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STT Analysis of the Time-Dependent Reflected
Field From a Moving Dielectric–Magnetic

Planar Discontinuity
Timor Melamed, Senior Member, IEEE, and Tatiana Danov

Abstract— This paper is concerned with obtaining closed-form
exact solution for the 2-D canonical problem of the reflected
field from a moving planar discontinuity of a dielectric–magnetic
medium that is excited by an impulsive line current. The spectral
theory of transient (STT) that originally deals with nondispersive
frequency-domain plane-wave spectra is used in this paper for
addressing a time-variant scattering problem. The scattering
from a moving object yields dispersive and anisotropic PW
spectra. Nevertheless, we demonstrate that the STT is capable of
dealing with these types of spectra and obtain the desired exact
time-dependent solutions. The unique wave phenomena that are
associated with the medium and scatterer velocity are explored.

Index Terms— Electromagnetic reflection, Green’s function
methods, time-dependent (TD) plane-wave (PW) spectrum.

I. INTRODUCTION

A. Background

PLANE-WAVE (PW) decomposition of time-depen-
dent (TD) fields has been an important tool for the

analysis and synthesis of various electromagnetic scattering
and diffraction problems [1]. Such spectral representations
were used for solving the problem of pulse propagation in
dispersive media [2], [3], for antennas and sources charac-
terization [4]–[7], for pulsed-beam decomposition of aperture
fields [8], [9], and many more [10]–[13].

The spectral theory of transient (STT) [14]–[16] deals with
the explicit description of nondispersive wave processes in the
time domain. Under the framework of the STT, the field is
expressed as a continuous directional spectrum of nondisper-
sive time-harmonic (TH) PWs, which can be inverted in closed
form into the time domain to yield a TD spectral represen-
tation. By exploiting its analytic properties, the TD spectral
integral can be evaluated in terms of its TD singularities in
the complex spectral plane and yields a closed-form solution.

This method has been applied for solving the scattering of
pulsed cylindrical wave [16] and pulsed beam [17] from a pla-
nar dielectric discontinuity, for pulsed-beams scattering from
wedges [18], for the synthesis of short-pulse 2-D wavefields
in waveguides [19], and for analyzing the TD PW spectrum of
the complex-source pulsed beam [20] and of the airy pulsed
beam [21].
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Scattering from moving objects is of fundamental impor-
tance in antenna and scattering theory, cellular and satel-
lite communication, radar applications, and remote sensing.
Though impressive advances have been made in this field,
little effort has been made to adjust basic stationary wave
theories (such as the geometrical theory of diffraction direct
time-domain methods, and the STT) to the scatterer dynamics.
In this paper, we examine the possibility to apply the STT
procedure for 2-D problem of the incident and reflected fields
from a fast moving planar lossless dielectric–magnetic discon-
tinuity due to an impulsive line current. The corresponding
stationary medium problem is considered as a canonical one
since it yields exact closed-form solution, as well as revealing
unique and important wave phenomenon, i.e., the lateral (head)
wave. Thus, it is of importance to solve the corresponding
moving medium problem.

The PW spectra of scattered fields from moving objects
in fast motion consist of dispersive and anisotropic PWs.
For the best knowledge of the authors, this paper is a first
attempt at adjusting the STT that was originally presented for
the inversion of TH spectral representations in time-invariant
(stationary) scatterers to scattering from moving objects.
Specifically, we apply here the PW spectral representations of
the relativistic EM TD dyadic Green’s functions of a uniformly
moving dielectric–magnetic planar discontinuity that were
obtained in [22] and [23]. The spectral representations of the
incident and reflected fields under TH excitation are used in
this paper in order to obtain closed-form solutions for the
corresponding TD EM fields that are excited by an impulsive
line current. We explore basic wave phenomena such as the TD
local interaction of the incident field with the moving media,
the excitation mechanism of the lateral wave, and its canonical
form.

The constitutive relations in the medium frame are linear
dielectric–magnetic [vide infra (4)] over the entire (infinite)
frequency band, as in [16], [17], and many others. Though
these constitutive relations are valid only in a specific fre-
quency band pending on the materials in question, the resulting
fields are considered as an accurate and useful tool for
evaluating the EM fields due to TD volume sources as long as
they are convolved with an appropriate band-limited source.

