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Time-Dependent Tilted Pulsed-Beams and
Their Properties
Yakir Hadad and Timor Melamed

Abstract—Novel time-dependent wavepacket equation and its
pulsed field solutions are obtained by utilizing a non-orthog-
onal coordinate system which is a priori matched to the field’s
planar linearly-delayed pulsed localized aperture distributions.
These waveobjects that serve as the building blocks for var-
ious time-dependent beam-expansion schemes, are termed tilted
pulsed-beams. Iso-axial pulsed-beams are parameterized in term
of beam-widths, waist-locations, collimation-lengths, wave-front
radii of curvature, and other features. Emphasis is placed on a
direct time-domain derivation. A numerical example is presented
in which the enhanced accuracy of the tilted pulsed-beams over the
conventional (orthogonal coordinates) ones in the well-collimated
zone is demonstrated.

Index Terms—Electromagnetic propagation, parabolic wave
equation, pulsed beams.

I. INTRODUCTION

P ARABOLIC wave equation (PWE) methods are a major
tool for analysis and synthesis of scalar or electromagnetic

fields [1]–[3]. Solutions of the PWE are subject to boundary
conditions which are obtained by matching the field aperture
distribution on a given surface to the PWE model. For prob-
lems in which the aperture distribution is given over a surface
that is perpendicular to the initial paraxial direction, it may be
conveniently matched to the PWE model.
PWE methods can be used for obtaining beam waveobjects

that serve as the building blocks for several beam-type ex-
pansion schemes by utilizing the beam’s mutual spectral and
spatial localization. Locality considerations have been utilized
for solving beam-type waveobjects propagation in generic
media profiles such as inhomogeneous [4]–[7], anisotropic
[8]–[15], for time-dependent pulsed-beams, in dispersive
media [16]–[20] and for inverse scattering applications [21],
[22].
Beam solutions are significant for beam-type (phase-space)

expansions of scalar or electromagnetic fields such as
Gabor-based expansions [23], [24], continuous spectrum
representations [24]–[26] or for the frame-based field expan-
sions [27]–[31]. Exact beam-type expansions require beam
solutions that match localized aperture planar distributions. In
these solutions the boundary plane over which the aperture
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field distribution is given is generally not perpendicular to the
beam-axis. Since such waveobjects serve as the basic building
blocks for different pulsed beam expansions, it is an important
task to parameterize them in order to calibrate these expansion
schemes and utilize them in different scattering scenarios
[32]–[41]
Recently, a novel time-harmonic PWE was obtained by

applying a non-orthogonal coordinate system which is a priori
matched to localized aperture field distributions [7], [42],
[43]. Localized solutions to this equation that exactly match
linearly-phased Gaussian aperture distributions were termed
tilted Gaussian beams.
In the present contribution we extend these results and intro-

duce in Section III a time-dependent wavepacket equation in
non-orthogonal coordinates and derive in Section IV its local-
ized field solutions that are termed tilted pulsed-beams (tilted
PBs). The properties and parameterization of these waveobjects
are explored in Section V as well as the additional wave phe-
nomena associated with applying a non-orthogonal coordinate
system. Finally in Section VI we present a numerical analysis of
the accuracy of the tilted PBs in comparison to the conventional
PBs and demonstrate that the tilted PBs are more accurate over
a wide range of propagation regimes and parameters.

II. FORMULATION

We seek for asymptotically-exact PB solutions, , to the
3D scalar wave equation

(1)

in the half-space, where denotes the medium
wave-speed. Here is the conventional Cartesian
coordinate frame with denoting the transverse
coordinates.

A. Analytic Signals

In order to gain flexibility in the derivation, particularly
when evanescent spectra are involved, it is convenient to use
the analytic signal representation (more details are given in
Sections V-A and V-B). Given a real signal that is defined
for real , the corresponding analytic signal is defined by the
convolution integral

(2)
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Here and henceforth, analytic signals are denoted by a breve
mark . The limit of the analytic signal on the real -axis is
related to the real signal by

(3)

where is the Hilbert transform operator, with
denoting Cauchy’s principal value and denoting a temporal

convolution. Therefore the real signal for real is recovered
from the analytic signal via . Alternatively the
analytic signal can be obtained by applying a one-sided
(positive frequencies) inverse Fourier transform to the spectral
(frequency domain) distribution of the real signal . Since
this paper is concerned with a direct time-domain derivation,
this approach is not investigated here.

