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Local spectrum analysis of field propagation in an
anisotropic medium.

Part II. Time-dependent fields
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In Part I of this two-part investigation [J. Opt. Soc. Am. A 22, 1200 (2005)], we presented a theory for phase-
space propagation of time-harmonic electromagnetic fields in an anisotropic medium characterized by a generic
wave-number profile. In this Part II, these investigations are extended to transient fields, setting a general
analytical framework for local analysis and modeling of radiation from time-dependent extended-source dis-
tributions. In this formulation the field is expressed as a superposition of pulsed-beam propagators that ema-
nate from all space–time points in the source domain and in all directions. Using time-dependent quadratic-
Lorentzian windows, we represent the field by a phase-space spectral distribution in which the propagating
elements are pulsed beams, which are formulated by a transient plane-wave spectrum over the extended-
source plane. By applying saddle-point asymptotics, we extract the beam phenomenology in the anisotropic
environment resulting from short-pulsed processing. Finally, the general results are applied to the special case
of uniaxial crystal and compared with a reference solution. © 2005 Optical Society of America

OCIS codes: 350.5500, 260.1180, 270.5530.
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. INTRODUCTION AND FORMULATION
n this paper, Part II of a two-part investigation, the
heory for phase-space (PS) propagation of time-harmonic
elds in an anisotropic medium with generic wave-
umber profile presented in Part I1 is extended to include
ime-dependent fields. References to equations, figures,
tc., in Part I are identified with the prefix I (for example,
q. (17) in Part I is referenced to as (I.17)). The current
tudy is concerned with the effects of anisotropy on the PS
ropagation characteristics of either an electromagnetic
r a general linear time-dependent field in a lossless ho-
ogeneous medium. The time-dependent field is formu-

ated by means of its initial distribution of either ordinary
r extraordinary modes over the z=0 plane, denoted
osx , td, by using the conventional Cartesian coordinate
ystem r= sx ,zd, with x= sx1 ,x2d. The propagation medium
s characterized by a generic wave-number profile:

z = zsjd, j = sj1,j2d. s1d

n Eq. (1), z is the normalized wave number in the z-axis
irection, and j are the normalized wave numbers in the
direction, all with respect to ko=v /c, with c being a con-

tant (more details are given Part I, Eq. (I.1)).

. Time-Frequency Transforms and Analytic Signals
iven a time-dependent (TD) field usr , td, the correspond-

ng frequency-domain (FD) field ûsr ,vd is defined by the
ourier transform relations

ûsr,vd =E
−`

`

dtusr,tdexpsivtd, s2d
1084-7529/05/061208-8/$15.00 © 2
usr,td =
1

2p
E

−`

`

dvûsr,vdexps− ivtddv. s3d

s in Part I, FD fields are denoted by a caret. When nec-
ssary, we shall utilize the analytic signal formulation for
ime-dependent fields in order to accommodate wave con-
tituents with evanescent spectra, as encountered in the
ulsed-beam (PB) propagators. The analytic field u+sr , td
denoted by the symbol +) corresponding to the FD field
ˆ sr ,vd, is obtained by the one-sided Fourier inverse
ransform

u+sr,td =
1

p
E

0

`

dvûsr,vdexps− ivtd, Im t ø 0, s4d

here ûsr ,vd is defined in Eq. (2). This integral represen-
ation can accommodate complex t with Im tø0; the limit
or real t is related to the real signal ustd through u+std
ustd+ iHtustd, where Ht=P /pt^ is the Hilbert transform
perator, with P denoting Cauchy’s principal value and ^

enoting a (temporal) convolution. Thus the real field for
eal t is obtained through

usr,td = Re u+sr,td, t real. s5d

. Time-Dependent Plane-Wave Spectrum
ith uosx , td representing the time-dependent field distri-

ution over the z=0 plane, the analytic transient plane-

ave spectrum ũ
+

sj ,td is defined by
o
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ũ
+

osj,td =
1

p
E

0

`

dvû̃osj,vdexps− ivtd, s6d

here û̃o is the FD plane-wave spectral distribution in
q. (I.2). By inserting Eq. (I.2) into Eq. (6), using ko
v /c, and inverting the order of integration (legitimate
hen Im tø0 and in the limit of real t), we obtain

