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Local spectrum analysis of field propagation
in an anisotropic medium.

Part I. Time-harmonic fields
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The phase-space beam summation is a general analytical framework for local analysis and modeling of radia-
tion from extended source distributions. In this formulation, the field is expressed as a superposition of beam
propagators that emanate from all points in the source domain and in all directions. In this Part I of a two-part
investigation, the theory is extended to include propagation in anisotropic medium characterized by a generic
wave-number profile for time-harmonic fields; in a companion paper [J. Opt. Soc. Am. A 22, 1208 (2005)], the
theory is extended to time-dependent fields. The propagation characteristics of the beam propagators in a ho-
mogeneous anisotropic medium are considered. With use of Gaussian windows for the local processing of either
ordinary or extraordinary electromagnetic field distributions, the field is represented by a phase-space spectral
distribution in which the propagating elements are Gaussian beams that are formulated by using Gaussian
plane-wave spectral distributions over the extended source plane. By applying saddle-point asymptotics, we
extract the Gaussian beam phenomenology in the anisotropic environment. The resulting field is parameter-
ized in terms of the spatial evolution of the beam curvature, beam width, etc., which are mapped to local geo-
metrical properties of the generic wave-number profile. The general results are applied to the special case of
uniaxial crystal, and it is found that the asymptotics for the Gaussian beam propagators, as well as the physi-
cal phenomenology attached, perform remarkably well. © 2005 Optical Society of America

OCIS codes: 350.5500, 260.1180.
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. INTRODUCTION
hase-space (PS) spectral representations, in which the
pectral elements are beams (or pulsed beams for time-
ependent fields), have been the subject of intense re-
earch in the past decade, owing to their spectral localiza-
ion and the capability of propagating theseAu: Please
larify if not correct spectral wave objects in complex en-
ironments. In contrast, conventional wave elements
uch as Green’s functions or plane waves are hard to
rack in inhomogeneous environments or through interac-
ions with objects, and the resulting spectral integrals are
pectrally distributed.

Several PS expansion schemes for wave propagation
ave been introduced for extended source configurations;
hese schemes use a spectrum of shifted and tilted beams
hat emanate in all directions from all points in the
ource domain.1–4 In Refs. 2,4 and 5 these schemes have
een placed within a unified PS format wherein a PS dis-
ribution of beam propagators is locally matched to the
ource distribution. Recently discrete PS spectral repre-
entations based on the discrete Wilson basis6 and on
rame theory7 have been introduced.

In the present contribution, the PS continuance spec-
ral representation for time-harmonic excitation, which
as originally introduced in Ref. 2, is extended to include
ropagation in an anisotropic medium characterized by a
eneric wave-number profile for both time-harmonic and,
n the companion paper,8 for time-dependent fields. Aniso-
ropic materials are of interest for optical waveguides, mi-
rowave devices, plasma science, and different propaga-
1084-7529/05/061200-8/$15.00 © 2
ion environments. Comprehensive studies have been
onducted on the problem of Gaussian beam (GB) two-
nd three-dimensional propagation for specific wave-
umber profiles9–14 as well as on modeling different types
f anisotropic propagation and scattering15,16 with GBs as
asis wave objects. Nevertheless, to our knowledge, the
ropagation of GBs in a generic anisotropic medium has
ot yet been explored in detail. In Ref. 17, using the com-
lex source method, the authors arrived at a closed-form
nalytic solution for the GB field. In our view, the complex
ource method cannot account for the astigmatic effects
hat are present in our analysis of the generic wave-
umber profile, and therefore these results may be ap-
lied only to the case of GB propagation along the optical
xis of a uniaxially anisotropic medium. Alternatively, by
pplying a plane-wave spectral representation to the
ropagation problem, in Ref. 18 we have presented an al-
ernative rigorous solution for the GB field for the case of
nontilted GB. In the current paper, this preliminary in-

estigation is placed within the framework of the Gauss-
an beam summation method to include generally tilted
eam solutions and their parameterization, novel phase-
pace phenomenologies related to the generic anisotropy
haracteristics, and extension to the time domain.8