B. Statement of the Problem

We are aimed at obtaining PB waveobjects that can serve
as the building blocks for different time-dependent beam-type
field expansion schemes. These expansion schemes decompose
the field over a spatial-directional-temporal (spectral) lattice of
spectral variables. The propagating elements are PBs that are
identified by their planar aperture field distributions over the

plane, , of the form [26], [28]

(4)

where are the expansion (directional) spectral vari-
ables. Throughout this work, all vectors are column vectors and
superscript denotes the matrix (or the vector) transpose, so
that the linear delay-term in (4) reads . In
(4), is a 2 2 complex symmetric matrix with a negative
definite imaginary part. Here and henceforth, bold lower-case
letters are used to denote vectors, whereas bold capital letters
are used to denote matrices. Note that (4) consists of a local-
ized pulsed distribution with a quadratic delay term as well as a
linear one that causes the beam to tilt with respect to the aper-
ture plane.

III. THE NON-ORTHOGONAL WAVEPACKET EQUATION

We apply here the non-orthogonal local coordinate system
which was introduced in [42]. This system is a priori matched
to the aperture field distribution in (4). The spectral variables

(5)

form a unit vector in the direction of the beam-axis

(6)

where denote the beam-axis angles with the axes ,
and (see Fig. 1). In this system, observation point

Fig. 1. Non-orthogonal local beam coordinate system. Observation point
is described by the non-orthogonal system in (7). The
delay term in (9) is accumulated according to the (perpendicular) optic length
(Eikonal) .

is represented by a local beam coordinates
which are defined by the transformation

(7)

We denote , and as the unit-vectors in the direction
of the , and axes, respectively. Note that ,

, whereas is given in (6). Here and henceforth, hat
over a vector denotes a unit-vector.
In this system the transverse local beam coordinates, and
, lie on a plane parallel to the aperture distribution plane at
, whereas the longitudinal coordinate, , is directed along

the tilted beam-axis. Using these definitions, the -axis is iden-
tified as the paraxial propagation direction, and the transverse
coordinates, and , lie on a plane parallel to the
plane and are centered at the intersection of the plane
with the -axis (see Fig. 1).
In order to obtain the wave equation in the non-orthogonal

coordinates, we follow the time-harmonic derivation in [42] and
evaluate the metric coefficients tensor of the transformation in
(7) and insert it into the Laplacian operator in (1). The result is
(see details in [42])

(8)

where coordinate subscripts denote partial derivatives
with respect to the coordinates, i.e., ,

, etc.
We are concerned with asymptotically evaluating the field

that satisfies the 3D wave equation in (8) with boundary
condition (4). High-frequency/short-puled wave-fields propa-
gate along ray trajectories. Thus, solutions of the wave equa-
tion at some observation point close to the ray trajectory can
be evaluated asymptotically by solving the PWE along the tra-
jectory. By referring to boundary condition (4), we identify
in (6) as the direction of the ray trajectory which emanates from
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the aperture point . Therefore we assume here that
the wave field has the following short-pulsed form

(9)

where the Eikonal

(10)

is the projection of the observation vector on the direction of
the beam-axis . Using the ray-field (9)–(10), we can evaluate
the derivatives in (8)

(11)

and so-forth for all partial derivatives in (8). In (11) all partial
derivatives of are taken with
respect to the corresponding argument, i.e., prior to sampling
at .
Next, following conventional paraxial ray-theory [3]–[5], we

assume that

(12)

By inserting (11) as well as all the other partial derivatives into
(8) and neglecting terms according to (12), the wave equation is
approximated by

(13)

Equation (13) is termed here the Non-orthogonal Wavepacket
Equation (NOWE). Note that by setting
(namely ) in (13), the NOWE reduces to the
well-known wavepacket equation in orthogonal coordinates [5].

