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Abstract—Novel time-harmonic beam fields have been recently
obtained by utilizing a non-orthogonal coordinate system which is a
priori matched to the field’s planar linearly-phased Gaussian aperture
distribution. These waveobjects were termed tilted Gaussian beams.
The present investigation is concerned with parameterization of these
time-harmonic tilted Gaussian beams and of the wave phenomena
associated with them. Specific types of tilted Gaussian beams that
are characterized by their aperture complex curvature matrices, are
parameterized in term of beam-widths, waist-locations, collimation-
lengths, radii of curvature, and other features. Emphasis is placed
on the difference in the parameterization between the conventional
(orthogonal coordinates) beams and the tilted ones.

1. INTRODUCTION

Beam-type expansion of scalar or electromagnetic fields has gain much
attention in the past several years owing to their mutual spectral
and spatial localization which result in local interactions between the
beam fields and the propagating/scattering medium. This feature is
significantly advantageous for propagation and scattering and results
in simplified analytic expressions for the beam fields. Locality
considerations have been utilized for solving beam-type waveobjects
propagation in generic media profiles such as inhomogeneous [1–3],
anisotropic [4–11], and for time-dependent pulsed beams, in dispersive
media [12–16].

The need for beam solutions arises from beam-type (phase-space)
expansions such as Gabor-based expansions [17, 18] or the frame-
based field expansion [19, 20]. The latter utilizes the overcompleteness
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nature of the beam’s continuous spectrum [18, 21, 22], and discretizes
the spectral representation with no loss of essential data for
reconstruction. A theoretical overview of frame-based representation
of scalar time-harmonic fields is presented in [19], with an extension
to electromagnetic fields in [23], and for time-dependent scalar fields
in [20].

Exact beam-type expansions require beam solutions that match
localized aperture planar distributions. In these solutions the
boundary plane over which the aperture field distribution is given
is generally not perpendicular to the beam direction of propagation
(the beam-axis). Therefore, in order to use conventional (orthogonal
coordinates) Gaussian beams, apart from asymptotic approximations
an additional approximation is carried out to project the aperture
field complex curvature matrix on a plane normal to the beam-axis
direction. This additional approximation reduces the accuracy of the
resulting beam solutions especially for large angle departures and,
moreover, it becomes inconsistent with respect to asymptotic orders.
The need for the additional approximation can be avoided by using the
recently introduced tilted GBs which are localized beam-type solutions
to the Helmholtz equation [24]. These waveobjects are matched
to linearly-phased Gaussian aperture field distributions over a plane
which is tilted with respect to the corresponding beam-axes.

The present paper deals with the properties and parameterization
of tilted Gaussian beams (GBs) and the additional wave phenomena
associated with applying a non-orthogonal coordinate system. These
waveobjects are parameterized in terms of spatial widths, wave-front
radii of curvature, collimation lengths, and other features. Since such
waveobjects serve as the basic building blocks for different beam-type
expansions, it is an important task to parameterize them in order to
utilize these expansion schemes in different scattering scenarios [25–34].

2. TILTED GAUSSIAN BEAMS

A discrete exact expansion scheme which synthesizes the EM field
propagating in z ≥ 0 due to sources in z < 0 was presented in [23, 24].
The electric field expansion is described by a superposition of EM beam
propagators which emanate from a set of discrete points over the z = 0
aperture plane in a discrete set of directions. This set of directions is
determined by introducing a linear phase term exp[−jk(ξ̄1x1 + ξ̄2x2)]
in which ξ̄ = (ξ̄1, ξ̄2) are the expansion (directional) spectral variables.
The EM vectorial beam propagators are obtained directly from the
scalar tilted GBs subject to a transverse shift over the aperture to the
spectral expansion lattice.
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The tilted GBs are identified by aperture planar distributions over
the z = 0 plane of the form

B0(x) = exp
[
−jk

(
ξ̄Tx +

1
2
xTΓ0 x

)]
, (1)

where k = ω/v0 is the homogeneous medium wavenumber with v0

being the medium wave speed. Here and henceforth, all fields carry
a suppressed time-dependence of exp(jωt), all vectors are column
vectors, superscript T is used to denote matrix or vector transpose,
bold minuscule letters are used to denote column vectors and bold
capital letters are used to denote matrices. The aperture complex
curvature matrix, Γ0, is a 2 × 2 complex symmetrical matrix with a
negative definite imaginary part. Note that Eq. (1) is comprised of a
Gaussian distribution with a linear phase-term which causes the beam
to tilt with respect to the z = 0 plane.

