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Local spectrum analysis of field propagation
in an anisotropic medium.
Part 1. Time-harmonic fields
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The phase-space beam summation is a general analytical framework for local analysis and modeling of radia-
tion from extended source distributions. In this formulation, the field is expressed as a superposition of beam
propagators that emanate from all points in the source domain and in all directions. In this Part I of a two-part
investigation, the theory is extended to include propagation in anisotropic medium characterized by a generic
wave-number profile for time-harmonic fields; in a companion paper [J. Opt. Soc. Am. A 22, 1208 (2005)], the
theory is extended to time-dependent fields. The propagation characteristics of the beam propagators in a ho-
mogeneous anisotropic medium are considered. With use of Gaussian windows for the local processing of either
ordinary or extraordinary electromagnetic field distributions, the field is represented by a phase-space spectral
distribution in which the propagating elements are Gaussian beams that are formulated by using Gaussian
plane-wave spectral distributions over the extended source plane. By applying saddle-point asymptotics, we
extract the Gaussian beam phenomenology in the anisotropic environment. The resulting field is parameter-
ized in terms of the spatial evolution of the beam curvature, beam width, etc., which are mapped to local geo-
metrical properties of the generic wave-number profile. The general results are applied to the special case of
uniaxial crystal, and it is found that the asymptotics for the Gaussian beam propagators, as well as the physi-
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cal phenomenology attached, perform remarkably well. © 2005 Optical Society of America

OCIS codes: 350.5500, 260.1180.

1. INTRODUCTION

Phase-space (PS) spectral representations, in which the
spectral elements are beams (or pulsed beams for time-
dependent fields), have been the subject of intense re-
search in the past decade, owing to their spectral localiza-
tion and the capability of propagating theseAu: Please
clarify if not correct spectral wave objects in complex en-
vironments. In contrast, conventional wave elements
such as Green’s functions or plane waves are hard to
track in inhomogeneous environments or through interac-
tions with objects, and the resulting spectral integrals are
spectrally distributed.

Several PS expansion schemes for wave propagation
have been introduced for extended source configurations;
these schemes use a spectrum of shifted and tilted beams
that emanate in all directions from all points in the
source domain.'™ In Refs. 2,4 and 5 these schemes have
been placed within a unified PS format wherein a PS dis-
tribution of beam propagators is locally matched to the
source distribution. Recently discrete PS spectral repre-
sentations based on the discrete Wilson basis® and on
frame theory’ have been introduced.

In the present contribution, the PS continuance spec-
tral representation for time-harmonic excitation, which
was originally introduced in Ref. 2, is extended to include
propagation in an anisotropic medium characterized by a
generic wave-number profile for both time-harmonic and,
in the companion paper,® for time-dependent fields. Aniso-
tropic materials are of interest for optical waveguides, mi-
crowave devices, plasma science, and different propaga-
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tion environments. Comprehensive studies have been
conducted on the problem of Gaussian beam (GB) two-
and three-dimensional propagation for specific wave-
number profiles®* as well as on modeling different types
of anisotropic propagation and scat‘cer‘in,g,f15’16 with GBs as
basis wave objects. Nevertheless, to our knowledge, the
propagation of GBs in a generic anisotropic medium has
not yet been explored in detail. In Ref. 17, using the com-
plex source method, the authors arrived at a closed-form
analytic solution for the GB field. In our view, the complex
source method cannot account for the astigmatic effects
that are present in our analysis of the generic wave-
number profile, and therefore these results may be ap-
plied only to the case of GB propagation along the optical
axis of a uniaxially anisotropic medium. Alternatively, by
applying a plane-wave spectral representation to the
propagation problem, in Ref. 18 we have presented an al-
ternative rigorous solution for the GB field for the case of
a nontilted GB. In the current paper, this preliminary in-
vestigation is placed within the framework of the Gauss-
ian beam summation method to include generally tilted
beam solutions and their parameterization, novel phase-
space phenomenologies related to the generic anisotropy
characteristics, and extension to the time domain.?

