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In Part I of this two-part investigation [J. Opt. Soc. Am. A 22, 1200 (2005)], we presented a theory for phase-
space propagation of time-harmonic electromagnetic fields in an anisotropic medium characterized by a generic
wave-number profile. In this Part II, these investigations are extended to transient fields, setting a general
analytical framework for local analysis and modeling of radiation from time-dependent extended-source dis-
tributions. In this formulation the field is expressed as a superposition of pulsed-beam propagators that ema-
nate from all space—time points in the source domain and in all directions. Using time-dependent quadratic-
Lorentzian windows, we represent the field by a phase-space spectral distribution in which the propagating
elements are pulsed beams, which are formulated by a transient plane-wave spectrum over the extended-
source plane. By applying saddle-point asymptotics, we extract the beam phenomenology in the anisotropic
environment resulting from short-pulsed processing. Finally, the general results are applied to the special case

of uniaxial crystal and compared with a reference solution. © 2005 Optical Society of America

OCIS codes: 350.5500, 260.1180, 270.5530.

1. INTRODUCTION AND FORMULATION

In this paper, Part II of a two-part investigation, the
theory for phase-space (PS) propagation of time-harmonic
fields in an anisotropic medium with generic wave-
number profile presented in Part I' is extended to include
time-dependent fields. References to equations, figures,
etc., in Part I are identified with the prefix I (for example,
Eq. (17) in Part I is referenced to as (I.17)). The current
study is concerned with the effects of anisotropy on the PS
propagation characteristics of either an electromagnetic
or a general linear time-dependent field in a lossless ho-
mogeneous medium. The time-dependent field is formu-
lated by means of its initial distribution of either ordinary
or extraordinary modes over the z=0 plane, denoted
u,(x,t), by using the conventional Cartesian coordinate
system r=(x,z), with x=(x1,x5). The propagation medium
is characterized by a generic wave-number profile:

£= g(g)) §= (gh §2) (1)

In Eq. (1), { is the normalized wave number in the z-axis
direction, and £ are the normalized wave numbers in the
x direction, all with respect to k,=w/c, with ¢ being a con-
stant (more details are given Part I, Eq. (I.1)).

A. Time-Frequency Transforms and Analytic Signals
Given a time-dependent (TD) field u(r,?), the correspond-
ing frequency-domain (FD) field i(r, ) is defined by the
Fourier transform relations

u(r,w) = J dtu(r,t)exp(iot), (2)
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1 oo
u(r,t) = —j dwi(r,w)exp(-iot)do. 3)
2w ) _,

As in Part I, FD fields are denoted by a caret. When nec-
essary, we shall utilize the analytic signal formulation for
time-dependent fields in order to accommodate wave con-
stituents with evanescent spectra, as encountered in the
pulsed-beam (PB) propagators. The analytic field ﬁ(r,t)
(denoted by the symbol *) corresponding to the FD field
u(r,w), is obtained by the one-sided Fourier inverse
transform

1"
zt(r,t) = —f dowti(r,w)exp(-iwt), Imi¢<0, (4)
TJo

where #(r, w) is defined in Eq. (2). This integral represen-
tation can accommodate complex ¢ with Im ¢=<0; the limit
for real ¢ is related to the real signal u(¢) through ﬂ(t)
=u(t)+iHu(t), where H,=P/wt® is the Hilbert transform
operator, with P denoting Cauchy’s principal value and ®
denoting a (temporal) convolution. Thus the real field for
real ¢ is obtained through

u(r,t) =Re L-'i(r,t), t real. (5)

B. Time-Dependent Plane-Wave Spectrum
With u,(x,t) representing the time-dependent field distri-
bution over the z=0 plane, the analytic transient plane-

+
wave spectrum #,(£, 7) is defined by
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1 A
50(& =" J doiz,(§, w)exp(-iw7), (6)
™

0

where ﬁo is the FD plane-wave spectral distribution in
Eq. (1.2). By inserting Eq. (I.2) into Eq. (6), using k&,
=w/c, and inverting the order of integration (legitimate
when Im 7<0 and in the limit of real 7), we obtain

10
50(§,T)=fd2 —f doit,(x,w)exp[—io(t+c 1 x)],
mJo

(7)
and the time-dependent spatial spectrum is found directly

from the analytic data i‘io(x,t), by evaluating the inner in-
tegral in closed form, yielding

7(&7) = J A2, (x, 7+ ¢ %), )

By repeating the same procedure for the plane-wave spec-
tral representation of the anisotropic FD field in the z
>0 half-space in Eq. (1.4), we obtain

(r,t) = - (2mc) J d2§t9f§o{§,t —cT'[E-x+ 2]}, (9)

and finally, the physical (real) field is given by u(r,?)