IV. TILTED PBS

Tilted PBs that are defined by aperture distributions of lin-
early-delated pulsed windows of the form in (4) are of highly
significance as they serve as the building blocks for time-depen-
dent beam-type expansions [26], [28]. In this section, we obtain
asymptotically-exact expressions for these wavepackets.
In view of the aperture field distribution in (4), we are seeking

localized beam solutions of the NOWE and assume a beam-type
field of the form

(14)

where , denotes a complex ampli-
tude and the so-called complex curvature matrix is a
complex symmetrical matrix with denoting its th
element so that the argument in (14) is of the quadratic form

. The matrix has a
negative definite imaginary part, hence beam-field (14) exhibits
a decay away from the beam-axis. Pulsed beam-fields of the
form in (14), which carry aperture localized pulsed distributions
over the tilted plane, are termed here tilted PBs.
Next, we insert the PB form in (14) into the NOWE (13). By

setting the coefficients of the temporal derivatives and to

zero for all observation points, we obtain two vector equations.
The first equation is a vector Riccati-type equation for ,

(15)

whereas the second equation,

(16)

serves as the amplitude once the Riccati equation in (15)
is solved. In (15)–(16) the prime denotes a derivative with re-
spect to the argument.
The solution of the Riccati equation is [42]

(17)

where is the complex curvature matrix of the aperture field
distribution over the plane in (4). The beam amplitude,

, is found by inserting (17) into (16). Using a straightfor-
ward separation of variables we obtain

(18)

The tilted PB can be written explicitly by using (17) and (18) in
(14), and inserting into (9), which yields
where

(19)

where

(20)

is given in (10) and is given in (17). Note that PB
(19) satisfies the aperture field distribution in (4) exactly. This
type of PB waveobjects exhibits frequency-independent col-
limation (Rayleigh) distance and therefore have been termed
iso-diffracting [44]. The iso-diffracting feature makes these
waveobjects highly suitable for UWB radiation representations
[25], [27], [28], [45], [46].

V. PARAMETERIZATION OF THE TILTED PB

A. On-Axis Properties

The tilted PB in (19) propagates along the beam-axis that is
defined for a given spectral-variable by , i.e.,

. By separating the field’s amplitude in (18) into its real
and imaginary parts,

(21)
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and using the analytic signal limit for real in (3) the on-axis
PB field, , is given by

(22)

where denotes the Hilbert transform of . Thus, the
on-axis field is composed of a weighting of and its Hilbert
transform.
Since, according to (17), the real part of increases

linearly with whereas its imaginary part remains constant,
the weighting in the far-field (where is large on the scale
of the collimation-lengths) is made according to the real and
imaginary parts of . In the special case of an imag-
inary aperture curvature matrix where is real and nega-
tive, for large values so that the PB on-axis tem-
poral shape undergoes a full Hilbert transform from in
the near-field to in the far-field. The temporal, as well
as the spatial off-axis features of the propagating PB in (19), de-
pends on the specific choice of the pulse shape and of the
aperture complex curvature matrix, .

B. Lorentzian Temporal Dependence

A simple Lorentzian time-dependent pulse-shape is attained
by choosing the analytic signal

(23)

where is a real parameter which models the time-dependent
signal’s temporal pulse length and is the analytic delta-
function in the upper half of the complex -plane

(24)

For this pulse-shape the quadratic-Lorentzian aperture field dis-
tribution in (4) is given by

(25)

The tilted PB field in the half space is given by
where

(26)

and is given in (20).

