x. (2)

We use the frequency-normalized spectral coordinate ξ =
kx/k since it is related the plane-wave direction in a frequency
independent fashion via ξ = (ξ1, ξ2) = sin θ(cosφ, sin φ).
The plane waves in (1) propagate in the

◦
κ = (ξ , ζ ) directions

such that the spectral regimes |ξ | < 1 and |ξ | > 1 constitute,
respectively, the propagation and evanescent spectra. Here and
henceforth, unit vectors are denoted by an overcircle.

The PS-BS formulation is based on a WFT-frame expansion
of û0. The WFT frame set over L2(R

2) is defined by

ψ̂μ(x) = ψ̂(x − xm)e
ikξ n·(x−xm)

μ = (m, n) = ((m1,m2), (n1, n2)) ∈ Z
4 (3)

where ψ̂(x) is a localized “mother window” function (typically
a Gaussian). The frame elements in (3) are centered about
the phase-space lattice xm = mx̄ and ξn = nξ̄ , tagged by
the four-index μ [2, Fig. 2]), with (x̄, ξ̄ ) being the unit cell
dimensions. The set {ψ̂μ(x)} in (3) constitutes a frame only
if this lattice provides an overcomplete coverage of the phase
space, i.e., (x̄, ξ̄ ) are chosen such that [2, eq. 9]

kξ̄ x̄ = 2πν, ν ≤ 1 (4)

where ν is the overcompleteness parameter and ν ↑ 1
corresponds to the critically complete (or Gabor) limit.
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Fig. 2. (a) Forward and (b) backward propagating BFs �±
μ , respectively. The figures depict both the time-harmonic beam sets of Section III (hatched arrows)

and the TD pulsed beam set of Section VI (small ellipses). The forward and backward propagating beam sets utilize the same beam skeleton with reverse
beam directions. Referring to Sections IV and VII, the figures also illustrate the BF expansion for radiation from a volume source q(r, t).

The WFT frame can be used to expand the aperture field
û0(x), namely,

û0(x) =
∑
μ

âμ ψ̂μ(x). (5)

In view of the overcompleteness, the coefficients set {âμ} is not
unique. A particularly convenient set with a minimum �2-norm
is obtained by using the dual frame {ϕ̂μ(x)} which has the
same structure as {ψ̂μ} in (3) except that the “mother window”
ψ̂(x) is replaced by the “dual window” ϕ̂(x). The resulting
canonical coefficient set is given by

âμ = 〈
û0(x), ϕ̂μ(x)

〉 =
(

k

2π

)2 〈 ˆ̃u0(ξ ), ˆ̃ϕμ(ξ )
〉

(6)

where 〈 , 〉 denotes the conventional L2 inner product in the
transverse coordinate x, and the second form in (6) follows
from Parseval’s identity. The canonical coefficients âμ in (6)
are readily identified as the local spectrum of û0(x) windowed
with respect to ϕ̂μ about the phase-space points (xm, ξn).

Generally, ϕ̂ should be calculated numerically, for a
given ψ̂ and lattice (x̄, ξ̄ ). However, if the lattice is suffi-
ciently overcomplete (ν � 1/3), ϕ̂ can be approximated by
[2, eq. (11)]

ϕ̂(x) ≈ ν2ψ̂(x)/‖ψ‖2. (7)

There are mainly two reasons to prefer the use of this
overcomplete parameter regime, even though it implies a
larger number of terms in the phase-space expansion (5):
1) as follows from (7), here ϕ̂ is localized both spatially and
spectrally, hence the expansion (5) comprises local and stable
coefficients; 2) ϕ̂ is given analytically in (7) and does not have
to be to calculated numerically. Reason 2) is critical for UWB
problems where ϕ̂ needs to be found for each ω, and it also
enables a simple transformation of ϕ̂(x) to the TD [see (B3)].

B. Beam-Summation Representation of the Radiated Field

The radiated field in z > 0 is obtained by substituting (5)
into (1), giving

û(r) =
∑
μ

âμ �̂
+
μ (r) (8)

�̂+
μ (r) =

(
k

2π

)2 ∫
d2ξ ˆ̃ψμ(ξ )e

ik(ξ ·x+ζ z). (9)

�̂+
μ (r) are the fields radiated into z > 0 by ψ̂μ(x).

In (9), ˆ̃ψμ(ξ) = ˆ̃ψ(ξ − ξn)e
−ikξ ·xm is the spectrum (2)

of ψ̂μ(x), with ˆ̃ψ(ξ ) being the spectrum of the mother
window ψ̂(x). If ψ̂(x) is wide on a wavelength scale, then
�̂+

μ (r) behave like collimated beams, emerging from the

points xm in the z = 0 plane in the directions
◦
κn =

(ξn, ζn) = (sin θn cosφn, sin θn sin φn, cos θn) (see Fig. 1).
However, as θn grows, the effective width of the windows,
as projected onto the beam directions, decreases and the prop-
agators �̂+

μ become less collimated [see the collimation length
Fμ1 in (A5)]. Indeed, it has been established in [2, Fig. 7] that
the GB approximation of �̂+

μ is valid only for θn smaller than
some limiting angle that depends on the beam collimation kb.
A typical value is θn � 60◦, i.e., |ξn| �

√
3/2. Thus,

an effective formulation using GB propagators is obtained
only at observation angles smaller than 60◦, or if the aperture
distribution is limited to spectral values |ξ | �

√
3/2. Finally,

we note that for |ξn| � 1, �̂+
μ decay exponentially with z

and, therefore, can be omitted from the BS representation (8)
of the radiated field.

Equation (8) expresses the radiated field as a sum of beam
propagators, emerging from xm on the z = 0 plane and
propagating in the ξn direction (Fig. 1). An important feature
of this formulation is the a priori localization, due to the fact
that the coefficients âμ in (6) sense and emphasize the beams
that match the local radiation properties of the aperture, and
hence the formulation is a priori localized about the skeleton
of geometrical optics. Further localization is due to the fact
that the μ summation in (34) accounts only for the propagators
that pass near the observation point r. The readers are referred
to the discussions and examples in [2].

C. UWB Considerations

1) Frequency-Independent Beam Skeleton: We use the same
(x̄, ξ̄ ) for all frequencies in the pertinent frequency band, thus
implying that the beam lattice is frequency independent as
noted in comment 1) at the beginning of Section II. It follows
from (4) that

ν(ω) = νmax
ω

ωmax
, ω ∈ � (10)
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where the parameter νmax is the value of ν at the highest
frequency ωmax, so that ν(ω) < νmax for all ω ∈ �. As noted
in connection with (7), we typically choose νmax � 1/3.

2) Isodiffracting Propagators: As noted in item 2) at the
beginning of Section II, we use the ID-GB propagators whose
favorable properties for UWB applications have been dis-
cussed there. The properties of these propagators in free space
are summarized in Appendix A. They are fully determined by
the frequency-independent parameter b which is actually the
collimation length of the beams. Once b is chosen by the wave
modeler for a given application, the lattice parameters (x̄, ξ̄ )
are determined via (A2) wherein we set ν = νmax as discussed
earlier. Note that if the initial conditions of the ID-GB are
known, then its propagation parameters in any inhomogeneous
medium can be calculated analytically.

III. BEAM FRAME (BF) CONCEPT

This concept extends the WFT-frame expansion from the
aperture plane to the propagation domain. It has been intro-
duced originally in the context of propagation in fluctuating
medium [12], [13]. Its application for radiation from volume
source is studied in Section IV.

A. Hilbert Space of Propagating Wave Fields

The BF theory is limited to the propagating fields, hence we
start by defining the Hilbert space HP ⊂ L2(R

2) of functions
û(x), x ∈ R

2 with no evanescent spectrum

HP = {
û(x) ∈ L2(R

2)
∣∣ ˆ̃u(ξ ) = 0, for |ξ | ≥ ξ0

}
(11)

with ξ0 < 1 is a parameter that depends on the properties of
the sources. Following the discussion after (9), we typically
consider fields with limited spectral spread θ0 � 60◦, hence
ξ0 = sin θ0 �

√
3/2.

Recalling from (3) that ψ̂μ are centered around ξn, it fol-
lows that û ∈ HP can be expanded using a subset of the
frameset {ψ̂μ(x)} in (3), tagged by the index set μP = {

μ =
(m; n) ∈ Z

4
∣∣ |n| < (ξ0/ξ̄) + n0

}
, where n0 is a parameter

that accounts for elements whose centers ξn lie just outside the
circle |ξ | < ξ0 which may contain some spectral contributions
inside that circle (typically n0 ∼ 1).