2. FORMULATION

The current study is concerned with the effects of aniso-
tropy on the propagation characteristics of either an elec-
tromagnetic or a general linear field in a lossless homoge-
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neous medium. The field is formulated by means of its
initial distribution over the z=0 plane by use of the con-
ventional Cartesian coordinate system r=(x,z) with x
=(x1,%9). In an anisotropic medium, exact field represen-
tations may be constructed by use of the eigenfunction
expansion,19 usually in the form of a plane-wave spectral
integral. The latter consist of ordinary and extraordinary
modes, whose distributions are determined by matching
the plane-wave spectral distributions to a specific source
distribution (see examples in Refs. 19 and 20). With this
procedure, the vectorial problem is reduced to scalar field
propagation of ordinary and extraordinary distributions.
The initial field distribution over the z=0 plane (of any of
the anisotropic modes of propagation) is denoted #,(x),
where here and henceforth a caret denotes time-harmonic
field constituents with exp(-iwt) time dependence as-
sumed and suppressed, so that #,(x)=1,(x,w), etc. The
lossless propagation medium is characterized by a generic
wave-number profile, in which the longitudinal wave
number in the direction of the z axis is a function of the
(plane-wave) direction of propagation, k2=kz(kx1,kx2),
where (%, 1’kx2) is the wave-number vector in the x
=(x1,x9) direction. Anticipating extension to the time do-
main (see Part II®), we normalize the wave numbers by
the isotropic wave number k,=w/c, with ¢ being a con-
stant. The constant ¢ may be chosen as the speed of light
in vacuo or any other constant [see, for example, the
uniaxial crystal wave-number profile in Egs. (53) and
(54)]. Therefore the medium anisotropy may be character-
ized by the normalized longitudinal wave number {(£)

g(g) = kz(kxlakxz)/ko’ ko = (t)/C,

£= (ke o)l (1)

and the field may be propagated away from the z=0 plane
by use of the anisotropic plane-wave propagator

explik, ke, ky,)2]=explik,l(£)2].

A. Space-Wave-Number Transforms

The frequency domain wave-number spectral distribution
over the initial z=0 plane is defined by the two-
dimensional spatial Fourier transform

Z,(§) = f d%xit,(x)exp(= ko€ - X), (2)

where £=(&1, &) is the normalized spatial wave-number
vector, x=(x1,x9), and the tilde identifies a wave-number
spectral function. The reconstruction of the frequency-
domain initial field is, accordingly,

ko \2 A
ﬁo(X)=<;T) f d?é&ia,(&explik,é - x). 3)

The normalization with respect to k£, anticipates inversion
to the time domain (see Part II®), rendering £ frequency
independent, with direct geometrical interpretation in
terms of the spectral plane-wave propagation angles. For
simplicity, integration limits are omitted on all integrals
extending from —« to +co.
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Using the anisotropic propagator in Eq. (1) and assum-
ing that all sources are located in z <0, the field propagat-
ing into z >0 half-space is given by

ko \2 A
ft(r)=<;) fd2§ﬁo(§)6Xp[ika(§'X+§(§)Z)]- 4)

Equation (4) reconstructs the field in terms of angular ()
superposition of a plane wave propagating in the direc-
tion of the unit vector:

K =[ELOVE+ PO, &=¢ & (5)

The plane-wave integrals in Eq. (4) are spectrally dis-
tributed. For high-frequency signals, however, dominant
contributions are generated by localized regions in the
source domain that emphasizes radiation in a given direc-
tion. We assume that the source distribution has the high-
frequency form (the so-called Lagrange manifold),

uo(X) = A (x)exp[ik,Po(x)], (6)

where A,(x) is the amplitude and ®,(x) is a phase func-
tion, both with slow spatial x variation. For high-
frequency distribution of the form of Eq. (6), the dominant
contribution to the plane-wave spectrum in Eq. (2) comes
from the region of the stationary point x,(£), defined by

Vo, (x)=§ at x,(£). (7)

For a given x, this condition defines the local radiation di-
rection if a plane wave is locally matched to the source
distribution. A ray-field representation may be obtained
by asymptotically evaluating Eq. (4), using the
asymptotic spectral distribution. In this representation, a
ray is emanating from each point x in the aperture in a
direction w(é=£,) of Eq. (5), where the stationary ray &
satisfies Eq. (7) for a given x.

We shall not go through the complete asymptotic ma-
nipulations here, as our goal is not to derive analytic ray-
type local approximations. Instead, in Subsections 2.B
and 2.C we shall show how local PS transforms yield spec-
tral representations that are a priori localized about the
ray skeleton defined by Eq. (7).

