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Plane Wave Scattering by a Moving
PEC Circular Cylinder

Eliran Mizrahi and Timor Melamed , Member, IEEE

Abstract— This paper is concerned with the scattering of
a time-harmonic electromagnetic (EM) plane wave (PW) by
a fast and slow moving perfectly electric conducting circular
cylinder under the framework of Einstein’s special relativity.
By applying the Lorentz and EM field transformations to the
scatterer comoving frame of reference, the problem is mapped
into a PW scattering from a stationary cylinder. By using the
well-known (stationary cylinder) exact and asymptotic solutions,
we obtain the scattered EM field in this frame. These fields are
then mapped back to the incident-field frame of reference. This
procedure yields the exact and asymptotic scattered EM fields.
We discuss several relativistic wave phenomena such as shifted
shadow regions, velocity-dependent incident, and reflection angles
and velocity-dependent creeping waves to name a few. Finally,
we apply a low-speed approximation to the wave potentials and
discuss the corresponding wave phenomena.

Index Terms— Canonical problems, low-speed approxima-
tion (LSA), scattering from moving objects, special relativity.

I. INTRODUCTION

IN THIS contribution, we address the canonical problem of
a time-harmonic (TH) plane wave (PW) scattering from

a fast moving perfectly electric conducting (PEC) circular
cylinder. The special case of a stationary cylinder is considered
as a canonical problem as it reveals a fundamental wave
phenomenon, the creeping wave. The asymptotic solution that
is obtained has been used for generalizing the excitation mech-
anism and propagation for the generic solution of a smooth
convex surface diffraction (see [1] and references therein). The
scattering of an electromagnetic (EM) PW by a moving PEC
cylinder was considered in [2] and included an investigation of
the equiphase and equimagnitude surfaces and of the Doppler
frequency shift effect. The Fourier spectrum of PW scattering
by PEC and dielectric cylinders in translational motion was
evaluated in [3]. Fourier analysis of the scattering by 3-D
objects in translational motion was investigated in [4] and [5]
by applying a vector and a scalar potential to the sources
at rest. PW decomposition of the incident field has been
formulated and applied to the 2-D problem of the scattering
of a Gaussian beam from a fast moving perfectly conducting
cylinder in [6]. It has also been used in [7] for solving the
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Fig. 1. Physical configuration. An incident PW is impinging on a circular
cylinder of radius a� that translates uniformly along the x-axis.

EM field that is radiated by an infinitely long thin wire antenna
which uniformly translates in a direction parallel to a plane
interface. Other recent contributions to relativistic scattering
can be found in [8]–[14].

Though a formal solution for PW scattering from a moving
PEC circular cylinder exists in the literature, no through
investigation was conducted in order to obtain a geometrical
theory of diffraction (GTD) solution that is adjusted for the
scatterer velocity. The present contribution is aimed at obtain-
ing the large moving cylinder scattering and investigating
the associated wave phenomena. The interpretation of the
scattering of a canonical problem in the incident-field frame
shed light on basic wave phenomena and can eventually lead
to direct methods in that frame. Such methods can also be
used for solving the scattering of bodies moving with different
speeds or for bodies moving (slowly) and rotating in which
local interactions that include multiple scattering may arise.
The canonical problem of PW scattering can be extended
for a wider class of problems by applying PW spectral
decomposition of the incident field and using the results in
this paper for each spectral PW scattering.

II. PROBLEM DEFINITION

We aim at obtaining the exact and asymptotic scattered
fields from a PEC circular cylinder that translates uniformly
in vacuum (see Fig. 1). The incident EM PW is given as

E(r, t) = E0 exp(− jk · r) exp( jωt)

H(r, t) = H0 exp(− jk · r) exp( jωt) (1)

where r = (x, y, z) are the Cartesian coordinates, the ampli-
tudes E0 and H0 are given as

E0 = E0xux + E0yuy + E0zuz, H0 = (kη0)
−1k × E0 (2)
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where η0 = √
μ0/ε0 denotes the free-space impedance with

ε0 and μ0 being the permittivity and permeability of vacuum,
respectively, and k ·E0 = 0. Here and throughout, unit vectors
are denoted by boldfaced u with the appropriate subscript.
In (1), k = [kx(kz, ky), ky, kz] is the wavenumber vector with

kx(kz, ky) =
√

k2 − k2
y − k2

z , Rekx ≥ 0, Imkx ≤ 0 (3)

being the longitudinal wavenumber, where k = ω/c.
We assume that the incident PW is propagating, i.e., k2 >
k2

y + k2
z . Note that in (1), we have kept the exp( jωt) time

dependence explicitly. This enables the application of the
Lorentz transformation (LT) to the incident field. We refer
to the (r, ct) frame as the incident-field frame.

Without the loss of generality, we choose the cylinder
velocity that is denoted by v to be v = vux , where 0 ≤ v < c is
the cylinder speed. At time t = 0, the cylinder axis is located
at x = y = 0. We refer to the comoving (r�, ct �) frame that
is moving in v relatively to the incident-wave frame, as the
cylinder frame. The cylinder is infinite along the z�-axis and
is of radius a� (in the cylinder comoving frame). Quantities in
the cylinder frame are denoted by a prime.