C. Off-Axis Parameterization

We now proceed to examine the properties of the Lorentzian
tilted PB in (26) for iso-axial waveobjects. This family of PBs
is used for expanding some aperture field using radially-sym-
metric windows (the parametrization of other tilted PBs can be

obtained in a similar manner). The Iso-axial GBs are charac-
terized by a diagonal aperture complex curvature matrix of the
form [26], [27], [29]

(27)

where and are real parameters.
1) Diagonalization of the Transverse Coordinates: The real

and imaginary parts of the complex iso-axial curvature matrix
can be diagonalized simultaneously by rotating the -axes over
constant -planes by a -independent angle

(28)

Therefore we define new (rotated) transversal coordinates
which are obtained from via

(29)

Angle is identified as the angle between the -axis and the
projection of the -axis on plane. By inserting (29)
with (28) into (17), the quadratic phase in (20) is given by

(30)

By inserting in (28) into (30) with (27) and (17), we find that
takes the from of the diagonal matrix

(31)

for which and are given in (27).
In order to parameterize the iso-axial tilted PB field, we sep-

arate the diagonalized complex curvature matrix into its
real and imaginary parts by denoting

(32)

Then using (31), we obtain

(33)

and

(34)

with

(35)
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Finally we separate in (20) into its real and imaginary
parts

(36)

where, using (30) and (32) in (20), we identify

(37)

and

(38)

where and are given in (33) and (34), respectively.
The real Lorentzian wave-forms are given by

(39)

and

(40)

where and are given in (37) and (38), respectively. The
(real) tilted PB in (26) is obtained by weighting of the wave-
forms in (39) and (40) as in (22), i.e.,

(41)

2) Transversal Beam-Widths and Diffraction Angles: By
using (36) in (37) or (38), one can readily identify as
the paraxial propagation delay along the axis. For a given
observation point , the beam field in (39) peaks at
and its half-amplitude pulse-length and peak-value are given
by and , respectively. The transverse half-amplitude
beam widths of the tilted PB propagator in the principle
planes, , is obtained by solving .
Note that the perpendicular beam width in the direction of the
projection of is obtained by multiplying the -width by
(cf. Fig. 2). This procedure yields

(42)

where and are given in (35). Using (42) we iden-
tify as the collimation-lengths and as the waist-lo-
cations with corresponding minimal beam-widths of

at the waists. Note that according to (42), near the
waists where , the beam remains collimated

Fig. 2. Parameterization of the iso-axial tilted PB. The field is sampled over
the plane for the Lorentzian time-dependence in (23). All parameters
are normalized with respect to .

whereas far from thewaists the beam spreads in constant diffrac-
tion angles of

(43)

in the planes.
3) Phase-Front Radii of Curvature: In order to parameterize

the paraxial wavefront delay phenomenology as prescribed by
the field quadratic delay-term in non-
orthogonal coordinates, the tilted PB is casted in the paraxial
geometrical optics ray-field canonical form in orthogonal coor-
dinates. This procedure has been introduced in [43]. We refer
the reader to the results there in which the wave front radii of
curvature are given by (43).

VI. NUMERICAL EXAMPLE

A. Parameterization

In order to verify the accuracy of the tilted PB parameteriza-
tion we present in Fig. 2 the contour lines of and
from the on-axis peak value of a PB field with a Lorentzian
time-dependence. The field is sampled over the plane
with field parameters of , and

. The peak on-axis point was set to 0.65 of the colli-
mation length away from the waist locations at (i.e.,

) so that the field is sampled at . The
corresponding wavefront radius of curvature in Section V-C-III
is , and the transverse beam width in (42)
is . One can identify in Fig. 2 that the numerically
evaluated contour line agrees with the theoretically eval-
uated beam width and the wave front radius of curvature.

B. Accuracy Analysis

In this section we compare the accuracy of the tilted PBs with
the convectional paraxial PBs which are given in local beam or-
thogonal coordinates. The reference solution is evaluated using
a transient plane-wave spectral integration of the aperture field
in (4).
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1) Tilted PBs: The tilted PBs are given by (26) with the iso-
axial curvature matrix in (31).
2) Conventional PBs: The convectional paraxial PB that are

corresponding to the aperture field in (4) with the iso-axial aper-
ture curvature in (27) are obtained by utilizing the local orthog-
onal beam-coordinates, , which are defined
for a given spectral variables , by the rotation transformation

where the rotation matrix is given by [26]

(44)

Here are the spherical angles that define the beam-axis
in (6). The conventional PBs for the Lorentzian time-depen-

dence in (23) are given by where
[26]