B. Phase-Space Processing

In this subsection we summarize the PS analysis and syn-
thesis formalisms that parameterize the field over the z
=0 initial plane (further details may be found in Ref. 4) as
well as formulate the PS anisotropic beam propagators.
We shall use a continuous spectral representation [see
Ref. (12)], but the theory presented here may be used for
discrete frame-based representation, provided that the
overcompleteness frame parameter is larger than 0.45,
since under this condition, the local PS propagators that
are presented and analyzed here coincide with those ob-
tained by the discrete representation.7 For the desired lo-
cal spectral analysis of the field distribution, we generate
the local (plane-wave) spectrum by means of a windowed
Fourier transform of the distribution in configuration
space,

U,X) = f Aty (X)W (x;X),
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W(x;X) = tb(x - X)explik, & (x - X)], (8)

where the asterisk denotes the complex conjugate and X
=(§,T§). Here, (x) is a spatial window function, centered
at X=(%;,%y) with linear phasing specified by &=(&;, &).
The vector X incorporates the configuration-spectrum PS
coordinates (:‘:,_g), whence f],,()_() is referred to as a PS dis-

tribution of the initial field distribution #,(x). Transform
(8) extracts from #,(x) the local spectrum around the

_§-directed propagation at the window center X (see Fig. 1).
In typical propagation and scattering problems, the spec-
trum at a given X is localized about a preferred spectral
direction _g(i) that describes the (stationary) direction of
propagation of the incident field at X point (the Lagrange
manifold). Consequently, the local spectrum f]o()_() is lo-
calized a priori about the subdomain (i,_§)=[i,_§(§)] in
the X domain (see synthetic examples in Refs. 2,4). In the
present context of anisotropic propagation, where @,(x) is
either ordinary- or extraordinary-mode distribution, it is
convenient to describe the local spectrum by the initial
plane-wave distribution that is obtained by matching to
the source plane-wave representation. By inserting Eq.
(3) into Eq. (8) and inverting the order of integration, we
obtain

U,X) = (kJ2m)? f Eei (W (EX),

W(ER) = (& Dexp(— ikoé ), 9)

with W and @ being the wave-number spectra (2) of W
and w, respectively.

The field distribution i,(x) may be synthesized from its
PS spectrum through the inverse PS transform?

A
ﬁo(X)=< ) fd“XUo(X)W(X;X), (10)

Fig. 1. Local processing of the time-harmonic field distribution;
the PS distribution f/'o()_() is obtained by integrating the field dis-
tribution @,(x) with a linearly phased window function shifted to
point X. The linear phase extracts from i, its local directional
properties and by that matches a single beam propagator ema-
nating from the window center at X along the (ordinary) direction

identified by the spherical angles (9, ).
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1/2
N= U d2x|12)(x)|2} (11)

is the £2 norm of . With use of inverse transform (10),
the PS superposition of the initial field can be propagated
into z>0, giving

ko \2 W
zz(r,w)=<—°A> f d*XU,(X)B(r;X), (12)
27N

where N is given in Eq. (11) and the PS propagator Bis
the field that is radiated by each PS window element
W(x;X) in Eq. (10). For anisotropic propagation, it is con-
venient to express the PS propagators by a plane-wave
representation, i.e.,

_ k, \2 A
B(r;X)=<;T) fd2§W(§;X)exp[iko(§'X+ {(&)2)],
(13)

where the plane-wave spectrum W is given in Egs. (9). If
W is wide on a wavelength scale, then the spatial and
spectral distributions of W are localized around x=% and
§=_§, respectively, and consequently, B behaves as a colli-
mated beam [see Egs. (19) and (40) for ordinary and ex-
traordinary GBs, respectively]. The representation in Eq.
(12) describes the radiated field as a continuous superpo-
sition of shifted and tilted beams, centered at and di-

rected along X and 7.5, respectively. The PS function f]o()_()
defines the excitation strengths of these beams through
local matching to the aperture field #,(x) (see Fig. 1).