B. Forward and Backward Propagating Beam Frames

We start by noting that spectral integral (9) defines the
forward propagating beams not only for z > 0 but also for
z < 0. Thus, the beam set {�̂+

μ (r)}μP is forward propagating
from z = −∞ to ∞, converging at z = 0 to the WFT frame
set ψ̂μ(x) of (3), as depicted in Fig. 2(a).

Likewise replacing ζ → −ζ in the spectral integral (9)
defines the beam-set {�̂−

μ (r)}μP that are backward propagating
from z = ∞ to −∞, converging at z = 0 to the same WFT
frame set ψ̂μ(x), as depicted in Fig. 2(b).

We also define the sets of forward and backward beam
waves �̂±

μ (r), given by (9) but with ˆ̃ψμ(ξ ) replaced by ˆ̃ϕμ(ξ).
Clearly, the properties of the sets �̂±

μ (r) are similar to those
of �̂±

μ (r) as discussed earlier. In particular, at the z = 0 plane,
they reduce to the dual-WFT frame set ϕ̂μ(x). Note also from
(7) that in the highly overcomplete parameter regime used,
�̂±

μ are proportional to �̂±
μ .

C. Beam-Frame Theorems

The BF theory is based on the following theorems that have
been proved in [12, Appendix A].

Theorem 1 (Beam-Frame Theorem): The forward/back-
ward propagating beam sets {�̂±

μ (r)} constitute frames over
HP at any given plane z = const, with {�̂±

μ (r)} being their
canonical dual frames.

The theorem implies that any function f̂ (x) ∈ HP defined
over a given z = const . plane can be expanded using either
the �̂+

μ or the �̂−
μ sets on that plane. A special case of interest

is when the function to be expanded is a forward propagating
wavefield û+(r). In view of Theorem 1, it can be expanded
over any z = const plane using either the �̂+

μ set or the �̂−
μ

set at that plane. However, since û+ is forward propagating,
it makes sense to expand it using the forward propagating set
�̂+

μ , namely,

û+(r) =
∑

μ∈μP

Â+
μ (z)�̂

+
μ (r), Â+

μ (z) = 〈
û+(r), �̂+

μ (r)
〉∣∣

z .

Note that by definition, for any given r, the expansion
coefficients Â+

μ are calculated over the corresponding z
plane. For propagating wavefields, however, this restriction
can be removed as summarized in the following theorem
[12, Appendix B]:

Theorem 2 (The Coefficient Invariance Theorem): Let
û±(r) be forward/backward propagating wavefields in a
uniform medium, with no evanescent spectra. They may
be expanded using the forward/backward propagating BFs,
respectively, such that the coefficient sets { Â±

μ} are indepen-
dent of z.

In view of this theorem, any forward/backward propagating
wavefields û± can be expanded as

û±(r) =
∑

μ∈μP

Â±
μ�̂

±
μ (r) (12)

where the expansion coefficients are given as

Â±
μ = 〈

û±(r′), �̂±
μ (r

′)
〉∣∣

z′ (13a)

= 〈
û±

0 (x
′), ϕ̂μ(x′)

〉∣∣
z′=0 = â±

μ (13b)

where z′ in (13a) is arbitrary, while in (13b), we calculate the
coefficients on the z′ = 0 plane as in (6).

IV. BEAM-FRAME REPRESENTATION OF RADIATION

FROM A VOLUME SOURCES

The BF formulation generalizes the conventional plane-
wave spectrum representation in wave theory as it can be used
for local expansion of the sources (real or induced) and of
the resulting fields. As an example, we apply it here for the
basic problem of radiation from a volume source distribution
q̂, described by the wave equation

[∇2 + k2]û(r) = −q̂(r), q̂ bounded between z±. (14)

The solution to (14) can be expressed as

û(r) =
∫

d3r ′ q̂(r′)Ĝ(r, r′) (15)
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where Ĝ(r, r′) = eik|r−r′ |/4π |r − r′| is the free-space Green’s
function.

The BF expansion of the field has the form (12), namely,

û±(r) =
∑
μ

Â±
μ�̂

±
μ (r), for z ≷ z±. (16)

Next, we express Â± as a BF expansion of q̂(r). Referring
to the coefficient invariance Theorem 2, Â± can be calculated
on any z′ plane such that z′ ≷ z±, respectively. Therefore,
we calculate Â± on the planes z± via (13a), obtaining (cf. [12,
eqs. (35) and (36)])

Â±
μ =

(
k

2π

)2 〈 ˆ̃u(ξ , z), ˆ̃�±
μ (ξ , z)

〉∣∣
z± (17a)

=
(

k

2π

)2 ∫
d2ξ

∫ z+

z−
dz′′ ˆ̃q(ξ , z′′)eikζ |z±−z′′|

−2ikζ

× [ ˆ̃ϕμ(ξ )e
±ikζ z± ]∗ (17b)

=
∫ z+

z−
dz′′

(
k

2π

)2 ∫
d2ξ ˆ̃q(ξ , z′′)

[ ˆ̃ϕμ(ξ )e±ikζ z′′

2ikζ

]∗

(17c)

=
∫ z+

z−
dz′′

(
k

2π

)2 ∫
d2ξ ˆ̃q(ξ , z′′)

[ ˆ̃�G±
μ (ξ , z′′)

]∗
(17d)

=
∫ z+

z−
dz′′〈q̂(r′′), �̂G±

μ (r′′)
〉
. (17e)

Equation (17a) is the spectral (Parseval) counterpart of (13a)
evaluated over the z′ = z± plane. In the first line in (17b),
we used the spectral form of Green’s function solution (15),
and in the second line, we used the spectral definition of

�̂±
μ , namely, ˆ̃�±

μ = ˆ̃ϕμ(ξ )e±ikζ z , as follows from (9) and the
discussion in Section III-B. Then, (17d) defines the propaga-

tors ˆ̃�G±
μ (ξ , z′′), and finally (17e) is the spatial counterpart of

(17d). The final result in (17e) can be expressed as

Â±
μ =

∫
V

d3r q̂(r)
[
�̂G±

μ (r)
]∗ def= 〈

q̂(r), �̂G±
μ (r)

〉
V (18)

where from (17d), �̂G±
μ (r) are the beam-based Green’s func-

tions

�̂G±
μ (r) =

(
k

2π

)2 ∫
d2ξ eik(ξ ·x±ζ z) 1

2ikζ
ˆ̃ϕμ(ξ) (19a)

� 1

2ik cos θn
�̂±

μ (r). (19b)

The approximation in (19b) applies for the high-collimation
case where ˆ̃ϕμ is localized about the spectral direction ξn [see
discussion after (9)] so that we may replace ζ ≈ ζn = cos θn
in the amplitude. The spectral integral is then recognized as
�̂±

μ [see (9) and the discussion in Section III-B]. Note that in
view of (7), �̂G±

μ (r) is proportional to �̂±
μ (r).

Equation (18) is the main result in this section. It expresses
Â±

μ as a projection of q̂(r) onto the forward/backward propa-
gating beams �̂±

μ (r) (see Fig. 2). This formulation generalizes
the K -space formulation, where the field is expressed as a
superposition of plane waves whose amplitude (the K -domain
spectrum) is obtained by projecting q̂ onto the plane-wave

propagators �̂±
ξ (r) = eik

◦
κ ·r,

◦
κ = (ξ ,±ζ ). Thus, the BF beam

formulation in (16)–(18) is a step between Green’s function
formulation (15), where q̂ is described as a sum of point
sources, and the K -space formulation where q̂ is described
as plane-wave sources.

A. Example A: A Source With an Axial Phase Progression

For simplicity, we consider a 2-D problem, ρ = (x, z), with
time-harmonic source distribution

q̂(ρ) = q̂0 eiωz/vq for |ρ| < a and 0 otherwise (20)

where q̂0 is a constant, and vq defines the speed of the phase
progression of along the z-axis. We choose vq = 0.8v0 where
the units are normalized such that v0 = 1. The frequency band
is ω = [ωmin, ωmax] with ωmax = 1 and ωmin = 0.5ωmax, such
that the free-space wavelength is λ|ωmax = 2π . The source
support is taken to be a = 20π and is large on a wavelength
scale at all pertinent frequencies. The reference solution is
calculated via Green’s function integration (15) using the 2-D
Green’s function Ĝ(ρ,ρ′) = (−i/4)H (1)

0 (k|ρ − ρ′|).
1) Choosing the Expansion Parameters: We use ID-GB

beam set in Appendix C-A. We choose the collimation b =
100 to be larger than a, and νmax = 0.3 as discussed in (10).
Given b and νmax, the phase-space unit cell is calculated via
(A2), giving (x̄, ξ̄ ) = (13.73, 0.1373). The spatial resolution
is determined by the beamwidth W0 of (A6), and it varies
between ∼ 10 and ∼ 10

√
2 for ωmax and ωmin, respectively.