(45)

where

(46)

and is given by

(47)
for which and are given in (27).
3) Reference Solution: The reference solution is evaluated

using a transient plane-wave integration. The spectral represen-
tation of the aperture distribution in (4) with the iso-axial curva-
ture in (27) and the Lorentzian time-dependence in (23) is given
by [26]

(48)

where are the plane-wave (directional) spectral
variables, , and denotes the lon-
gitudinal spectral normalized wavenumber with and

. In (48), denotes the derivative of the analytic
delta-function in (24), i.e.,

(49)

4) Error Comparison: In this section we compare the
accuracy of the tilted PB in (26) (which is denoted here
as ) to the accuracy of the conventional PB in
(45), , both with respect the reference solution

. The 3D fields are evaluated over plane for
and for various values of (various tilting) and .

We quantify the accuracy by the norm of the difference of
the PB and the reference PB over domain where either

Fig. 3. Error of the tilted PBs (solid line) and conventional PBs (dashed line)
with respect to the reference solution. The field parameters are ,

, . The sampling time is set so that the PB is centered on
various locations along the beam-axis . The -location in the horizontal axis
is normalized with respect to the collimation length , i.e., .
(a) , (b) .

the PB or the reference PB exceeds half of the reference PB’s
(absolute) maximum. This domain over plane is denoted
by . Thus the relative error is

(50)

where denotes either the tilted PB or the conventional one
and is the area of .
The relative errors in dB as a function of the -location for

, 60 in (5) are plotted in Fig. 3(a) and (b), respec-
tively. In these figures the tilted PB errors are plotted in solid
lines and the conventional PB errors are plotted in dashed lines.
The field parameters are , , . The
sampling time is set so that the PB is centered on various loca-
tions along the beam-axis . The location is normalized with
respect to the collimation length in (35), so that the well-col-
limated regime is characterized by (see (42)).
This figure demonstrates that the tilted PB exhibits an about 3–4
dB enhanced accuracy in the collimation range for .
The error difference decreases as the departure angle becomes
perpendicular and for 60 the error difference reduces to about
1–1.5 dB.
Note that the error of the asymptotic solutions is quit small

(less than ). Nevertheless, the PBs are the building
blocks of the phase-space beam summation method (as de-
scribed in Sections I and II-B). Thus, the overall error which is
accumulated in the summation over the entire 5D spatial-direc-
tional-temporal spectral lattice is significantly higher than the
accuracy of a single PB. Taking this into account, the 3–4 dB
enhanced accuracy can be regarded as significant. Furthermore,
beam-type expansions are usually tuned such that the scattering
of a single spectral PB occurs in the well-collimated zone were
the tiled PBs exhibit an enhanced accuracy. It should be noted
though that in some practical applications the choice of is a
tradeoff between collimation and spatial localization in relation
to the size of the details in the medium [47], [48].
In order to evaluate the error for well collimated PBs we plot

in Fig. 4 the errors as in Fig. 3 with , and
for , in Fig. 4(a) and (b), respec-

tively. By inserting and into (43), we eval-
uate the corresponding diffraction angles to be and 0.2
radians, respectively. Here the tilted PB exhibits an enhanced
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Fig. 4. Same as Fig. 3 with for (a) , (b) .

accuracy of about 3 dB for and a smaller improve-
ment of 0.7 dB for . The figures demonstrates the
enhanced accuracy of the tilted PBs over the conventional ones
for a wide range of parameters while the computational com-
plexity remains exactly the same.

VII. CONCLUDING REMARKS

Novel time-dependent beam-type waveobjects were in-
troduced and termed tilted PBs. These 3D wavepackets are
paraxial solutions of the time-dependent wave equation in
non-orthogonal coordinates that are a priori matched to pulsed
localized aperture distributions. Parametrization of tilted PBs
in homogeneous media was carried out. The waveobjects were
parameterized in terms of waist-locations, beam-widths, colli-
mation-lengths, and other wave features. A numerical example
was presented which demonstrated the enhanced accuracy of
the tilted PBs over the conventional ones in the well-collimated
zone.
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