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Pulsed-Beam Propagation in Dispersive Media via
Pulsed Plane Wave Spectral Decomposition

Timor Melamed and Leopold B. Felsen, Life Fellow, IEEE

Abstract—This paper is concerned with the behavior of tran-
sient wavefields due to a pulsed-beam (PB) wavepacket launched
obliquely from a hypothetical aperture plane in a medium with
generic dispersion ( ), where and are wavenumber and fre-
quency, respectively. This generalizes our previous investigation
of a PB launched normally from the hypothetical aperture plane.
The problem is solved through spectral decomposition into plane
waves in the frequency( ) and spatial wavenumber( ) domains,
followed by asymptotics on the spectral inversion integrals, with

synthesis performedbefore synthesis. Special attention in the
transient spectral domain is given to paraxial PB approximations
and to criteria for their range of validity, which are expressed in
terms of critical nondimensional estimators that contain the beam
parameters as well as the dispersion parameters of the medium.
The resulting PB’s can be used to synthesize transient wavefields
excited by arbitrary space–timesource distributions of finite sup-
port on a specified aperture plane in the medium.

Index Terms—Dispersive media, pulsed beam.

I. INTRODUCTION

WE INVESTIGATE here the propagation properties of a
pulsed-beam (PB) wavepacket launched obliquely from

a hypothetical aperture plane into a lossless dispersive homo-
geneous unbounded medium characterized generically by the
frequency -dependent ambient wavenumber . The mo-
tivation and direct time-domain (TD) solution strategy having
been outlined in the abstract, we proceed directly to the contents
that follow. The presentation is based on several previous studies
[1]–[3] to which we refer for background. To make the paper
reasonably self contained, we summarize those previous results
that are relevant to the understanding of the present results. In
particular, we follow the same sequence of steps as in the anal-
ysis of the nontilted PB [3] in order to facilitate assessment of
the tilt effect here, although this may involve similar wording in
the two texts. The problem is formulated in Section II, with def-
inition of the frequency and wavenumber spectral transforms,
the paraxial PB spectral initial conditions, and the spectral syn-
thesis of the resulting paraxial TD-PB field in the dispersive
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medium. Section III has a summary of the corresponding results
for the nondispersive case , which can be evaluated
in closed form and permits assessment of the effects of disper-
sion developed by the asymptotics in Section IV. The dispersive
asymptotic plane wave spectrum for the PB initial conditions,
obtained by frequency-domain (FD) saddle-point techniques,
is parameterized in terms of the saddle point (stationary) fre-
quencies , which depend on space–time ( ) as well as PB
tilt , spectral spread, and pulse length . These parameters
are combined in various nondimensional descriptors that furnish
criteria for the domain of validity of the paraxially approximated
PB. The detailed derivation and interpretation of these criteria,
and the corresponding comparisons with the nondispersive and
nontilted dispersive results in [1]–[3] constitute the principal
new contributions in this paper. These spectral footprints are re-
tained in subsequent asymptotics associated with a spectral syn-
thesis that leads to the final space–time tilted paraxial PB at the
end of Section IV. Brief conclusions are presented in Section V.

II. FORMULATION OF THE PROBLEM

The problem of PB wavepacket propagation in a lossless, ho-
mogeneous, isotropic dispersive medium is defined by the PB
matched initial distribution in the FD and is Fourier inverted
from there into the TD.

A. Time-Frequency Transforms

The Fourier transforms

(1a)

(1b)

with denoting conventional Cartesian coordi-
nates, define the relations between a TD field and the
corresponding FD field . Here and henceforth, a caret
identifies FD wave fields. To accommodate wave constituents
with evanescent (i.e., complex) spectra as encountered in the
PB, it is useful to employ the analytic signal formulation for TD

fields. The analytic field (denoted by the symbol) cor-
responding to the FD field is obtained by the one-sided
inverse Fourier transform

Im (2)

where is defined in (1a). The real field is given by

Re (3)