C. Gaussian Windows

Next we examine the special case of Gaussian windows.
These have been used extensively for modeling beam
propagation since they maximize the PS localization as
implied by the uncertainty principle and yield analyti-
cally trackable beam-type propagators.*"?5%2 For locally
(PS) processing the field distribution, we use a Gaussian
window whose spatial and spectral distributions are

i
w(x) = exp( EkoxeT) s

= T i 14T
w(§)=korexp —2ko§F &, (14)

with I'=TI, where I is the unity matrix and I'=I",+:[; is
the window complex parameter with I';>0. Anticipating
extension to the time domain, we have constructed defi-
nition (14) so that the frequency k,=w/c appears explic-
itly in the exponent and I is frequency independent (see
also the discussion in Part II,® Subsection 1.D). In Eqgs.
(14), x=(x1,x9) is a line vector and T denotes the trans-
pose vector, so that the window exponent takes the qua-
dratic form xeT=I‘(x%+x§). The I' matrix is a complex
symmetric matrix with Im I" positive definite so that the
quadratic phase in the exponent in Eq. (14) has a positive
imaginary part that is generating a smooth Gaussian
window that is strongest for x=0 and decays as x in-
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creases. The norm of the window is obtained by inserting
Egs. (14) into Eq. (11), giving N2=/(k,T;).

Using the Gaussian windows [Egs. (14)] in Eq. (13), we
obtain the plane-wave spectral representation for the
Gaussian beam propagators in z >0 half-space,

ik,
Br;X)=-— f d%¢ explik,®(r, &)1, (15)

where

D(r, &8 =£ (x-X)+{(Hz- (- §Y20).  (16)

Equation (15) describes the Gaussian beam propagator in
terms of superposition of plane-waves, propagating in the
direction of the unit vector x(£) in Eq. (5) away from the
initial aperture. This spectral integral cannot be evalu-
ated in closed form for the generic wave-number profile
{(&). Instead, saddle-point asymptotics may be applied for
the ordinary (Section 3) and the extraordinary (Section 4)
field propagators.

3. ORDINARY GAUSSIAN BEAM
PROPAGATORS

In order to compare and contrast the three-dimensional
extraordinary with the ordinary GB propagators, we shall
briefly discuss in this section the expressions for the lat-
ter, which have been derived previously® in connection
with a homogeneous isotropic medium.

A. Asymptotic Evaluation and Parameterization
In view of Eq. (1), the ordinary wave-number profile is de-
scribed by [see also Eq. (53)]
(H=1-", Im¢=0. (17)
Using the ordinary wave-number profile [Eq. (17)] in Egs.
(15) and (16), we obtain the plane-wave spectral represen-
tation of the ordinary GB. The resulting integral cannot
be evaluated in closed form. With the saddle-point tech-
nique as well as a paraxial approximation, this integral
may be evaluated asymp‘cotically.4 The result is given be-
low. We use the (ordinary) local beam coordinates
(x, »xp,,25) defined, for a given phase-space spectral vari-
able &, by the transformation

Xp, cos Ucosp cosIsing —sin ¥ |[x;—-x;
xp, |=| -sine cos @ 0 X9 —Xg |,
2y sindcos @ sindsing cos O z

(18)

where (9, ¢) are the spherical angles that define the ordi-
nary beam direction liciso=(_§,_§), with 7={(&). Thus the z,
axis coincides with the beam axis, while the transverse
coordinates x;= (xbz,xb ) are rotated such that x; lies in
the plane containing £ and KISO and x, lies in the z=0
plane (see Fig. 1). Using the beam coordinates, we obtain
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.. det I'(z,) | V2 1
Br;X)=| ——— | exp|ik, zb+5xbl’(zb)x£ s

det I'(0)
(19)
where det denotes a matrix determinant, and
(zp+ LYD) 0
Te)=| ° N (20)
0 (zp + 1T)

Note that in an exact (asymptotic) beam, the elements of
I' depend on z, whereas in a conventional GB the ele-
ments of I' depend only on the location along the beam
axis (i.e., on zp). The difference is due to the fact that in
the conventional GB, the Gaussian initial conditions are
given on a plane normal to the beam axis, whereas here
they are defined on a plane of constant z that is generally
inclined with respect to the beam axis. For large z, or

near the beam axis, B changes smoothly into a conven-
tional GB, where by setting z{ 1=z, we obtain the
parax1al form in Eq. (19) with Eq. (20) where bexb
_leb1+F2xb2, where I'; denotes the diagonal (ii) element
of I' matrix [i.e., I'(zp)=diag(I'y,I'g)] and B(r,X) takes the
conventional form of a Gaussian beam propagating along
the z; beam axis.