. FORMULATION
he current study is concerned with the effects of aniso-
ropy on the propagation characteristics of either an elec-
romagnetic or a general linear field in a lossless homoge-
005 Optical Society of America
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eous medium. The field is formulated by means of its
nitial distribution over the z=0 plane by use of the con-
entional Cartesian coordinate system r= sx ,zd with x
sx1 ,x2d. In an anisotropic medium, exact field represen-

ations may be constructed by use of the eigenfunction
xpansion,19 usually in the form of a plane-wave spectral
ntegral. The latter consist of ordinary and extraordinary

odes, whose distributions are determined by matching
he plane-wave spectral distributions to a specific source
istribution (see examples in Refs. 19 and 20). With this
rocedure, the vectorial problem is reduced to scalar field
ropagation of ordinary and extraordinary distributions.
he initial field distribution over the z=0 plane (of any of

he anisotropic modes of propagation) is denoted ûosxd,
here here and henceforth a caret denotes time-harmonic
eld constituents with exps−ivtd time dependence as-
umed and suppressed, so that ûosxd= ûosx ,vd, etc. The
ossless propagation medium is characterized by a generic
ave-number profile, in which the longitudinal wave
umber in the direction of the z axis is a function of the
plane-wave) direction of propagation, kz=kzskx1

,kx2
d,

here skx1
,kx2

d is the wave-number vector in the x
sx1 ,x2d direction. Anticipating extension to the time do-
ain (see Part II8), we normalize the wave numbers by

he isotropic wave number ko=v /c, with c being a con-
tant. The constant c may be chosen as the speed of light
n vacuo or any other constant [see, for example, the
niaxial crystal wave-number profile in Eqs. (53) and
54)]. Therefore the medium anisotropy may be character-
zed by the normalized longitudinal wave number zsjd

zsjd = kzskx1
,kx2

d/ko, ko = v/c,

j = skx1
,kx2

d/ko, s1d

nd the field may be propagated away from the z=0 plane
y use of the anisotropic plane-wave propagator
xpfikzskx1

,kx2
dzg=expfikozsjdzg.

. Space–Wave-Number Transforms
he frequency domain wave-number spectral distribution
ver the initial z=0 plane is defined by the two-
imensional spatial Fourier transform

û̃osjd =E
−`

`

d2xûosxdexps− ikoj · xd, s2d

here j= sj1 ,j2d is the normalized spatial wave-number
ector, x= sx1 ,x2d, and the tilde identifies a wave-number
pectral function. The reconstruction of the frequency-
omain initial field is, accordingly,

ûosxd = S ko

2p
D2E d2jû̃osjdexpsikoj · xd. s3d

he normalization with respect to ko anticipates inversion
o the time domain (see Part II8), rendering j frequency
ndependent, with direct geometrical interpretation in
erms of the spectral plane-wave propagation angles. For
implicity, integration limits are omitted on all integrals
xtending from −` to +`.
Using the anisotropic propagator in Eq. (1) and assum-
ng that all sources are located in z,0, the field propagat-
ng into z.0 half-space is given by

ûsrd = S ko

2p
D2E d2jû̃osjdexpfikosj · x + zsjdzdg. s4d

quation (4) reconstructs the field in terms of angular sjd
uperposition of a plane wave propagating in the direc-
ion of the unit vector:

k̂sjd = fj,zsjdg/fj2 + z2sjdg1/2, j2 = j · j. s5d

The plane-wave integrals in Eq. (4) are spectrally dis-
ributed. For high-frequency signals, however, dominant
ontributions are generated by localized regions in the
ource domain that emphasizes radiation in a given direc-
ion. We assume that the source distribution has the high-
requency form (the so-called Lagrange manifold),

uosxd = AosxdexpfikoFosxdg, s6d

here Aosxd is the amplitude and Fosxd is a phase func-
ion, both with slow spatial x variation. For high-
requency distribution of the form of Eq. (6), the dominant
ontribution to the plane-wave spectrum in Eq. (2) comes
rom the region of the stationary point xssjd, defined by

¹Fosxd = j, at xssjd. s7d

or a given x, this condition defines the local radiation di-
ection if a plane wave is locally matched to the source
istribution. A ray-field representation may be obtained
y asymptotically evaluating Eq. (4), using the
symptotic spectral distribution. In this representation, a
ay is emanating from each point x in the aperture in a
irection k̂sj=jsd of Eq. (5), where the stationary ray js
atisfies Eq. (7) for a given x.

We shall not go through the complete asymptotic ma-
ipulations here, as our goal is not to derive analytic ray-
ype local approximations. Instead, in Subsections 2.B
nd 2.C we shall show how local PS transforms yield spec-
ral representations that are a priori localized about the
ay skeleton defined by Eq. (7).