2) Expansion Coefficients: The expansion coefficients Â±
μ

are calculated via (18) with the beam kernels �̂G±
μ given

in (C3). We consider only those beams that pass no more
than three beamwidths away from the support of q̂ , where the
beamwidth Wμ�(zb) is given by the � = 1 term in (A6).

Henceforth, we shall be interested only in the field for
z > 0, described by the forward propagating BF �̂+

μ . The
magnitude of Â+

μ is plotted in Fig. 3, for ω = 0.7 and
1. One discerns that, as expected, the beams that match
the local phase-space distribution of the source are strongly
excited. Spatially, this implies that these beam pass through the
support of q̂(ρ), while spectrally, they should match the local
phase distribution of q̂(ρ). Noting that the phase progression
of the source is exp(iωz/vq), while the phase progression
of the propagators is controlled by exp(iωzbμ/v0) where zbμ ,
the coordinate along the beam axis, is given by zbμ = z/ζn

with ζn = cos θn = √
1 − ξ2

n , it follows that the coefficients
are localized in the phase-space zone ζn ≈ vq/v0.

We also observe that the coefficients Â+
μ near (m, n) =

(0, 0) vanish for ω = 1 but not for ω = 0.7. We would like
to clarify that these coefficients are oscillatory functions of ω
due to the ratio between λ(ω), a, and vq , so that vanishing at
ω = 1 is only a coincidence.

Finally, one discerns that the beams that pass near the
boundaries of q̂ sense the sharp truncation of q̂ at |ρ| = a and
are strongly excited. They can be deemphasized when the trun-
cation of q̂ in (20) is smoother. This diffraction effect is related
to the diffraction manifolds identified in [1], [2], and [4].

3) BS Calculation of the Field: The radiated field calculated
via the BS (16) is depicted in Fig. 4 for observation points
at the z = 100 plane. We threshold out the weakly excited
beams at a level of 1% and out of those we sum only
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Fig. 3. Magnitude of the expansion coefficients Â+
μ in the (xm , θn) phase

space for (a) ω = 0.7 and (b) ω = 1. Note the scale difference of the color
bars.

Fig. 4. Radiated field at z = 100. The figure compares the BS results (red
points) to Green’s function integration in (15) (solid blue lines). (a) and (b)
ω = 0.7. (c) and (d) ω = 1.

those that pass within a three-beamwidth neighborhood of the
observation point. This renders the field described by relatively
few elements which, nevertheless, capture the main physics
(see Fig. 3). Indeed, the results are in an excellent agreement
with the reference solution, with a small deterioration in the
accuracy at large angles which is an inherent property of the
BS approach as discussed after (9). We also note that the phase
remains more accurate, as needed for recovering of the TD
field.

B. Example B: A Source With an Oblique
Forward/Backward Phase Progression

Here, the source distribution has the form [see (20)]

q̂(ρ) = q̂0eiω
◦
κq ·ρ/vq + q̂0e−iω

◦
κq ·ρ/vq , |ρ| < a (21)

where
◦
κq = (sin θq , cos θq) and vq are the direction and

speed of the phase progression in q̂(ρ). The first and second
terms in (21) represent sources with phase progression in the
positive and negative

◦
κq directions, henceforth referred to

as q̂±, respectively. In the following, we choose θq = 30◦
and vq = 0.8v0 and calculate the radiated filed at z = 100.
It is expected that the dominant contribution there will be due
to q̂+.

Fig. 5. Expansion coefficients Â+
μ in the (xm , θn) phase space due to (a) q̂+

and (b) q̂− in (21). Here, ω = 1. Note the scale difference between the figures.

Fig. 6. Radiated field at z = 100 for ω = 1. The figure compares the BS
results (red points) to Green’s function integration in (15) (solid blue lines).

1) Expansion Coefficients: The field at z = 100 is expressed
in terms of the beam set �̂+

μ as in (16). We use the same
expansion parameters as in the example of Section IV-A1. The
respective amplitudes Â+

μ are plotted in Fig. 5 where we show
separately the contribution due to q̂+ and q̂−. As expected,
those due to q̂− are negligible, so that Â+

μ are dominated
by the contribution of q̂+ in Fig. 5(a). Noting that the phase
progression of q̂+ along the

◦
κq -axis is exp(iωz/vq cos θq),

while the phase progression of �̂+
μ along their axes is given

by exp(iωzbμ/v0) where zbμ , the coordinates along the beam
axes, is given by zbμ = z/ cos θn , it follows that the coefficients
are localized in the phase-space range cos θn ≈ (vq/v0) cos θq ,
giving in our case n = 5 as readily seen in Fig. 5(a). As in the
example of Section IV-A, one also discerns diffraction effects
due to beam that pass near the edges of q̂.

2) BS Calculation of the Field: Finally, the radiated field
is calculated as in Section IV-A3 where, as discussed there,
we only keep the beams whose amplitudes Â+

μ are at least
1% of the largest amplitude, and out of these, we sum only
those passing within a three-beamwidth neighborhood of the
observation point. Nevertheless, one observes that the BS
result in Fig. 6 captures the main physics and is in a good
agreement with the exact Green’s function result, with a small
deterioration at large angles, as discussed after (9).

V. PHASE-SPACE PULSED-BEAM SUMMATION (PS-PBS)

As noted in the Introduction, the UWB-PS-BS can be
expressed directly in the TD. In this section, we summarize
the WRT-frame theory of [9] which addresses radiation due
to an aperture source distribution u0(x, t) over the z = 0.
In Sections VI and VII, the theory will be generalized in terms
of the PB frame (PBF) and then applied for radiation from a
time-dependent volume source distribution q(r, t).

Following Section II, it is assumed that u0 ∈ L
�
2 (R

2 × R),
the Hilbert space of square integrable distributions in (x, t)
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Fig. 7. Slant stack transform (slanted lines) and the windowed-SST or WRT
(small ellipses) in the 3-D (x, t) domain. The slant is defined via
(v0 dt/dx) = ξn.

whose frequency spectrum is within � = [ωmin, ωmax].
Henceforth, time and FD constituents are related via the
Fourier transform

û(ω) =
∫ ∞

−∞
dt eiωt u(t). (22)

A. Time-Dependent Plane-Wave Formulation

We start by defining the “conventional” time-dependent
plane-wave spectrum ũ0(ξ , τ ) of u0(x, t), which is the TD
counterpart of ˆ̃u0(ξ , ω) of (2). Applying the inverse Fourier
transform to (2) and evaluating the ω-integration in a closed
form yields the TD plane-wave transform [9], [22]

ũ0(ξ , τ ) =
∫

d2x u0
(
x, τ + v−1

0 ξ · x
)
. (23)

Equation (23) is also referred to as a slant-stack transform
(SST) since it consists of projections of u0(x, t) along the
slanted delay surfaces t − v−1

0 ξ · x = τ = const in the
3-D (x, v0 t) data domain (see Fig. 7). Consequently, it extracts
from u0(x, t) the waveform of the time-dependent plane waves
ũ0(ξ , τ ) that propagate in the direction

◦
κ = (ξ , ζ ) of (1). For

|ξ | < 1, the slant angle is smaller than π/4 and the resulting
plane wave is “propagating,” whereas for |ξ | > 1, the slant is
larger and the plane waves are “evanescent,” i.e., decay away
from the z = 0 plane.

The radiated field for z > 0 is obtained by propagating
the pulsed plane-wave spectrum in (23). The expression is
obtained by inverting (1) into the TD. This procedure, how-
ever, requires an analytic signal formulation since ζ is complex
for |ξ | > 1, thus leading to a complex propagation delay
[1], [22]. The analytic signal corresponding to the frequency
spectrum û(ω) is defined via the one-side inverse Fourier
transform of (22), namely,

+
u(t) = 1

π

∫ ∞

0
dω e−iωt û(ω), Im t ≤ 0. (24)

Clearly, the integral in (24) defines an analytic function in the
lower half of the complex t plane, whose limit on the real t
axis defines the real (physical) signal u(t) via

+
u(t) = u(t)+ iH{u(t)}, t real. (25)

where H denotes the Hilbert transform. It follows that the
physical field for real t is given by u(t) = Re

+
u(t). Henceforth,

analytic signals are denoted by an overplus.
By applying now (24) to (1) and evaluating the ω integration

in a closed form, we obtain

+
u(r, t) = −1

(2πv0)2

∫
d2ξ ∂2

t

+
ũ0[ξ , t − v−1

0 (ξ · x + ζ z)].
(26)

In many cases, including the present, one is interested only
with the contributions of the propagating spectrum |ξ | < 1.
Here, ζ is real, hence (26) reduces to the real signal expression

uprop(r, t) = −1

(2πv0)2

∫
|ξ |<1

d2ξ ∂2
t ũ0

[
ξ , t − v−1

0 (ξ · x + ζ z)
]
.