The tilted GBs in [24] were obtained by introducing a novel
non-orthogonal coordinate system which is a priori matched to
distribution (1). In this system rb = (xb1 , xb2 , zb) where the zb-axis is
in the beam-axis propagation direction and the transverse coordinates,
xb1 and xb2 , lie on a plane parallel to the (x1, x2) plane and are centered
at its intersection with the zb-axis (see Fig. 1). The transformation

Figure 1. Non-orthogonal local beam coordinate system. Observation
point r = (xb1 , xb2 , zb) where zb is the origin location along the paraxial
propagation direction, ẑb, and the transverse coordinates, xb1 and xb2 ,
lie on a plane parallel to the (x1, x2) plane. Thus, the transverse
coordinates are tilted with respect to the propagation direction ẑb.
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from r = (x1, x2, z) to rb = (xb1 , xb2 , zb) is given by

rb =




1 0 −ξ̄1/ζ̄
0 1 −ξ̄2/ζ̄
0 0 ζ̄−1


 r, r =




1 0 ξ̄1

0 1 ξ̄2

0 0 ζ̄


 rb, (2)

where the longitudinal (normalized) spectral wavenumber ζ̄ =√
1− ξ̄2

1 − ξ̄2
2 , and the observation vector is given by

rb = xb1 x̂b1 + xb2 x̂b2 + zbẑb, (3)

with x̂b1 , x̂b2 and ẑb denoting the unit-vectors in the direction of the
xb1 , xb2 and zb axes, respectively. Note that x̂b1 = x̂1, x̂b2 = x̂2,
whereas ẑb = (ξ̄, ζ̄). Here and henceforth, a hat over a vector denotes
a unit-vector.

The asymptotically-exact tilted GB solutions are given by

B(rb)=

√
detΓ(zb)
detΓ0

exp[−jkΨ(rb)], Ψ(rb)=s(rb)+
1
2
xb

TΓ(zb) xb, (4)

where xb = (xb1 , xb2), the Eikonal (see Fig. 1)

s(rb) = zb + ξ̄1xb1 + ξ̄2xb2 , (5)

and Γ(zb) is given by

Γ(zb) =
[
Γ−1

0 + ζ̄−2Ψzb

]−1
. (6)

Γ0 is the aperture complex curvature matrix of the field distribution
in (1) and

Ψ =
[ (

1− ξ̄2
2

)
ξ̄1ξ̄2

ξ̄1ξ̄2

(
1− ξ̄2

1

)
]

. (7)

The waveobjects in (4) exhibit a Gaussian decay away from the
beam-axes over which xb = 0. Their properties are determined
by the complex curvature matrices Γ(zb), which are obtained from
the aperture complex curvature matrices Γ0 in (1) via (6). The
characteristics of these waveobjects vary with the aperture distribution
features according to the main categories in the following section.