ũ
+

osj,td =E d2x
1

p
E

0

`

dvûosx,vdexpf− ivst + c−1j · xdg,

s7d

nd the time-dependent spatial spectrum is found directly

rom the analytic data u+osx , td, by evaluating the inner in-
egral in closed form, yielding

ũ
+

osj,td =E d2xu+osx,t + c−1j · xd. s8d

y repeating the same procedure for the plane-wave spec-
ral representation of the anisotropic FD field in the z
0 half-space in Eq. (I.4), we obtain

u+sr,td = − s2pcd−2E d2j]t
2ũ
+

ohj,t − c−1fj · x + zsjdzgj, s9d

nd finally, the physical (real) field is given by usr , td

Re u+sr , td.
Equation (8) is a Radon transform of u+osx , td in the

hree-dimensional sx , td space, consisting of projections of

osx , td along surfaces of linear delay t−c−1j ·x=const.

see Fig. 1(a)]. It extracts from u+osx , td the transient
lane-wave signal that propagates in the direction of the
nit vector

k̂sjd = fj,zsjdg/sj · j + z2d1/2. s10d

quation (9) reconstructs the field in terms of an angular
jd superposition of transient plane waves [see Fig. 1(b)].
he plane waves’ propagation properties follow from the
elay term c−1sj ·x+zzd: For j values such that zsjd is real,
he plane waves propagate in a direction k̂sjd, whereas for

ig. 1. Transient plane-wave spectrum. (a) The transient plane-

ave distribution ũ
+

osj ,td is obtained by Radon transform (8) of

he initial field distribution u+osx , td over surfaces of linear delay
−c−1j ·x=const. (b) Transient plane-wave propagating in the di-
ection k̂sjd of (10).
ll other j values, where zsjd= iuzsjdu, they decay as z in-
reases [recall from Eq. (4) that an analytic signal decays
onotonically as the imaginary part of its argument be-

omes more negative]. Therefore the visible spectral
ange, which is defined by the condition Im zsjd=0, de-
ends on the medium’s wave-number profile zsjd. For iso-
ropic materials, where zsjd= s1−j ·jd1/2, propagating
lane waves occur within the ujuø1 circle in the j plane.
Finally, for z=0, Eq. (9) is an inverse Radon transform

f Eq. (8). Further details on transient plane-wave repre-
entation via real signals and short-pulse localization
henomena are given in Refs. 2–6. The plane-wave inte-
rals in Eq. (9) are spectrally distributed. For short-
ulsed signals, dominant contributions are generated by
ocalized regions in the source domain that emphasizes
adiation in a given direction. We shall not go through the
symptotic manipulations here, as our goal is not to de-
ive analytic ray-type local approximations. Instead, in
ubsection 1.C we shall show how phase-space processing
ields spectral representations that are a priori localized
bout ray trajectories.

. Phase-Space Processing in the Time Domain
he TD local spectrum of the data is defined as the in-
erse Fourier transform [Eq. (3)] of the FD PS distribu-
ion ÛosX̄d in Eq. (I.8),

UosȲd =
1

2p
E dvÛosX̄,vdexps− ivt̄d, s11d

here t̄ denotes the phase-space time variable in the five-
imensional PS domain Ȳ;sx̄ , j̄ , t̄d. To deduce UosȲd di-
ectly from the TD field distribution, we insert Eq. (I.8)
nto Eq. (11) and interchange the orders of integration to
btain