(27)

B. Windowed Radon Transform (WRT) Frames

Referring to Section II, let ψ̂(x, ω) and ϕ̂(x, ω) be the dual
window functions corresponding to the WFT-frame over the
phase-space lattice (x̄, ξ̄ ) for all ω ∈ �. Outside �, these func-
tions can be chosen quite arbitrarily, hence we choose them
such that they taper smoothly to zero, thus yielding smooth and
localized spatiotemporal windows (see B1). Inverting these
functions to the TD defines the space-time “mother” windows
ψ(x, t) and ϕ(x, t). Note in (7) that in the highly overcomplete
regime which is used here, ϕ can be evaluated from ψ (see
the ID windows in (B3)).

The WRT frames are structured upon a discrete 5-D lattice
in the (x, t) domain [cf. (3)]

(xm, ξn, ts) = (mx̄, nξ̄ , st̄), (m,n, s)
def= (μ, s) ∈ Z

5. (28)

The temporal sampling rate t̄ satisfies

t̄ ≤ 2π

ωmax + ωh
(29)

where ωh , the highest frequency in ψ̂ and ϕ̂, is taken to
be outside � (i.e., ωh ≥ ωmax). The choice of ωh poses
a tradeoff between having more localized space-time prop-
agators for larger ωh while at the same time keeping t̄
sufficiently large to reduce the number of elements in the field
representation.

The WRT frames sets {ψμ,s} and {ϕμ,s} are now obtained
by inverting ψ̂μ, ϕ̂μ into the time coordinate t − ts , giving [9,
eq. (14)]

ψμ,s(x, t) = ψ[x − xm, t − ts − v−1
0 ξn · (x − xm)] (30)

ϕμ,s(x, t) = t̄ ϕ[x − xm, t − ts − v−1
0 ξn · (x − xm)]. (31)

Note that ϕμ,s is multiplied by the sampling scale t̄ .
As schematized in Fig. 7, the frame elements ψμ,s and ϕμ,s
are centered about the point (xm, ts) in the (x, t) plane, with
a spectral slant ξn , hence the WRT designation. A proof that
these sets constitute dual-frame set is given in [9, Appendix B].

The WRT frame expansion of the field u0(x, t) over the
z = 0 plane is obtain now by inverting (5) and (6) into the TD,
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also using the sampling theorem for functions in �, obtaining
[9, eq. (15)]

u0(x, t) =
∑
μ,s

aμ,sψμ,s(x, t) (32)

aμ,s =
∫

d2x
∫

dt u0(x, t)ϕμ,s(x, t)

= 〈u0(x, t), ϕμ,s(x, t)〉. (33)

Note that aμ,s = t̄aμ(ts), where aμ(t) is the TD counterpart
of âμ(ω) of (6).

Equation (33) expresses aμ,s as a projection of the data
u0(x, t) onto the window ϕμ,s(x, t). By comparing this pro-
jection to the SST in (23) as illustrated in Fig. 7, it is identified
as a local-SST of u0 about (x, t) = (xm, ts) with spectral tilt
ξn. The inverse transform (32) then reconstructs u0(x, t) as a
sum of the shifted and tilted window functions ψμ,s(x, t).

C. PS-PBS Representation of the Radiated Field

The expansion of the aperture source u0(x, t) in (32) can
be propagated into the z > 0 domain, giving

u(r, t) =
∑
μ,s

aμ,s�
+
μ,s(r, t) (34)

where �+
μ,s(r, t) are the propagating fields due to the window

functions ψμ,s(x, t) in the z = 0 plane. Since ψμ,s are
centered about the points (xm, ts) in the (x, t) plane, with
a spectral slant ξn (see Fig. 7), it follows that �+

μ,s are PB
fields that emerge from the points xm over the z = 0 plane,
at times ts and propagate in the

◦
κn directions defined after (9).

Propagating PB occur only for |ξn| � 1, whereas for |ξn| � 1,
�+

μ,s decay with z and can be omitted from the BS (34) for
the radiated field. For radiation problems, we need only the
propagating PBs with ξn in the propagating spectrum, which
are given by [cf. (27)]

�+
μ,s(r, t) = −1

(2πv0)2

∫
|ξ |<1

d2ξ ∂2
t ψ̃μ,s(ξ , t − v−1

0 (ξ · x + ζ z))

(35)

with ψ̃μ,s(ξ , τ ) = ψ̃(ξ − ξn, τ − ts + v−1
0 ξ ·xm) being the TD

plane wave spectrum (23) of ψμ,s(x, t) [cf. ˆ̃ψμ(ξ ) of (9)].
�+

μ,s(r, t) are also the inverse Fourier transform of the FD
propagators �̂+

μ (r) of (9) to the time coordinate t − ts.
We are interested in the high-collimation parameter regime

where �+
μ,s(r, t) behave like well-collimated space-time

wavepackets that propagate along the μ-beam axis, with their
center located at z+

bμ
= v0(t − ts) along the beam axis where

ts is the initiation time at xm in the z = 0 plane (cf. Fig. 1).
It follows that �+

μ,s(r, t) = �+
μ,0(r, t − ts).

Equation (34) expresses the radiated field as a sum of PB
propagators, emerging from (xm, ts) on the aperture plane
and propagating in the ξn direction (Fig. 1). As discussed
in connection with the FD representation in Section II-B,
the excitation amplitudes aμ,s , calculated via the local
SST (33), sense and emphasize the local radiation properties
of u0(x, t), and hence the formulation is a priori localized
about the space-time skeleton of geometrical optics. Further
localization is due to the fact that the (μ, s) summation in (34)

accounts only for the PB propagators that pass near the space-
time observation point (r, t). The readers are referred to the
discussions and examples in [9].

VI. PULSED-BEAM FRAMES (PBF)

Following the FD formulation in Section III, we introduce
here the PBF that extends the WRT-frame expansion of
Section V from the aperture plane to the propagation domain.
In Section VII, it is applied for radiation from volume sources.
It also provides the mathematical foundation of the local
inverse scattering theory in [16] and [17].

A. Hilbert Space of Propagating Wave-Fields

As in Section III, the theory is limited to propagating wave
field. We therefore consider the Hilbert subspace H

�
P of square

integrable distributions f in (x, t) whose spatial spectrum is
limited to |ξ | < ξ0 < 1, and their temporal spectrum is
constrained within �. Thus, recalling the definitions of L

�
2

in Section V and HP in (11), we define

H
�
P = {

f (x, t)∈L
�
2 (R

2 × R)
∣∣∣ f̃ (ξ , τ ) = 0 for |ξ |≥ξ0

}
(36)

where f̃ is the SST spectrum of f as defined in (23).

B. Forward and Backward Propagating PB Frames

We start, as in Section III-B, by noting that the spectral
expression (35) defines the forward propagating PB waves
�+

μ,s for all z, while by replacing ζ → −ζ , this expression
describes backward propagation PB waves �−

μ,s . We con-
sider only the propagating PBs, tagged by the index set
μP defined after (11). The sets {�±

μ,s(r, t)}μP ,s consist of
forward/backward propagating PB waves that propagate in
the directions

◦
κ±

n = (ξn,±ζn) along the μ axes in Fig. 2,
converging at z = 0 to the WRT frame set ψμ,s(x, t) of (30).

Likewise, we define the PB-sets {�±
μ,s(r, t)}μP ,s by replac-

ing in (35) ψμ,s by ϕμ,s of (31). Clearly, the properties of
these sets are similar to those of �±

μ,s discussed earlier. In
particular, at z = 0, both converge to ϕμ,s . Note that in the
highly overcomplete regime used, �±

μ,s have essentially the
same form as �±

μ,s [see comment after (31) and also specific
expressions in (B5) and (B6)].

C. Pulsed-Beam-Frame Theorem

The following theorem is a generalization of Theorem 1 of
Section III. The proof is a direct consequence of the UWB
properties 1) and 2) discussed in Section II and is not given
here (see [18]).