3. PROPERTIES OF TILTED GBS

3.1. Conventional (Orthogonal System) GB

The special case of a normally propagating GB is obtained by setting
ξ̄ = 0 in (2) and (7). Consequently, no linear phase is included in
the aperture field distribution in (1) so that the resulting beam-axis
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coincides with the z-axis. The paraxial beam coordinate system in (2)
is orthogonal (i.e., (xb1 , xb2 , zb) = (x1, x2, z)) and the beam field in (4)
transforms into the well-known conventional beam solution [2, 35]

B(r) =

√
detΓ(z)
detΓ0

exp
{
−jk

[
z +

1
2
xTΓ(z)x

]}
, (8)

where
Γ(zb) =

[
Γ−1

0 + zbI
]−1

. (9)

with I denoting the 2× 2 unity matrix.
In order to clarify the characteristics of the GB in (8), we rotate

the transverse coordinates x in order to diagonalize Γ(z). Any real
2× 2 symmetric matrix, Γ = {Γi,j}, can be diagonalized by a rotation
matrix of the form

xc = Tcx, Tc =
[

cosΦc sin Φc

− sinΦc cosΦc

]
, (10)

where
tan(2Φc) = 2Γ1,2/(Γ1,1 − Γ2,2), (11)

so that the quadratic phase in (8) is given by

xTΓx = xT
c Γc xc, Γc = TcΓT−1

c , (12)

with Γc being a diagonal matrix. However, in the general case in which
Γ is complex, the two real symmetric matrices, ReΓ and ImΓ, cannot
be diagonalized simultaneously. Therefore, we define two rotation
angles, Φr and Φj , that yield two principal axes, xr = Trx and
xj = Tjx, in which ReΓ and ImΓ are diagonalized, respectively.
Note that the rotation angles, Φr and Φj , are in general z-dependent.
Nevertheless, in the special case in which the principal axes, xr and xj

coincide at the beam origin z = 0, it follows that the axes coincide for
all z values and the rotation angle becomes independent of z. The GB
waveobject in this particular case was previously termed iso-axial [2].
The conventional (orthogonal system) GB and its time-dependent
counterpart, the pulsed beam, have been well studied in [2, 22] and [36].
Here we present the results concerning the iso-axial GB, but a more
general case can be easily parameterized in a similar manner. While
investigating the properties of the iso-axial GB, it is sufficient to
consider the case of a diagonal aperture matrix Γ0, since any other (iso-
axial) aperture matrix can be rotated and diagonalized in the z = 0
plane following the procedure in (10)–(12). Denoting

Γ0 = diag
{

(−Z1 + jF1)
−1 , (−Z2 + jF2)

−1
}

, F1,2 > 0, (13)
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the complex curvature matrix in (9) is given by

Γ(z) =
[

(z − Z1 + jF1)−1 0
0 (z − Z2 + jF2)−1

]
. (14)

By separating Γ(z) into its real and imaginary parts, we obtain

ReΓ = diag
{
R−1

1 (z), R−1
2 (z)

}
, ImΓ = −diag

{
I−1
1 (z), I−1

2 (z)
}

, (15)

where

R1,2(z) = (z−Z1,2)+
F 2

1,2

(z−Z1,2)
, I1,2(z) = F1,2

[
1+

(z−Z1,2)
2

F 2
1,2

]
. (16)

By inserting Eq. (16) with (14) into (8), R1,2(z) are identified as the
phase-front radii of curvature on the principal axes. The e−1 beam-
widths in (x1,2, z) principle planes are given by

W1,2(z) = D1,2

√
1 +

(z − Z1,2)
2

F 2
1,2

, (17)

where D1,2 =
√

8F1,2/k is identified as the principal beam waists (see
Fig. 2). We identify F1,2 and Z1,2 as the beam collimation-lengths and
the beam waist-locations on the (z, xc1,2) principal planes, respectively.
Note that near the waist, |z − Z1,2| ¿ F1,2, the GB remains collimated
with approximately constant beam-widths D1,2, whereas far from the
waist, |z − Z1,2| À F1,2, the GB opens up along constant diffraction
angles Θ1,2 = (kF1,2/8)−1/2.