. Phase-Space Processing
n this subsection we summarize the PS analysis and syn-
hesis formalisms that parameterize the field over the z
0 initial plane (further details may be found in Ref. 4) as
ell as formulate the PS anisotropic beam propagators.
e shall use a continuous spectral representation [see
ef. (12)], but the theory presented here may be used for
iscrete frame-based representation, provided that the
vercompleteness frame parameter is larger than 0.45,
ince under this condition, the local PS propagators that
re presented and analyzed here coincide with those ob-
ained by the discrete representation.7 For the desired lo-
al spectral analysis of the field distribution, we generate
he local (plane-wave) spectrum by means of a windowed
ourier transform of the distribution in configuration
pace,

Û sX̄d =E d2xû sxdŴ*sx;X̄d,
o o
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Ŵsx;X̄d = ŵsx − x̄dexpfikoj̄ · sx − x̄dg, s8d

here the asterisk denotes the complex conjugate and X̄
sx̄ , j̄d. Here, ŵsxd is a spatial window function, centered
t x̄= sx̄1 , x̄2d with linear phasing specified by j̄= sj̄1 , j̄2d.
he vector X̄ incorporates the configuration-spectrum PS
oordinates sx̄ , j̄d, whence ÛosX̄d is referred to as a PS dis-
ribution of the initial field distribution ûosxd. Transform
8) extracts from ûosxd the local spectrum around the
-directed propagation at the window center x̄ (see Fig. 1).
n typical propagation and scattering problems, the spec-
rum at a given x̄ is localized about a preferred spectral
irection j̄sx̄d that describes the (stationary) direction of
ropagation of the incident field at x̄ point (the Lagrange
anifold). Consequently, the local spectrum ÛosX̄d is lo-

alized a priori about the subdomain sx̄ , j̄d= fx̄ , j̄sx̄dg in
he X̄ domain (see synthetic examples in Refs. 2,4). In the
resent context of anisotropic propagation, where ûosxd is
ither ordinary- or extraordinary-mode distribution, it is
onvenient to describe the local spectrum by the initial
lane-wave distribution that is obtained by matching to
he source plane-wave representation. By inserting Eq.
3) into Eq. (8) and inverting the order of integration, we
btain

ÛosX̄d = sko/2pd2E d2jû̃osjdW̃ˆ *sj;X̄d,

W̃
ˆ sj;X̄d = ŵ̃sj − j̄dexps− ikoj · x̄d, s9d

ith W̃
ˆ

and ŵ̃ being the wave-number spectra (2) of Ŵ
nd ŵ, respectively.
The field distribution ûosxd may be synthesized from its

S spectrum through the inverse PS transform4

ûosxd = S ko

2pN̂
D2E d4X̄ÛosX̄dŴsx;X̄d, s10d

here

ig. 1. Local processing of the time-harmonic field distribution;
he PS distribution ÛosXd is obtained by integrating the field dis-
ribution ûosxd with a linearly phased window function shifted to
oint x̄. The linear phase extracts from ûo its local directional
roperties and by that matches a single beam propagator ema-
ating from the window center at x̄ along the (ordinary) direction

dentified by the spherical angles sq̄ , w̄d.
N̂ = FE d2xuŵsxdu2G1/2

s11d

s the Lx
2 norm of ŵ. With use of inverse transform (10),

he PS superposition of the initial field can be propagated
nto z.0, giving

ûsr,vd = S ko

2pN̂
D2E d4X̄ÛosX̄dB̂sr;X̄d, s12d

here N̂ is given in Eq. (11) and the PS propagator B̂ is
he field that is radiated by each PS window element
ˆ sx ; X̄d in Eq. (10). For anisotropic propagation, it is con-
enient to express the PS propagators by a plane-wave
epresentation, i.e.,

B̂sr;X̄d = S ko

2p
D2E d2jW̃

ˆ sj;X̄dexpfikosj · x + zsjdzdg,

s13d

here the plane-wave spectrum W̃
ˆ

is given in Eqs. (9). If
ˆ is wide on a wavelength scale, then the spatial and
pectral distributions of Ŵ are localized around x= x̄ and
= j̄, respectively, and consequently, B̂ behaves as a colli-
ated beam [see Eqs. (19) and (40) for ordinary and ex-

raordinary GBs, respectively]. The representation in Eq.
12) describes the radiated field as a continuous superpo-
ition of shifted and tilted beams, centered at and di-
ected along x̄ and j̄, respectively. The PS function ÛosX̄d
efines the excitation strengths of these beams through
ocal matching to the aperture field ûosxd (see Fig. 1).