B. Statement of the Problem

This paper aims at obtaining a closed-form solution for the
TD EM incident and reflected fields due to an impulsive line
current that is embedded in a uniformly moving dielectric–
magnetic medium with a planar discontinuity. Under the
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Fig. 1. Physical configuration. An impulsive line current is embedded in
a dielectric–magnetic medium with a planar discontinuity. The medium is
uniformly moving in speed v in the z-direction. The discontinuity is located
in z = z0 at t = 0.

framework of special relativity, a 3-D (space–time) event
(y, z, ct) in the so-called laboratory frame (here—the source
frame) is mapped to the event (y ′, z′, ct ′) in a comoving frame
(the medium frame) by the Lorentz transformation (LT). For
a medium-frame velocity of v = v ẑ, the LT is given by

y ′ = y, z′ = γ (z − βct), ct ′ = γ (ct − βz) (1)

where c = 1/
√

ε0μ0 is the speed of light in vacuum and

β = v/c, γ = 1/

√
1 − β2. (2)

Here and henceforth all physical quantities in the medium
frame are denoted by a prime. Unit vectors in the conventional
Cartesian coordinate system, (x, y, z), are denoted by hat over
bold fonts. The EM field transformation that is corresponding
to v = v ẑ is given in [23]. In this paper, the evaluation of
the TD EM fields is carried out directly in the source frame.
We use the medium frame only for defining the problem and
for giving physical interpretations.

The source is an impulsive line current

J(r, t) = I0δ(z)δ(y)δ(t)x̂ (3)

that is embedded in a uniformly moving dielectric–magnetic
medium with a planar discontinuity (see Fig. 1). In the source
frame, the medium is moving in a constant translation velocity
in the direction of the z-axis.

The medium’s discontinuity is located at z = z0 > 0 at
time t = 0. We assume that the medium is lossless and
dispersion free. The constitutive relations in medium frame
are given by

D′
1,2(r

′, t ′) = ε0ε
′
r1,2

E′
1,2(r

′, t ′)
B′

1,2(r
′, t ′) = μ0μ

′
1,2H′

r1,2
(r′, t ′) (4)

where subscripts 1, 2 denote fields in z ≶ z′
0 half space

with z′
0 = γ z0 denoting the interface location in medium

frame [which is obtained from LT in (1)]. The medium in the
source frame is bianisotropic and its corresponding constitutive
relations are given in [22]. We assume that the medium
speed, v, does not exceed either of the medium-frame phase
speeds of c/n′

1,2 where n′
1,2 are the indices of refraction

n′
1,2 =

√
ε′

r1,2
μ′

r1,2
. (5)

Note that in (3) we assume that the source is located in
z = 0 and is excited at t = 0, whereas the solution

for a generic 2-D TD current density, J (r, t)x̂, requires a
convolution integral for all locations and delays. Nevertheless,
the general case solution can be obtained from the t = 0 one
by an appropriate calibration of the interface location Z0.

C. Spectral Theory of Transients

In this section, we briefly review the STT that enables the
evaluation of TD fields from the PW spectral synthesis of
the corresponding TH fields. We assume a time dependence
of exp( jωt) that is denoted by the argument u(r, ω). The
synthesis of the TH fields by nondispersive local PWs is in
the generic form [14]

u(r, ω) = ( jω)M/2 − j

2π

∫

CN

d Nκ Ã(r; κ) exp[− jωτ̃(r; κ)] (6)

where r is the observation point location and κ =
(κ1, κ2, . . .) are spectral variables that characterize the
PW field Ã(r; κ) exp[ jωτ̃(r; κ)] with amplitude Ã and
phase ωτ̃ . M is some integer and N is the dimensionality
of the propagating process (i.e., N = 1 or 2 for 2-D or
3-D problems, respectively). Here and throughout we denote
spectral (κ dependent) constituents by an over tilde. In this
paper, we have altered the original exp(−iωt) time depen-
dence of the TH field that was assumed in [14] to exp( jωt)
and introduce in this section the corresponding modifications.