UosȲd =E d2xE dtuosx,tdWsx,t;Ȳd, s12d

here the space–time-dependent kernel function W is
iven by

Wsx,t;Ȳd = wfx − x̄,t − t̄ − c−1j̄ · sx − x̄dg s13d

nd the TD window wsx , td is the time-domain analog of
ˆ sxd in Eq. (I.8), obtained with Eq. (3). The space–time
nd spectral dependence of the phase-space window in
q. (13) implies that the PS kernel W is localized about

x̄ , t̄d with spectral tilt j̄, as schematized in Fig. 2. The op-
ration in Eq. (12), is termed local Radon transform,
hich extracts the local spectral information from the TD
istribution uosx , td.
In the present context of anisotropic propagation,

here uosx , td is either an ordinary- or an extraordinary-
ode distribution, it is convenient to describe the local

pectrum by the initial TD plane-wave distribution,
osj ,td, which is obtained by matching to the source TD
lane-wave representation. By inserting Eqs. (I.9) into
q. (11) and inverting the order of integration, we obtain
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UosȲd = − s2pcd−2E d2jE dtũosj,td]t
2w̃sj − j̄,t − t̄

+ c−1j · x̄d, s14d

here w̃sj ,td denotes the transient plane-wave spectrum
Eq. (8)] of wsx , td.

To synthesize the field distribution uosx , td from PS dis-
ribution (12), we apply Eq. (3) to Eq. (I.10) and follow es-
entially the same analytic steps as in Eqs. (11)–(13), ob-
aining

usx,td = − s2pcd−2E d5ȲUsȲdWNsx,t;Ȳd, s15d

here

WNsx,t;Ȳd = N−1std ^ Wsx,t;Ȳd, s16d

ith ^

t

denoting a (temporal) convolution and

N−1std =
1

2p
E dvs− ivd2N̂−2svdexps− ivtd, s17d

here the Lx
2 norm of ŵ , N̂svd, is defined in Eq. (I.11). Us-

ng Eq. (I.11) in Eq. (17), we note that N−1std^ is the in-
erse operator associated with Nstd^ , where

Nstd = ]t
−2E d2xwsx,td ^ wsx,− td, s18d

ith ]t
−2 denoting a double (temporal) integration. Any

ormal convergence problems of N−1 that may arise as v
` are avoided for practical finite-bandwidth signals

ith upper frequency limits, for which the integral limits
n Eq. (17) may be restricted to the signal uosx , td fre-
uency content.
The windowed integral representation in Eq. (15) syn-

hesizes the space–time initial distribution as a phase-
pace superposition of all local spectral contributions j̄
rom all space–time points sx̄ , t̄d. Recalling the discussion
ollowing Eq. (I.8), the windowed spectrum at a point x̄ is
ypically concentrated around a time t̄sx̄d and wave num-

ig. 2. Local (phase-space) spectrum and local beam coordi-
ates. The PS spectral distribution is obtained by windowing of
osx , td in the three-dimensional sx , td domain with a time-
ependent window wsx , td, which is shifted to the space–time
oint sx̄ , t̄d and is tilted by a linear delay of j̄ · sx− x̄d. Thus the PS
ransform extracts local directional properties of uosx , td and by
hat matches a single PB propagator emanating from the window
enter at sx̄ , t̄d along k̂̄.
er (or wave tilt) j̄sx̄d that describe the arrival time and
irection of the field that is propagating toward the z=0
lane at that point. Inverse transform Eq. (15) at sx , td is
herefore localized a priori about the phase-space subdo-
ain Ȳsx̄d= fx̄ , j̄sx̄d , t̄sx̄dg.
In the time domain, each window kernel WNsx , t ; Ȳd in

q. (15) gives rise to a propagating PB field Bsr , t ; Ȳd in
he sr , td configuration space, whose axis emerges from x̄
n the initial z=0 plane in a j̄-dependent direction.
herefore Eq. (15) can be propagated into z.0, giving

usr,td = − s2pcd−2E d5ȲUosȲdBsr,t;Ȳd, s19d

here the anisotropic propagators Bsr , t ; Ȳd describe the
adiation into the half-space z.0 that is due to the initial
istribution WNsx , t ; Ȳd over the z=0 plane (see Fig. 2).
In the present context of anisotropic propagation, it is

onvenient to express the PB propagators by a TD plane-
ave representation, which is easily obtained by using

he generic wave-number profile zsjd in Eq. (1) [compare
ith Eq. (I.13)]. Since B contains an evanescent spectrum

n addition to the propagating one, we shall utilize ana-
ytic signal representation (9). Thus Bsr , t ; Ȳd