The parameters of this astigmatic BG may be obtained
by rewriting the diagonal elements in Eq. (20) in the form
'y 9(zp)=(2p=Z1 2-iF1 9)7}, where

Zy=-TJT?¢3%, Zy=-T/T]? (21)

are identified as the beam waist location in the (zb,xbl 2)
planes, respectively, and

Fi=T/[% Fy=T/TP, (22)
are the corresponding collimation lengths. Furthermore,
the e! beam widths in the (24, 12 ) cross-sectional
planes, 2\2D1 2, are found from Re I'(zp), giving

D1 o= (Fyo/ko)"*[1+ (25 - Zl,Z)Z/F1,2]1/2: (23)

and the phase-front radius of curvature R; 3 may be ob-
tained from Im I'(z,), giving

Ri5= (Zb—Z1,2) +F%,2/(Zb—Z1,2)- (24)

The beam-propagator astigmatism is caused by the beam
tilt with respect to the initial z=0 plane, which reduces
the effective initial beam width in the xp, direction. Note
that the waist locations Z; 5 and the collimation lengths
Fy 9, as well as the phase as a whole, are frequency inde-
pendent. However, the beam widths D, are frequency
dependent, being proportional to w 2. These properties
identify the scattering propagators as “isodiffracting”
wave packets.?

Asymptotic propagator (19) allows an insight to the role
of the paraxial approximation of astigmatic beams for
which the initial distribution plane is tilted with respect
to the beam axis: paraxially approximated beams do not
satisfy the boundary condition E(r;}_()\z=0=W(x;)_(), since
the paraxial approximation z, > (x§1+x§2)1’ 2 fails near the
z=0 plane. The paraxially approximated (astigmatic)
beam is obtained by projecting the initial window onto the
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zp=0 transverse plane over which the initial effective

beam width in the x;, direction is reduced by a factor of Z,
whereas the width in the x,, direction remains un-
changed; i.e., the paraxial beam boundary conditions on
the plane transverse to the tilted beam axis (z;,=0) are

B(I‘;X)z,fo = eXp(;;kobeparaxxl?) P (25)
with
r/z2 0
I parax = . 26
, { . (26)

For large-angle paraxial parameterization, the use of a
nonorthogonal coordinate systyem is required. This novel
approach is presented in Section 4 for extraordinary-
beam propagators [see Eq. (37)].

B. Phase-Space Localization

The effective domain of integration in Eq. (12) does not in-
clude the entire PS domain (-%,») owing to the a priori
localization in the phase space around well-defined re-
gions in the X domain. Owing to the Gaussian decay of
the beam propagators é(r;)_(), away from the beam axis,
only beams that pass near a given observation point r ac-
tually contribute to the field. For a given observation
point r, this localizes the contributions in Eq. (12) to the
vicinity of a hyperplane in the X domain, defined for
ordinary-mode beams by

(x-X)/R=% R=(x-%*+2%)". 27

This (ordinary) observation manifold defines the phase-
space beams that pass through r [compare with the ex-
traordinary manifold in Eq. (50)].

4. EXTRAORDINARY GAUSSIAN BEAM
PROPAGATORS

For extraordinary modes, for which the wave-number pro-
files are given by the generic form of Eq. (1), beam propa-
gators (15) may be evaluated asymptotically in the high-
frequency regime by applying localization considerations
to the generic medium characteristics.

A. Asymptotic Evaluation and Parametrization
The stationary point &, of phase (16) satisfies

VO g =x-%+2V{|ee -|£-8T=0, (28

where V=(d,, ;) and |£-&=[(£,-8- (£ -H]"2 Equation
(28) has a real solution only if £ =¢£ for £ in the propagat-
ing region [where g(_g) is real] and only for observation
points that satisfy

X-X+ V=0, (29)

where, here and henceforth, bar over { denotes sampling
at é=£ (i.e., {={(§), V{=V {(&)|s3 etc.). Condition (29) de-
fines the beam axis as being a tilted line in the configura-
tion space, with an anisotropy-dependent tilt. Therefore
the beam axis is directed along the unit vector
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fc('g) = (cos Bl,cos 1_32,cos 9, (30)

where ¥ is the angle with respect to the z axis and 1_9172,
are the beam-axis angles with respect to the (x1,x5) axes,
respectively. In view of Eq. (29), 0, 5 are given by

cos ¥ 9= - cos 1_3(9,51 ZZ, cos 9=(V+1)V2 (31)

