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The present work is concerned with applying a ray-centered non-orthogonal coordinate system which is a pri-
ori matched to linearly-phased localized aperture field distributions. The resulting beam-waveobjects serve as
the building blocks for beam-type spectral expansions of aperture fields in 2D inhomogeneous media that are
characterized by a generic wave-velocity profile. By applying a rigorous paraxial-asymptotic analysis, a novel
parabolic wave equation is obtained and termed “Non-orthogonal domain parabolic equation”—NoDope. Tilted
Gaussian beams, which are exact solutions to this equation, match Gaussian aperture distributions over a
plane that is tilted with respect to the beam-axes initial directions. A numerical example, which demonstrates
the enhanced accuracy of the tilted Gaussian beams over the conventional ones, is presented as well. © 2010

Optical Society of America
OCIS codes: 070.2580, 350.5500, 080.2720.

1. INTRODUCTION

Gaussian beams (GBs) have been a subject of intense con-
tinuous research mainly due to their joint spectral-spatial
localization, which is significantly advantageous for
propagation and scattering and results in simplified ana-
Iytic expressions for the beam fields. Locality consider-
ations have been utilized for solving beam-type waveob-
jects propagation in generic medium profiles such as
inhomogeneous [1-3], anisotropic [4-10], and for time-
dependent pulsed beams, in dispersive media [11-15].
The need for these solutions arises from beam-type ex-
pansions such as the frame-based field expansions
[16-18]. These expansion schemes utilize the key feature
of the beam’s continuous spectrum [19-21] and discretize
the spectral representation with no loss of accuracy.

Exact beam-type expansions require beam solutions
that match localized initial planar distributions. Such so-
lutions in inhomogeneous media can be obtained by ap-
plying the parabolic wave equation (PWE), which models
propagation of linear waves that are predominant in one
direction [22-27]. Important solutions of the PWE include
its different beam-type waveobjects [28-30]. PWE meth-
ods can also be utilized for solving beam-type waveobjects
propagation in inhomogeneous media [1-3].

In these solutions as well as in other different propaga-
tion scenarios, the boundary plane over which the initial
field distribution is given is generally not perpendicular to
the paraxial direction of propagation (the beam-axis).
Therefore, in order to use conventional (orthogonal coor-
dinates) GBs, apart from asymptotic approximations, an
additional approximation is carried out to project the ini-
tial field complex curvature matrix on a plane normal to
the beam-axis direction. This additional approximation
reduces the accuracy of the resulting beam solutions es-
pecially for large angle departures and, moreover, it be-
comes inconsistent with respect to asymptotic orders.
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The need for the additional approximation can be
avoided by applying a non-orthogonal coordinate system
that is a priori matched to the lineally phased aperture
distribution. This system has been introduced in [31] and
was applied for obtaining beam-type waveobjects in a 3D
homogeneous medium. These waveobjects were termed
“tilted GBs.” Application of the scalar tilted GBs to elec-
tromagnetic beam-type expansions has been explored as
well. Different types of tilted GBs were parameterized in
[32]. The present investigation extends these results to
include propagation in 2D inhomogeneous media that is
identified by a generic wave-velocity profile. Thus, a novel
form of PWE in non-orthogonal coordinates is obtained
such that its beam-type solutions are matched to localized
aperture distributions over tilted planes (see Fig. 1).

2. STATEMENT OF THE PROBLEM

Beam-type expansion schemes can be obtained by project-
ing the planar z=0 aperture field distribution on localized
linearly-phased Gaussian windows. The field in z >0 half-
space is described by a superposition of tilted beams that
emanate from a discrete set of points over the aperture in
a discrete set of directions. Each beam propagator is iden-

tified by a spectral wavenumber % that contributes to the

aperture distribution a linear phase term of ikx [19,21].
This spectral wavenumber is related to the beam-axis

spectral (departure) angle 9 via cos 9=V,k/w, where V, is
the wave velocity at the departure point (see Fig. 1). Thus
the ability to apply beam-type expansions in inhomoge-
neous media depends on finding accurate beam solutions
that match linearly-phased Gaussian aperture distribu-
tions.