0018–926X/00$10.00 © 2000 IEEE



902 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 6, JUNE 2000

B. Space-Wavenumber Transforms

Space-wavenumber transforms are required to decom-
pose fields into plane waves parameterized by their spectral
wavenumbers. If is the FD distribution corresponding
to the TD initial distribution for the PB on the
plane, then the corresponding FD wavenumber spectral ampli-
tude on the initial surface is given by

(4a)

with , identifying a wavenumber spectral func-
tion, denoting the normalized (with respect to)
spatial wavenumber vector, and denoting the generic fre-
quency-dependent wavenumber in the ambient medium. The FD
initial field is reconstructed as

(4b)

The dependence of and of will
be suppressed unless specifically required for clarity. Also, in-
tegration limits are omitted on all integrals extending from
to . The plane-wave synthesis of the FD field away from
the initial plane is obtained by including the plane wave spec-
tral propagator

(5)

where

Im (6)

Inserting (5) into (2) yields the formal plane wave spectral rep-
resentation of the TD analytic field at any observation point

(7)

where is the unit vector along the direction of prop-
agation of the spectral plane wave.

C. PB Initial Distribution

To facilitate space–time focusing of the PB wavefield
in the dispersive environment, it is useful to specify FD
“iso-diffracting” initial distributions such that the focusing
distance is independent of frequency (see [4]),

(8)

where
,

for smoothing parameter;

(with
for ) frequency-independent parameter;

spectral parameter which determines
the beam axis tilt, with respect to initial
plane [see also (16)].

In [4], the initial distribution was defined for anondispersive
medium with . The generalization in (8) to arbitrary

requires a dispersion-matched-dependent initial field in
order to retain the iso-diffracting property. Insertion of (8) into
(4a) yields the corresponding plane wave spectrum

(9)

The spectral shift introduced in (8) and (9) parameterizes the
general class of PB’s whose axis istilted with respect to the
initial distribution plane . Such PB’s are required for
decomposition of arbitrary planar “aperture field” distributions
into pulsed beam basis functions [5], [6] and their consider-
ation constitutes the generalization of the nontilted results in
[1]–[3]. Regarding as a function of , the on-axis

distribution in (8) peaks at where .
Therefore, the maximum frequency of the on-axis signal may
be estimated by solving , giving

. Such a band-limited pulse may be regarded as
a model for a physical (sampled) signal. By applying the in-
verse transform (2) to (8), one obtains the PB initial distribution

Re , with

(10)

D. TD Wavefield

In [1] and [2], the TD field was evaluated and interpreted
via the space–time spectral representation in (7), following
the conventional route in which one first performs the spatial
wavenumber synthesis in the FD and thereafter the inversion to
the TD. The analysis was carried out for a nontilted-directed
propagating beam with in the initial distribution (8).
In [3], the order of integration in (7) was inverted, evaluating
the -integral first, thereby obtaining the wavenumber spectral
representation

(11)

wherein the spectral wave functions are dispersive
transient plane waves

(12)

III. N ONDISPERSIVECASE

To assess the influence of dispersion on the PB behavior, we
summarize for later comparison the previously obtained results
pertaining to the nondispersive case [5], [6], [7].
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A. PB Initial Distribution

The nondispersive TD initial distribution is given by (10) with
, giving

Re

Re

(13)

where is the analytic function defined in the
lower half of the complex-plane.

B. PB Wavefield and Paraxial Asymptotics

Inserting into (12), we obtain the nondispersive
TD spectral plane wave

(14)

For the Gaussian initial distribution in (8), inserting (9) into (14)
yields

(15)

where the prime denotes the derivative with respect to the argu-

ment, i.e., . Since the analytic signal decays
with the increase of the negative imaginary part of its argument,
the most strongly excited spectral plane wave in (15) is the one
with where the transient plane wave delay function has

the form . The corresponding preferred
propagation (i.e., beam axis) direction is along the unit vector

(16)

Inserting (15) into (11), we obtain for the spectrally synthesized
PB

(17)