. Gaussian Windows
ext we examine the special case of Gaussian windows.
hese have been used extensively for modeling beam
ropagation since they maximize the PS localization as
mplied by the uncertainty principle and yield analyti-
ally trackable beam-type propagators.2,4,7,21,22 For locally
PS) processing the field distribution, we use a Gaussian
indow whose spatial and spectral distributions are

ŵsxd = expS i

2
koxGxTD ,

ŵ̃sjd =
2pi

koG
expS−

i

2
kojG−1jTD , s14d

ith G=GI, where I is the unity matrix and G=Gr+ iGi is
he window complex parameter with Gi.0. Anticipating
xtension to the time domain, we have constructed defi-
ition (14) so that the frequency ko=v /c appears explic-

tly in the exponent and G is frequency independent (see
lso the discussion in Part II,8 Subsection 1.D). In Eqs.
14), x= sx1 ,x2d is a line vector and T denotes the trans-
ose vector, so that the window exponent takes the qua-
ratic form xGxT=Gsx1

2+x2
2d. The G matrix is a complex

ymmetric matrix with Im G positive definite so that the
uadratic phase in the exponent in Eq. (14) has a positive
maginary part that is generating a smooth Gaussian
indow that is strongest for x=0 and decays as x in-



c
E

o
G

w

E
t
d
i
a
z
t
fi

3
P
I
e
b
t
w

A
I
s

U
(
t
b
n
m
l
s
a

w
n
a
c
t
p

w

N
G
m
a
t
g
t
i
n
t
p
=
o
c
t

b
G

a
p

a
t
p

a
t

T
t
t
t
F
p
d
i
w

o
w
t
s
t
z
b

I. Tinkelman and T. Melamed Vol. 22, No. 6 /June 2005/J. Opt. Soc. Am. A 1203
reases. The norm of the window is obtained by inserting
qs. (14) into Eq. (11), giving N̂2=p / skoGid.
Using the Gaussian windows [Eqs. (14)] in Eq. (13), we

btain the plane-wave spectral representation for the
aussian beam propagators in z.0 half-space,

B̂sr;X̄d =
iko

2pG
E d2j expfikoFsr,j, j̄dg, s15d

here

Fsr,j, j̄d = j · sx − x̄d + zsjdz − sj − j̄d2/s2Gd. s16d

quation (15) describes the Gaussian beam propagator in
erms of superposition of plane-waves, propagating in the
irection of the unit vector k̂sjd in Eq. (5) away from the
nitial aperture. This spectral integral cannot be evalu-
ted in closed form for the generic wave-number profile
sjd. Instead, saddle-point asymptotics may be applied for
he ordinary (Section 3) and the extraordinary (Section 4)
eld propagators.

. ORDINARY GAUSSIAN BEAM
ROPAGATORS

n order to compare and contrast the three-dimensional
xtraordinary with the ordinary GB propagators, we shall
riefly discuss in this section the expressions for the lat-
er, which have been derived previously4 in connection
ith a homogeneous isotropic medium.

. Asymptotic Evaluation and Parameterization
n view of Eq. (1), the ordinary wave-number profile is de-
cribed by [see also Eq. (53)]

zsjd = s1 − j2d1/2, Im z ù 0. s17d

sing the ordinary wave-number profile [Eq. (17)] in Eqs.
15) and (16), we obtain the plane-wave spectral represen-
ation of the ordinary GB. The resulting integral cannot
e evaluated in closed form. With the saddle-point tech-
ique as well as a paraxial approximation, this integral
ay be evaluated asymptotically.4 The result is given be-

ow. We use the (ordinary) local beam coordinates
xb1

,xb2
,zbd defined, for a given phase-space spectral vari-

ble j̄, by the transformation

1
xb1

xb2

zb
2 = 3cos q̄ cos w̄ cos q̄ sin w̄ − sin q̄

− sin w̄ cos w̄ 0

sin q̄ cos w̄ sin q̄ sin w̄ cos q̄
41x1 − x̄1

x2 − x̄2

z
2 ,

s18d

here sq̄ , w̄d are the spherical angles that define the ordi-
ary beam direction k̂̄iso= sj̄ , z̄d, with z̄=zsj̄d. Thus the zb
xis coincides with the beam axis, while the transverse
oordinates xb= sxb2

,xb1
d are rotated such that xb1

lies in
he plane containing j̄ and k̂̄iso and xb2

lies in the z=0
lane (see Fig. 1). Using the beam coordinates, we obtain
B̂sr;X̂d = Fdet Gszbd

det Gs0d G1/2

expFikoSzb +
1

2
xbGszbdxb

TDG ,

s19d

here det denotes a matrix determinant, and

Gszbd = Fszb + z̄ 2/Gd−1 0

0 szb + 1/Gd−1G . s20d

ote that in an exact (asymptotic) beam, the elements of
depend on z, whereas in a conventional GB the ele-

ents of G depend only on the location along the beam
xis (i.e., on zb). The difference is due to the fact that in
he conventional GB, the Gaussian initial conditions are
iven on a plane normal to the beam axis, whereas here
hey are defined on a plane of constant z that is generally
nclined with respect to the beam axis. For large zb or
ear the beam axis, B̂ changes smoothly into a conven-
ional GB, where by setting zz̄−1.zb we obtain the
araxial form in Eq. (19) with Eq. (20) where xbGxb

T

G1xb1
2 +G2xb2

2 , where Gi denotes the diagonal siid element
f G matrix [i.e., Gszbd=diagsG1 ,G2d] and B̂sr ; X̄d takes the
onventional form of a Gaussian beam propagating along
he zb beam axis.