Theorem 3 (The Pulsed-Beam-Frame Theorem): Over H
�
P ,

the forward/backward propagating beam sets {�±
μ,s(r, t)} con-

stitute frames at any given plane z = const, with {�±
μ,s(r, t)}

being their canonical dual frames, respectively.
This theorem implies that any function f (x, t) ∈ H

�
P

defined over a given z plane can be expanded using either
the �+

μ,s or the �−
μ,s sets at that plane. As in (12), a special

case of interest is when the functions to be expanded are
forward or backward propagating waves u±(r, t). In this case,
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it makes sense to expand them using the �±
μ,s set, respectively,

namely,+

u±(r, t) =
∑

μ∈μP ,s

A±
μ,s�

±
μ,s(r, t). (37)

In view of the coefficient invariance, Theorem 2 and (13),
the coefficients may be evaluated over any z′ plane, namely
(see proof in [18])

A±
μ,s = 〈

u±(r, t),�±
μ,s(r, t)

〉∣∣
z′ = a±

μ,s (38)

where a±
μ,s are the coefficients calculated over the z = 0 plane

via (33).

D. Isodiffracting Pulsed-Beam Propagators

Specifically, as noted in item 4) of Section II, we use the ID-
PB set whose favorable properties are discussed there. Once
the initial conditions of these propagators are defined, say
at the z = 0, one may track them analytically in a general
inhomogeneous medium [19], [20].

Explicit expressions for �±
μ,s and �±

μ,s in free space are
given in (B5) and (B6). As in the FD case (Section II-C2), they
depend on the collimation length b. Once b is determined by
the wave modeler for a given application, the lattice parameters
(x̄, ξ̄ ) are determined via (A2). In addition, (B5) and (B6)

depend on the analytic filter functions
+
ϒ(t) that are fully

determined by the bandwidth � = [ωmin, ωmax], and also
on the parameter γ that defines the number of derivatives in
+
ϒ(t). Its role and the guidelines for choosing it are thoroughly
discussed in Appendix B-C and in Table I.

VII. PULSED-BEAM FRAME (PBF) REPRESENTATION OF

RADIATION FROM A VOLUME SOURCE

As in Section IV, we demonstrate the BPF concept by con-
sidering radiation from a time-dependent source distribution
q(r, t). The field u(r, t) satisfies the 3-D wave equation[∇2 − v−2

0 ∂2
t

]
u(r, t) = −q(r, t) (39)

where q is bounded between z±, with z− < z+. The solution
to (39) can be expressed by Green’s function integration

u(r, t) =
∫

d3r ′ q(r′, t − v−1
0 |r − r′|)

4π |r − r′| . (40)

Here, however, we are interested with a PB expansion of the
radiation. In view of (37), it has the form

u±(r, t) =
∑
μP ,s

A±
μ,s�

±
μ,s(r, t), for z ≷ z±. (41)

The PB amplitudes in (41) are found by inserting u(r, t)|z± of
(40) into (38). Following a procedure similar to that in (17)
and (18), we obtain

A±
μ,s =

∫
dt

∫
V

d3r q(r, t)�G±
μ,s (r, t) (42a)

= 〈
q(r, t), �G±

μ,s (r, t)
〉
V (42b)

where Green’s function-based propagators �G±
μ,s are the TD

counterparts of �̂G±
μ (r) in (19) at the time variable t − ts [up

Fig. 8. Expansion coefficients A+
μ,s in (42) for the TD source in (44).

Fig. 9. Snapshot of the radiated field in the (x, z) plane at t = 115, calculated
via the BS. To get physical insight, we also outline the footprint of the
dominant PBs at some representative space-time points (dashed ellipses) and
indicate in parenthesis their phase space coordinates (m, n, s) (cf. Fig. 8). The
strongest peaks are obtained at points A and B where the contributing PBs
at A are (m, n, s) = (1, 0, 15), (2, 1, 15), (3,−1, 15), (2, 0, 15), (4,−2, 10).
For points near B , the contributing beams are symmetrical, namely, m → −m
and n → −n.

to multiplying also by t̄ as in (31)]. In view of (19b), they are
related to �±

μ,s via

�G±
μ,s (r, t) = −v0

2 cos θn
∂−1

t �±
μ,s(r, t) (43)

where cos θn = √
1 − ξn · ξn is the beam angle with respect

to the z-axis, and ∂−1
t denotes a t-integration.

Equation (42) is the main result in this section. It expresses
the PB amplitudes in terms of the projection of q onto
the forward/backward propagating PBs as they traverse the
source (see Fig. 2). In physical terms, as the (μ, s) PB
traverses through the source q , it accumulates local contri-
butions along its center of mass whose propagation trajectory
along the μ-beam axis is zbμ = v0(t − ts) (Fig. 2). From
a mathematical perspective, the operation in (42) can be
regarded as a WRT of q(r, t) with respect to the PB window
functions [16].

A. Example A: A Source With an Axial Progression

We consider the 2-D source distribution q(ρ, t) which is the
TD counterpart of q̂(ρ, ω) in (20), namely,

q(ρ, t) = q0(t − z/vq ), for |ρ| < a and 0 otherwise (44)
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Fig. 10. TD signal on the x = 0 axis at z = 100.

where q0(t) is a short pulse whose spectrum is bounded
essentially in � = [ωmin, ωmax] = [0.5, 1], so that its
pulselength Tq ∼ 2π . vq is the speed of the pulse progression,
and we choose here vq = 0.8v0 with the units normalized
such that v0 = 1. The source support a = 20π is large on the
pulselength scale. The reference solution is calculated using
the 2-D Green’s function

G(ρ, t; ρ ′, t ′) = 1

2π

H (t − t ′ − R/v0)√
(t − t ′)2 − (R/v0)2

(45)

where H (t) is the Heaviside step function and R = |ρ − ρ′|.
1) Choosing the Expansion Parameters: The beam expan-

sion parameters (b, νmax) were chosen as in the UWB-FD
example of Section IV-A, giving the values of (x̄, ξ̄ ) as
noted in Section IV-A1. For the TD problem, we also chose
t̄ = 1, so that the PB are five times more localized in
time than the actual data. Referring to the discussion in (29),

we can use ωh ≈ 5. The filter function
+
ϒ(·) in (B5) and

Fig. 13 has been chosen accordingly such that (ωL , ωH ) =
(ωmin, ωh) = (0.5, 5), and �L = �H = 0.05. The PB
propagators �±

μ,s(ρ, t) and the sampling propagators �G±
μ,s

in (42) are given by (C4)–(C10). In view of the discussion
after (C10) [see also (B6)], we choose the parameters there
to be (γ, α) = (0, 0) so that �±

μ,s(ρ, t) are proportional to

Re
+
ϒ and are symmetrical about their center of mass and peak

there, while �G±
μ,s are proportional to Re

+
ϒ(1) (convolved with

|t|−1/2) and are antisymmetric along the beam axes. It follows
that these sampling kernels sense essentially the derivative of
q(ρ, t) along the beam axis. Note that choosing any other
value of γ = 1, 2, 3 and of α leads to other final result. For
example, for (γ, α) = (0, π/2), �±

μ,s are antisymmetric along
the beam while �G±

μ,s are symmetrical.
2) Expansion Coefficients: The expansion coefficients A±

μ,s
were calculated via (42). As noted earlier, the sampling
propagators �G±

μ,s sense essentially the derivative of q(ρ, t)
along the beam axis. Henceforth, we shall be interested only
in the field for z > z+, described by the forward propagating
PBF �+

μ,s . The resulting coefficients A+
μ,s are shown in Fig. 8.

For clarity, we depict only the coefficients in the range |m| ≤
6, |n| ≤ 2, and |s| ≤ 50, corresponding to the physical
coordinates range |xm | < 82.4, |θn| < 16◦ and |ts | < 50.

Strong excitation coefficients are obtained for the (μ, s) PBs
that best match the local phase-space distribution of q(ρ, t).
In the present example, there are mainly two mechanisms
that give rise to strong coefficients. The first is due to PBs
that follow the source-pulse q0 as it traverses the medium.
Recalling that the propagation trajectory of q0 is z = vt , while
the propagation trajectories of �G+

μ,s are zbμ = v0(t − ts) along
the μ beam axis is zbμ = z/ζn with ζn = cos θn = √

1 − ξ2
n ,

it follows that the PBs that track the center of q0 are described
by ζnv0 ≈ v, ts ≈ 0 with |xm| < a. Substituting the values
of v/v0 and ξ̄ , we obtain n ≈ ±4. In fact, recalling that
the sampling kernel �G+

μ,s senses essentially the derivative of
q(ρ, t) along the beam axis, the contributions of the peak of q0
(i.e., the s = 0 term) are weak, and the strongest coefficients
A+

μ,s are obtained where q0 has a strongest derivative, i.e., for
|ts | ∼ Tq/2 ∼ π where Tq is the pulselength of q0. In any
case, these coefficients are significantly weaker than those
corresponding to the source truncation at ρ = a that are
discussed next.