Re B
+

sr , t ; Ȳd with

B
+

sr,t;Ȳd = − s2pcd−2E d2j]t
2W̃

+
Nfj,t − c−1sj · x + zsjdzd;Ȳg,

s20d

here W̃
+

Nsj ,t ; Ȳd is the analytic transient plane-wave
pectrum [Eq. (8)] of WNsx , t ; Ȳd, which may be evaluated
ither from the FD plane-wave spectral window ŵ̃sjd in
qs. (I.9),

W̃
+

Nsj,t;Ȳd =
1

p
E

0

`

dvf− iv/N̂svdg2

3W̃
ˆ sj;X̄,vdexpf− ivst − t̄dg, s21d

r directly from the TD spectral window w̃
+

sj ,td,

W̃
+

Nsj,t;Ȳd = N−1std ^ w̃
+

sj − j̄,t − t̄ + c−1j · x̄d, s22d

here w̃
+

sj ,td denotes the analytic plane-wave spectrum

Eq. (8)] of w+ sx , td, and N−1std is given in Eq. (17). Alter-

atively, the TD PS propagator B
+

may be obtained from
he FD PS propagator B̂ by

B
+

sr,t;Ȳd =
1

p
E

0

`

dvf− iv/N̂svdg2B̂sr;X,vdexpf− ivst − t̄dg.

s23d
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. Quadratic-Lorentzian Windows
convenient TD window is obtained by transforming the

D Gaussian window Eqs. (I.14), with G being frequency
ndependent. Note, though, that convergence of the win-
ow in Eqs. (I.14) implies Guv,0=−G*uv.0, so it is conve-
ient to utilize the analytic signal representation [Eq.
4)]. Furthermore, in order to obtain a TD window in Lsx,td

1

i.e., euwsx , tdud2xdt,`) as required for numerical imple-
entation of Eq. (12), it is desirable to multiply the FD
aussian window in Eqs. (I.14) by a frequency depen-
ence of s−ivd2exps− 1

2vTd, where the parameter T.0 is
hosen to satisfy

T ! vmax
−1 , s24d

ith vmax denoting the upper frequency of uosx , td. Thus
he time-harmonic Gaussian windows are given by

ŵsxd = s− ivd2exps− 1
2vT + i

2koxGxTd , s25d

nd the Lx
2 norm of these windows is obtained by insert-

ng Eq. (25) into Eq. (I.11), giving

N̂2svd = cpv3 exps− vTd/Gi. s26d

ote that N̂−2svd grows exponentially with v and there-
ore the integral in Eq. (17), which defines the correspond-
ng TD operator N−1^ , does not converge. Nevertheless,
e assume that uosx , td has an upper frequency (as any
hysical or sampled signal) and that T is chosen accord-
ng to condition (24). Thus we may use exps−vTd<1 over

øwmax in Eq. (26), yielding

N̂2svd = cpv3/Gi, v ø vmax. s27d

The quadratic-Lorentzian windows are obtained by in-
erting Eq. (25) into Eq. (4), giving

wsx,td = Re w+ sx,td = Re d9
+ st − i

2T − c−1 1
2xGxTd , s28d

here d
+

is the analytic delta function d
+

std= spitd−1 for

m t,0, so that d9
+

std=2/pit3. This TD window is localized
round sx , td= s0,0d; for uxu=0, it peaks at t=0 and decays

hereafter as t−3. For uxuÞ0, the argument of the d
+

func-
ion in Eq. (28) has a negative imaginary part, and thus
he window has the form of a (double-differentiated)
mooth Lorentzian pulse.