The cylinder frame boundary conditions are given by

E �
z�(r�, t �) = 0, E �

φ�(r�, t �) = 0 at ρ� = a� (4)

where E� denotes the electric field in the cylinder frame, and
ρ� and φ� are the conventional cylindrical coordinates.

III. FIELDS IN THE CYLINDER FRAME

The evaluation of EM fields that are scattered by objects
in uniform motion is carried out under the framework of
Einstein’s theory of special relativity. In the special case of
v = vux , the LT takes the form of

t � = γ (t − βx/c), x � = γ (x − cβt), y � = y, z� = z (5)

where c denotes the speed of light in vacuum and

β = v/c, γ = 1/

√
1 − β2. (6)

By using the vacuum constitutive relations, the corresponding
EM field transformation (FT) is given as

E �
x = Ex , E �

y = γ (Ey − βη0 Hz), E �
z = γ (Ez + βη0 Hy)

H �
x = Hx, H �

y = γ

(
Hy + β Ez

η0

)
, H �

z = γ

(
Hz − β Ey

η0

)
.

(7)

The inverse LT (ILT) and the inverse FT are obtained by
interchanging in (5) and in (7), the primed and unprimed
constituents and substituting v with −v.

By applying the LT and FT in (5)–(7) to the incident PW
in (1), the incident field in the cylinder frame is identified as
the PW

E�(r�, t �) = E�
0 exp(− jk� · r�) exp( jω�t �)

H�(r�, t �) = H�
0 exp(− jk� · r�) exp( jω�t �) (8)

where E�
0 and H�

0 are related to E0 and H0 via (7) and

k� = (k �
x , ky, kz), ω� = γ (ω − kxv) (9)

with k �
x = γ (kx − kβ), are identified as the wavenumber and

frequency in the cylinder frame, respectively.

A. Exact Spectral Solution

In order to obtain the exact scattered EM fields, we express
the total EM fields in the form of the Hertz potentials with
Lorentz gauge. For a cylindric scattering problem, the mag-
netic potential A and the electric potential F are chosen to be
directed along the z-(cylinder)axis, that is

A�(r�, t �) = 	 �
a
(t)(r�, t �)uz, F�(r�, t �) = 	 �

f
(t)(r�, t �)uz. (10)

The TM or TE fields are obtained from the A� or F� Hertz
potentials, respectively, via the differential operators in [15].

The total Hertz potentials due to the incident PW in (8)
subject to the boundary conditions in (4) are given as [15]

	 �
a/ f
(t)(r�, t �) = 	 �

a/ f
0 exp(− jkzz�)T �(t)

a/ f (ϕ
�, ρ�) exp( jω�t �)

	 �
a

0 = jω�ε0 E �
0z/k �

ρ
2, 	 �

f
0 = jω�μ0 H �

0z/k �
ρ

2 (11)

where ω� is given in (9)

ϕ� = φ� − φ�
k (12)

and the transverse vector wavenumber in cylindrical coordi-
nates, (k �

ρ, φ�
k), is related to k� in (9) via

k �
x = k �

ρ cos φ�
k, k �

y = k �
ρ sin φ�

k . (13)

In (11), T �
a/ f
(t)(ϕ�, ρ�) are given by the well-known series of

Bessel and Hankel functions in [15, eqs. (5–107), (5–115)].

B. Asymptotic Solution for Large Scatterers

In this section, we review the special case of high-frequency
excitation in which the cylinder radius is large on the scale
of the transverse wavenumber, i.e., for k �

ρa� � 1. These
asymptotic solutions are used in Section V to explore different
wave phenomena in the incident-field frame that are related to
the scatterer velocity. Following the standard GTD analysis
in [1], the total field asymptotic terms are presented as a sum
of incident, reflected, and creeping-wave terms in the form

T �
a/ f
(t) ∼ [

T �
a/ f
(i) + T �

a/ f
(r) − T �

a/ f (0)
(c)[−sgn(ϕ�)]]U [ζ �(r�)]

+
∞∑

m=0

[
T �

a/ f (m)
(c)(+) + T �

a/ f (m)
(c)(−)

]
(14)

in which the Heaviside function, U(), with

ζ �(r�) = |ϕ�| − π/2 + cos−1(a�/ρ�) (15)

restricts the contributions of the first three terms in (14) to the
light region that is defined by ζ �(r�) > 0. In (14), we identify

T �
a

(i) = T �
f
(i) = exp

[ − jk �
ρ L �(i)(ρ�, ϕ�)

]
(16)

with

L �(i)(ρ�, ϕ�) = ρ� cos ϕ� (17)

as the incident wave terms. The reflected field terms that are
denoted by the superscript (r) are given as

T �
f
(r) = −T �

a
(r) =

√
R�(r)

L �(r)(ρ�) + R�(r)

× exp
[ − jk �

ρ L �(i)(a�, π − δ�) − jk �
ρ L �(r)(ρ�, ϕ�)

]
(18)
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where L �(i) is given in (17) and