The parameters of this astigmatic BG may be obtained
y rewriting the diagonal elements in Eq. (20) in the form
1,2szbd= szb−Z1,2− iF1,2d−1, where

Z1 = − Gr/uGu2 z̄ 2, Z2 = − Gr/uGu2 s21d

re identified as the beam waist location in the szb ,xb1,2
d

lanes, respectively, and

F1 = Gi/uGu2 z̄ 2, F2 = Gi/uGu2, s22d

re the corresponding collimation lengths. Furthermore,
he e−1 beam widths in the szb ,xb1,2

d cross-sectional
lanes, 2Î2D1,2, are found from Re Gszbd, giving

D1,2 = sF1,2/kod1/2f1 + szb − Z1,2d2/F1,2
2 g1/2, s23d

nd the phase-front radius of curvature R1,2 may be ob-
ained from Im Gszbd, giving

R1,2 = szb − Z1,2d + F1,2
2 /szb − Z1,2d. s24d

he beam-propagator astigmatism is caused by the beam
ilt with respect to the initial z=0 plane, which reduces
he effective initial beam width in the xb1

direction. Note
hat the waist locations Z1,2 and the collimation lengths
1,2, as well as the phase as a whole, are frequency inde-
endent. However, the beam widths D1,2 are frequency
ependent, being proportional to v−1/2. These properties
dentify the scattering propagators as “isodiffracting”
ave packets.23

Asymptotic propagator (19) allows an insight to the role
f the paraxial approximation of astigmatic beams for
hich the initial distribution plane is tilted with respect

o the beam axis: paraxially approximated beams do not
atisfy the boundary condition B̂sr ; X̄duz=0=Ŵsx ; X̄d, since
he paraxial approximation zb@ sxb1

2 +xb2

2 d1/2 fails near the
=0 plane. The paraxially approximated (astigmatic)
eam is obtained by projecting the initial window onto the
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b=0 transverse plane over which the initial effective
eam width in the xb1

direction is reduced by a factor of z̄,
hereas the width in the xb2

direction remains un-
hanged; i.e., the paraxial beam boundary conditions on
he plane transverse to the tilted beam axis szb=0d are

B̂sr;X̄dzb=0 = exps i
2koxbGparaxxb

Td , s25d

ith

Gparax = FG/ z̄ 2 0

0 G
G . s26d

or large-angle paraxial parameterization, the use of a
onorthogonal coordinate systyem is required. This novel
pproach is presented in Section 4 for extraordinary-
eam propagators [see Eq. (37)].

. Phase-Space Localization
he effective domain of integration in Eq. (12) does not in-
lude the entire PS domain s−` ,`d owing to the a priori
ocalization in the phase space around well-defined re-
ions in the X̄ domain. Owing to the Gaussian decay of
he beam propagators B̂sr ; X̄d, away from the beam axis,
nly beams that pass near a given observation point r ac-
ually contribute to the field. For a given observation
oint r, this localizes the contributions in Eq. (12) to the
icinity of a hyperplane in the X̄ domain, defined for
rdinary-mode beams by

sx − x̄d/R̄ = j̄, R̄ ; sux − x̄u2 + z2d1/2. s27d

his (ordinary) observation manifold defines the phase-
pace beams that pass through r [compare with the ex-
raordinary manifold in Eq. (50)].

. EXTRAORDINARY GAUSSIAN BEAM
ROPAGATORS
or extraordinary modes, for which the wave-number pro-
les are given by the generic form of Eq. (1), beam propa-
ators (15) may be evaluated asymptotically in the high-
requency regime by applying localization considerations
o the generic medium characteristics.

. Asymptotic Evaluation and Parametrization
he stationary point js of phase (16) satisfies

¹Fuuj=js
= x − x̄ + z ¹ zuuj=js

− ujs − j̄u/G = 0, s28d

here ¹= s]j1
,]j2

d and ujs− j̄u= fsjs− j̄d · sjs− j̄dg1/2. Equation
28) has a real solution only if js= j̄ for j̄ in the propagat-
ng region [where zsj̄d is real] and only for observation
oints that satisfy

x − x̄ + ¹ z̄z = 0, s29d

here, here and henceforth, bar over z denotes sampling
t j= j̄ (i.e., z̄=zsj̄d , ¹ z̄;¹zsjduj=j̄, etc.). Condition (29) de-
nes the beam axis as being a tilted line in the configura-
ion space, with an anisotropy-dependent tilt. Therefore
he beam axis is directed along the unit vector
k̂̃sj̄d = scos q̄1,cos q̄2,cos q̄d, s30d