. ORDINARY PULSED-BEAM
ROPAGATORS

n this section we shall briefly derive the expressions for
he PB propagators for the ordinary field distribution, for
hich, for a proper choice of the constant c, the wave-
umber profile is given by

zsjd = s1 − j2d1/2, j2 ; j · j, Im z ù 0. s29d

. Pulsed-Beam Propagators
he PB propagators corresponding to the quadratic-
orentzian windows in Eq. (28) are given by the formal
ransient plane-wave integral Eq. (20). Alternatively, they
ay be evaluated by multiplying the FD beam propagator

ˆ in Eq. (I.19) by s−ivd2exps− 1
2vTd and inserting with Eq.

27) into analytic Fourier inversion (23), giving

B
+

sr,t;Ȳd = Fdet Gszbd

det Gs0d G1/2 iGi

pc

1

p
E

0

`

dvs− ivd

3expH− ivFt − t̄ −
i

2
T − c−1SsrdGJ , s30d

Ssrbd = zb + 1
2xbGszbdxb

T. s31d

valuating the dv integration in closed form, we obtain

B
+

sr,t;Ȳd =
iGi

pc
Fdet Gszbd

det Gs0d G1/2

d8
+

ft − t̄ − tsrbdg, s32d

here

tsrbd = − i
2T + c−1Ssrbd s33d

nd d8
+

std=−1/ spit2d. PB field (32) is written in terms of
he beam coordinates sxb1

,xb2
,zbd defined in Eq. (I.18),

nd G is given in Eq. (I.20). This expression readily estab-

ishes B
+

sr , t ; Ȳd as a PB field that emanates from the
pace–time point sx , td= sx̄ , t̄d in the z=0 plane, and it
ropagates in the k̂̄iso= fsj̄ , s1− j̄2dg1/2 direction along the
b axis.

The PB field may now be characterized by rewriting the
lements of Gszbd=diagfG1szbd ,G2szbdg in the form

G1,2szbd = 1/R1,2szbd + i/I1,2szbd, s34d

ith

R1,2 = szb − Z1,2d + F1,2
2 /szb − Z1,2d, s35d

I1,2szbd = F1,2f1 + szb − Z1,2d2/F1,2
2 g, s36d

here Z1,2 and F1,2 are given in Eqs. (I.21) and (I.22), re-
pectively.

The complex delay, tsrbd, in Eq. (33) may now be writ-
en in a standard form,

tsrbd = tpsrbd + si/2dTpsrbd, s37d

here we define

tpsrbd = c−1fzb + xb1

2 /s2R1d + xb2

2 /s2R2dg, s38d

Tpsrbd = T + c−1sxb1

2 /I1 + xb2

2 /I2d. s39d

xpression (32) with Eqs. (37)–(39) is readily identified as
n astigmatic PB whose major axes are xb1

and xb2
.

learly, from Eq. (37), tpsrd is the paraxial propagation
elay along the zb axis, and hence R1,2 are the wave-front
adii of curvature in the xb1,2

directions.
For a given observation point rb, the beam field peaks

t t− t̄= tpsrbd, and its half-amplitude pulse length and
eak value are given, respectively, by TpsrbdsÎ5−2d1/2 and
/pT2sr d. The transverse half-amplitude diameters of
p b
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he PB propagator in the sxb1,2
,zbd cross-sectional planes

1,2 may be obtained by solving Tpsrbd=Î2Tps0d, giving

D1,2szbd = 2fsÎ2 − 1dcTI1,2szbdg1/2. s40d

he collimation lengths in the sxb1,2
,zbd cross-sectional

lanes are F1,2, and the waists are located at zb=Z1,2 with
he corresponding widths 2fcTF1,2sÎ2−1dg1/2. From Eq.
40) with Eq. (36), we note that in the collimation
Fresnel) zone uzb−Z1,2u,F1,2, the PB is essentially unaf-
ected by the propagation, whereas outside this zone, B
pens up along a far-field diffraction angle Q1,2=2fsÎ2
1dcT /F1,2g1/2.