L �(r)(ρ�, ϕ�) =
√

ρ�2 − a�2 sin2 δ� − a� cos δ�

R�(r)(ρ�, ϕ�) = a� cos δ�/2. (19)

Here, the angle δ� is obtained by solving

cos−1
(

−a� sin δ�

ρ�

)
− 2

(
δ� + π

2

)
+ |ϕ�| − π

2
= 0. (20)

Finally, the creeping-wave terms in (14), which are denoted
by the superscript (c), are given as

T �
a/ f (m)

(c)(±) =
(

k �
ρa�

2

)1/3

2 exp
(
− j

π

12

)
G[k �

ρ L �(c)(ρ�)]Aa/ f

× exp

{
− jν�

a/ f

[
π

2
+ 2πm − cos−1

(
a�

ρ�

)
± ϕ�

]}
(21)

where

G(k R) = exp(− jk R)√
8πk R

, L �(c)(ρ�) =
√

ρ�2 − a�2 (22)

and

Aa = [Ȧi(−α0)]−2, A f = [α̇0Ai2(−α̇0)]−1

ν�
a/ f = k �

ρa� + αa/ f
(
k �
ρa�/2

)1/3 exp(− jπ/3). (23)

Here, Ai denotes the Airy function, −α0 and −α̇0 denote
the first zeros of Ai and Ȧi, respectively, and αa = α0 and
α f = α̇0. In Section V, we discuss the wave phenomena that
are associated with these asymptotic terms in both frames.

IV. FIELDS IN THE INCIDENT-FIELD FRAME

In order to obtain the EM field in the incident-field frame,
we first evaluate the EM fields in the cylinder frame by
applying the differential operators in [15] to the total potentials
in (11). Then, in order to use the FT, we apply a cylindrical-
to-Cartesian transformation to the resulting fields. Finally,
we apply the inverse FT to the cylinder frame fields and sample
the resulting incident-field frame fields at the corresponding
(r, t) event that is obtained via the LT in (5). This procedure
can be recast in the form

�(r, t) =
{

T�
[

M�
(

	 �
a
(t)(r�, t �)

	 �
f
(t)(r�, t �)

)]}∣∣∣∣⎧⎨
⎩

r�(r, t)

t �(r, t)

(24)

where the vector fields are given as

�(r, t) = [
Ex , Ey, Ez, Hx, Hy, Hz)

]T (25)

T� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C �
φ − S�

φ 0 0 0 0
γ S�

φ γ C �
φ 0 0 0 ϒ �

μ

0 0 γ − ϒ �
μS�

φ − ϒ �
μC �

φ 0
0 0 0 C �

φ − S�
φ 0

0 0 − ϒ �
ε γ S�

φ γ C �
φ 0

ϒ �
ε S�

φ ϒ �
εC �

φ 0 0 0 γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(26)

with ϒ �
μ = γ vμ0, ϒ �

ε = γ vε0, S�
φ = sin φ�, C �

φ = cos φ�, and

M� =

⎡
⎢⎢⎢⎢⎢⎢⎣

−kz/
(
ω��0

)
∂ρ� −ρ�−1∂φ�

−kz/
(
ω��0ρ

�) ∂φ� ∂ρ�
k �
ρ

2/
(

jω��0
)

0
ρ�−1∂φ� −kz/

(
ω�μ0

)
∂ρ�

−∂ρ� −kz/
(
ω�μ0ρ

�) ∂φ�
0 k �

ρ
2/

(
jω�μ0

)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (27)

Note that the asymptotic EM fields are obtained by inserting
the potentials of (11) with the asymptotic terms in (14)
into (24), and then collecting the higher order k �-terms.

An alternative way to evaluate the incident-field frame EM
fields is to apply the ILT to the cylinder frame potentials, and
then apply the incident-field frame linear differential operators
that are corresponding to the operators in (27), that is

�(r, t) = T(r, t)M(r, t)

[
	

(t)
a (r, t)

	
(t)
f (r, t)

]
(28)

where 	
(t)
a/ f (r, t) = 	 �

a/ f
(t)[r(r�, t �), t (r�, t �)] are referred to in

this paper as the incident-field frame potentials, T(r, t) is
obtained by applying the LT to T� in (26), and the operators
matrix M(r, t) is obtained by replacing the ∂ρ� and ∂φ�
derivatives in (27) with

∂ρ� = ρ̄(t)−1[γ x̄(t)(∂x + βc−1∂t ) + y∂y]
∂φ� = γ y(∂x + βc−1∂t ) − x̄(t)∂y (29)

where

ρ̄(t) =
√

x̄2(t) + y2, x̄(t) = γ (x − vt). (30)

V. WAVE PHENOMENA IN THE INCIDENT-FIELD FRAMES

In order to explore the incident-field frame potentials,
we describe a wave phenomenon in the cylinder frame, and
the corresponding one in the incident-field frame.