Figure 2. Parameterization of the conventional GB. The parameters
are depicted over the (xc1, z) plane. The tilted GB exhibits a Gaussian
decay over constant z planes. W (z) denotes the beam-widths, R(z) the
phase-front radius of curvature, D the width at the waist which are
located in z = Z, F the collimation length and Θ denotes the far-field
diffraction angle.
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3.2. Iso-axial Tilted GB

Applying radially-symmetric Gaussian windows to an aperture field
distribution results in a beam-type expansion scheme in which the
propagating waveobjects are iso-axial tilted GBs. These GBs are
characterized by a diagonal aperture complex curvature matrix of the
form [19, 22, 23]

Γ0 = IΓ0, Γ0 = (−Z + jF )−1, F > 0. (18)

The complex curvature matrix in this case is obtained by using (18)
in (6), yielding

Γ(zb)=
[

(1−ξ̄2
2)ζ̄

−2zb−Z+jF ξ̄1ξ̄2ζ̄
−2zb

ξ̄1ξ̄2ζ̄
−2zb (1−ξ̄2

1)ζ̄
−2zb−Z+jF

]−1

. (19)

Next we separate Γ(zb) into its real and imaginary parts, i.e., Γ =
Γr + jΓj with

Γr =
[
∆r

[(
1−ξ̄2

1

)
ζ̄−2zb−Z

]−∆jF −∆r ξ̄1ξ̄2ζ̄
−2zb

−∆r ξ̄1ξ̄2ζ̄
−2zb ∆r

[(
1−ξ̄2

2

)
ζ̄−2zb−Z

]−∆jF

]
, (20)

and

Γj =
[
∆j

[(
1−ξ̄2

1

)
ζ̄−2zb−Z

]
+∆rF −∆j ξ̄1ξ̄2ζ̄

−2zb

−∆j ξ̄1ξ̄2ζ̄
−2zb ∆j

[(
1−ξ̄2

2

)
ζ̄−2zb−Z

]
+∆rF

]
,

(21)
where

∆r =
δr

δ2
r + δ2

j

, ∆j =
δj

δ2
r + δ2

j

, (22)

with

δr = Z2 − F 2 − Z
(
1 + ζ̄−2

)
zb + ζ̄−2z2

b ,

δj = −2ZF + F
(
1 + ζ̄−2

)
zb. (23)

Note that unlike in the conventional GB in Section 3.1, a diagonal
aperture complex curvature matrix Γ0, results in a non-diagonal
complex curvature matrix along zb. The real and imaginary parts of the
complex iso-axial curvature matrix can be diagonalized simultaneously
by rotating the xb-axes over constant zb-planes by a zb-independent
angle Φc, i.e., xc = Txb. Then using (20) or (21) in (11), we obtain

tan 2Φc = 2ξ̄1ξ̄2/
(
ξ̄2
1 − ξ̄2

2

)
, (24)

i.e., cos Φc = ξ̄1/ξ̄ and sin Φc = ξ̄2/ξ̄, where ξ̄ =
√

ξ̄2
1 + ξ̄2

2 . Angle
Φc is identified as the angle between the x1-axis and the projection of
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the zb-axis on (x1, x2) plane. The resulting rotation transformation is
given in (10). Finally, using (19) in (12), we obtain

Γc(zb) =
[ (

zbζ̄
−2 − Z + jF

)−1 0
0 (zb − Z + jF )−1

]
, (25)

for which Z and F are given in (18).

3.2.1. Beam-widths and Diffraction Angles

In order to parameterize the tilted iso-axial GB field, we separate
the diagonalized complex curvature matrix Γc(zb) into its real and
imaginary parts by denoting

ReΓc = L−1
c (zb), ImΓc = −I−1

c (zb). (26)

Then using (25), we obtain

Lc(zb) =


 ζ̄−2

[
(zb − Z1) + F 2

1
(zb−Z1)

]
0

0
[
(zb − Z2) + F 2

2
(zb−Z2)

]

 , (27)

and

Ic(zb) =


 F

[
1 + (zb−Z1)2

F 2
1

]
0

0 F
[
1 + (zb−Z2)2

F 2
2

]

 , (28)

with

Z1 = Zζ̄2, Z2 = Z, F1 = F ζ̄2, F2 = F . (29)