The integral in (6) is inverted in closed form into the time
domain via the analytic (one-sided) Fourier transform

ŭ(r, t) = 1

π

∫ ∞

0
dωu(r, ω) exp( jωt), Im t � 0 (7)

where we denote analytic fields by the brave sign. The integral
in (7) yields an analytic function in the upper Im t � 0 plane.
Note that though the physical time is real, the time argument
of an analytic field can be complex [see the evanescent spectral
rage in (17) where κz is complex].

Next we examine the special case of N = 1 and
M = 2, which corresponds to the specific fields in question
[vide infra (10)]. By denoting the spectral variable as κy

and applying (7) to (6), the canonical TD spectral integral
is given by

ŭ(r, t) = ∂t

2π2

∫

CN

Ã(r; κy)

t − τ̃ (r; κy)
dκy, Im t � 0. (8)

The transient integral in (8) can be evaluated in terms
of the singularities of the integrand. These are the TD pole
singularities κy(t) that are defined by τ̃ [κy(t)] = t, Im t � 0,
and the singularities of τ̃ (κy) and Ã(κy). For τ̃ (κy), these
include real branch points ±κyc at the edges of the propagating
(visible) spectrum. For Ã(κy), one may have branch points κyb

that are introduced into the visible spectrum by certain inter-
face reflection phenomena in a piecewise continuous medium.
Specific examples can be found in [16].

II. TD SPECTRAL REPRESENTATIONS

In this section, we derive the TD spectral representations of
the incident and reflected fields in the canonical form of (8).
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A. Incident Field

The incident EM field is the field that is radiated by the
current line source in (3). The source is embedded in a
uniformly moving dielectric–magnetic medium of (medium
frame) permittivity and permeability of ε′

1 and μ′
1, respectively

(for all r). The analytic signal representation of the EM TD
incident field is given by

Ĕi (r, t) = 1

π

∫ ∞

0
dω Ei (r, ω) exp( jωt), Im t � 0

H̆i (r, t) = 1

π

∫ ∞

0
dω Hi(r, ω) exp( jωt), Im t � 0 (9)

where

Ei (r, ω) = 1

2π

∫
dκy Ẽi(r, ω; κy)

Hi (r, ω) = 1

2π

∫
dκy H̃i(r, ω; κy). (10)

Here Ĕi (r, t) and H̆i (r, t) denote the analytic signals that are
corresponding to the real physical signals Ei (r, t) and Hi (r, t)
with frequency spectra Ei (r, ω) and Hi (r, ω).

The integrals in (9) define analytic functions in the upper
half of the complex t-plane. The TH spectral PWs, Ẽi(r, ω; κy)

and H̃i(r, ω; κy), were investigated in [22], and were found
to be

Ẽi(r, ω; κy) = Ẽ i
x (r, ω; κy)x̂

Ẽ i
x(r, ω; κy) = − I0ωμ′

1
√

α

2κz
exp[− jωτ̃ i(κy)] (11)

where

τ̃ i (κy) = (
√

αn′
1κy y + αn′

1κzz − mz)/c (12)

with

m = β
n′2

1 − 1

1 − n′2
1 β2

, α = 1 − β2

1 − n′2
1β

2
(13)

denotes the spectral delay of the incident field and

κz =
√

1 − κ2
y , Reκz ≥ 0, Imκz ≤ 0 (14)

is the longitudinal (normalized) wavenumber. The magnetic
field spectral PW components are given by

H̃ i
y(r, ω; κy) = I0ωn′

1
√

α

2c
exp[− jωτ̃ i(κy)]

H̃ i
z(r, ω; κy) = −I0ωn′

1ακy

2cκz
exp[− jωτ̃ i(κy)]. (15)

Recall that over tilde (�) denotes PW constituents. The inte-
gration contour is in the upper Riemann sheet where Reκz ≥ 0.
Note that in the fields’ representation in (9)–(14), we have
recast the spectral representation in [22] and, anticipating the
extension to the time domain, utilized the normalized (with
respect to ω) spectral wavenumber κy = kyc/(