A. Shadowing Wave

First, we consider the argument of the Heaviside function
in (14) that restricts the first three terms’ contributions to the
total potentials T �

a/ f
(t) to the light region. The shadow region is

obtained by setting ζ � < 0. It follows from (15) that:
|ϕ�| < (π/2) − cos−1(a�/ρ�). (31)

In order to interpret this condition, we define the angles

θ �∓ = π/2 − cos−1(a�/ρ�) ∓ ϕ�. (32)

The condition in (31) sets both angles θ �− and θ �+ to be positive.
This condition defines the (cylinder frame) shadow region as
the area between the two parallel tangent rays [1, Fig. 3.15].

In order to obtain the incident-field frame shadow region,
we apply the LT in (5) to the condition ζ �(r�) < 0. The
resulting shadow region is given as

∣∣∣∣tan−1
(

y

x̄(t)

)
− φ�

k

∣∣∣∣ − π

2
+ cos−1

(
a�

ρ̄(t)

)
< 0 (33)
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Fig. 2. Physical interpretation of the shift in the incident-field frame shadow
region from the incident wave direction.

where φ�
k is defined in (13). By using (9) in (13), the spectral

angle φ�
k can be recast in terms of the incident-field frame

spectral variables in the form

tan φ�
k = [ky/k]/[γ (kx/k − β)]. (34)

By inserting the time-dependent coordinate x̄(t) in (30)
into (33), the shadow region condition takes the form

|ϕ̄(t)| < π/2 − cos−1[a�/ρ̄(t)] (35)

where ρ̄(t) is given in (30) and

ϕ̄(t) = tan−1 [y/x̄(t)] − φ�
k . (36)

By comparing (35) with (31), we note that these conditions
have essentially the same form. Thus, in the [x̄(t), y] system,
the shadow is casted in the direction of φ�

k and has a width
of 2a�. It follows that in the incident-field frame, the shadow
is casted in the direction of the angle φsh that is defined by

tan φsh = �y

�(x − vt)
= γ tan φ�

k . (37)

Note that the incident-field frame shadow angle φsh is
measured relatively to the x-axis in the Galilean system
(x −vt, y). Thus, the shadow region translates uniformly with
the cylinder (see Fig. 2). Furthermore, unlike the stationary
β = 0 case, the shadow angle, φsh, exhibits a shift from the
incident-field angle φk . By using sin φk = ky/k in (34) and
inserting into (37), we obtain

tan φsh = sin φk

cos φk − β
. (38)

The shift of the shadow boundaries direction from φk

(stationary cylinder) to (the moving cylinder) φsh in (38) has a
clear physical interpretation. Referring to Fig. 2, we examine
the cylinder in the incident-field frame at certain time t0 at
which the cylinder is located at some point over the x-axis
(the left cylinder in Fig. 2). At that time, the incident-field
front is impinging on the cylinder and propagates into the
light region with angle φk . In Fig. 2, the two tangent rays are
plotted. After certain time �t > 0, the cylinder has advanced
a distance of v�t (the right-hand side cylinder in Fig. 2),
whereas the wavefront of the grazing rays have propagated a
distance of c�t . At this time, a new wavefront is formed by
the incident grazing rays with angle φk .

Thus, the light to shadow transition occurs over the current
(t +�t) cylinder tangent that passes through the incident-field
front at t + �t as plotted in Fig. 2. This tangent forms an

Fig. 3. Geometrical representation of Snell’s law and the optical lengths.

angle of φsh with the x-axis. By applying the sine theorem to
the plotted triangle, we deduce that

v�t

sin(φsh − φk)
= c�t

sin φsh
. (39)

By using β in (6) as well as basic trigonometry for
sin(φsh − φk), we end up with the result in (38).

In order to evaluate the shadow width that is denoted by
Wsh, we note that in (x̄, y) coordinates, the shadow width
is 2a�. Therefore, the shadow boundaries are given as

y = x̄ tan φ�
k ± a�/ cos φ�

k . (40)

By using (38) in (40), we obtain the corresponding boundaries
in the incident-field frame as

y = (x − vt) tan φsh ± a�
√

1 + γ −2 tan2 φsh. (41)

Thus, the shadow width in the incident-field frame, which is
the distance between these lines, is evaluated as

Wsh = 2a�γ −2 cos φsh

√
γ 2 + tan2 φsh (42)

where φsh is given in (38). The shadow boundaries and the
shadow width are plotted in Fig. 2.

B. Reflected Potentials

The reflected wave term in (18) results from the contribution
of a stationary point in the Watson transformation integral [1].
The stationary point that is denoted by ν−

s is given as

ν−
s = k �

ρa� cos(δ� + π/2) (43)

where the angle δ� is obtained by solving (20). In order to
interpret the wave phenomenon that is associated with the
reflected wave, we recast (20) in the form

−2δ� = 2π − (χ � + |ϕ�| + π/2) (44)

where χ � = cos−1[a� sin(−δ�)/ρ�]. This relation can also be
derived from the geometrical representation of Snell’s law
by setting both the incident and reflection angles to δ� as
demonstrated in Fig. 3.