+
=Re u(r,t).
Equation (8) is a Radon transform of ﬁo(x,t) in the
three-dimensional (x,#) space, consisting of projections of

ﬁo(x,t) along surfaces of linear delay t-c 1&-x=const.

[see Fig. 1(a)l. It extracts from z-'io(x,t) the transient
plane-wave signal that propagates in the direction of the
unit vector

KO =[E0OVE £+ )7 (10)

Equation (9) reconstructs the field in terms of an angular
(&) superposition of transient plane waves [see Fig. 1(b)].
The plane waves’ propagation properties follow from the
delay term ¢~1(&-x+ {z): For & values such that {(£) is real,
the plane waves propagate in a direction x(§), whereas for
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(a) (b)
Fig. 1. Transient plane-wave spectrum. (a) The transient plane-

+
wave distribution #,(,7) is obtained by Radon transform (8) of

the initial field distribution ﬁo(x,t) over surfaces of linear delay
t—c ¢ -x=const. (b) Transient plane-wave propagating in the di-
rection k(&) of (10).
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all other £ values, where {(£€)=i|{(§)|, they decay as z in-
creases [recall from Eq. (4) that an analytic signal decays
monotonically as the imaginary part of its argument be-
comes more negative]. Therefore the visible spectral
range, which is defined by the condition Im {(£)=0, de-
pends on the medium’s wave-number profile {(£). For iso-
tropic materials, where ((&=(1-£& 2, propagating
plane waves occur within the |£ <1 circle in the & plane.

Finally, for z=0, Eq. (9) is an inverse Radon transform
of Eq. (8). Further details on transient plane-wave repre-
sentation via real signals and short-pulse localization
phenomena are given in Refs. 2-6. The plane-wave inte-
grals in Eq. (9) are spectrally distributed. For short-
pulsed signals, dominant contributions are generated by
localized regions in the source domain that emphasizes
radiation in a given direction. We shall not go through the
asymptotic manipulations here, as our goal is not to de-
rive analytic ray-type local approximations. Instead, in
Subsection 1.C we shall show how phase-space processing
yields spectral representations that are a priori localized
about ray trajectories.

C. Phase-Space Processing in the Time Domain
The TD local spectrum of the data is defined as the in-
verse Fourier transform [Eq. (3)] of the FD PS distribu-

tion U,(X) in Eq. (I.8),
_ 1 o
UO(Y)=2— J doU,X, w)exp(-iwt), (11)
o

where 7 denotes the phase-space time variable in the five-
dimensional PS domain ?E(Y{,_g,f). To deduce UO(?) di-
rectly from the TD field distribution, we insert Eq. (I.8)
into Eq. (11) and interchange the orders of integration to
obtain

U,(Y) = J dx f dtu,(x,t)W(x,t;Y), (12)

where the space-time-dependent kernel function W is
given by

Wx,t;Y) =w[x-%X,t-f-c & (x-%)] (13)

and the TD window w(x,t) is the time-domain analog of
w(x) in Eq. (I.8), obtained with Eq. (3). The space—time
and spectral dependence of the phase-space window in
Eq. (13) implies that the PS kernel W is localized about
(x,%) with spectral tilt _g, as schematized in Fig. 2. The op-
eration in Eq. (12), is termed local Radon transform,
which extracts the local spectral information from the TD
distribution u,(x,1).

In the present context of anisotropic propagation,
where u,(x,t) is either an ordinary- or an extraordinary-
mode distribution, it is convenient to describe the local
spectrum by the initial TD plane-wave distribution,
,(&,7), which is obtained by matching to the source TD
plane-wave representation. By inserting Eqs. (I.9) into
Eq. (11) and inverting the order of integration, we obtain
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Fig. 2. Local (phase-space) spectrum and local beam coordi-
nates. The PS spectral distribution is obtained by windowing of
u,(x,t) in the three-dimensional (x,#) domain with a time-
dependent window w(x,%¢), which is shifted to the space—time

point (X,%) and is tilted by a linear delay of z (x-X). Thus the PS
transform extracts local directional properties of u,(x,t) and by
that matches a single PB propagator emanating from the window

center at (X,%) along .