Using (26) with (28) in (4), we find that the iso-axial tilted GB exhibits
(pure) quadratic decay in the (xc1 , xc2) directions with corresponding

Figure 3. Parameterization of the iso-axial tilted GB. The field
exhibits a Gaussian decay in the xc coordinates. As in Fig. 2, the
parameters are depicted over the (xc1, z) plane.
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e−1 beam-widths of

W1,2(zb) = D1,2

√
1 +

(zb − Z1,2)
2

F 2
1,2

, (30)

where D1,2 =
√

8F1,2/k are the principal beam-widths at the waists.
By using (30), we identify F1,2 and Z1,2 as the beam’s collimation-
lengths and the beam’s waist-locations on the (zb, xc1,2) principal
planes, respectively. On the (zb, xc1,2) planes, the beam field remains
collimated near the waists where |zb − Z1,2| ¿ F1,2, whereas away
from the waists, it opens up along constant diffraction angles of Θ1,2 =
(kF1,2/8)−1/2 in the xc1,2 axes (see Fig. 3). This type of Gaussian beam
waveobjects exhibits frequency independent collimation (Rayleigh)
lengths for which reason we previously termed it to be iso-
diffracting [37]. This iso-diffracting feature makes such waveobjects
highly suitable for UWB radiation representations [11, 13, 14, 38].

3.2.2. Phase-front Radii of Curvature

In order to parameterize the phase phenomenology as prescribed by
the field quadratic phase-term exp[−jk 1

2xb
TΓr(zb)xb] in non-orthogonal

coordinates, we cast it in the paraxial geometrical optics ray-field

Figure 4. Rotated coordinates for phase-front radii of curvature
evaluation. x̃b1,2 are rotated by angles Φ̃1,2 with respect to the
beam transverse axes xb1,2 . The rotation is carried out in the
transverse coordinates plane (xb1, xb2) so that the projections of ˆ̃xb1,2

on the normal (to the beam-axis) plane (not shown in the figure) are
orthogonal.
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canonical form in orthogonal coordinates, namely [39]

B(r) =
√

R1

s+R1

√
R2

s+R2
exp

{
−jk

[
s+

1
2

(
x2

n1

s+R1
+

x2
n2

s+R2

)]}
. (31)

Here, as in (5), s is the trajectory arclength, R1,2 denotes the phase-
front main radii of curvature at s = 0 and xn = (xn1 , xn2) are
orthogonal coordinates in the plane transverse to the ray direction
ŝ. The ẑb-axis in waveobject in (4) is identified as the ray trajectory
direction ŝ. Next we relate the real part of the non-orthogonal complex
curvature matrix to the ray central phase-front radii of curvatures
R1,2(zb). Note that the projections of xn on the tilted aperture plane,
(xb1 , xb2), are not orthogonal. Therefore, we define new transverse
coordinates in the direction of these projections, x̃b = (x̃b1 , x̃b2), which
are obtained from xb by the on-plane transformation (see Fig. 4) as
follows:

x̃b = T̃xb, T̃ =
[

cos Φ̃1 sin Φ̃1

− sin Φ̃2 cos Φ̃2

]
. (32)

Thus, x̃b1,2 are obtained by rotating the xb1,2 axes in the xb plane by
Φ̃1,2, respectively. Note that angles Φ̃1,2 are clockwise positive and that
|Φ̃1,2| < π/2. By using (32) in (5) the tilted beam linear phase-term
in the x̃b system takes the form

s(rb) = zb + ξ̄1xb1 + ξ̄2xb2 = zb + ξ̄T T̃−1x̃b, (33)
whereas the paraxial term reads

xb
TΓrxb = x̃T

b Γ̃rx̃b, Γ̃r = T̃TΓrT̃, (34)
where Γr(zb) is given in (20). The rotation angles are chosen such that
(a) the real part of the resulting rotated complex curvature matrix,
Γ̃r(zb), is diagonal and (b) the projections of axes x̃b1,2 on the normal
plane of constant s are orthogonal (as in (31)).