Note that for the ordinary (isotropic) case, in which ¢ is
given by Eq. (17), the beam direction in Eq. (30) coincides
with f«:('g,Z) in Eq. (18). The beam axis direction (30) is
directly related to the wave-number surface {(£) over the
(&,&) plane: Since cos 1_91,2 are proportional to the gradi-

ent of the surface at _§, it follows that the beam axis i is in
the direction of the normal to the wave-number surface at

the on-axis stationary point E (see Fig. 2).

For off-axis observation points, Eq. (28) could not be
solved explicitly. Furthermore, the off-axis stationary
point is complex, and the solution requires analytic con-
tinuation of the wave-number profile {(£) for complex &.
To allow us to obtain a closed-form analytic solution for
the beam field, we notice that the beam field decays away
from the beam axis. Therefore we may apply a Taylor ex-
pansion of the phase [Eq. (16)] about the on-axis station-

ary point £=¢,
D(H) = P+ By (£~ O + (£~ HDy(£- BT, (32)
with

Do=P(=¢-(x-X)+z, ®P;=(x-X)+ Vi, (33)

T+ &

%02
(1)2 =

- - |- (34)
Gz —UT+d L

Using Eq. (32), one finds that the saddle point for both on-

and off-axis observation points is §S=_§—d>§1ll>1, and the
field in Eq. (15) may be evaluated asymptotically by

o il
B(r,X) = eXp[ikoS(r)]v
\c"— et @2
S(r) = dy - 1/2®,®;' @] (35)
&(2) wavenumber

Fig. 2. Wave-number surface and parameterization. The pa-
rameterization of the beam propagators is matched to local geo-
metrical properties of the wave-number surface {(£€) at the the

processing point £=& the normal # and the radii of curvature
along constant ¢ or &, pf 5, of the surface.
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Fig. 3. Local beam coordinate frame for the extraordinary GB

propagator. The beam axis is directed along the unit vector k.
The local transverse coordinates x; are given by transformation
(36) so that the GB [Eq. (40)] exhibits quadratic Gaussian decay
in the local x, coordinates.

In a manner similar to that for the ordinary beam [see
Eq. (18)], the beam field in Eqs. (35) may be presented in
terms of (anisotropic) local beam coordinates over which
the field exhibits a Gaussian decay away from the beam
axis. We define the local beam coordinates 1,
=(xp1,Xp2,2p) by the nonorthogonal transformation

Xp, X1—Xq
Xp, [=T| x2— %3 |, (36)
Zp z

where the transformation matrix T is given by

cos @ Sin@ (- cos Jysin @ — cos J;cos @)/cos I
T=|-sing cos® (- cos Jycos @+ cos ¥ysin g)/cos I |,
0 0 1/cos &
(37

where cos 1_91,2’3 are defined in Eqs. (31) and the angle ¢ is
defined by

tan 2 = - 257 . I L - 72,0). (38)

Transformation (37) consists of a rotation transformation
in the (x1,x5) plane by @, for which the phase S(r) in Eqs.
(35) exhibits Gaussian decay, followed by tilting of the z
axis toward the beam-axis direction in Eq. (30) (see Fig.
3). The inverse transform is given by
cos® —sing cos Y,
Tl=|sing cose cosdy|. (39)
0 0 cos ¥

With the beam coordinate system (36) in Egs. (35), the
field may be presented in Gaussian quadratic form,

. det I'(z,) |2 .
B(r;X) = @t r0) exp| ik,| Kig - [r - (X,0)]

1
+ Exbl"(zb)x,?)} , (40)

where det denotes a matrix determinant, :%is():(_g,Z) and
I'(zp)=diag(I'{,I'y) is a symmetric matrix whose diagonal
elements I'y 4(z), are given by
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ryate)= (1= {7+ 2T =1 - 2D

Note that the linear term of the phase in Eq. (40) is
:iqso- [r-(Xx,0)]; that is, the phase is accumulated along the
unit vector (_§,_§), which is in general different from the
beam-axis direction & in Eq. (30). For ordinary beams,
where {(£) is given by Eq. (17), the two vectors coincide,
thereby setting liciso-[r—(x,O)]=zb as in Eq. (19).