The abovementioned localization of the integrand about
facilitates the approximate evaluation of the integral, which

leads to the paraxial PB field

(18)

Fig. 1. The beam field in configuration space, with axisz along the���(#; ')
direction. The transverse beam coordinates(x ; x ), defined in (20), are such

thatx lies in the plane(���; ���), wherex is parallel to thez-plane. The PB
wavepacket adapts locally to the transverse profile of the FD beam.

where

(19)

Equation (18) is written in terms of the beam-centered coordi-
nates defined for specified by the transforma-
tion

(20)

where are the spherical angles that define the beam di-

rection (Fig. 1)

(21)

Here, the coordinate lies along the beam axis whereasand
are orthogonal coordinates in planes perpendicular to. In

view of (19), the quadratic form in (18) is given by
. Thus, the transverse coordinate frame

is oriented so that lies in the plane (see
Fig. 1).

The main properties of the PB field in (18) (discussed in detail
in [7], [6]) are as follows.

1) The tilted PB is astigmatic [7]. In a conventional
PB, the elements of depend only on , i.e., on the
locationalong the beam axis, whereas here they depend
on . This difference is due to the fact that
the paraxial initial conditions are given on a plane
normal to the beam axis, whereas here they are defined
on a plane of constant, which is generally inclined with
respect to the beam axis. It follows that (18) conforms
smoothly with the initial field distribution on the

plane.
2) For large enough , we may replace

, so that is simplified and
(18) changes gradually into a conventional PB. This
motivates rewriting the elements of in (19) in the form

(22)
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where for or 2, is given by
, , , ,

, and . The
PB field in (18) may now be written as an astigmatic PB
whose major axes are oriented along and

(23)

where ,
.

In (23), is the paraxial propagation delay along the
axis, while are the wavefront principal radii of cur-

vature in the directions [see (23)]. is the temporal

half-amplitude length of the pulse, which is inversely
proportional to the pulse amplitude. Thus, the PB field is
strongest on the beam axis where is minimal and the
field decays as increases away from the beam axis. The
half-amplitude beam width in the directions is found by
solving , giving . The
collimation lengths in the cross-sectional planes are

and the waists are located at with the corresponding
widths . From (23) with (22), one notes that in the
collimation (Fresnel) zone , the PB profile is
essentially unchanged, whereas outside this zone the beam
spreads and its profile approaches the far-field diffraction
angles (asymptotes) .

IV. DISPERSIVECASE

A. Transient Plane Wave Spectrum

1) Formal Solution and Asymptotics:The TD spectral con-
stituents excited by the FD PB initial distribution in (8) with (9)
are given formally by inserting (9) into (12)

Im

(24)

(25)

Except when required for clarity, we shall not include in the
notation all of the parameters in the argument of. The integral
in (24) is evaluated asymptotically by continuing the integrand
analytically into the complex -plane and applying the saddle-
point method. The stationary frequencysatisfies the relation

at , so that using (25)

(26)

where the prime denotes differentiation with respect to. The
field in (24) is approximated asymptotically by the lowest order
saddle-point formula [8]

(27)

to yield

(28)

with the spectral phase and the amplitude given by [recall that
depends on all the parameters shown in (26)]

(29)

(30)

Equation (26) requires the analytic continuation of the dis-
persion relation into the complex plane. The equation
has a real solution if the following three conditions are si-
multaneously satisfied: 1) (temporal impulse); 2)

(propagation along the beam axis); and 3) only for propa-
gating beams with . These conditions ensure that the

resulting is real. Instead of solving (26) for-
mally, we shall take advantage of the spatial localization of the
Gaussian PB. Since the spatially evanescent part of the spec-
trum in (9) along the transverse off-axis coordinates is propor-
tional to , the main contribution to
the field is obtained from the spectral constituents. Also
we assume that is a “small” parameter; the smallness require-
ment is quantified later on [see (50) and (51)]. For and
small values, we now define as the stationaryreal
frequency of the field in (28) foron-axisobservation points

(31)