. Phase-Space Localization in the Time Domain
s discussed in connection with Eq. (15), the TD phase-
pace representation is localized a priori around the coor-
inates Ȳ= fx̄ , j̄sx̄d , t̄sx̄dg since the local spectrum of the
ata UosYd is concentrated there. Further localization is
ffected by the PB propagators Bsr , t ; Ȳd, which are con-
entrated around the trajectories k̂̄iso. This constrains the
S integration domain to the vicinity of the observation
anifold Ȳsr , td, whose sx̄ , j̄ , t̄d coordinates are defined by

sx − x̄d/R̄ = j̄, t̄ = t − c−1R̄, s41d

here R̄= sux− x̄u2+z2d1/2.

. EXTRAORDINARY PULSED-BEAM
ROPAGATORS
. Asymptotic Evaluation and Parameterization

he extraordinary PB propagators B
+

sr , t ; Ȳd for the ge-
eric anisotropic wave-number profile zsjd may be ob-
ained from the frequency-domain asymptotic propagator
ˆ sr , X̄d. By multiplying the FD anisotropic beam in Eq.
I.40) by s−ivd2exps− 1

2vTd, we obtain the FD propagator
orresponding to the FD Gaussian window in Eq. (25),

ˆ sr;X̄d = s− ivd2Fdet Gszbd

det Gs0d G1/2

3expH− ivF i

2
vT − c−1SsrbdGJ , s42d

Ssrbd = k̂̄iso · fr − sx̄,0dg + 1
2xbGszbdxb

T, s43d

here k̂̄iso= sj̄ , z̄d, and the analytic PB propagator may be
btained by inserting Eq. (43) with Eq. (27) into Eq. (23),
iving

B
+

sr,t;Ȳd =
1

p
E

0

`

dv
vGi

cp
Fdet Gszbd

det Gs0d G1/2

3expH− ivFt − t̄ +
i

2
vT − c−1SsrbdGJ .

s44d

ntegral (44) may be evaluated in closed form, giving
Bsr,t;Ȳd = Re
iGi

pc
Fdet Gszbd

det Gs0d G1/2

d8
+

ft − t̄ − tsrbdg, s45d

here

tsrbd = −
i

2
T + c−1Ssrbd s46d

nd d8
+

std=−1/ spit2d. Asymptotic expression (45) is identi-
ed as an astigmatic pulsed beam propagating in the di-
ection of k̂̄sj̄d in Eq. (I.30) (see Fig. 2).

To clarify the properties of the anisotropic PB propaga-

or in Eq. (45), we rewrite the arguments of the d
+

function
n a standard form,

Re id8
+Ft − t̄ − tp −

i

2
TpG =

− 1

p

st − t̄ − tpd2 − sTp/2d2

fst − t̄ − tpd2 + sTp/2d2g2
,

s47d

here we define

tpsrd = c−1sk̂̄iso · r + xb1

2 /2R1 + xb2

2 /2R2d, s48d

Tpsrd = T + c−1sxb1

2 /I1 + xb2

2 /I2d, s49d

here

I1,2szbd = a1,2F1,2f1 + szb − Z1,2d2/F1,2
2 g, s50d

nd R1,2 is given in Eq. (I.49), with Z1,2 and F1,2 in Eq.
I.46). The isotropy-dependent parameters a1,2 and their
elation to the wave-number surface normal and curva-
ures have been discussed with connection with Eq. (I.45).

In a manner similar to that for the parameterization of
he isotropic beam field in Eq. (32), one identifies Eq. (45)
ith Eqs. (48) and (49) as an astigmatic PB whose major
xes are xb1

and xb2
, where tpsrbd is the paraxial propaga-

ion delay along the beam axis and R1,2 are the wave-
ront radii of curvature in the xb1,2

directions. For a given
bservation point rb, the beam field peaks at t− t̄= tpsrbd,
nd its half-amplitude pulse length and peak value are
iven, respectively, by TpsrbdsÎ5−2d1/2 and 4/pTp