Using Eq. (38) in Eq. (41), we may rewrite I'; 5 in the
form I'y 9(25)=(2pa1 2+ 1/T)71, where

—| cos® _]cos’o _| sin?
A12= (75% Qoo [~ (7? ¢ 2
’ + | cos(2p)| "' | sin® @ 27| cos

In order to relate the beam field to local geometrical
properties of the wave-number surface {(§), we denote p{ ,
as the radii of curvature of the curves {(&)| £ 98, o ie., of
the wave-number surface cross-sectional planes of con-
stant &; or &, respectively, that pass through the on-axis

6l 6l

(42)

stationary point _§ (see Fig. 2):

[1+ (3, D

C
Plo= ———. (43)
(931,24j
By inserting Eqgs. (31) into (43), we obtain
_ [sindy,\% 1
7,6 = ( 2’1) — (44)
’ cos ¥ / pig

and relation (42) may be writen in the form
— | cos™2 9| sin® 9y | cos? sin® & | sin? @
Q12= _ ¢ ) - ¢ 2 — :
+ | cos(20p) 1 sin P5 cos” ¢

(45)

We may carry out the parameterization of the aniso-

tropic beam propagator in a manner similar to that for

the isotropic beam in Eq. (19), rewriting I'; 9=[a; (2
—Zl,z—iF]_,z)]_l, where

Z1,2 == Fr/(|r|2al,2), F1,2 = Fi/(|r|201,2) (46)

6l 6l

are identified as the beam waist location in the (z;,x5, )
plane and the corresponding collimation length, respec-
tively. Furthermore, by rewriting

i

+ B .
Rl,z(zb) koDLz(Zb)

Iy 9(2p) = (47)

we identify Z\EDLZ where
D o(zp) = (F1 901 o/ko) V[ 1 + (25 = Z1 9)*/F5 ;1% (48)
as the e~ beam width in the (Zb’xb1,2) plane, and
R1,2(2b) = 01,2[(2b - Z1,2) + F%,Q/(zb - Z1,2)] (49)

is the phase-front radius of curvature. The resulting GB
is therefore astigmatic (having Z; # Z,). This astigmatism
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is caused by the beam tilt, which reduces the effective ini-
tial beam width in the x; , directions.

The compact presentation in Egs. (45)—(49) parameter-
izes the GB field in terms of local properties of the generic
wave-number profile about the PS (directional) parameter

&£=£. The parameter a5 in Eq. (45), which parameterizes
the anisotropy effect on the beam parameters in Egs.
(46)—(49), is affected by the geometrical properties of the
wave-number surface {(£€): The angles ¥ 5 are determined
by the normal of the surface at _§, and pCL2 are the radii of
curvatures at that point.

B. Phase-Space Localization
The effective domain of integration in phase-space repre-
sentation (12) of the ordinary field is limited because of

the observation manifold in which the X integration is
limited to the vicinity of a hyperplane in Eq. (27). For
extraordinary-mode propagation, the beam-axis direction
in Eq. (30) sets the observation manifold to

(x —X)/R = cos 131,2, R=(x-%2+2%12, (50)

where 51,2 in Egs. (31) are determined by the phase-space
parameter X as well as the normal to wave-number pro-

file, V(£), at & Therefore the contributing hyperplane is
obtained by matching observation angles to those of the
wave-number surface normals.

5. ILLUSTRATIVE EXAMPLE

The general results for the beam propagators in the ge-
neric anisotropic wave-number profile are tested here for
the special case of the electromagnetic wave-number pro-
file of a uniaxial crystal identified by the dielectric tensor

e 00
€.=|0 € 0], (51)
0 0 g

The wuniaxial crystal wave-number profiles satisfy
Fresnel’s equation24

2 2
kx1 kxz k?

’

+ + =
(k) - ci (k) - ci (k) - cf
c(k) = wl(k; +kZ +ED"?, (52)

where c,=co/\e, c,=co/\e,, with ¢, being the speed of
light in vacuo, are called the principal phase velocities of
the crystal.