As noted earlier, is real for . Moreover,
defines the wavefront of the PB field and defines on-axis
points behind the wavefront. Interpretation of (31) is facilitated
through use of space–time rays and the dispersion sur-
face in Fig. 2 (see [8, sec. 1.6]), with the radius of curvature
of the dispersion surface given by

(32)

For points near the beam axis, an approximate expression for
the field in (24) can be obtained by expanding in a
Taylor series about and . Truncating the expression
after the quadratic term yields (only theand dependence is
shown)

(33)
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Fig. 2. On-axis PB asymptotics, dispersion surface and space–time rays. (a)
k(!) dispersion surface. The normal to the surface [see (31)] is parallel to the
space–time ray to the observation point(z ; ct). The construction determines
the saddle-point values! (z; t) andk[! (z ; t)]. The local on-axis radius of
curvatureR of the dispersion curve is also shown [see (47)]. (b) Space–time
ray to the observation point(z ; ct).

where the Taylor coefficients are given by (see the Appendix)

(34)

(35)

(36)

(37)

(38)

(39)

with

(40)

and

(41)

Via the dependence on , these expressions make evident
the skewing effect due to , when compared with the
results in [3].

2) Paraxial Approximation and its Domain of Validity:In
view of (33), the phase may be written in the form

(42)

where

(43)

is thespectral paraxialphase and

(44)

is the nonparaxial term. Inserting (41) into (44) yields

(45)

Using (28), we obtain the paraxial approximation for the plane
wave field

(46)

where is given in (43) and the amplitude term is obtained
from (30), with the zero-order approximation, , .

We shall examine the parametric regimes for whichin (45)
may be neglected, thereby furnishing a criterion for validity of
the paraxial approximation. Utilizing the dispersion sur-
face and recalling (32) and (31) yields the radius of curvature

at corresponding to the space–timeon-axisobservation
point

(47)

Note that has the dimensionality (see Fig. 2). Then
from (45) and (47)

(48)

In view of (42), the nonparaxial term may be neglected when
. To use this condition in a parametric estimate, we

define a criticalon-axisnondimensional estimator based on the
equality [note from (20) and (52) that foron-axis
observation points, ]

(49)

The condition , which validates the paraxial approx-
imation in (43)on-axis, may now be stated as follows:

(50)

For a given space–timeon-axisobservation point, is de-
termined via (47), and (50) bounds the largest pulse length,
which is compatible with the paraxial approximation. Alterna-
tively, keeping constant, inequality (50) defines the maximum

, i.e., the on-axis space–time region, for which the
paraxial approximation is valid. Behind the wavefront, keeping

constant yields the maximum allowable observation time
while keeping constant yields via (49) the maximum al-

lowable and the minimum allowable observer location
. The estimates fail for observation points corresponding to

, i.e., . This happens near the first arrival
of the signal , where dispersion is not yet fully developed

) (see [1, eq. 28]) and also near inflection points
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on the dispersion surface for complex materials. Better asymp-
totics than those based on (27) are required in these transition
regions [2].

For off-axisobservation points, we define an additional crit-
ical nondimensional estimator . Using
(45) and (32) we obtain

(51)

in which the estimator is evaluated in terms of the on-axis pa-
rameters , , and . To relate this expression to the beam co-
ordinates in (20), we express in terms of the off-axis
beam coordinates using (20) as

(52)

where are the spherical angles that define the beam di-

rection via (21). From (51), one has the following
estimates.

1) The maximum excursion of from for a given off-axis
observation point ; this specifies the allowable
angular spread that can be included when performing the
transient plane wave superposition in (11) using the spec-
tral paraxial phase in (43).

2) The maximum excursion from the beam axis for given
; this is obtained by inserting (52) into (51). Moreover,

for on-axis observation points it follows from (52)
that . Accordingly, on axis, the estimator

; off axis, the allowable maximum angular spread
decreases with distance from the beam axis. As in

(49), is parameterized by theon-axisobservation point
which determines, via , the location

behind the wavefront and the local radius of curvature
of the dispersion surface.