U,(Y) = - (2mc) 2 f d%¢ f d7it, (&, 1P (&~ & 7-T

+clE-X), (14)

where (£, 7) denotes the transient plane-wave spectrum
[Eq. (8)] of w(x,t).

To synthesize the field distribution u,(x,¢) from PS dis-
tribution (12), we apply Eq. (3) to Eq. (.10) and follow es-
sentially the same analytic steps as in Eqgs. (11)—(13), ob-
taining

u(x,t) = — (2mc)2 f dPPYUY)Wy(x,t;Y), (15)

where
Wy(x,t;Y) = N1 (1) ® W(x,t;Y), (16)

¢
with ® denoting a (temporal) convolution and

1 .
N‘l(t)zZ_rfdw(—iw)QN‘z(w)exp(—iwt), (17)

where the 5;2: norm of i, N(w), is defined in Eq. (Z.11). Us-
ing Eq. (I.11) in Eq. (17), we note that N~1(#)® is the in-
verse operator associated with N(¢)®, where

N(t) = d;> J Aw(x,t) @ w(x,—t), (18)

with (9[2 denoting a double (temporal) integration. Any
formal convergence problems of N-! that may arise as
—oo are avoided for practical finite-bandwidth signals
with upper frequency limits, for which the integral limits
in Eq. (17) may be restricted to the signal u,(x,t) fre-
quency content.

The windowed integral representation in Eq. (15) syn-
thesizes the space—time initial distribution as a phase-
space superposition of all local spectral contributions &
from all space—time points (X,7). Recalling the discussion
following Eq. (I.8), the windowed spectrum at a point X is
typically concentrated around a time 7(X) and wave num-
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ber (or wave tilt) _§(§) that describe the arrival time and
direction of the field that is propagating toward the z=0
plane at that point. Inverse transform Eq. (15) at (x,#) is
therefore localized a priori about the phase-space subdo-
main Y(X)=[X, £X),{X)].

In the time domain, each window kernel WN(x,t;?) in
Eq. (15) gives rise to a propagating PB field B(r,¢;Y) in
the (r,?) configuration space, whose axis emerges from X
on the initial z=0 plane in a Tg’-dependent direction.
Therefore Eq. (15) can be propagated into z>0, giving

u(r,t) = - (2mc) 2 f d°YU,(Y)B(r,t;Y), (19)

where the anisotropic propagators B(r,¢;Y) describe the
radiation into the half-space z >0 that is due to the initial
distribution Wy(x,¢;Y) over the z=0 plane (see Fig. 2).
In the present context of anisotropic propagation, it is
convenient to express the PB propagators by a TD plane-
wave representation, which is easily obtained by using
the generic wave-number profile {(§) in Eq. (1) [compare
with Eq. (1.13)]. Since B contains an evanescent spectrum
in addition to the propagating one, we shall utilize ana-

lytic  signal (9). Thus B(r,tY)
+ —
=Re B(r,t;Y) with

representation

+
Be,t;Y) = - (2me)2 f EFWALE L - ¢ HE-x + L(8)2); Y],
(20)

+
where Wy(§,7;Y) is the analytic transient plane-wave

spectrum [Eq. (8)] of Wy(x,¢;Y), which may be evaluated

either from the FD plane-wave spectral window zf)(g) in
Egs. (1.9),

©

+ - 1 .
Wy(é, 1Y) = —J do[-iw/N(w)T?
T

0

XW(&X, wexpl-in(r-D],  (21)
+
or directly from the TD spectral window w(&, 7),
* — + —
W& nY)=N"'t) ® w(£-&7-F+c 7€), (22)

+
where @w(£,7) denotes the analytic plane-wave spectrum
[Eq. (8)] of J)(x,t), and N-1(¢) is given in Eq. (17). Alter-

+
natively, the TD PS propagator B may be obtained from
the FD PS propagator B by

_ 1" R .
é(r,t;Y) = —f dow[- io/N(0)?B(r;X, w)exp[- iw(t - T)].

mJo

(23)
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D. Quadratic-Lorentzian Windows
A convenient TD window is obtained by transforming the
FD Gaussian window Eqs. (I.14), with I" being frequency
independent. Note, though, that convergence of the win-
dow in Egs. (I.14) implies I'|,-o=-T"|,>¢, S0 it is conve-
nient to utilize the analytic signal representation [Eq.
(4)]. Furthermore, in order to obtain a TD window in E(lx)t)
(.e., [lw(x,t)|d%xdt <o) as required for numerical imple-
mentation of Eq. (12), it is desirable to multiply the FD
Gaussian window in Eqs. (I.14) by a frequency depen-
dence of (—iw)zexp(—%wT), where the parameter 7>0 is
chosen to satisfy

T<wl

max?