Solving Egs. (52) for £, and using the normalization in
Eq. (1) where we choose c¢=c,, we find two solutions: the
ordinary mode, where

(H=01-g-", (53)
and the extraordinary propagation mode, where
(o =1-(G+&le)™. (54)

To illustrate the beam parametrization, we shall proceed
by using extraordinary propagation profile (54) with &
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#0, so that the beam is propagating with some angle with
respect to the crystal axis of symmetry.

The beam propagators may be evaluated numerically
by using exact plane-wave spectral representation (13) for
the Gaussian window plane-wave distribution in Egs.
(14). In the following examples, this integral is evaluated
numerically for wave-number profile (54) and is referred
to as the reference solution to which the asymptotic beam
field and parameterization are compared. All simulations
are carried out for I'yo=-1+i, £=0.1, £=0.3,%=0, %
=800 m™!, e=1, and €,=1.3.

A. Gaussian Beam Amplitude Contour Plots

Figure 4 depicts the reference solution for the astigmatic
Gaussian beam amplitude (|§ ) contour plots over the z
=1 plane. Contour levels are at (e7/2,e71, e~2) with respect
to the beam peak amplitude at x,=0. The local beam
transverse coordinates, Xp,, Xp, are depicted over the
(x1,x2) plane. The rotation transform of (x1,x) to (x ,%s,)
by ¢=-10.4° in Eq. (38) is carried out so that the resulting
field Eq. (40) exhibits quadratic Gaussian decay in the lo-
cal coordinates, as can be seen clearly in the figure. The
circles denotes the beam widths over the x; , axes Dy,
evaluated according to Eq. (48) for wave-number profile

(54), and they match the reference solution contour of
12

B. Astigmatism and Waist Location

To demonstrate the beam tilting and astigmatism, the
asymptotic beam e~V2 contours in the (xp, ,,2) cross-
sectional planes are plotted in Figs. 5(a) and 5(b), respec-
tively. The waist location [Eqgs. (46)] is marked by a circle

0.3}

0.25

0.2}

0 0.05 0.1 0.15

Fig. 4. Gaussian beam amplitude contour plots over z=1 plane
for the reference solution evaluated by using exact plane-wave
spectral representation (13).

0.2t Xy, 0.2} Xp,

0.1 0.1

0 ; 0

0152 04 o8 o.sz 015204 os o.sz

(@) (b)
Fig. 5. Astigmatism and waist location; the asymptotic beam
exp(-1/2) contours in the (xblz,z) planes are shown in (a) and

(b), respectively, as well as the waist location (circle) and the
beam width (vertical line) in each plot.
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=5 b 1 =5 b 2
04 06 08 1 12 04 06 08 1 12
(@ (b)

Fig. 6. Beam width in the local transverse coordinates. Solid
curves plot the asymptotic-beam widths (48), D, 5(z;), and circles
plot the reference field exp(-1/2) contours in (a) and (b) for the
(xbl’z,zb) planes, respectively.

over the beam axis along with the beam width [Eq. (48)]at
the waists (vertical solid line). Note that the the beam-
waist locations are different in Figs. 5(a) and 5(b).

C. Beam Width in the Local Transverse Coordinates

To compare the asymptotic-beam widths D; 5(2;) in Eq.
(48) with the reference solution, the latter was evaluated
over the (x;_ ,,2) planes, and the resulting e~> contours
are plotted with circles in Figs. 6(a) and 6(b), respectively;
the solid curves are the analytic beam width in Eq. (48).
For both graphs, the longitudinal coordinate z, is scaled
with respect to the beam waist location at z,=Z; 5, and
the widths were scaled with respect to the corresponding
beam width at the waists. The figure clearly demon-
strates a good agreement between the reference solution
and the asymptotic parameterization.

6. CONCLUSION

In this paper we have been concerned with field propaga-
tion in an anisotropic medium characterized by a generic
wave-number profile. Using a local (windowed) transform,
we presented the initial field at z=0 as a superposition of
Gaussian window functions that are located in each point
X in the aperture, with linear _§ phases. For each window
function, a propagation solution in z >0 was found by us-
ing saddle-point approximation. The resulting beam-
propagator characteristics were analytically parameter-
ized in terms of wave-number profile characteristics at PS

processing parameter £ The analytic results and the nu-
meric results for a specific wave-number profile of ex-
traordinary mode in uniaxial crystal were compared and
were found to conform remarkably well. A local spectral
representation for time-dependent fields is presented in a
companion paper.’
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