We are concerned with asymptotically evaluating the
2D time-harmonic beam-field w(x,z) in the z>0 half-
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Fig. 1. Tilted Gaussian beam waveobject is propagating along a
ray trajectory (beam-axis) in an inhomogeneous medium that is
characterized by a generic wave-velocity profile V(x,z). This wa-
veobject carries Gaussian distributions over transverse lines that
are tilted by angle 9 with respect to the beam-axis.

space due to sources in z<0. We assume that the aper-
ture distribution takes the canonical form of beam-type
expansions propagators,

1
uo(x) = exp[iw(Vﬁlx cos ¥+ ExQT'O) ] , (1)

where V,=V(0,0) with V(x,z) being the medium wave-
velocity profile. In Eq. (1) T’y is a frequency-independent
complex parameter (the beam’s aperture complex curva-
ture) with Im I'; >0, and the spectral angle ¥ is identified
as the initial beam-axis angle with respect to the initial
x-axis over the z=0 plane. Beam field u(x,z) satisfies the
2D inhomogeneous scalar Helmholtz equation

&

w’ (2)

[V2+ 0?V2(x,2)Ju(x,z) =0, V%= -t
where u(x,z) is a 2D time-harmonic field with an assumed
and suppressed time-dependence of exp(—iwt). Thus we
are aiming at obtaining asymptotically exact paraxial so-
lutions to Helmholtz’s equation (2) under boundary condi-
tion (1) and causality condition of an outgoing wave at z
=0".

3. LOCAL RAY-CENTERED COORDINATE
SYSTEM

Following the motivation presented in the introduction,
the concept of utilizing non-orthogonal coordinates for
beam solutions which was originally introduced in [31,32]
is applied here for propagation in generic two-
dimensional slowly varying inhomogeneous media. We
seek beam solutions that are confined about ray trajecto-
ries (beam-axes) and apply a local (ray-centered) non-
orthogonal coordinate system in which the transverse co-
ordinate axis is tilted with respect to the beam-axis and
maintains a constant angle of 9 along the curved trajec-
tory.

The conventional (orthogonal) local ray coordinate sys-
tem whose origin is located at point r, over the ray tra-
jectory is defined by unit-vectors f, and fi, denoting the
tangent and normal of the trajectory at r,, respectively
(see Fig. 2). Here and henceforth, subscript “o” denotes
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Fig. 2. Observation point r is described by a non-orthogonal co-
ordinate system r=(x;,z;), where x, is the distance along the axis
that is tilted by ¢ with respect to the ray trajectory tangent, t,,
and z; is the arclength along the trajectory up to the intersection
point of the ray with the x; axis. The (positive) X, and n, direc-
tions remain constant with respect to the trajectory tangent, and
therefore, the curvature K (z,) is negative or positive in convex
(left) or concave (right) regions, respectively.

quantities that are sampled at the on-axis coordinate ori-
gin r,. The unit vectors are related by the Fernet equa-
tions [33]

dr, dfo dn,
=t, ——= Koﬁ(n == Koto: (3)
ds ds ds

A

where K, denotes the curvature of the trajectory at r,,
which for a ray-trajectory is given by KO=—vn/v|r0. Here
and henceforth, (minuscule) v denotes sampling the veloc-
ity profile V(x,z) on-axis, v, denotes the normal on-axis
derivative of V, and so forth. We choose a notation in
which n, does not change direction with respect to trajec-
tory tangent, i.e., the unit-vector fi,xt, is constant, so
that K, is either negative or positive for convex or concave
trajectory intervals, respectively, in accordance with
Egs. (3) (see Fig. 2).

Following the discussion in the introduction, we define
a novel non-orthogonal coordinate system, in which the
local beam coordinate unit-vectors, which are denoted by
%X, and Z;, are obtained from the conventional (orthogo-
nal) local coordinate unit vectors, t, and fi,, by the trans-
formation

%X, =cos Ot, + sin 90, 2, =1,. (4)

Here 9 is the aperture distribution spectral angle in
Eq. (1). The angle ¥ is assumed to be constant for all ob-
servation points r. Thus, x; is identified as the distance
along an axis that is tilted by ¥ (with respect to the tan-
gent {,), and z; is the arclength along the trajectory up to
the intersection point of the trajectory with the x, axis
(see Fig. 2). Note that the conventional (orthogonal sys-
tem) tangent parameter s (Eikonal) is a function of both
xp and zp, namely, s=s(xp,z,). Observation point r can be
written in the new coordinates as

r=1,(25) + XXy, (5)

where r,(z;) is the on-axis location of the origin.