√
αn′

1ω).
The TD PW representation of the incident field is obtained

by substituting (10) with either (11) or (15) into (9). By invert-
ing the order of integrations and evaluating the dω integration

in closed form, we obtain the TD spectral representation of
the analytic field in the form

Ĕ i
x(r, t) = ∂t

2π j

∫
dκy

˘̃Ei
x (r, t; κy)

H̆ i
y,z(r, t) = ∂t

2π j

∫
dκy

˘̃H i
y,z(r, t; κy) (16)

where

˘̃Ei
x (r, t; κy) = − I0μ

′
1
√

α

2κz
δ̆[t − τ̃ i (κy)]

˘̃H i
y(r, t; κy) = I0n′

1
√

α

2c
δ̆[t − τ̃ i (κy)]

˘̃H i
z(r, t; κy) = I0n′

1ακy

2cκz
δ̆[t − τ̃ i (κy)] (17)

are the TD PWs. In (17), δ̆() denotes the analytic delta
function

δ̆(t) =
{
(−π j t)−1, Imt < 0
δ(t) + jP(π t)−1, Imt = 0

(18)

where P denotes Cauchy’s principal value.

B. Reflected Field

The boundary problem at hand is solved by transforming
each spectral incident PW in (11) and (15) to the medium
frame where the medium’s planar discontinuity is stationary.
Each PW in the source frame is transformed into a PW in the
medium frame with a corresponding frequency and wavenum-
ber. The scattering of each PW in the comoving frame is
treated in a classical way. Finally, the scattered fields are trans-
formed back to the source frame obtaining the corresponding
TD PW spectral representations. Here we use the TH spectral
representation of the reflected fields in [23, eqs. (37)–(39)] and
follow essentially the same procedure as for the incident field
in (16) and (17).

The resulting spectral integrals of the EM reflected fields are
of the integral form of (16) over the reflected spectral PWs

˘̃Er
x(r, t; κy) = −I0μ

′
1�̃

′(κy)

2κz
√

αγ 2
(
ξ̃ − n′

1βζ̃
) δ̆[t − τ̃ r (κy)]

˘̃H r
y (r, t; κy) = 1

−η′
1γ ξ̃

ζ̃ − n′
1βξ̃

1 − 2n′
1βκz

˘̃Er
x(r, t; κy)

˘̃H r
z (r, t; κy) = −κy

η′
1γ

√
αγ 2ξ̃2

˘̃Er
x(r, t; κy) (19)

where η′
1 =

√
μ′

1/ε
′
1, and ξ̃ and ζ̃ are given by

ξ̃ = 1 − n′
1βκz, ζ̃ = κz − n′

1β. (20)

In (19), the spectral delay is given by

τ̃ r (κy) = n′
1/c

ξ̃ − n′
1βζ̃

[
κy√
αγ 2

y + β

n′
1
ξ̃z + ζ̃ (2z0 − z)

]
(21)

and

�̃′(κy) =
μ′

2ζ̃ − μ′
1

√
n′2

21ξ̃
2 − κy

2/(αγ 2)

μ′
2ζ̃ + μ′

1

√
n′2

21ξ̃
2 − κ2

y/(αγ 2)
, n′

21 = n′
2/n′

1

(22)

is the (medium-frame) reflection coefficient at the interface.
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Fig. 2. Integration contour and the complex poles in the complex κy plane.
Here Reκz > 0 on entire top Riemann sheet and Imκz ≤ 0 in the first and
third quadrants.

III. STT DERIVATION OF THE EXACT FIELDS

In this section, we evaluate the TD PW spectral integrals of
the incident and reflected EM fields in closed form directly in
the source frame by applying the STT. Recall that in the source
frame, the planar interface is moving, and thus each scattered
spectral PW exhibits a different frequency and wavenumber.
Even the concept of TH exp( jωt) fields cannot in general be
applied to here. Though the STT was aimed at obtaining a
method that evaluates TH spectral integrals, in this section,
we demonstrate its ability to handle a problem of time-variant
type scattering.

A. Incident Field

1) Spectral Properties: We distinguish two spectral inter-
vals: 1) the propagating (or visible) spectrum, |κy| < 1, where
κz in (14) and therefore the spectral delay in (12) are real and
2) the evanescent (or invisible) spectrum, |κy| > 1, where κz
is imaginary. In the evanescent spectral range, τ̃ i is complex
and the local TD PWs decay.