(24)

with wy,, denoting the upper frequency of u,(x,t). Thus
the time-harmonic Gaussian windows are given by

B(x) = (- iw)%exp(- 20T + Lk xI'x7), (25)

and the £2 norm of these windows is obtained by insert-
ing Eq. (25) into Eq. (I.11), giving

N2(w) = cre? exp(- oT)/T;. (26)

Note that N-2(w) grows exponentially with » and there-
fore the integral in Eq. (17), which defines the correspond-
ing TD operator N-'®, does not converge. Nevertheless,
we assume that u,(x,¢) has an upper frequency (as any
physical or sampled signal) and that T is chosen accord-
ing to condition (24). Thus we may use exp(-wT) =1 over
W<Wnax in Eq. (26), yielding

N2(w) =cma®/T;, ©< 0y (27)

The quadratic-Lorentzian windows are obtained by in-
serting Eq. (25) into Eq. (4), giving

+ .
w(x,) =Re ib(x,t) =Re &'(t - ST - 3xI'x"), (28)

+ +
where & is the analytic delta function &(t)=(mit)~! for

+
Im £ <0, so that &(t)=2/mit3. This TD window is localized
around (x,#)=(0,0); for |x|=0, it peaks at £=0 and decays

thereafter as t~3. For |x|#0, the argument of the Efunc-
tion in Eq. (28) has a negative imaginary part, and thus
the window has the form of a (double-differentiated)
smooth Lorentzian pulse.

2. ORDINARY PULSED-BEAM
PROPAGATORS

In this section we shall briefly derive the expressions for
the PB propagators for the ordinary field distribution, for
which, for a proper choice of the constant ¢, the wave-
number profile is given by

(=1-&)", £=¢¢ Im(=0. (29)

A. Pulsed-Beam Propagators
The PB propagators corresponding to the quadratic-
Lorentzian windows in Eq. (28) are given by the formal
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transient plane-wave integral Eq. (20). Alternatively, they
may be evaluated by multiplying the FD beam propagator

B in Eq. (1.19) by (-iw)2%exp(-2wT) and inserting with Eq.
(27) into analytic Fourier inversion (23), giving

+ = {detf‘(zb)}mil"il =
Br,t;Y)=| ——— ——f do(- i)
0

det I'(0) Tc T
Xexp{— iw[t -I- éT— c‘lS(r):| } (30)
S(ry) =25+ 3%, (2,)x7 . (31)

Evaluating the dw integration in closed form, we obtain

+ — lFL det F(Zb)
Br,t;Y)=—| ———
det I'(0)

c

vz,
} ot-t-1rp)], (32)

where

7(r,) == 5T+ c7'S(xy) (33)

+
and &' (t)=-1/(mit?). PB field (32) is written in terms of
the beam coordinates (x ,%p,,25) defined in Eq. (1.18),
and I' is given in Eq. (1.20). This expression readily estab-

lishes E(r,t;?) as a PB field that emanates from the
space—time point (x,t)=(X,7) in the z=0 plane, and it
propagates in the i,=[(Z,(1-£2)]"2 direction along the
2}, axis.

The PB field may now be characterized by rewriting the
elements of T'(z,)=diag[I"1(zp),'5(2p)] in the form

Iy 9(2p) = 1Ry 5(2p) + i/l 9(2), (34)

with
Rio=(2p~Z19) +Fi /(24— Z1 ), (35)
Laley) = Fr o1+ (24 = 212"/ ), (36)

where Z; 5 and F; 5 are given in Egs. (1.21) and (1.22), re-
spectively.