The other, and in this example more significant, mechanism
that generates strong excitation coefficients is the source
truncation at ρ = a (recall that the expansion parameters
were chosen such that �G±

μ,s sense essentially the derivative
of q(ρ, t) along the beam axis). As an example, we consider
the contribution of the (m, n) = (0, 0) PBs whose propagation
trajectories along the z-axis are given by t − ts = z/v0.
It follows that the PB that reaches the truncation point z = a at
the time a/v at which the source-pulse q0 reaches that point,
is tagged by ts ≈ a/v − a/v0. In the present example, setting
v = 0.8v0 and a = 20π , we obtain ts ≈ 5π . Likewise,
the contribution from the source truncation at z = −a is
described by ts ≈ −5π . These contributions are readily
observed in Fig. 8. One also observes that the edge truncation
contribution to beams with n = 0 but |m| ≥ 1 has a smaller
|ts |, due to the fact that q0 reaches the corresponding truncation
points at |t| < a/v. Similar arguments can be used to explain
the coefficients for the tilted beams with n �= 0.

3) Beam-Summation Calculation of the Field: Fig. 9 depicts
a snapshot of the radiating field at t = 115, which was
calculated via the BS approach (41). To check the accuracy
of these results, we depict in Fig. 10, the signal at z = 100
on the x = 0 axis, observing an excellent agreement with the
reference solution calculated via Green’s function integration.

The BS provides a local physical insight into the struc-
ture of the field. The dashed ellipses in Fig. 9 depict the
footprints of the dominant PBs at some representative point,
along with their phase-space coordinates (m, n, s) (cf. Fig. 8).
Note that the leading edge of the field (around z = 130)
is generated by PBs with index s = −15, correspond-
ing to contributions from the region (x, z) = (0,−a) in
the source domain, whereas the trailing edge (around z =
100) is generated by PBs with index s = 15, correspond-
ing to contributions from the region (x, z) = (0, a) in
the source domain. The strongest peak at point A is a
sum of PBs with indexes (m, n, s) = (1, 0, 15), (2, 1, 15),
(3,−1, 15), (2, 0, 15), (4,−2, 10), corresponding to the phys-
ical coordinates: (xm, θn, ts) ≈ (13.7, 0, 15), (27.4,−8, 15),
(41.2,−8, 15), (27.4, 0, 15), and (54.9,−16, 10). For the
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Fig. 11. Expansion coefficients A+
μ,s for the TD source in (46).

Fig. 12. Snapshot of the radiated field in the (x, z) plane at t =
32.79, calculated via the BS. To get physical insight, we also out-
line the footprint of the dominant PBs at some representative space-
time points (dashed ellipses) and indicate in parenthesis their phase space
coordinates (m, n, s) (cf. Fig. 11). The strongest peaks are obtained at
points A and B where the contributing PBs at A are (m, n, s) =
(−2, 4, 1), (−1, 4, 8), (−3, 4,−7), (−4, 5,−16). For points near B ,
the contributing beams are (2, 3, 29), (0, 4, 16), (3, 3, 34), (1, 4, 23).

symmetrical point B , the contributing beams are obtained by
replacing m → −m and n → −n.

B. Example B: A Source With an Oblique
Forward/Backward Progression

Finally, we consider the TD counterpart of the example in
(21), namely,

q(ρ, t) = q0(t − ◦
κq · ρ/vq )+ q0(t + ◦

κq · ρ/vq ) (46)

where the first and second terms, henceforth referred to as
q±, respectively, represent sources which progress at speed
vq in the positive or negative

◦
κq direction, with

◦
κq =

(sin θq , cos θq). q0(t) is the short pulse discussed in (44).
In the following numerical example, we have θq = 30◦ and
vq = 0.8v0 and calculate the radiated filed at z = 100.

We consider the radiation into the half-space z > 0 where
the field is expressed in terms of forward propagating beam set
�+

μ,s as in (41). We employ the same expansion parameters as
in the examples in Section VII-A. The respective amplitudes
A+

μ,s in Fig. 11 are the combined contributions of q+ and q−:
we do not show them separately since the latter are negligible
(see Fig. 5). The coefficients shown are in the range |m| ≤ 6,

2 ≤ n ≤ 6, and |s| ≤ 60, corresponding to the physical
coordinates range |xm | < 82.83, 15.94 < θn < 55.47◦
and |ts | < 60. They are identified as contributions of the
forward propagating pulse q+ in (46). Following the same
considerations as in Section VII-A2, one readily concludes
that the dominant terms are n = 5 [see also the corresponding
FD example in Section IV-B and Fig. 5(a)]. In addition,
strong contributions are obtained for beams that sense the
discontinuity along the boundary of the source, tagged here
by n = 4 corresponds to θn = 33.31◦.

Finally, in Fig. 12 we depict a snapshot of the radiated field
in the (x, z) plane at t = 132.8. As in Fig. 9, the dominant
PBs are shown as dashed ellipses along with their phase-
space coordinates (m, n, s). At point A, these coordinates are
(−2, 4, 1), (−1, 4, 8), (−3, 4,−7), and (−4, 5,−16). At point
B, they are (m, n, s) values are (2, 3, 29), (0, 4, 16), (3, 3, 34),
and (1, 4, 23). Note that the dominant terms are due to the
source discontinuities corresponding to the direction of the
source pulse.

VIII. CONCLUSION

We presented two novel BS schemes for radiation from
time-harmonic or time-dependent volume source distributions,
where the field is expanded using discrete phase-space sets of
beam waves. Consequently, this paper consists of two parts:
Sections II–IV deal with the UWB-FD formulation, while
Sections V–VII deal with the TD formulation.

The beam sets are illustrated in Fig. 2, which depicts
both the time-harmonic ID-GB {�̂±

μ (r)} (hatched arrows)
and the time-dependent ID-PB propagators {�±

μ,s(r, t)} (small
ellipses). These sets are structured upon a frequency-
independent beam lattice, identified by the initiation points xm,
directions ξn and times ts over the z = 0 plane, as defined in
(3) and (28). The criteria for choosing the unit-cell dimensions
(x̄, ξ̄ , t̄) have been discussed in (4), (10), (A2), and (29), and
demonstrated in the examples of Sections IV-A and IV-B and
Sections VII-A and VII-B. Explicit expressions for the ID-GB
and for the ID-PB frame elements are given in Appendixes A
and B for the 3-D FD and TD formulations, respectively, and
in Appendix C for 2-D formulations where the TD Green’s
function introduces fractional derivatives.

Theorems 1 and 3 establish that FD and the TD beam
sets {�̂±

μ (r)} and {�±
μ,s(r, t)} constitute frames, termed “BFs,”

not only over the aperture plane, where they reduce to
the conventional WFT and WRT frame sets in [2] and
[9], respectively, but actually everywhere in the propagation
domain. Consequently, they can be used to expand radiation
from volume source distributions and not only from aperture
sources as was done so far. We have also constructed the
dual BFs.

The final expression for the beam expansion of radiation
from volume source is given in (16) and (41) for the UWB-
FD and TD formulations, respectively, wherein (18) and (42)
express the expansion amplitudes in terms of the projection
of the volume sources onto the forward/backward propagating
dual beam waves as they traverse the source (see Fig. 2).
As such, these formulations provide local generalizations to
the conventional plane waves or Green’s function formulations,
which resolve the local features of the source distributions in



TUVI et al.: BF REPRESENTATION FOR UWB RADIATION FROM VOLUME SOURCE DISTRIBUTIONS 1021

space time, as demonstrated by the examples in Sections IV-
A and IV-B and Sections VII-A and VII-B. In these detailed
examples, we also explained the considerations for choosing
the expansion parameters, namely, the phase-space lattices,

the beam parameters, and the filter functions eiα
+
ϒ(γ )(t) that

are used in the TD formulation [see (B5)–(B6), (C4)–(C5),
and discussions thereafter].

As demonstrated, the beam formulations capture the main
physics and express the field using a relatively few terms.
These properties have been used to study wave propagation
through randomly fluctuating medium [12], [13] and for local
tomographic inverse scattering [16], [17].

APPENDIX A
EXPLICIT EXPRESSIONS FOR THE ISODIFFRACTING

GAUSSIAN BEAMS (ID-GB)

The ID windows are Gaussian-type windows whose width
is scaled with the frequency in a specific fashion, termed ID
that renders the favorable properties listed in items 2)–4) in
Section II. The ID windows have the general form [1]

ψ̂ID(x) = e−|k|x·x/2b (A1)

where b > 0 is a frequency-independent parameter, whose
optimal value for the present application is discussed in the
following. This parameter will be identified in (A4)–(A5) as
the collimation or Rayleigh length of the GB that emerges
from this window.