In order to evaluate the incident field Ĕi (r, t), we recast the
spectral integral of the incident field in (16) in the canonical
STT form of (8)

Ĕ i
x(r, t) = ∂t

2π2

∫ ∞

−∞
dκy

Ãi(κy)

t − τ̃ i (κy)
(23)

where τ̃ i (κy) is given in (12) and the amplitude

Ãi (r, t) = −I0μ
′
1
√

α/2κz . (24)

The branch points are κyb = ±1 and the integration contour
is plotted in Fig. 2.

Next, following the STT procedure, we solve the equation
τ̃ i [κ±

y (t)] = t and obtain the TD poles in the complex
κy-plane. By using τ̃ i in (12), we obtain the two poles

κ±
y (t) = yZi

1 ± Zi
2

√
α
(
y2 + Zi

2
2 − Zi

1
2)

√
α(y2 + Zi

2
2
)

(25)

where

Zi
1 = (mz + ct)/n′

1, Zi
2 = √

αz. (26)

In (25), we choose Im√ ≤ 0.
Next we map the poles trajectories in time over the complex

κy upper Riemann sheet. Prior to ct±b = (−mz ± yn′
1
√

α),

Fig. 3. Integration contour in complex κy-plane.

the κ±
y poles travel on the lower Riemann sheet, respectively.

At t = t±b , the κ±
y poles enter the upper Riemann sheet at

κb = ±1, respectively, after which they move toward each
other over the real κy-axis. At time

cti = −mz + √
αRi n′

1, Ri =
√

y2 + αz2 (27)

both poles reach κ i
y = y/(

√
αRi ) over the real (visible

spectrum) axis. At the time interval t > t i , the term
y2 + Zi

2
2 − Zi

1
2

in (25) is negative, and the poles depart from
the real axis along the trajectories in Fig. 2.

2) Integral Evaluation: Following the STT procedure
in [15], we close the integration contour as in Fig. 3. Thus,
the spectral integral in (23) can be evaluated in closed form
via the contribution of κ−

y pole (see [16])

Ĕ i
x(r, t) = j

π
Ãi (κy)/ ˙̃τ i(κ−

y

)
(28)

where κ−
y is given in (25) and the over dot denotes a derivative

with respect to the argument. The derivative of the spectral
delay τ̃ i (κy) in (12) is

˙̃τ i (κy) = √
α(κzy − √

ακyz)/κzv
′
1. (29)

By substituting (29) into (28) and taking the real part (note
that the spectral amplitude is real in the visible spectrum),
we obtain the TD physical field in the form

Ei
x(r, t) = ∂t Im

[
− 1

2π

I0μ
′
1v

′
1

yκz − √
αzκy

]∣∣∣∣
κy=κ−

y (t)

. (30)

Note that Ãi (κy)/ ˙̃τ i (κ−
y ) is imaginary for t < t i , and

therefore the real physical field is null in this time interval.
By substituting κ−

y in (25) into (30), we obtain

Ei
x(r, t) = − I0μ

′
1

2π
H (t − t i )/

√
(t + mz/c)2 − (t i + mz/c)2

(31)

where H () denotes the Heaviside step function. This result is
in accordance with the one in [24]. Also, note that by setting
β = 0 in (31), we obtain the (stationary-medium) conventional
2-D TD Green’s function.

By using (31), t i is identified as the incident wavefront
travel time from the source to the observer in the source frame.
This travel time differs from the stationary medium one which
equals (y2 + z2)1/2/v ′

1 in two ways: 1) the −mz/c term that
increases the speed in the direction of the medium motion
and 2) the term

√
αz that is due to special relativity space

contraction in the direction of the movement.
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B. Reflected Wave

1) Spectral Properties: In order to evaluate the reflected
field in closed form, we recast its spectral representation in
the standard STT form