2srbd. The
B transverse half-amplitude diameters in the xb1

direc-

ions, D1,2, may be obtained by solving Tpsrbd=Î2Tps0d,
iving

D1,2szbd = 2fsÎ2 − 1dcTI1,2szbdg1/2, s51d

here I1,2 are given in Eq. (50). The collimation lengths in
he sxb1,2

,zd cross-sectional planes are F1,2, and the waists
re located at zb=Z1,2 with the corresponding widths
fcTa1,2F1,2sÎ2−1dg1/2. From Eq. (51) with Eq. (50), one
otes that in the collimation (Fresnel) zone uzb−Z1,2u
F1,2, the PB is essentially unaffected by the propaga-

ion, whereas outside this zone, B opens up along a far-
eld diffraction angle Q1,2=2fsÎ2−1dcTa1,2 /F1,2g1/2. Re-
alling the discussion following Eq. (I.49), the
epresentation in Eqs. (49)–(51) parameterizes the PB
ropagators in terms of local geometrical properties (nor-
al and curvatures) of the generic wave-number surface

sjd about the PS directional processing parameter j= j̄
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see Fig. I.2).

. Phase-Space Localization in the Time Domain
n addition to a priori localization of the PS spectral dis-
ribution that was discussed in connection with Eq. (15),
urther localization is effected by the extraordinary PB
ropagators Bsr , t ; Ȳd, which are concentrated around the
rajectories k̂̄ in Eq. (I.30). This constrains the phase-
pace integration domain to the vicinity of the medium-
ependent extraordinary observation manifold Ȳsr , td,
hose sx̄ , j̄ , t̄d coordinates are defined by

sx − x̄d/R̄ = cos q̄1,2, t̄ = t − c−1fux − x̄u2 + szd2g1/2, s52d

ith q̄1,2 being the beam-axis angles with respect to the
x1 ,x2d axes, respectively [see Eq. (I.30) and Fig. I.2]. Note
hat this constraint matches observation angles sx− x̄d /R̄
o the normal of the wave-number surface at the PS (di-
ectional) parameter j= j̄.

. ILLUSTRATIVE EXAMPLE
. Reference Solution
he TD PB propagators corresponding to quadratic-
orentzian windows (28) were evaluated asymptotically

n the short-pulsed processing regime and parameterized
n Section 3. To illustrate these expressions, we compare
hem with a reference solution, which is generated by us-
ng the transient plane-wave exact formulation [Eq. (20)].

he transient plane-wave distribution W̃
+

sj ,td correspond-
ng to the quadratic-Lorentzian windows in Eq. (28) is
btained by (a) multiplying ŵ̃ in Eq. (I.14) by s−ivd2

exps− 1
2vTd and inserting into Eq. (I.9) to obtain the cor-

esponding FD plane-wave distribution,

W̃
ˆ sj;X̄d =

− iv2pc

G
expX− ivH− iT

2

+ c−1F1

2
sj − j̄dG−1sj − j̄dT + j · x̄GJC , s53d

nd (b) inserting Eq. (53) with Eq. (27) into Eq. (21). The
esulting Fourier transform may be evaluated in closed
orm, giving

W̃
+

Nsj,t;Ȳd =
2iGi

G
d
+Ht − t̄ +

− iT

2

+ c−1F1

2
sj − j̄dG−1sj − j̄dT + j · x̄GJ . s54d

The field representation in Eq. (20) with Eq. (54) is an
xact formulation and therefore may be regarded as a ref-

rence solution for B
+

sr , td. In Subsection 4.B we shall com-
are this reference solution with the asymptotic PB field
or the special case of the uniaxial extraordinary wave-
umber profile in Eq. (I.54), namely,
zsjd = f1 − sj2
2 + j1

2d/ezg1/2, c = c0/Îe. s55d

ll simulations are carried out for beam parameters G1,2

−1+ i , cT=0.001, j̄1=0.3, j̄2=0.5, and for medium pa-
ameters e=1, ez=1.3.

ig. 3. PB on-axis temporal distribution. The solid curve plots
he asymptotic on-axis field for zb=0.005 as a function of time,
nd circles plot the reference solution.