Referring to Fig. 3, we identify L �(i) in (17) as the optical
length of the incident ray that is impinging on the cylinder
surface and that is propagating to the observation point with
a reflection angle that is equal to the incident angle δ�. The
L �(r) term in (19) is identified as the optical length of the
reflected ray from the scatterer surface to the observation point.
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By applying simple geometry to the triangles in Fig. 3,
we deduce that the optical length of the reflected ray trajectory
over the xy plane is given by L �(i)(a�, π − δ�) + L �(r)(ρ�, φ�)
where L �(r) is given by (19), and by using (17), we identify

L �(i)(a�, π − δ�) = a� cos(π − δ�). (45)

By inserting (18) into (11), we obtain the asymptotic
reflected potentials of the 3-D problem as

	 �
a/ f
(r)(r�, t �) ∼ 	 �(i)

ray 	 �(r)
ray (46)

in which

	 �(i)
ray = 	 �

a/ f
0 exp

( − jkzz�
ip

)
exp

( − jk �
ρ L �(i)) exp

(
jω�t �ip

)

(47)

is identified as the incident-field potential that is sampled at
the reflection event, and

	 �(r)
ray = (−1)

√
R�(r)

L �(r) + R�(r) exp
[ − jkz

(
z� − z�

ip

)]

× exp
( − jk �

ρ L �(r)) exp
[

jω�(t � − t �ip
)]

(48)

is the asymptotic reflected potential. Here, L �(r) and R�(r) are
given in (19) and z�

ip , t �ip are identified as the z� and t � values of
the incident ray at the incident event over the cylinder surface.
The asymptotic reflected potential term, 	

�(r)
ray consists of a

reflection coefficient of (−1), an amplitude term in a canonical
GTD form in which R�(r) is the radius of curvature of the
reflected ray field over the interface, and L �(r) is the optical
length of the reflected ray field (see Fig. 3). Note that over the
cylinder surface, where L �(r) = 0, the sum 	 �

a
(r) + 	 �

a
(i) = 0

in accordance with the cylinder frame boundary conditions.
Next, we investigate the reflected potentials in the incident-

field frame. By applying the LT to the potentials in (46)–(48),
we obtain

	
(r)
a/ f (r, t) ∼ (−1)

√
R̄(r)

L̄(r) + R̄(r)
	 �

a/ f
0 exp(− jkzz)

× exp[ jω�γ (t − βx/c)] exp
[− jk �

ρ(L̄(r)(r, t)−a� cos δ̄)
]
.

(49)

Here

L̄(r)(r, t) =
√

ρ̄2 − a�2 sin2 δ̄ − a� cos δ̄

R̄(r)(r, t) = a� cos δ̄/2 (50)

where ρ̄ is given in (30), and the angle δ̄ is obtained from the
observation event (r, ct) by solving

cos−1
(

−a� sin δ̄

ρ̄

)
− 2

(
δ̄ + π

2

)
+ |ϕ̄| − π

2
= 0. (51)

The reflected potentials are formed by two events: the first
is the impinging event that is denoted by (r(r)

i , t(r)i ). At this
event, the incident plane-wave is impinging on the cylinder,
and forms the reflected wave that is propagating toward the
observation event (r, t). Note that when the wavefront arrives

Fig. 4. Incident and reflected rays in the incident-field frame. (a) At Time
t = t(r)i , the incident field is impinging on the moving cylinder surface.
(b) At Time t , the reflected wavefront is arriving at observation point (x, y).
The wave is reflected in the direction of �r in (56)

at the observation point, the cylinder has advanced v(t − t(r)i ).
In the cylinder frame, the impinging event is given as

x �
i
(r) = −a� cos δ�, y �

i
(r) = a� sin δ�, t �i (r) = t � − c−1 L �(r)

(52)

where the cylinder frame observation event, (r�, t �) is obtained
from the corresponding incident-field frame event via the LT.
Thus, in terms of the observation event, the impinging event
in the incident-field frame is obtained by applying the ILT
to (52), giving

x (r)
i = γ [−a� cos δ̄ + γ (βct−β2x) − β L̄(r)], y(r)

i =a� sin δ̄

t(r)i = γ [γ (t − βc−1x) − c−1 L̄(r) − βc−1a� cos δ̄]. (53)

A direct result of (51) is that in the time-dependent (x̄(t), y)
coordinate system, the incident and reflection angles over
the (circular) cylinder surface are both equal to δ̄. Therefore,
in this system, the reflected ray trajectory is the line

y − y(r)
i = − tan

(
2δ̄ − φ�

k

)(
x̄ − x̄ (r)

i

)
(54)

where

x̄ (r)
i = −

√
a�2 − (

y(r)
i

)
2. (55)

It follows that in the (x, y) system, the ray trajectory is in the
direction of the angle �r that is given as

tan �r = �y

�(x − vt)
= γ tan

(
2δ̄ − φ�

k

)
(56)

where δ̄ is obtained by solving (51). In Fig. 4, we plot a sketch
of the incident and reflected rays in the incident-field frame.