Ĕr
x(r, t) = ∂t

2π2

∫ ∞

−∞
dκy

Ãr (κy)

t − τ̃ r (κy)
(32)

where τ̃ r (κy) is given in (21) and the amplitude

Ãr (κy) = −I0μ
′
1

2κz
√

αγ 2
(
ξ̃ − n′

1βζ̃
) �̃′(κy). (33)

The reflection coefficient �̃′(κy) in (22) gives rise to two
additional branch points

κ±
yb = ± sin θ ′

c/
[√

αγ
(
1 + n′

1β cos θ ′
c

)]
(34)

where

sin θ ′
c = n2,1 (35)

is identified as the stationary interface critical angle.
Next, following the STT procedure, we solve the equation

τ̃ r [κ±
y (t)] = t and obtain the reflected field TD poles in the

complex κy-plane. By using τ̃ r in (21), these TD poles are

κ±
y (t) = yZr

1 ± Zr
2

√
y2 + Zr

2
2 − Zr

1
2

y2 + Zr
2

2 (36)

where

Zr
1 = √

αγ 2[n′
1β(2z0 − z + βct) + (ct − βz)/n′

1]
Zr

2 = √
αγ 2(2z0 − z − β2z + 2βct). (37)

As in (25), we choose Im√ ≤ 0.
Next we map the poles trajectories in time over the complex

κy upper Riemann sheet. Prior to

ct±b = mz −
[

2n′
1

2β(z − z0) ∓ n′
1 y/

√
αγ 2)

1 − n′
1

2β2

]
(38)

the κ±
y poles lie on the lower Riemann sheet, respectively.

At t = t±b , the κ±
y poles enter the upper Riemann sheet at

κb = ±1, after which they move toward each other over the
real κy-axis. Over the real (visible spectrum) axis, the poles
converge to

κ+
y = κ−

y = y/Zr
1|t=tr (39)

at time

ctr =
A +

√
n′2

1 (2Z0 − z + β2z)2 + Y 2

1 − n′2
1 β2

A = β[z + n′2
1 (2z0 − z)], Y = n′

1 y/
√

αγ 2. (40)

At the time interval t > tr , the term y2 + Zr
2

2 − Zr
1

2 in (36)
is negative, and the poles depart from the real axis along the
trajectories in Fig. 2.

2) Integral Evaluation for n′
21 > 1: Following the STT

procedure in [15], we close the integration contour as in Fig. 3
and evaluate the spectral integral in (32) in closed form via
the contribution of κ−

y pole in (36). This procedure yields

Er
x (r, t) = Re

[
j

π
Ãr (κ−

y )/ ˙̃τ r (κ−
y )

]
(41)

where Ãr is given in (33). By using τ̃ r in (21), we evaluate

˙̃τ r (κy) = n′
1

cκzαγ 2
(
ξ̃ − n′

1βζ̃
)2

×
{

y
√

α
[
κz

(
1 + n′

1
2
β2) − 2n′

1β
] − κy(2z0 − γ −2z)

}
. .(42)

Following the discussion after (37), we identify different
pole contributions to the field according to the value of
n′

21 = n′
2/n′

1. For n′
21 > 1, the reflection coefficient �̃′(κy)

is real over the entire visible spectral range. Therefore, the
spectral amplitude, Ãr , in (33) is real over the time interval
t < tr and the reflected field in (32) is null.

For t > tr , the pole κ−
y in (36) is complex and therefore

so are the corresponding κz and �̃′(κy) in (14) and (22).
By substituting (33) and (42) into (41), we obtain

Er
x(r, t) = I0μ

′
1c

√
α

2πn′
1

H (t − tr )

× Im

[
(ξ̃− − n′

1βζ̃−)�̃′(κ−
y

)

y
√

α
[
κ−

z
(
1 + n′

1
2β2

) − 2n′
1β

] − κ−
y (2z0−γ −2z)

]

(43)

where κ−
y is given in (36), tr is given in (40), and ξ̃− = ξ̃ (κ−

y )

and ζ̃− = ζ̃ (κ−
y ) are given in (20). Note that by substituting

β = 0 in (43), we obtain the for stationary medium reflected
field in [16].