The spectral function in (28) can be regarded either as a
configuration-space object, whereis kept constant and the
space–time observation point is allowed to vary or as
a spectral distribution, where is kept constant and is
allowed to vary. Emphasizing the configurational domain, we
consider the space–time behavior of a single dispersive spectral

plane wave propagating in the specified direc-
tion [note from (26) with (25) that and, therefore,
(28) with (29) and (30), are all functions of ].
The paraxially approximated form in (46) restricts the speci-

fied propagation angle to a direction close to the directionof
the beam axis [see (51)]. The spectral paraxial phase in (43)
is in accord with the nondispersive paraxial delay obtained by
second-order approximation of in (15) about . In view
of (52), the term in the paraxial phase (43) vanishes
for on-axis observation points where . For off-axis obser-
vation points where , additional phase is added
to the on-axis phase by the linear term in in (43) as well
as a second-order term due to the real part of. These addi-
tions adjust the on-axis parameterso as to accommodate the
exact plane wave constant delay surfaces [as in (15)]
up to second-order terms in [see (73) and (76)]. Note that

first-order changes in the phase due to the change in the spec-
tral stationary frequency caused by an off-axis observation
point are zero due to the definition of the spectral stationary fre-
quency in (31) [see also (72)]. Therefore, the paraxial field in
(46) is given in terms of the on-axis stationary frequency.
The paraxial phase also includes the correction term
due to first-order change in the stationary frequency caused by
the small parameter [see (35)]. The paraxial phase neglects
changes due to allsecond-orderchanges in the stationary fre-
quency ( , , and ). These phase changes are included in

and may be neglected under conditions (50) and (51).
Emphasizing the spectral domain, we consider the directional

behavior of the spectral plane wavesarriving from different
directions at a fixed space–time point . Viewed from this
perspective, the paraxial phase in (43) peaks at and ex-
hibits Gaussian decay for away from [recall that
in (40)]. This decay is due to the complex spectra in (8). The
paraxial phase neglects second-order changes indue to -in-
duced changes in the stationary frequency [recall from (26)] that

is a function of ).
These considerations furnish insight into the contribution of

the paraxial and nonparaxial phases to the space–time PB field
in (11). Within the paraxial approximation in (46), the spectral
superposition in (11) has the form of an inverse Fourier trans-
form of a Gaussian in . Therefore, the resulting PB field
has the form of a Gaussian in the off-axis parameter in (52) [see
also (62)]. Foron-axisobservation points , the parameter

in (51) vanishes, indicating that the paraxial approximation
applies toall values provided that (50) is satisfied. This is at-
tributed to the fact that for , the nonparaxial phase term in
(45), which quantifies the deviation of the stationary frequency

from the on-axis frequency , vanishes on axis. Away from
the beam axis, increases with [see (51)] and the paraxial
approximation is valid up to those that satisfy . Be-
yond this range, has to be taken into account, in addition to

. Under condition (50), thenonparaxialphase in (45) consists
of a second order term in multiplied by a second-order
term in [see (45) with (52)]. Adding this term to the paraxial
approximation in (43) and inserting into (11), we find that the
resulting integral has the form of an inverse Fourier transform.
The presence of in will result in a PB field having afourth
order term in the transverse coordinate(a second-order term
from the inversion of the Gaussian times the second-order coef-
ficient in (52) (see also (63)]), thereby justifying the definitions
in (43) and (45).

B. Asymptotic Evaluation of TD Spectral Integral

The formal representation of the TD field is given by the su-
perposition integral in (11). For the spectral distribution in (28)
this yields

(53)

We shall evaluate (53) using theparaxial field in (46). Integral
(53) has a stationary point in the complex domain that sat-
isfies

(54)



MELAMED AND FELSEN: PULSED-BEAM PROPAGATION IN DISPERSIVE MEDIA 907

The field may again be evaluated asymptotically via the lowest
order two-dimensional saddle point formula [8, eq. 4.7.3]

(55)

with

(56)

and

Det

(57)

Since the fields in the integrand are approximated by their
paraxial (quadratic) form, the integration can be performed
exactly.