C. Creeping Wave

In order to investigate the creeping-wave phenomenon,
we evaluate the creeping potentials terms, 	 �

a/ f (m)
(c)(±) that are

obtained from T �
a/ f (m)

(c)(±) by inserting (14) into (11), giving

	 �
a/ f (m)
(c)(±)(r�, t �) = 	 �

a/ f
0 exp(− jkzz�) exp( jω�t �)T �

a/ f (m)
(c)(±) (57)

where T �(c)(±)
a/ f (m) are given in (21).
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In order to identify the associated wave phenomenon, the
following parameters are defined [1]:

D�
a/ f =

(
k �
ρa

2

)1/3

2Aa/ f exp
(
− j

π

12

)

ϒ �
a/ f = αa/ f

3
√

2k �2
ρ a�2

exp
(
− j

π

3

)
(58)

and

l �m∓ (r�) = a�θ �m∓ , θ �m∓ = π

2
+ 2πm − cos−1 a

ρ� ∓ ϕ� (59)

where ϕ� is given in (12). By using (58) in (23), one obtains

ν�
a/ f = a�kρ

(
1 + ϒ �

a/ f

)
. (60)

By inserting (21) with (58)–(60) into (57), we recast 	
�(c)
a/ f in

the form

	 �
a/ f (m)
(c)(±)(r�, t �) = 	 �(i)

graz(r
�, t �)

× D�
a/ f exp

[ − jk �
ρ

(
1 + ϒ �

a/ f

)
l �m∓

]
G

[
k �
ρ L �(c)(ρ�)

]
(61)

where L �(c) is defined in (22), G is given in (22) and

	 �(i)
graz(r

�, t �) = 	 �
a/ f

0 exp(− jkzz�) exp( jω�t �). (62)

The creeping wave potentials in (61) consist of a multiplica-
tion of several terms. The first term in (61) is identified as the
sampling of the incident-field potential at the corresponding
2-D grazing point, i.e., 	

�(i)
graz = 	

�(i)
a/ f (ρ

� = a�, ϕ� = ±π/2).
The second term in (61) accounts for the propagation and
attenuation of the creeping wave along the cylinder surface
either in the clockwise (CW) (	 �

a/ f (m)
(c)(+)) or counterclockwise

(CCW) (	 �(c)(−)
a/ f (m)) direction. The terms l �m− and l �m+ are identified

as the creeping distances along the cylinder surface from the
grazing point to the emanation point of a tangential ray to
the observer, plus m times the circumference of the cylinder
circle. The last term in (61), G(k �

ρ L �(c)), is identified as the
tangential rays that propagate in free space to the observer
(see Fig. 5).

The creeping waves encircle the cylinder an infinite number
of times. In the mth round, the wave potentials accumulate a
phase of k �

ρ(1 + Reϒ �
a/ f )l

�m∓ and attenuate exponentially with
k �
ρImϒ �

a/ f l �m∓ . The phase term sets its speed to be

v �
c = c/

[
κ �
ρ

(
1 + Reϒ �

a/ f

)]
, κ �

ρ = k �
ρ/k �. (63)

Here, κ �
ρ denotes the (cylinder frame) incident wave nor-

malized lateral wavenumber. Note that the propagation in
the z� direction is accounted for the multiplication by the
exp(− jkzz�) term in (22). Therefore, these waves are creeping
along an helix contour over the circular cylinder surface.
Thus, the creeping wave that is excited by the tangential
ray at the grazing point (a� sin φ�

k, a� cos φ�
k, z�

g) and time tg
propagates along the trajectory:

r�
c =[ ∓ a� sin ��

c(t
�),±a� cos ��

c(t
�), z�

g + cκ �
z(t

� − t �g)
]

(64)

where

��
c(t

�)=±ω�
c(t

� − t �g) + φ�
k, ω�

c = v �
c/a, κ �

z = k �
z/k �. (65)

Fig. 5. Creeping wave potentials in (61) consist of sample of the incident
rays at the grazing interaction points, attenuated propagation along the cylinder
surface, and propagation of the tangential rays along L �(c) to the observation
point.

The ± sign in (64) refers to either a CW (upper sign) or CCW
(lower sign) trajectory.

Next, we examine the incident-field frame creeping wave
phenomenon by applying the LT to the potentials in (61). The
resulting incident-field frame potentials are given as

	a/ f (m)
(c)(±) (r, t) = 	 �

a/ f
0 exp(− jkzz) exp[ jω�γ (t − βx/c)]

× D�
a/ f exp

[ − jk �
ρ

(
1 + ϒ �

a/ f

)
l̄m∓(r, t)

]
G

[
k �
ρ L̄(c)(r, t)

]

(66)

where D�
a/ f and ϒ �

a/ f are given in (58), G in (22) and

l̄m∓(r, t) = a�
[
π

2
+ 2πm−cos−1 a�

ρ̄(t)
∓ cos−1 x̄(t)

ρ̄(t)
±φ�

k

]

L̄(c)(r, t) =
√

ρ̄2(t) − a�2. (67)

Here, x̄(t) and ρ̄(t) are given in (30).
First, we examine the creeping wave trajectory over the

moving cylinder surface. By applying the ILT to the cylinder
frame trajectory in (64), we obtain the incident-field frame
trajectory rc(t �) = [xc(t �), yc(t �), zc(t �)] where

xc(t
�) = ∓γ a� sin

[ ± ω�
c

(
t � − t �g

) + φ�
k

] + cβγ t �

yc(t
�) = ±a� cos

[ ± ω�
c

(
t � − t �g

) + φ�
k

]

zc(t
�) = z�

g + cκ �
z(t

� − t �g). (68)