In order to gain insight into the result in (43), we consider
the special case of the on-axis y = 0 field. The incident
wave wavefront is given by ct = cti where cti is given
in (27). By setting y = 0, this wavefront is given by cti (z) =
−mz + αn′

1|z|. Thus, we distinguish two wave speed, v± =
c/(αn′

1 ∓ m), in the direction of ±z, respectively. This
anisotropy is due to the medium’s movement in the direction
of the z-axis that increases or decreases the wave speed prop-
agating in the direction of or opposite the medium velocity.

Using these wave velocities, we recast the (z-axis) reflected
wavefront arrival time in (40) as the sum ctr = ctr

i +ctr
r where

we define

ctr
i = (

z0 + vtr
i

)
/v+, ctr

r = (
z0 − z + vtr

i

)
/v−. (44)

Thus, we identified tr
i as the time required for the incident

wavefront (that is propagating with v+ speed) to reach the
interface that is located at z0 + vtr

i . After that, the reflected
wavefront is propagating for tr

r with speed of v− toward the
observation point a distance of z0 − z + vtr

i and arriving at z
at time tr . This interpretation can be generalized for off-axis
observation points along the reflected wavefront.

The total TD field Ei
x(r, t) + Er

x(r, t) in (31) and (43) is
plotted in Fig. 4 for z0 = 1, n′

1 = 1.2, n′
2 = 1.5, μ′

1 = μ′
2 = 1,

and I0 = 1 and β = 0.65. The fields that are sampled at
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Fig. 4. Total TD field for n′
1 = 1.2 and n′

2 = 1.5. Here z0 = 1,
β = 0.65, μ′

1 = μ′
2 = 1, and I0 = 1. (a)–(d) Fields that are sampled for

ct = 2, 3, 4, and 5, respectively.

ct = 2, 3, 4, and 5 are plotted in Fig. 4(a)–(d), respectively.
For these parameters, n′

21 > 1, so no head wave is present
in Fig. 4(a)–(d).

3) Integral Evaluation for n′
21 < 1: In the case of n′

21 < 1,
the branch cuts due to the square root in the reflection coef-
ficient in (22) are extending from κ±

yb in (34) to ±∞, respec-
tively. The κ−

y pole is arriving at the brunch point κ+
yb at time

tb = τ̃ r (κyb). By using τ̃ r in (21) and κ+
yb in (34), we obtain

ctb = n′
1

ξ̃b − n′
1βζ̃b

[
cos ϕ̃b√

αγ 2
y + β

n′
1
ξ̃bz + ζ̃b(2z0 − z)

]
(45)

where

ξ̃b = 1 − n′
1β cos ϕ̃b, ζ̃b = cos ϕ̃b − n′

1β. (46)

Here ϕ̃b is the branch cut angle sin ϕ̃b = κ+
yb.

Thus, in the time interval tb < t < tr , the TD pole κ−
y is

moving along the real visible axis along the interval κyb <
κy < κy0. At this time interval, the reflection coefficient is
complex and its imaginary part contribution to the field in (41)
gives rise to the lateral (head) wave. In the time interval t > tr ,
the TD pole κ−

y is complex as well as the reflection coefficient.
By substituting (36) into (41) and using (42), we obtain the

result for tb < t < tr

Er
x(r, t) = I0μ

′
1c

√
α

2πn′
1

×
(
ξ̃− − n′

1βζ̃−)
Im�̃′(κ−

y )

y
√

α
[
κ−

z
(
1 + n′

1
2β2

) − 2n′
1β

] − κ−
y (2z0−γ −2z)

. (47)

The reflected and lateral wave contributions in the time interval
t > tr are given by (43). Note that by setting β = 0 in (47),
we obtain the stationary medium lateral wave in [16].