In the present context of beam-type (paraxial) solu-
tions, we assume that the on-axis wave-velocity normal
deviation away from the beam-axis, v,(z;), is small for ob-
servation points in the Gaussian domain, i.e.,
[v,(zp)xp/v(z,)| < 1. Thus, we conclude that the trajectory
radius of curvature is large with respect to the beam-
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width, so that a local (ray-centered) coordinate system
can be defined uniquely for all near-axis observation
points.

4. MAIN RESULTS

Obtaining beam-type solutions that correspond to the
aperture distribution in Eq.(1) involves applying
asymptotic approximation of w-terms rigorously over the
ray trajectory. Therefore, for each term in Helmholtz
equation (2), a corresponding asymptotic series needs to
be obtained in the non-orthogonal ray-centered coordinate
system in system (4). This coordinate system is inexplic-
itly defined along solutions (ray trajectories) of the Eiko-
nal equation. Since this procedure is lengthy, in order to
gain clarity in the presentation we first summarize the
main results in this section, while full analytic details are
given in Section 5.

A. Non-Orthogonal Domain Parabolic Equation
This work presents a new class of paraxial waveobjects of
the general ray-field form

u(xb,Zb) = U(J_cb,zb)exp[i\lf(a_cb,zb)], (6)
where U(x,,z;) denotes the ray-field’s amplitude,
Xp =Xy \r’Z (7)

is the transverse coordinate that is normalized with re-
spect to the frequency o, and the phase

s(Xp,2p)
W(xy,2p) = a)f v (odo (8)

0

is accumulated along the ray trajectory arclength o. Note
that unlike the conventional paraxial ray-field, here
U(xy,z;) is described in the local non-orthogonal coordi-
nate system in Eq. (4).

By applying the analytic procedure that is presented
below in Subsection 5.B, we find that amplitude U satis-
fies the novel NoDope in inhomogeneous media,

esc 90°(2,) Uz z, + 2i sin 9v°(z,) U, - [%2 sin® Yv,,,(25)

%
+1 sin Yv(z,)v'(2,) U =0, 9)

where subscript X, z,, or n denotes the corresponding
partial derivative, such that U, =dU/d,, etc. By sam-
pling Eq. (4) at z=0, we identify x; =x so that the NoDope
in Eq. (9) is solved with the boundary condition

U(xp,0) = u(x,0)|x=,—cb/\; exp[-i¥(x,,0)]. (10)

Note that by setting 9=m/2, the NoDope in Eq. (9) re-
duces to the familiar orthogonal-coordinates parabolic
equation in [1,27], and that by setting V(r)=Const, we ob-
tain the 2D analog of the homogeneous medium NoDope
in [31,32].

B. Tilted GB Solutions

The tilted GBs are localized solutions of NoDope (9) sub-
ject to the aperture distributions in Eq. (10). Following
the procedure in Subsection 5.C, they are given by

Y. Hadad and T. Melamed

U(@y,2p) = Alep)explizyl (2,)/2], (11)
where the complex curvature
['(z) = sin® 9p(z,)/q(2s) (12)

is obtained by solving along the beam-axis the two linear

ODEs
i ql_ 0 v(zp) || @ 13
alp |7 om0 ||p] P

These equations are solved with the “initial” (z=0) condi-
tions

FO V(’) 9 2KOC0t’l9
0=1, p(0)=——+—cot? - ———, (14
q(0) r(0) 2o V2 v, (14)

where Ky=K,(z;,=0). The amplitude A(z,) in Eq. (11) is

given by
Alzy) = q(0) v(zp) 15)
= Nty v

The tilted GB waveobjects can be written explicitly by us-
ing Eq. (15) in Eq. (11), and inserting into Eq. (6), giving