1) Stationary Point: Inserting (43) into (54) yields

(58)

and, therefore,

(59)

From (59) we note that the displacement offrom the on-axis
real value is proportional to and, therefore, via (52)
to .

2) Phase : The phase is obtained by inserting (59) into
(56)

(60)

Utilizing the beam coordinates in (20) as well as relation (52)
we find that

(61)

where is given by (19) and the paraxial phase may be ex-
pressed in terms of the beam coordinates

(62)

The phase in (62) consists of the on-axis phase
and an additional paraxial

off-axis term [cf. (18) and (23)]. The result in
(62) is valid as long as satisfies condition (50) and as long as
the stationary point satisfies condition (51). Using (59), we
find that and substituting into (51)
we obtain

(63)

where is the critical nondimensional estimator that pa-
rameterizes the maximum off-axis excursion for which
the paraxial phase in (62) is valid, i.e., the maximum off-axis
excursion is obtained for . For a nondispersive
field, this deviation is parameterized by alone.
When dispersion is introduced, the parametersand play
a role in addition to . However, the estimate in (63) becomes

invalid when because the amplitude in (46) shows
that the asymptotic field amplitude diverges in that limit [see
also the amplitude in (64); for a uniform correction when

, see [2]].

3) Amplitude : Inserting (39) together with (30) into (57)
yields

(64)

Comparing this result with the one found in [1, eq. (57)], we find
that by setting in [1, eq. (57)], the
two results are identical for the special case . Therefore,
the generalized result in (64) is the zeroth-order off-axisterm
of [1, eq. (57)], a common approximation for the amplitude.

The paraxial dispersive PB field in (55) with (62) and (64)
can be parameterized in terms of beam widths, wave front radii
of curvature, instantaneous frequencies, etc., by using the field
envelope and paraxial phase in the manner established in [2] for
the normally propagating beam. We shall not pursue
this line of investigation here.

V. CONCLUSION

In this paper, we have formulated and asymptotically evalu-
ated a direct TD spectral analysis and synthesis procedure for
the propagation of a paraxial PB launched obliquely from a
hypothetical aperture plane into a lossless homogeneous un-
bounded dispersive medium characterized by the generic dis-
persion relation . Various critical nondimensional estima-
tors have been shown to play an important role in quantifying the
range of validity of the paraxial approximation. Procedural de-
tails have been summarized in Section I and need not be repeated
here. We conclude with the observation that the new results de-
veloped in this paper permit the asymptotic representation, via
PB superposition [6], of fields excited byarbitrary short-pulse
initial source distributions in the dispersive environment. Exten-
sion of these techniques to lossy dispersive materials is under
consideration.

APPENDIX

DERIVATION OF (34)–(41)

In order to evaluate the Taylor coefficients in (33), we note
that

(65)

1) : Sampling in (29) at and , and using
(65) we obtain (34).

2) : Using (29) one finds (only the dependence is
shown)

(66)

where . Using

(67)
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in (66) leads to

(68)

with the last equality in (67) obtained from (26). Sampling (68)
at , yields in (35).

3) : Applying to (26) we find (only the depen-
dence is shown)

(69)

and is evaluated using (68)

(70)

The final expression in (36) follows via (65) and (70).
4) : Using (29) we obtain (only the dependence is

shown)

(71)

and is evaluated using (26)

(72)

Inserting (72) into (71) yields

(73)

where the last equality was obtained takingfrom (25), as well
as . The final result
in (37) is obtained using (65) in (73).

5) : Applying to (73) yields (note that in (73) only
is a function of )

(74)

The last equality is obtained from (26) and (69), and the final
result in (38) follows from (65) and (74).

6) : Denoting , , we rewrite (73) in
the form

(75)

and, therefore,

(76)

To simplify this expression we use (31)

(77)

and evaluate by applying to (26), giving

(78)

Using (77) and (78) in (76) and evaluating the derivatives in
(76) yields (39).
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