By setting the off-diagonal elements of Γ̃r to zero, we obtain

sin Φ̃1 cos Φ̃2Γr11 − cos Φ̃1 sin Φ̃2Γr22 − cos
(
Φ̃1 + Φ̃2

)
Γr12 = 0, (35)

for which the Γrmn elements of Γr are given in (20).
In order to meet condition (b), we project unit-vectors ˆ̃xb1,2 on the

plane normal to ẑb and set the projections dot-product to zero. This
procedure yields

sin
(
Φ̃1 − Φ̃2

)
= cos ϑ̃1 cos ϑ̃2, (36)

where cos ϑ̃1,2 are the angles between the zb-axis and x̃b1,2 axes,
respectively, i.e.,

cos ϑ̃1,2 = x̂b1,2 · ẑb, (37)
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with unit-vectors
ˆ̃xb1 = cos Φ̃1x̂b1 + sin Φ̃1x̂b2 ,

ˆ̃xb1 = − sin Φ̃2x̂b1 + cos Φ̃2x̂b2 .
(38)

Thus, the transverse rotation angles, Φ̃1,2, are obtained by solving (35)
with (36). Then using angles Φ̃1,2 in (32) and applying (34), we obtain

Γ̃r(zb) = diag{λ1, λ2}, (39)

with[
λ1

λ2

]
= sec2

(
Φ̃1 − Φ̃2

)

×
(

Γr11

[
cos2 Φ̃2

sin2 Φ̃1

]
±Γr12

[
sin 2Φ̃2

sin 2Φ̃1

]
+Γr22

[
sin2 Φ̃2

cos2 Φ̃1

])
,(40)

and the quadratic phase in (34) taking the form
1
2
x̃T

b Γ̃rx̃b =
1
2

(
λ1x̃

2
b1 + λ2x̃

2
b2

)
. (41)

Finally, we sample the phase term in (41) and (33) on a plane
normal to the ray trajectory (the beam-axis) which passes through zb.
Recalling that xn1,2 are the (orthogonal) coordinates in the direction
of the projections of x̃b1,2 , respectively (see (32)), it follows that for
observation points over the normal plane xn1,2 = x̃b1,2 sin ϑ̃1,2. By
inserting the latter into (41) and (33), the (real) phase-term of the
tilted GB field takes the paraxial GO canonical form

Ψr = s(zb) +
1
2

[
x2

n1

R1(zb)
+

x2
n2

R2(zb)

]
, (42)

where

R1,2(zb) =
1− cos2 ϑ̃1,2

λ1,2
. (43)

In view of (31), R1,2(zb) in (43) are identified as the iso-axial tilted GB
principal phase-front radii of curvature.

3.3. Hetero-axial Tilted GB

We conclude our analysis of the tilted GB parametrization with the
special-case of a generic diagonal aperture complex curvature matrix.
This matrix is obtained by expanding an aperture field using a frame
where different Gaussian windows are applied to each of the x1,2-axes.
The more general case of a symmetric aperture complex curvature
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matrix has not been shown to reveal any additional physical insight and
hence is not presented here. We assume a generic diagonal aperture
distribution of the form

Γ0 = diag
[
(−Z1 + jF1)

−1 , (−Z2 + jF2)−1
]
, F1,2 > 0. (44)

By inserting (44) into (6), we obtain

Γ(zb)=
[(

1−ξ̄2
2

)
ζ̄−2zb−Z1+jF1 ξ̄1ξ̄2ζ̄

−2zb

ξ̄1ξ̄2ζ̄
−2zb

(
1−ξ̄2

1

)
ζ̄−2zb−Z2+jF2

]
−1. (45)

Similar to the analysis is Section 3.2, we separate Γ into its real and
imaginary parts