For a snug frame, it is required that the window will be
matched to the phase-space lattice (x̄, ξ̄ ) in the sense that
the spatial and spectral coverage of the window are balanced,
i.e., �x/x̄ = �ξ/ξ̄ where �x and �ξ are the spatial and
spectral widths of ψ̂ID, giving bsnug = x̄/ξ̄ [2, eq. 33]. Note
that this b provides a snug frame for all ω. Combining this
relation with (4) implies that once b is determined for a
given application then the optimal values for the beam lattice
are

(x̄, ξ̄ ) = √
2πνmax/kmax(b

1/2, b−1/2) (A2)

where νmax is the value of ν at the highest frequency kmax
and is typically taken to be νmax � 1/3 as noted in (7). b is
typically chosen to match the propagation environment, but it
should also satisfy the collimation condition bkmin � 1 at the
lowest frequencies. Further considerations for choosing b and
νmax are discussed in [2, Secs. IV-B and V-A].

Using (7), the dual ID window is given, approximately, by

ϕ̂ID(x) � (
ν2

max

/
πbk2

max

)
k3 ψ̂ID(x). (A3)

The forward/backward propagating phase-space propagators

are calculated by substituting ˆ̃ψID into (9). For large kb, one
obtains the GB form [2, Sec. IV-A]

�̂±
μ (r) �

√
−i Fμ1

zbμ − i Fμ1

−i Fμ2

zbμ − i Fμ2

× exp

{
ik

[
zbμ +

x2
bμ1
/2

zbμ − i Fμ1
+

x2
bμ2
/2

zbμ − i Fμ2

]}
(A4)

where (zbμ, xbμ) are the beam coordinates along and trans-
verse to the beam axes, respectively (see Figs. 1 and 2), and

xbμ = (xbμ1, xbμ2) are chosen such that the unit vector
◦
xbμ1

lies in the plane spanned by
◦
z and ξn, and

◦
xbμ2 = ◦

zbμ × ◦
xbμ1

[2, eq. 28]. In (A4)

Fμ1 = b cos2 θn, Fμ2 = b. (A5)

Expression (A4) has the standard form of a GB that propagates
along the zbμ-axis with Fμ� , � = 1, 2, being the collimation

lengths in the planes spanned by (
◦
zbμ,

◦
xbμ� ). As discussed

after (A1), Fμ1,2 are frequency independent, hence the ID
designation. For more details on the ID-GB, please refer to [1].
Separating the phase in (A4) into real and imaginary parts, one
finds that the beamwidths Wμ�(zb) in the � plane, where the
field intensity reduces to e−1, are given as

Wμ�(zb) = W0μ�

√
1+(zbμ/Fμ�)2, W0μ� = √

Fμ�/k. (A6a)

For zbμ < Fμ�, the beamwidths are essentially W0μ� , whereas
for zbμ > Fμ�, they diffract in the respective planes at angles

�μ� = 1/
√

k Fμ�. (A6b)

Finally, in view of (A3), the dual propagators are given as

�̂±
μ (r) � (

ν2
max

/
πbk2

max

)
k3 �̂±

μ (r) (A7)

and [see (19b)]

�̂G±
μ (r) � (−iν2

max

/
2πbk2

max cos θn
)

k2 �̂±
μ (r). (A8)

APPENDIX B
EXPLICIT EXPRESSIONS FOR THE ISODIFFRACTING

PULSED BEAM (ID-PB)

A. “Mother” Windows

The ID-PB windows are the TD counterparts of the ID-GB
windows used in the FD formulation. Their frequency spectra
are obtained by multiplying the ID-GB windows of (A1) and
(A3) by arbitrary spectra f̂ (ω) and ĝ(ω), respectively, namely,

ψ̂ID(x) → f̂ (ω)ψ̂ID(x), ϕ̂ID(x) → ĝ(ω)ϕ̂ID(x). (B1)

In order to have a valid dual set at all frequencies in the
pertinent FD, it is required that f̂ (ω)ĝ∗(ω) = 1, for ω ∈
�, while for ω ∈� �, they can be chosen quite arbitrarily.
They are chosen such that they taper smoothly to zero, thus
yielding smooth and localized spatiotemporal windows. The
considerations for choosing f, g are discussed in Sec. B.

The TD counterpart of ψID is obtained by inverting (B1)
into the TD. Since ψ̂ID has different analytic form for positive
and negative ω, we use the analytic signal formulation in
(24)–(25). Thus, applying (24) to (B1), we obtain the TD
windows

ψID(x, t) = Re
+
f (t − i |x|2/2bv0). (B2)

The space-time properties of ψID are governed by the filter f .

The temporal windowing is due to the pulse shape of
+
f (t),

while the spatial x-windowing is due to the negative imag-

inary part of the argument of
+
f in (B2), which increases

quadratically with |x|, and due to the general property of
analytic signals, which decay as the imaginary part of their
argument becomes more negative (see (24)). Assuming that
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Fig. 13. Frequency characterization of a generic filter.

the pulselength of f (t) is ∼ T f , it follows that this is also the
temporal support of ψID, while the spatial width in |x| is of

order ∼ √
v0T f b [1], [19]. Note that the argument of

+
f has a

negative imaginary part as required by (24).
The dual window is given by using the relation in (A3),

giving

ϕID(x, t) = ν2
max

πbv0ω2
max

Re{−i
+
g(3)(t − i |x|2/2bv0)} (B3)

where the parenthesized superscript (n) denotes the nth deriv-
ative of a function with respect to its argument.

B. Constructing the Filters f and g

Following [9], we use a class of analytic filters that are

derived from the standard analytic filter
+
ϒ(t) whose frequency

spectrum ϒ̂(ω) is characterized by four parameters as defined
in Fig. 13 (after [9, Fig. 4]): 1) the operative frequency
band ωL , ωH where ϒ̂(ω) = 1; and 2) the lower and upper
transition zones 2�L, 2�H where ϒ̂ tappers smoothly to zero
in order to obtain smooth and localized windows.

Given the signal bandwidth �, we choose ωL , ωH such
that � ⊆ [ωL, ωH ], while typically we choose an equality.
The transition parameters �L and �H are then determined
such that larger transition zones lead to smoother and more
localized windows but, as implied by (29), require higher
sampling rate.

Explicit expressions for
+
ϒ(t) with linear and cubic tapers

are given in [9, eqs. (32)]. Basically,
+
ϒ(t) is localized about

t = 0 such that its real and imaginary parts are symmetrical
and antisymmetric about t = 0, respectively.

The filters f̂ and ĝ in (B1) are taken now to be

f̂ = (−iω)γ eiαϒ̂, ĝ = (iω)−γ eiαϒ̂ (B4)

where the parameters α and γ ≥ 0 are added to gain flexi-
bility, as explained in the following. Clearly, (B4) satisfies the
requirement f̂ (ω)ĝ∗(ω) = 1 for ω ∈ � discussed after (B1).

Multiplying (A4) by f̂ of (B4) and inverting the result into
the TD using the analytic signal formulation, yields

�μ,s(r, t) = Re

{√
−i Fμ1

zbμ − i Fμ1

−i Fμ2

zbμ − i Fμ2

×eiα
+
ϒ(γ )

(
t−ts −

zbμ

v0
−

x2
bμ1
/2v0

zbμ −i Fμ1
−

x2
bμ2
/2v0

zbμ −i Fμ2

)}
(B5)

where, as noted after (B3),
+
ϒ(γ )(t)

def= ∂
γ
t

+
ϒ(t).

Expression (B5) has the standard form of an ID-PB, a space-
time wavepacket that propagates along the zbμ axis, with
Fμ1,2 being the collimation lengths. As discussed after (B2),
the wavepacket confinement along the beam axis is due to the

pulse shape of
+
ϒ(t), while the transversal confinement in xbμ

is due to the negative imaginary part of the argument of
+
ϒ in

(B5), which increases quadratically with |xbμ |, and the general
property of analytic signals that decay as the imaginary part
of their argument becomes more negative. For more details on
the ID-PB, refer to [1], [19].