The complex delay, (rp), in Eq. (33) may now be writ-
ten in a standard form,

7(ry) = t,(1p) + ((/2)Ty(1p), 37

where we define
t,(1rp) =c Yz, +x21/(2R1) +x%2/(2R2)], (38)
Ty(ry) =T+ xj, /1y + x5 /1) (39)

Expression (32) with Eqgs. (37)—(39) is readily identified as
an astigmatic PB whose major axes are x; and uxp,.
Clearly, from Eq. (87), t,(r) is the paraxial propagation
delay along the z; axis, and hence R 5 are the wave-front
radii of curvature in the x; , directions.

For a given observation point r;, the beam field peaks
at t-t=t,(ry), and its half-amplitude pulse iength and
peak value are given, respectively, by 7,,(r;)(V5-2)"2 and
4/ wTﬁ(rb). The transverse half-amplitude diameters of
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the PB propagator in the (v ,,2;) cross- sectlonal planes
D, 5 may be obtained by solv1ng T,(ry)= \2T (0), giving

D 9(zp) = =2[(\2 = 1T 5(z,) ]2 (40)

The collimation lengths in the (xblz,zb) cross-sectional
planes are F'; 5, and the waists are located at z,=Z; o with
the corresponding widths 2[cTF; 2(\2 1)]2. From Eq.
(40) with Eq. (36), we note that in the collimation
(Fresnel) zone |z,-Z; o| <F1 5, the PB is essentially unaf-
fected by the propagation, whereas outside this zone, B
opens up along a far-field diffraction angle @1’2=2[(\52
- 1)CT/F172]1/2.

B. Phase-Space Localization in the Time Domain
As discussed in connection with Eq. (15), the TD phase-
space representation is localized a priori around the coor-

dinates ?:[i,_g(i),f(i)] since the local spectrum of the
data U,(Y) is concentrated there. Further localization is

effected by the PB propagators B(r,¢;Y), which are con-

centrated around the trajectories TAciSO. This constrains the
PS integration domain to the vicinity of the observation

manifold ?(r,t), whose (i,_g,f) coordinates are defined by
(x-X)/R=§ T=t-c 'R, (41)

where R=(|x-x[2+22)1/2,

3. EXTRAORDINARY PULSED-BEAM
PROPAGATORS

A. Asymptotic Evaluation and Parameterization

The extraordinary PB propagators E(r,t;?) for the ge-
neric anisotropic wave-number profile {(£) may be ob-
tained from the frequency-domain asymptotic propagator
B(r,X). By multiplying the FD anisotropic beam in Eq.
(1.40) by (—iw)QeXp(—%wT), we obtain the FD propagator
corresponding to the FD Gaussian window in Eq. (25),

L { det T'(z;) ] V2
Br:X) = (-iw)?| ———
det T(0)
Xexp{—iw{éwT—c‘IS(rb)]}, (42)
S(ry) = g0 - [1 = (%,0)] + 3%, T'(2)x7, (43)

where T:‘isoz(Tg’,Z), and the analytic PB propagator may be
obtained by inserting Eq. (43) with Eq. (27) into Eq. (23),

giving
1(* ol det I'(z,) |2
— dw [ —
), cm | det I'(0)

i
><exp{—iw{t—f+ EwT—c‘IS(rb)]}.

(44)

+ —
B(r,t;Y) =

Integral (44) may be evaluated in closed form, giving
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det T'(zp)

th(O)] 5’[t—f—7(rb)], (45)

B(r,t;Y) = Re—[
where

ory) = - §T+ 18(ry) (46)

+
and &' (t)=-1/(mit?). Asymptotic expression (45) is identi-
fied as an astigmatic pulsed beam propagating in the di-
rection of k(&) in Eq. (1.30) (see Fig. 2).
To clarify the properties of the anisotropic PB propaga-

+
tor in Eq. (45), we rewrite the arguments of the & function
in a standard form,

-1 (t-7-t,)* - (T,/2)?

+ i
Reid|t=T-t,~ T,|=—

7 [(t-F—1t,)%+ (T,/2)°]

(47)
where we define
ty(r) = c Mo 1 + 63 /2R 1+ J2Ry), (48)
Ty(r) =T +c (i [Ty +x3 /1), (49)
where
L1 5(zp) = a1 oF1 o[ 1+ (2 = Z19)"/F3 5], (50)

and R, 5 is given in Eq. (1.49), with Z; 5 and F; 5 in Eq.
(1.46). The isotropy-dependent parameters a;, and their
relation to the wave-number surface normal and curva-
tures have been discussed with connection with Eq. (1.45).