ig. 4. Snapshots of (a) the asymptotic and (b) the reference
eld in the sxb1

,zbd plane. (c) Relative error in decibels for points
here the reference field is more than −30 db from its on-axis
eak.
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. Pulsed-Beam On-Axis Temporal Distribution
he on-axis sxb=0d field in zb=0.005 as a function of time

s presented in Fig. 3. The asymptotic field in Eq. (45) is
lotted as a solid curve, and the reference solution is plot-
ed with circles. The time axis is normalized with respect
o the on-axis propagation delay tpuxb=0 in Eq. (48) so that
he pulsed beam is centered at t / tp=1. The half-
mplitude temporal width TsÎ5−2d1/2 is plotted at the
alf-on-axis peak of 4/pT2 [see the parameterization fol-

owing Eq. (49)]. Clearly, the asymptotic solution as well
s the parameterization agrees very well with the TD
lane-wave reference solution.

. Asymptotic and Reference-Field Comparison
napshots at t=0.05 of the asymptotic [Eq. (32)] and the
eference [Eq. (54)] fields over the sxb1

,zbd cross-sectional
lane are presented in Figs. 4(a) and 4(b), respectively.
he relative error in decibels, uBasymp−Brefu / uBrefu, is de-
icted in Fig. 4(c) for points where the reference field is
ver −30 db from its on-axis peak, for which the relative
rror is found to be less than −48 db, demonstrating the
ood agreement between the two.

. On-Axis Field Distribution
napshots of PB propagator on-axis distributions as a

unction of zb, for near st=0.05 sd and far st=1 sd fields are
resented in Figs. 5(a) and 5(b), respectively. Asymptotic
ropagator (32) is depicted by solid curves, and reference
olution (54) is represented by circles to demonstrate the

ig. 5. Snapshots of PB propagator on-axis PB distributions as
function of zb for (a) the near st=0.05d and (b) the far st=1d

eld. The solid curves depict the asymptotic propagator, and
ircles represent the reference solution.

ig. 6. Contour plots of −1, −3, and −6 db from peak level of
he off-axis PB-propagator distribution in the sxb1

,zbd cross-
ectional plane, for both the asymptotic (solid curves) and the ref-
rence field (circles). The dashed curve represents the radius of
urvature.
ccuracy of the asymptotics for both near and far fields.
he figure also demonstrates the temporal changes of the
orentzian pulse as it goes to a Hilbert transformation

rom near- to far-field distributions. For clarity, the zb axis
as normalized by ctp so that the beam center is at

b /ctp=1 for both cases.

. Off-Axis Distribution and Parameterization
ontour plots of −1, −3 and −6 db from peak level of the
ff-axis PB-propagator distribution in the sxb1

,zbd cross-
ectional plane are presented in Fig. 6 for both the
symptotic field (solid curves) and the reference field
circles). The xb1

axis is normalized by the PB half-
mplitude diameter D1, so that the −6 db curve is
ounded by xb1

/D1=1, as can be seen in the figure. The zb
horizontal) axis is normalized by the propagation dis-
ance of the beam center ctp, so that the center is at
/ctp=1, from which a circle of radius R1 [the wave-front
adius of curvature in Eq. (I.49)] is plotted with a dashed
urve.

. CONCLUSION
n this paper, Part II of a two-part investigation, we have
resented a theory for phase-space propagation of TD
elds in an anisotropic medium characterized by a ge-
eric wave-number profile. Using TD quadratic-
orentzian windows for the local processing of either or-
inary or extraordinary field distributions, we
epresented the field by a PS spectral distribution in
hich the propagating elements are pulsed beams. By ap-
lying saddle-point asymptotics, we extracted the beam
henomenology in the anisotropic environment resulting
rom short-pulsed processing. The PB-propagator param-
ters were mapped to local geometrical properties of the
eneric wave-number profile. Finally, the general results
ere applied to the special case of uniaxial crystal and
ere compared with a TD reference solution and found to
gree remarkably well. The present investigation may be
xtended to propagation in an inhomogeneous medium, in
hich each of the PB windows is propagated through the
nisotropic inhomogeneous medium in a manner similar
o that for propagation in an inhomogeneous isotropic me-
ium presented in Ref. 7.
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