here q̄ is the angle with respect to the z axis and q̄1,2,
re the beam-axis angles with respect to the sx1 ,x2d axes,
espectively. In view of Eq. (29), q1,2 are given by

cos q̄1,2 = − cos q̄]j1,2
z̄, cos q̄ = su ¹ z̄u2 + 1d−1/2. s31d

ote that for the ordinary (isotropic) case, in which z is
iven by Eq. (17), the beam direction in Eq. (30) coincides
ith k̂̃= sj̄ , z̄d in Eq. (18). The beam axis direction (30) is
irectly related to the wave-number surface zsjd over the
j1 ,j2d plane: Since cos q̄1,2 are proportional to the gradi-
nt of the surface at j̄, it follows that the beam axis k̂̄ is in
he direction of the normal to the wave-number surface at
he on-axis stationary point j̄ (see Fig. 2).

For off-axis observation points, Eq. (28) could not be
olved explicitly. Furthermore, the off-axis stationary
oint is complex, and the solution requires analytic con-
inuation of the wave-number profile zsjd for complex j.
o allow us to obtain a closed-form analytic solution for
he beam field, we notice that the beam field decays away
rom the beam axis. Therefore we may apply a Taylor ex-
ansion of the phase [Eq. (16)] about the on-axis station-
ry point js= j̄,

Fsjd < F0 + F1sj − j̄dT + 1
2 sj − j̄dF2sj − j̄dT, s32d

ith

F0 = Fsjd = j̄ · sx − x̄d + z̄z, F1 = sx − x̄d + ¹ z̄z, s33d

F2 = 3− 1/G + ]j1

2 z̄z ]j1j2

2 z̄z

]j1j2

2 z̄z − 1/G + ]j2

2 z̄z4 . s34d

sing Eq. (32), one finds that the saddle point for both on-
nd off-axis observation points is js= j̄−F2

−1F1, and the
eld in Eq. (15) may be evaluated asymptotically by

B̂sr;X̄d =
i/G

Î− det F2

expfikoSsrdg,

Ssrd = F0 − 1/2F1F2
−1F1

T. s35d

ig. 2. Wave-number surface and parameterization. The pa-
ameterization of the beam propagators is matched to local geo-
etrical properties of the wave-number surface zsjd at the the

rocessing point j= j̄: the normal k̂̄ and the radii of curvature
long constant j or j , rc , of the surface.
1 2 1,2
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In a manner similar to that for the ordinary beam [see
q. (18)], the beam field in Eqs. (35) may be presented in

erms of (anisotropic) local beam coordinates over which
he field exhibits a Gaussian decay away from the beam
xis. We define the local beam coordinates rb
sxb1 ,xb2 ,zbd by the nonorthogonal transformation

1
xb1

xb2

zb
2 = T1x1 − x̄1

x2 − x̄2

z
2 , s36d

here the transformation matrix T is given by

T = 3 cos w̄ sin w̄ s− cos q̄2sin w̄ − cos q̄1cos w̄d/cos q̄

− sin w̄ cos w̄ s− cos q̄2cos w̄ + cos q̄1sin w̄d/cos q̄

0 0 1/cos q̄
4 ,

s37d

here cos q̄1,2,3 are defined in Eqs. (31) and the angle w̄ is
efined by

tan 2w̄ = − 2]j1j2

2 z̄/s]j2

2 z̄ − ]j1

2 z̄d. s38d

ransformation (37) consists of a rotation transformation
n the sx1 ,x2d plane by w̄, for which the phase Ssrd in Eqs.
35) exhibits Gaussian decay, followed by tilting of the z
xis toward the beam-axis direction in Eq. (30) (see Fig.
). The inverse transform is given by

T−1 = 3cos w̄ − sin w̄ cos q̄1

sin w̄ cos w̄ cos q̄2

0 0 cos q̄
4 . s39d

With the beam coordinate system (36) in Eqs. (35), the
eld may be presented in Gaussian quadratic form,

B̂sr;X̄d = Fdet Gszbd

det Gs0d G1/2

expFikoSk̂̄iso · fr − sx̄,0dg

+
1

2
xbGszbdxb

TDG , s40d

here det denotes a matrix determinant, k̂̄iso= sj̄ , z̄d and
szbd=diagsG1 ,G2d is a symmetric matrix whose diagonal
lements G szd, are given by

ig. 3. Local beam coordinate frame for the extraordinary GB
ropagator. The beam axis is directed along the unit vector k̂̄.
he local transverse coordinates xb are given by transformation

36) so that the GB [Eq. (40)] exhibits quadratic Gaussian decay
n the local xb coordinates.
1,2
G1,2„zd = s1/G − z 1
2h]j1