In a manner similar to that for the parameterization of
the isotropic beam field in Eq. (32), one identifies Eq. (45)
with Eqs. (48) and (49) as an astigmatic PB whose major
axes are x,, and Xpys where ¢,(rp) is the paraxial propaga-
tion delay along the beam axis and R,y are the wave-
front radii of curvature in the x, 12 directions. For a given
observation point ry, the beam field peaks at t-7=t,(r),
and its half-amplitude pulse length and peak value are
given, respectively, by Tp(rb)(\fs5—2)1/ 2 and 4/ 7TT12)(I‘b). The
PB transverse half-amplitude diameters in the x,; direc-

tions, D; 9, may be obtained by solving Tp(rb)=\ETp(O),
giving

D19(zp) = 2L(2 = 1)eTT4 5(20) ]2, (51)

where I 5 are given in Eq. (50). The collimation lengths in
the (xb z) cross-sectional planes are F'; 5, and the waists
are located at z,=Z;5 with the correspondmg widths
2[cTa; oF 2(\2 1)]2. From Eq. (51) with Eq. (50), one
notes that in the collimation (Fresnel) zone l2p—Z1 9
<F;9, the PB is essentially unaffected by the propaga-
tion, whereas outside this zone, B opens up along a far-
field diffraction angle @12_2[(\2 DcTay 9/F12]"2. Re-
calling the discussion following Eq. (1. 49) the
representation in Eqs. (49)—(51) parameterizes the PB
propagators in terms of local geometrical properties (nor-
mal and curvatures) of the generic wave-number surface

{(¢) about the PS directional processing parameter §=_§
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(see Fig. 1.2).

B. Phase-Space Localization in the Time Domain

In addition to a priori localization of the PS spectral dis-
tribution that was discussed in connection with Eq. (15),
further localization is effected by the extraordinary PB

propagators B (r,t;Y), which are concentrated around the
trajectories * in Eq. (1.30). This constrains the phase-
space integration domain to the vicinity of the medium-
dependent extraordinary observation manifold ?(r,t),
whose (i,_g,f) coordinates are defined by

(x —X)/R = cos 1_91,2, T=t-c[x-%%+ ()42, (52)

with 1_9172 being the beam-axis angles with respect to the
(x1,x9) axes, respectively [see Eq. (1.30) and Fig. I.2]. Note
that this constraint matches observation angles (x-X)/R
to the normal of the wave-number surface at the PS (di-

rectional) parameter & =_§.

4. ILLUSTRATIVE EXAMPLE

A. Reference Solution
The TD PB propagators corresponding to quadratic-
Lorentzian windows (28) were evaluated asymptotically
in the short-pulsed processing regime and parameterized
in Section 3. To illustrate these expressions, we compare
them with a reference solution, which is generated by us-
ing the transient plane-wave exact formulation [Eq. (20)].
+
The transient plane-wave distribution W(§ , 7) correspond-
ing to the quadratic-Lorentzian windows in Eq. (28) is
obtained by (a) multiplying @ in Eq. (I.14) by (-iw)?
Xexp(—%wT) and inserting into Eq. (1.9) to obtain the cor-
responding FD plane-wave distribution,

2 _ —ilw2mc T
W(§X) = T exp| —iw) —

2
1 - -
+ 0‘1{5(5— OriE-9"+ 5'4 }) (53)

and (b) inserting Eq. (563) with Eq. (27) into Eq. (21). The
resulting Fourier transform may be evaluated in closed
form, giving

o _einy| -ir
Wr(gnY)=—=0) 7=t+ ——

1 — -
+ 0'1{5(5— Hr'E-o"+ ¢ i] } (54)

The field representation in Eq. (20) with Eq. (54) is an
exact formulation and therefore may be regarded as a ref-

erence solution for g(r,t). In Subsection 4.B we shall com-
pare this reference solution with the asymptotic PB field
for the special case of the uniaxial extraordinary wave-
number profile in Eq. (1.54), namely,
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(O =[1-(&+EVNe]"?, c=cy\e. (55)