Γr =
[
∆r

[
(1−ξ̄2

1)ζ̄
−2zb−Z2

]−∆jF2 −∆r ξ̄1ξ̄2ζ̄
−2zb

−∆r ξ̄1ξ̄2ζ̄
−2zb ∆r

[
(1−ξ̄2

2)ζ̄
−2zb−Z1

]−∆jF1

]
,

(46)
and

Γj =
[
∆j

[
(1−ξ̄2

1)ζ̄
−2zb−Z2

]
+∆rF2 −∆j ξ̄1ξ̄2ζ̄

−2zb

−∆j ξ̄1ξ̄2ζ̄
−2zb ∆j

[
(1−ξ̄2

2)ζ̄
−2zb−Z1

]
+∆rF1

]
,

(47)
where

∆r =
δr

δ2
r + δ2

j

, ∆j =
−δj

δ2
r + δ2

j

, (48)

with δr and δj being the real and imaginary parts of 1/ detΓ,
respectively. By using (45), δrj can be expressed explicitly as

δr = Z1Z2 − F1F2 −
[
Z1(1− ξ̄2

1) + Z2

(
1− ξ̄2

2

)]
ζ̄−2zb + ζ̄−2z2

b , (49)

and

δj =
[
F1

(
1− ξ̄2

1

)
+ F2

(
1− ξ̄2

2

)]
ζ̄−2zb − F1Z2 − F2Z1. (50)

Unlike the case of the iso-axial waveobject, parameterization of the
hetero-axial tilted GB requires separate diagonalization of matrices Γr

and Γj . For that purpose, we define two transverse coordinate systems
for either Γr or Γj , which are obtained from xb by applying rotation
transformations of the form in (10) by angles Φr or Φj , respectively.
In view of (46), (47) and (11), they are given by

tan 2Φr =
2∆r ξ̄1ξ̄2ζ̄

−2zb

∆r

[−Z1 + Z2 + (ξ̄2
1 − ξ̄2

2)ζ̄−2zb

]
+ ∆j (F2 − F1)

, (51)

and

tan 2Φj =
2∆j ξ̄1ξ̄2ζ̄

−2zb

∆j

[−Z1 + Z2 + (ξ̄2
1 − ξ̄2

2)ζ̄−2zb

]
+ ∆r (F1 − F2)

. (52)
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Note that unlike the iso-axial GB, here the rotation transformations are
zb-dependent so that the beam principal axes rotate along the beam-
axis. The resulting exact expressions for the diagonalized matrices can
be obtained by applying rotation matrix (10) with rotation angles Φj

or Φr in (51) or (52). However, the results are not presented as they
do not add any additional insight. Nevertheless, for sufficiently large
zb values,

zb À max (Z1 + F1, Z2 + F2), (53)
the rotation angle Φr → Φc, where Φc is the zb-independent iso-axial
aperture distribution rotation angle in (24). Note that unlike Φr, away
from the aperture plane, Φj → Φc of (24) only for F1 = F2. Angle Φj

defines the new rotated transverse coordinates according to (10), in
which the beam exhibits (pure) Gaussian decay. For zb values which
satisfy condition (53), diagonalization of Γj(zb) yields,

Γj(zb) ∼= −z−2
b diag(I−1

1 , I−1
2 ), (54)

where I−1
1 and I−1

2 are constant and equal to the eigenvalues of −z2
bΓj

in the limit (53). In view of the O(z−2
b ) dependence of Γj , we can

conclude that away from the waists, the beam opens up along a
constant diffraction angles of Θ1,2 = (8I1,2/k)1/2 on the principal
planes (xb1,2 , zb), respectively.

4. CONCLUDING REMARKS

Parametrization of tilted GBs in homogeneous media was carried
out for several special cases of aperture field distributions. The
waveobjects were parameterized in terms of waist-locations, beam-
widths, collimation-lengths, and other wave features. The field
principle radii of curvature were formulated to relate non-orthogonal
beam components to conventional GO ray-fields in orthogonal
coordinates. Understanding tilted GBs phenomena in term of the
above parameters is significant for tuning up beam-type expansions
for identifying and obtaining local interactions with scattering and
complex media.
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