Likewise, the dual-frame propagators �±
μ,s(r, t) and

�G±
μ,s (r, t) are obtained by multiplying �̂±

μ (r) and �̂G±
μ (r) of

(A7) and (A8) by ĝ of (B4) [multiplying also by t̄ as in (31)]
and inverting the result to the TD. The result has the same
form as in (B5) with the replacement

+
ϒ(γ )(·) −→

⎧⎪⎪⎨
⎪⎪⎩

(−1)γ+1t̄ ν2
max

πbv0ω2
max

i
+
ϒ(3−γ )(·), for �±

μ,s

(−1)γ t̄ ν2
max

2πbω2
max cos θn

i
+
ϒ(2−γ )(·), for �G∓

μ,s .

(B6)

C. Choosing the Filter Parameters α and γ

The role of γ is to split the derivatives of
+
ϒ between �

and � while maintaining the condition f̂ (ω)ĝ∗(ω) = 1 for
ω ∈ �. For γ = 0, for example, � ∼ ϒ , while � ∼ ϒ(3),
so that � is narrower but more oscillatory than � . The choice
of γ depends on the application, recalling that � is used to
process the data (extracting the expansion coefficients) while
� are the propagators.

The role of the phase parameter eiα is to control the balance

between the real and imaginary parts of
+
ϒ(t) such that the

real windows � and � will have the desired properties (for
example, as will be shown in the following, the wave modeler
may require that these wavepackets will peak at their centers).
Following the discussion that preceded (B4), we note that for

even γ , Re{ +
ϒ(γ )(t)} is symmetric about its peak at t = 0,

while for odd γ , it is antisymmetric with a null at t = 0.

These characteristics are reversed for Re{i +
ϒ(γ )(t)}, namely,

this function is symmetric or antisymmetric about t = 0 for
odd or even γ , respectively.

These considerations are applied now to analyze the real
propagators �±

μ,s , �±
μ,s , and �G±

μ,s and to choose the parame-
ters so that they have the desired properties. We consider first
points r in the beam collimation zone where zbμ � Fμ� where
Fμ� are given in (A5). In this zone, the square root in (B5) is
∼ 1 so that from (B5) and (B6) we obtain that, up to certain

real multiplication constants, �±
μ,s ∼ Re{eiα

+
ϒ(γ )}, �±

μ,s ∼
Re{i eiα

+
ϒ(3−γ )} and �G±

μ,s ∼ Re{i eiα
+
ϒ(2−γ )}. It follows that

if we use γ = 0 or 2 with α = 0, or γ = 1 with α = π/2, then
the ID-PB’s �±

μ,s and �±
μ,s are essentially symmetrical along

the axis about their center of mass, whereas�G±
μ,s is essentially

antisymmetric along its axis about its center of mass. These
properties are reversed if we use instead γ = 0 or 2 with
α = π/2 or γ = 1 with α = 0.

As z increases, however, the structures of the real prop-
agators are gradually changing since the argument of the
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TABLE I

PROPERTIES OF THE 3-D WAVEPACKETS

complex square root in (B5) is gradually changing until at
zbμ � Fμ� it becomes ∼ −i . These considerations affect
only the propagators �±

μ,s that are used to propagate the
field from the near to the far zone, where they behave like

�±
μ,s ∼ Re{i eiα

+
ϒ(γ )}. They are typically irrelevant for �±

μ,s
and �G±

μ,s which are used only to process the data [i.e.,
to calculate the expansion coefficients as in (42b)] so that by
choosing b to be sufficiently larger than the source support (for
example b > z+ − z−), the structure of �±

μ,s and �G±
μ,s will

practically not change in the source support. For concreteness,
these properties are summarized in Table I.

APPENDIX C
EXPLICIT EXPRESSIONS FOR THE ID FRAME ELEMENTS

IN 2-D CONFIGURATIONS

The beam-based processing examples in this paper
(Sections IV-A and IV-B and Sections VII-A and VII-B) are
presented in 2-D configurations. We, therefore, summarize the
relevant modifications in the 3-D-ID frame elements presented
in Appendixes A and B. As will be shown, the 2-D TD expres-
sions are somewhat different than those in 3-D as follows from
the tail of the TD Green’s function in (45).

2-D configurations are important not only because of their
reduced numerical complexity but also since many real-world
surveys of 3-D configurations are actually linear scans in one
space coordinate, so that the data are processed by assuming
no variations in the third coordinate (the so-called 2.5-D
approach). This approach will actually be used in the examples
of the beam-based inverse scattering in [16] and [17].

A. FD Formulations

The 2-D phase-space propagators �̂±
μ (ρ) are obtained by

eliminating all the terms involving the coordinate xbμ2 in the
3-D ID-GB (A4), namely,

�̂±
μ (ρ) �

√
−i Fμ

zbμ − i Fμ
exp

{
ik

[
zbμ +

x2
bμ
/2

zbμ − i Fμ

]}
(C1)

where ρ = (x, z) as in (20), and referring to (A4) and (A5),
xbμ1 → xbμ and Fμ1 → Fμ. Following (A7) and (A8),
the dual-frame propagators are given as

�̂±
μ (ρ) � (νmax/

√
πb v0 ωmax)ω

3/2�̂±
μ (ρ) (C2)

�̂G±
μ (ρ) � (−iνmax/2

√
πb/v0 ωmax cos θn)ω

1/2�̂±
μ (ρ).

(C3)

B. TD Formulations

The TD propagators �±
μ,s(ρ, t) are obtained, as in (B1),

by multiplying �̂±
μ (ρ) of (C1) by f̂ (ω) of (B4) and inverting

the result into the TD. The result is [cf. (B5)]

�μ,s(r, t) = Re

{√
−i Fμ

zbμ − i Fμ

× eiα
+
ϒ(γ )

(
t−ts −

zbμ

v0
−

x2
bμ
/2v0

zbμ −i Fμ

)}
. (C4)

Likewise, the dual-frame propagators are obtained by multi-
plying �̂±

μ (ρ) and �̂G±
μ (ρ) of (C2) and (C3) by ĝ of (B4)

and inverting the result to the TD using also the replacement
ω−1/2 → e−i π4 (−iω)−1/2. The result has the same form as
�±

μ,s of (C4) with the replacement

+
ϒ(γ )(·) →

⎧⎪⎪⎨
⎪⎪⎩

(−1)γ+1t̄ νmax√
πbv0 ωmax

e−i π4
+
ϒ(

3
2 −γ )(·), for �±

μ,s

(−1)γ t̄ νmax

2
√
πb/v0 ωmaxcos θn

e−i π4
+
ϒ(

1
2 −γ )(·), for �G±

μ,s .

(C5)

These expressions involve fractional time derivatives due to
the ω1/2 terms in (C2) and (C3). For a given integer N , this
operation is defined via the analytic signal representation

e−i π4
+
ϒ(N− 1

2 )(t)
def= [ +

ϒ(N) ⊗ Re
{
e−i π4

+
δ(−

1
2 )

}]
(t) (C6)

where ⊗ stands for a convolution and the operator
+
δ(− 1

2 ) is
defined via the analytic Fourier transform

+
δ(−

1
2 )(t)

def= 1

π

∫ ∞

0
dω

e−iωt

√−iω
= 1√

π t
, Im (t) ≤ 0 (C7)

and in the real t limit

Re
{
e−i π4

+
δ(−

1
2 )(t)

} = 1√
2π |t| t real. (C8)

Next, we note that the time argument in
+
ϒ(N− 1

2 )(t) is complex
as follows from (C4), hence we should understand the convo-

lution in (C6) between an analytic signal
+
h1 with complex t ,

Im t ≤ 0 and a real signal h2 for real t as

[+
h1 ⊗ h2](t) =

∫ ∞

−∞
dt ′

+
h1(t − t ′)h2(t

′), Im t ≤ 0 (C9)

where the integration is performed along the real t ′ axis.
In view of (C8), the final expression for the fractional deriv-
ative in (C6) becomes

e−i π4
+
ϒ(n− 1

2 )(t) =
∫ ∞

−∞
dt ′

+
ϒ(n)(t − t ′)

1√
2π |t ′| (C10)

where t in
+
ϒ(n) is in general complex with Im t ≤ 0.

Finally, we discuss the effect of the parameters (γ, α),
as was done after (B6) in the context of the 3-D formulation.
Noting that the convolution with 1/

√|t| in (C10) does not

change the symmetry of the signal
+
ϒ(n)(t) about t = 0, we find

by substituting (C10) in (C5) and repeating the analysis done
after (B6) that the structure of the PB is essentially the same as
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in the 3-D case, as summarized in Table I. The only difference
is for �±

μ,s(r, t) in the far zone, where the argument of the
square root in (C4) tends to e−iπ/4 rather than to −i as in the
3-D case. It follows that the PB structure there is a balanced
sum of symmetrical and antisymmetrical wavepackets.
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