2 z̄ + ]j2

2 z̄ 7 fs]j1

2 z̄ − ]j2

2 z̄d2

+ 4s]j1j2

2 z̄d2g1/2j…−1
. s41d

ote that the linear term of the phase in Eq. (40) is
ˆ

iso· fr− sx̄ ,0dg; that is, the phase is accumulated along the
nit vector sj̄ , z̄d, which is in general different from the
eam-axis direction k̂̄ in Eq. (30). For ordinary beams,
here zsjd is given by Eq. (17), the two vectors coincide,

hereby setting k̂̄iso· fr− sx ,0dg=zb as in Eq. (19).
Using Eq. (38) in Eq. (41), we may rewrite G1,2 in the

orm G1,2szbd= szba1,2+1/Gd−1, where

a1,2 = H−

+ J cos q̄

coss2w̄d
F]j1

2 z̄Hcos2 w̄

sin2 w̄
J − ]j2

2 z̄Hsin2 w̄

cos2 w̄
JG .

s42d

In order to relate the beam field to local geometrical
roperties of the wave-number surface zsjd, we denote r1,2

c

s the radii of curvature of the curves zsjduj1,2=j̄1,2
, i.e., of

he wave-number surface cross-sectional planes of con-
tant j1 or j2, respectively, that pass through the on-axis
tationary point j̄ (see Fig. 2):

r1,2
c =

f1 + s]j1,2
z̄d2g3/2

]j1,2

2 z̄
. s43d

y inserting Eqs. (31) into (43), we obtain

]j1,2

2 z̄ = S sin q2,1

cos q3
D3 1

r1,2
c , s44d

nd relation (42) may be writen in the form

a1,2 = H−

+ J cos−2 q̄

coss2w̄dF sin3 q2

r1
c Hcos2 w̄

sin2 w̄
J −

sin3 q1

r2
c Hsin2 w̄

cos2 w̄
JG .

s45d

We may carry out the parameterization of the aniso-
ropic beam propagator in a manner similar to that for
he isotropic beam in Eq. (19), rewriting G1,2= fa1,2szb
Z1,2− iF1,2dg−1, where

Z1,2 = − Gr/suGu2a1,2d, F1,2 = Gi/suGu2a1,2d s46d

re identified as the beam waist location in the szb ,xb1,2
d

lane and the corresponding collimation length, respec-
ively. Furthermore, by rewriting

G1,2szbd =
1

R1,2szbd
+

i

koD1,2
2 szbd

, s47d

e identify 2Î2D1,2 where

D1,2szbd = sF1,2a1,2/kod1/2f1 + szb − Z1,2d2/F1,2
2 g1/2 s48d

s the e−1 beam width in the szb ,xb1,2
d plane, and

R1,2szbd = a1,2fszb − Z1,2d + F1,2
2 /szb − Z1,2dg s49d

s the phase-front radius of curvature. The resulting GB
s therefore astigmatic (having Z ÞZ ). This astigmatism
1 2
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s caused by the beam tilt, which reduces the effective ini-
ial beam width in the xb1,2

directions.
The compact presentation in Eqs. (45)–(49) parameter-

zes the GB field in terms of local properties of the generic
ave-number profile about the PS (directional) parameter
= j̄. The parameter a1,2 in Eq. (45), which parameterizes
he anisotropy effect on the beam parameters in Eqs.
46)–(49), is affected by the geometrical properties of the
ave-number surface zsjd: The angles q1,2 are determined
y the normal of the surface at j̄, and r1,2

c are the radii of
urvatures at that point.

. Phase-Space Localization
he effective domain of integration in phase-space repre-
entation (12) of the ordinary field is limited because of
he observation manifold in which the X̄ integration is
imited to the vicinity of a hyperplane in Eq. (27). For
xtraordinary-mode propagation, the beam-axis direction
n Eq. (30) sets the observation manifold to

sx − x̄d/R̄ = cos q̄1,2, R̄ ; sux − x̄u2 + z2d1/2, s50d

here q̄1,2 in Eqs. (31) are determined by the phase-space
arameter X̄ as well as the normal to wave-number pro-
le, ¹zsjd, at j̄. Therefore the contributing hyperplane is
btained by matching observation angles to those of the
ave-number surface normals.