Here, we refer to t � as a parameter along the 3-D trajectory
rc(t �). For a given t �, we identify, via the ILT, the correspond-
ing incident-field frame time, tc, as

tc(t
�) = γ t � + γβca� sin

[
ω�

c

(
t � − t �g

) + φ�
k

]
. (69)

The CW trajectory in (68) is plotted in Fig. 6 for β = 0.4,
a� = 1, and k = kux for which κ �

z = 0 and the trajec-
tory is a planar curve over the (x, y) plane. The projection
over the (x, y) plane is periodic over the x-axis with a
period of

�x = v�t, �t = γ�t � = γ v 2π/ω�
c (70)

where ω�
c is given in (65). The velocity of the creeping

potential over the trajectory rc is given as

vc(t
�) = drc

dtc
= drc

dt �

(
dtc
dt �

)−1

. (71)
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Fig. 6. Creeping wave trajectory in the incident-field frame. As the cylinder
advances, the creeping waves follow the trajectory in (68). The cylinder is
plotted in red at the radiation event in (77). The trajectory is corresponding
to several creeping waves that are excited at t(c)n when the incident ray is
tangent to the cylinder.

By using (68) and (69) in (71), we obtain

vc(t
�) =

[ ∓ γ a�ω�
c cos �c(t �) + cβ,∓a�ω�

c cos �c(t �), cκ �
z
]

γ
[
1 + cβa�ω�

c cos �c(t �)
] .

(72)

Here, as in (68), t � is a parameter along the trajectory
for which the corresponding physical time tc is given
in (69).

Next, we identify the cylinder frame creeping wave poten-
tials events that correspond to a given observation event
(r�, ct �). The potential in (61) consist of the ray field
G

[
k �
ρ L �(c)(ρ�)

]
that is emanating from the cylinder surface

to the observation point. We denote the ray field radiation
event in which the ray field is radiated from the cylinder
surface by (x �(c)

r , y �(c)
r , z�(c)

r , ct �(c)r ). The ray field propagates a
distance of L �(c)(ρ�) at the speed of ck �

ρ/k � along the tangent
trajectory from the radiation point over the cylinder surface to
the observation point (see Fig. 5). Thus, the radiation event is
evaluated by

x �(c)
r = a�

ρ�2 [a�y � ∓ x �L �(c)], y �(c)
r = a�

ρ�2 [±a�x � ± y �L �(c)]
z�(c)

r = z� − κ �
zc

(
t � − t �(c)r

)
, t �(c)r = t � − L �(c)/

(
cκ �

ρ

)
. (73)

Here, we have used the normalized wavenumbers in (63)
and (65).

Next, we evaluate the cylinder frame event in which the
creeping waves are excited. Since the creeping wave angular
speed is ω�

c in (65), we evaluate the excitation (grazing) times
of the mth potential that are denoted by t �(c)mg via

t �(c)mg∓ = t �(c)r − θ �m∓ /ω�
c (74)

where θ �m∓ is given in (59). Thus, the creeping wave is excited
at the grazing event that is denoted by (x �(c)

g∓ , y �(c)
g∓ , z�(c)

g∓ ,

and ct �(c)mg∓ ) where

x �(c)
g∓ = ∓a� sin φ�

k, y �(c)
g∓ = ±a� cos φ�

k

z�(c)m
g∓ = z� − κ �

zc
(
t � − t �(c)r − t �(c)mg∓

)
. (75)

The radiation and grazing events can be mapped into
the incident-field frame and be expressed in terms of the
observation event (x, y, z, ct) via the ILT. For example,
the radiation time that is denoted by t(c)r is obtained by
applying the ILT to the cylinder frame radiation event
in (73), giving

t(c)r = γ

[
t � − L �(c)(ρ�)

cκρ
+ βa�

cρ�2 (a�y � ∓ x �L �(c)(ρ�))
]
. (76)

By applying the LT in (5) to the observation event and
inserting into (76), we obtain the expression for t(c)r in terms
of the incident-field frame observation event in the form

t(c)r = γ

[
x̄(t) − L̄(c)(r, t)

cκρ
+ βa�

cρ̄(t)2 [a� x̄ − y L̄(c)(r, t)]
]

(77)

where L̄(c) is given in (67).
Thus, the incident-field frame creeping wave potentials at

the observation event (x, y, z, ct) consist of infinite contribu-
tions of creeping waves that were excited at the mth grazing
event. These waves are radiated from the cylinder surface at
the radiation event along the tangent ray trajectory from the
cylinder surface at time t(c)r to the observation point. This ray
field arrives at the observation point at time t .

D. Low-Speed Approximation

In this section, we derive the low-speed approxima-
tion (LSA) of the scattered potentials for β 
 1 ( v 
 c).
The scatterer shape in the incident-field frame is given by the
ellipse γ 2(x − βct)2 + y2 = a�2. By applying a first-order
approximation in β, γ 2 = (1 − β2)−1 ≈ 1 and the cylinder
retains its cyclic form. Thus, we denote the radius as a (= a�).