In order to gain insight into the (dynamic scattering) lateral
wave, we recast the lateral wave time of arrival, ctb, in (45)
in the form

ctb = cti
b + ctl

b + ctr
b (48)

Fig. 5. Interpretation of the lateral wave in the (left) medium and (right)
source frames. The source-frame excitation event (y, z, ct) = (yi

b, zi
b =

z0 + βcti
b, cti

b) on the right is corresponding to the medium-frame event
(on the left) in which the incident wavefront is impinging upon the interface
at the critical angle θ ′

c . The radiation event (y, z, ct) = (yi
b + �y, z0+

βc(t i
b + tl

b), ctl
b + cti

b) in the source frame on the right is corresponding to
the medium-frame event in which the wavefront emanates from the interface.
The medium-frame horizontal lateral propagation is mapped to a tilted (red)
line in the source frame along the moving interface.

where we define

cti
b = γ 2z0

(
β + n′

1/ cos θ ′
c

)

ctl
b = γ n′

2�y,

ctr
b = γ

(
y − �y

sin θ ′
c

− γ z0

cos θ ′
c

) (
n′

1 − β cos θ ′
c

)
(49)

with

�y = y(βn′
1 − cos θ ′

c) + sin θ ′
c(2γ z0 − z/γ )

cos θ ′
c(βn′

1 cos θ ′
c − 1)

. (50)

This representation identifies three events along the lateral
wavefront that are marked in Fig 5. The first event (y, z, ct) =
(yi

b, zi
b, cti

b) is the excitation of the lateral wave where
yi

b = z0γ tan θ ′
c, zi

b = z0 + βcti
b, and t i

b is given in (49).
By using the LT in (1), we note that this event in the
medium frame is corresponding to the conventional (stationary
interface) event in which the incident wavefront is impinging
upon the interface at the critical angle θ ′

c (see Fig. 5).
The second event is the radiation event (y, z, ct) =

(yi
b+�y, zl

b, cti
b+ctl

b) in which the lateral wavefront emanates
from the interface back to medium 1. Here zl

b = z0+βc(t i
b+tl

b)

is located over the moving interface. Thus, we identified tl
b as

the lateral propagation time along the moving interface. In the
medium frame, the wave is propagating along the interface
in the direction of the y ′-axis at the medium-frame speed
of c/n′

2. In the source frame, the lateral trajectory is tilted with
respect to the interface due to its movement (see Fig. 5). The
third event is the arrival of the wavefront to the observation
event (y, z, ct) = (y, z, ctb). The wave is propagating in the
moving medium 1 for ctb after emanating from the interface
at ctl

b + cti
b.

Finally, we evaluate the source-frame critical angle, θc,
in which the lateral wave is excited (see Fig. 5). The incident
wavefront is given by (27) where t i is a parameter. The normal
vector to this wavefront is obtained by taking the gradient of
the right-hand side of (27). By normalizing the resulting nor-
mal, sampling at the excitation event (y, z, ct) = (yi

b, zi
b, cti

b),



5244 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 65, NO. 10, OCTOBER 2017

Fig. 6. Total fields for n′
1 = 2, n′

2 = 1, β = 0.2, and ct = 5. Here n′
2 < n′

1
and a lateral wave is excited.

and projecting on the y-axis, we obtain

sin θc = χ√[
α2n′2

1

(
1 + βct̄ i

b

) − m2 − mct̄i
b(1 + βm)

]2 + χ2
,

χ = αn′2
1 γ tan θ ′

c, ct̄ i
b = γ 2(β + n′2

1 tan θ ′
c

)
(51)

where θ ′
c is given in (35). Note that the critical angle is (β−)

speed dependent and that by setting β = 0 in (51), we obtain
sin θc = sin θ ′

c.
In Fig. 6, the source-frame exact solutions for the incident

and reflected fields are plotted for medium parameters: n′
1 = 2,

n′
2 = 1, and β = 0.2 and the fields are sampled at ct = 5.

All other parameters are the same as in Fig. 4. Here n′
2 < n′

1
and the lateral wave is excited and clearly viewed in Fig. 6.

IV. CONCLUSION

In this paper, the TD incident and reflected fields of a
TD line current that is embedded in a moving dielectric–
magnetic medium with a planar discontinuity were obtained
in closed form by applying the STT procedure. The unique
scattering mechanism of the TD lateral (head) wave was
analyzed and put in a nobel canonical form identifying the
excitation mechanism, lateral propagation form along the mov-
ing interface, and the back radiation toward the observation
point. The investigation reveals basic wave phenomena relating
to a canonical problem, and on route demonstrated the ability
of the STT to handle a new class of problems.
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