. ILLUSTRATIVE EXAMPLE
he general results for the beam propagators in the ge-
eric anisotropic wave-number profile are tested here for
he special case of the electromagnetic wave-number pro-
le of a uniaxial crystal identified by the dielectric tensor

er = 3e 0 0

0 e 0

0 0 ez
4 . s51d

he uniaxial crystal wave-number profiles satisfy
resnel’s equation24

kx1

2

c2skd − cx
2 +

kx2

2

c2skd − cx
2 +

kz
2

c2skd − cz
2 = 0,

cskd = v/skx1

2 + kx2

2 + kz
2d1/2, s52d

here cx=c0 /Îe , cz=c0 /Îez, with c0 being the speed of
ight in vacuo, are called the principal phase velocities of
he crystal.

Solving Eqs. (52) for kz and using the normalization in
q. (1) where we choose c=cx, we find two solutions: the
rdinary mode, where

zsjd = s1 − j2
2 − j1

2d1/2, s53d

nd the extraordinary propagation mode, where

zsjd = s1 − sj2
2 + j1

2d/ezd1/2. s54d

o illustrate the beam parametrization, we shall proceed
y using extraordinary propagation profile (54) with j̄
 b
0, so that the beam is propagating with some angle with
espect to the crystal axis of symmetry.

The beam propagators may be evaluated numerically
y using exact plane-wave spectral representation (13) for
he Gaussian window plane-wave distribution in Eqs.
14). In the following examples, this integral is evaluated
umerically for wave-number profile (54) and is referred
o as the reference solution to which the asymptotic beam
eld and parameterization are compared. All simulations
re carried out for G1,2=−1+ i , j̄1=0.1, j̄2=0.3, x̄=0, k
800 m−1, e=1, and ez=1.3.

. Gaussian Beam Amplitude Contour Plots
igure 4 depicts the reference solution for the astigmatic
aussian beam amplitude suB̂ud contour plots over the z
1 plane. Contour levels are at se−1/2 ,e−1,e−2d with respect

o the beam peak amplitude at xb=0. The local beam
ransverse coordinates, xb1

, xb2
are depicted over the

x1 ,x2d plane. The rotation transform of sx1 ,x2d to sxb1
,xb2

d
y w̄=−10.4° in Eq. (38) is carried out so that the resulting
eld Eq. (40) exhibits quadratic Gaussian decay in the lo-
al coordinates, as can be seen clearly in the figure. The
ircles denotes the beam widths over the xb1,2

axes D1,2,
valuated according to Eq. (48) for wave-number profile
54), and they match the reference solution contour of
−1/2.

. Astigmatism and Waist Location
o demonstrate the beam tilting and astigmatism, the
symptotic beam e−1/2 contours in the sxb1,2

,zd cross-
ectional planes are plotted in Figs. 5(a) and 5(b), respec-
ively. The waist location [Eqs. (46)] is marked by a circle

ig. 4. Gaussian beam amplitude contour plots over z=1 plane
or the reference solution evaluated by using exact plane-wave
pectral representation (13).

ig. 5. Astigmatism and waist location; the asymptotic beam
xps−1/2d contours in the sxb1,2

,zd planes are shown in (a) and
b), respectively, as well as the waist location (circle) and the

eam width (vertical line) in each plot.
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ver the beam axis along with the beam width [Eq. (48)]at
he waists (vertical solid line). Note that the the beam-
aist locations are different in Figs. 5(a) and 5(b).

. Beam Width in the Local Transverse Coordinates
o compare the asymptotic-beam widths D1,2szbd in Eq.
48) with the reference solution, the latter was evaluated
ver the sxb1,2

,zbd planes, and the resulting e−1/2 contours
re plotted with circles in Figs. 6(a) and 6(b), respectively;
he solid curves are the analytic beam width in Eq. (48).
or both graphs, the longitudinal coordinate zb is scaled
ith respect to the beam waist location at zb=Z1,2, and

he widths were scaled with respect to the corresponding
eam width at the waists. The figure clearly demon-
trates a good agreement between the reference solution
nd the asymptotic parameterization.

. CONCLUSION
n this paper we have been concerned with field propaga-
ion in an anisotropic medium characterized by a generic
ave-number profile. Using a local (windowed) transform,
e presented the initial field at z=0 as a superposition of
aussian window functions that are located in each point
in the aperture, with linear j̄ phases. For each window

unction, a propagation solution in z.0 was found by us-
ng saddle-point approximation. The resulting beam-
ropagator characteristics were analytically parameter-
zed in terms of wave-number profile characteristics at PS
rocessing parameter j̄. The analytic results and the nu-
eric results for a specific wave-number profile of ex-

raordinary mode in uniaxial crystal were compared and
ere found to conform remarkably well. A local spectral

epresentation for time-dependent fields is presented in a
ompanion paper.8
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ig. 6. Beam width in the local transverse coordinates. Solid
urves plot the asymptotic-beam widths (48), D1,2szbd, and circles
lot the reference field exps−1/2d contours in (a) and (b) for the
xb1,2

,zbd planes, respectively.
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