LSAs of different quantities are obtained by applying the
first-order approximation in β. By applying the LSA to φ�

k
in (13) and for ρ̄(t) and ϕ̄(t) in (30) and (36), we obtain

φ�
k ≈ φk + β�φk ,�φk = sin φ/ sin θk

ρ̄(t) ≈ ρ + β�ρ,�ρ = −ct cos φ

ϕ̄(t) ≈ ϕ + β�ϕ,�ϕ = ct sin φ/ρ − �φk . (78)

Here, all unprimed quantities are the corresponding stationary
(β = 0) analogs, i.e., φk = φ�

k |β=0, etc. Note that the polar
coordinates (ρ̄, φ̄) deviate from the stationary ones linearly
with ct , i.e., the LSA is valid for βc|t|/ρ 
 1.

Next, we examine the reflection angle δ̄. By applying the
first-order approximation to all quantities in (51) and collecting
terms, we obtain δ̄ ≈ δ + β�δ with

�δ = ρ2 cos(2δ − |φ|)sgn(�φ) sin φ�φ + a sin δ�ρ

2ρ2 cos(2δ − |φ|) + aρ cos δ
(79)

where the stationary cylinder reflection angle δ is obtained by
solving (51) with β = 0.

First, we examine the reflected potentials in (49). The LSA
of wave potentials is carried out in the following manner:
we sample all amplitudes at β = 0, and apply a first order
approximation to the phase terms. This procedure yields

	
(r)
a/ f (r, t) ≈ (−1)

√
R(r)

L(r) + R(r)
	0

a/ f exp(− jkzz) exp( jωt)

× exp[−jkρ(L(r) − a cos δ)] exp(−jβ�	r ) (80)

where

�	r = L(r)�kρ + kρ�L(r) + a sin δ�δ + kx − �ωt (81)
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with

�kρ = −k cos φk, �ω = −ω cos φk sin θk

�L(r) = 2ρ�ρ − a2 sin 2δ�δ

2(L(r) + a cos δ)
+ a sin δ�δ. (82)

In (80), the stationary quantities L(r) and R(r) are obtained
by setting β = 0 in their corresponding moving cylinder ones,
i.e., R(r) = a cos δ/2, etc.

Thus, the LSA reflected potentials consist of the stationary
ones with the phase correction β�	r . In view of (81),
it consists of corrections due to changes in kρ , L(r), and δ.
The last two terms of βkx and −β�ωt are due to the first-
order approximation of the time dilation in LT in (5) and the
well-known (LSA) Doppler shift, respectively.

Next, we investigate the creeping wave potentials in (66).
By applying the LSA, we obtain

l̄m∓(r, t) ≈ lm∓ + β�lm , L̄(c)(r, t) = L(c) + β�L(c)

ϒ �
a/ f ≈ ϒa/ f + β�ϒ (83)

where

�lm = a

[(
a

ρ

cos φ√
ρ2 − a2

∓ sin2 φ√
ρ2 − x2

)
ct ± �φk

]

�Lc = −ρct cos φ/L(c), �ϒ = 3ϒa/ f cos φk/2sin θk . (84)

By using (84) in (66), we approximate

	a/ f (m)
(c)(±)(r, t) ≈ 	0

a/ f Da/ f exp(− jkzz) exp( jωt)G(kρ L(c))

× exp
[− jkρ

(
1 + ϒa/ f

)
lm∓

]
exp(− jβ�	(c)) (85)

where Da/ f and ϒa/ f are the stationary (β = 0) analogs
of (58), G is defined in (22) and

�	(c) = kx − �ωt + (1 + ϒa/ f )l
m∓�kρ + kρlm∓�ϒ

+ kρ(1 + ϒa/ f )�lm + L(c)�kρ + kρ�L(c) . (86)

Thus, the LSAs of the creeping potentials consist of the
stationary cylinder potentials with the phase correction β�	(c) .
The first two terms in (86) have been discussed with connec-
tion to (81). The next three terms adjust the creeping wave
phase to the slowly moving cylinder. These terms are due to
the small changes in kρ , ϒa/ f , and the distance lm∓ . The last
two terms adjust the radiation phase from the radiation event
to the observer. These terms are due to small changes in kρ

and in the distance L(c).

VI. CONCLUSION

In this paper, we have presented the scattering of a TH
PW by a moving PEC cylinder. We have obtained the exact
and the asymptotic solutions for the fast cylinder in the
incident-field frame where we have identified the scattered
asymptotic wave as a combination of a shadowing, reflected,
and creeping waves. An explanation to the apparent shift in the
shadow width, casting direction, and also an expression to the
reflection angles have been derived from the relativistic length
contraction effect and casuality principles. We have discussed
the creeping-wave phenomenon and mapped its excitation,
radiation, and observation events. Finally, we have derived the
closed-form expressions for the potentials in the low-speed
regime and discussed the corresponding wave phenomena.
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