All simulations are carried out for beam parameters I'y o
=-1+i, ¢T=0.001, £=0.3, &=0.5, and for medium pa-
rameters e=1, ,=1.3.
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Fig. 3. PB on-axis temporal distribution. The solid curve plots
the asymptotic on-axis field for z;,=0.005 as a function of time,
and circles plot the reference solution.
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Fig. 4. Snapshots of (a) the asymptotic and (b) the reference
field in the (xbl,zb) plane. (c) Relative error in decibels for points
where the reference field is more than —-30 db from its on-axis
peak.
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Fig. 5. Snapshots of PB propagator on-axis PB distributions as
a function of z, for (a) the near (¢=0.05) and (b) the far (¢=1)
field. The solid curves depict the asymptotic propagator, and
circles represent the reference solution.
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Fig. 6. Contour plots of -1, -3, and -6 db from peak level of
the off-axis PB-propagator distribution in the (x; ,z) cross-
sectional plane, for both the asymptotic (solid curves) and the ref-

erence field (circles). The dashed curve represents the radius of
curvature.

B. Pulsed-Beam On-Axis Temporal Distribution

The on-axis (x;,=0) field in z;,=0.005 as a function of time
is presented in Fig. 3. The asymptotic field in Eq. (45) is
plotted as a solid curve, and the reference solution is plot-
ted with circles. The time axis is normalized with respect
to the on-axis propagation delay tP‘Xb=0 in Eq. (48) so that
the pulsed beam is centerecl at t/t,=1. The half-
amplitude temporal width T(V5-2)"2 is plotted at the
half-on-axis peak of 4/7T? [see the parameterization fol-
lowing Eq. (49)]. Clearly, the asymptotic solution as well
as the parameterization agrees very well with the TD
plane-wave reference solution.

C. Asymptotic and Reference-Field Comparison
Snapshots at #=0.05 of the asymptotic [Eq. (32)] and the
reference [Eq. (54)] fields over the (x;,,2;) cross-sectional
plane are presented in Figs. 4(a) and 4(b), respectively.
The relative error in decibels, |B,symp—Brefl/|Bred, is de-
picted in Fig. 4(c) for points where the reference field is
over —30 db from its on-axis peak, for which the relative
error is found to be less than —48 db, demonstrating the
good agreement between the two.

D. On-Axis Field Distribution

Snapshots of PB propagator on-axis distributions as a
function of z;, for near (¢=0.05 s) and far (£=1 s) fields are
presented in Figs. 5(a) and 5(b), respectively. Asymptotic
propagator (32) is depicted by solid curves, and reference
solution (54) is represented by circles to demonstrate the
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accuracy of the asymptotics for both near and far fields.
The figure also demonstrates the temporal changes of the
Lorentzian pulse as it goes to a Hilbert transformation
from near- to far-field distributions. For clarity, the z, axis
was normalized by ct, so that the beam center is at
zp/ct,=1 for both cases.

E. Off-Axis Distribution and Parameterization

Contour plots of =1, —3 and -6 db from peak level of the
off-axis PB-propagator distribution in the (xbl,zb) Cross-
sectional plane are presented in Fig. 6 for both the
asymptotic field (solid curves) and the reference field
(circles). The x;, axis is normalized by the PB half-
amplitude diameter D;, so that the -6 db curve is
bounded by x;,/D1=1, as can be seen in the figure. The z,
(horizontal) axis is normalized by the propagation dis-
tance of the beam center ct,, so that the center is at
z/ct,=1, from which a circle of radius R; [the wave-front
radius of curvature in Eq. (1.49)] is plotted with a dashed
curve.

5. CONCLUSION

In this paper, Part II of a two-part investigation, we have
presented a theory for phase-space propagation of TD
fields in an anisotropic medium characterized by a ge-
neric wave-number profile. Using TD quadratic-
Lorentzian windows for the local processing of either or-
dinary or extraordinary field distributions, we
represented the field by a PS spectral distribution in
which the propagating elements are pulsed beams. By ap-
plying saddle-point asymptotics, we extracted the beam
phenomenology in the anisotropic environment resulting
from short-pulsed processing. The PB-propagator param-
eters were mapped to local geometrical properties of the
generic wave-number profile. Finally, the general results
were applied to the special case of uniaxial crystal and
were compared with a TD reference solution and found to
agree remarkably well. The present investigation may be
extended to propagation in an inhomogeneous medium, in
which each of the PB windows is propagated through the
anisotropic inhomogeneous medium in a manner similar
to that for propagation in an inhomogeneous isotropic me-
dium presented in Ref. 7.
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