[q® vz [ [ (o do
“w2) =\ ) o) P “"fo v(o)

1
+ Exgl“(zb))} . (16)

The tilted GBs in Eq. (16) are a generalization of the
two well-known special case solutions: first, for a homoge-
neous medium, by setting v=const, Eq. (13) can be solved
explicitly and the tilted GB takes the form [31]

[(zp)

o

1
u(xp,2p) = exp|:iw<v'lzb + Exif(zb)):| , (17)
where I'(zp)=(vzp csc? O+ Fal)‘l. The second special case
of propagation in an inhomogeneous medium with or-
thogonal coordinate system is obtained by setting o
=7/2, in Egs. (16) and (13) and in Eq. (4), giving

[q(0) v(s) s 1 1
u(s,n)= 1/ ————exp|io f ——do+-n?T'(s) | |.
q(s) v(0) o v(0) 2

(18)

Here I'(s)=p(s)/q(s), where p and q are obtained by set-
ting 9=7/2 in Eqgs. (13) and (14). Solution (18) is the 2D
GB in [1].

The tilted GBs in Eq. (16) have a form similar to the
conventional (orthogonal-coordinate) GBs in Eq. (18). The
main difference is the complex curvature sampling point;
for a given observation point (x,z), the complex curvature
of a tilted GB is sampled at the corresponding non-
orthogonal system origin, i.e., at z,, whereas an orthogo-
nal GB requires sampling at the orthogonal system
origin — s. Therefore, the computational effort in evalu-
ating these solutions is the same, whereas tilted GBs ex-
hibit enhanced accuracy over the conventional ones,
which is demonstrated in Section 6.
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C. Properties of the Tilted GB

The properties of the tilted GB in Eq. (16) are determined
by the complex curvature I'(z;). The tilted GB exhibits a
Gaussian decay over lines of constant z, that are tilted by
angle 9 with respect to the beam-axis. Its e~! beam-width
in x, coordinates is given by

W(zp) = 8/\wIm(z,), (19)

where I'(z,) is obtained by solving Eq. (13) along the
beam-axis.

The phase-front radius of curvature at an on-axis point
zp that is denoted here by p(z,) is obtained from the real
part quadratic phase term in Eq.(16), namely, p(z,)
=1/ReT(zp). This term parameterizes the phase in the
tilted transverse coordinate x;, i.e., over tilted lines of
constant z, (see Fig. 1). In order to relate p(z;) to the ra-
dius of curvature in a canonical paraxial ray-field, we
sample Eq. (16) over perpendicular lines of constant s.
Since over these lines, for different n values both x; and
2zp, vary, we approximate [see Eq. (37)] x=n/sin 9+0(»™1),
as well as

I'(zp) =T(s)=T"(zp)As, As=s-2z. (20)

Later on in Eq. (37), we establish As=0(w™2), so that the
leading asymptotic term of the real part of the quadratic
phase in Eq. (16) reads

1 1
Re|: §xZF(zb)] ~ §n2 Re[I'(s)]/sin? 9. (21)

By inserting Eq. (21) into Eq. (16) we can evaluate the
phase-front radius of curvature normal to the beam-axis
as py(zp)=sin? 9/Re I'(z). Note that the beam collimation
length, which is determined by the complex curvature
along the beam-axis, I'(z;), is frequency independent.
Such beam solutions were termed iso-diffracting [34]. The
iso-diffracting feature makes these waveobjects highly
suitable for time-domain analysis [10,16,17,21,35,36].

5. ANALYTIC DETAILS

Full analytic details of the derivation of the NoDope in
Eq. (9) and its tilted GB solutions in Eq. (16) that were
presented in Section 4 are given in detail in this section.
The procedure introduces a rigorous analysis in terms of
asymptotic orders in the ray-centered non-orthogonal co-
ordinate system in Eq. (4).

A. Metric Coefficients
A differential change in r in Eq. (5) due to infinitesimal
displacement along the coordinates curves can be ex-
pressed by
or or
dr = —dz, + —dx. 22
72, 20 e O (22)

By using Egs. (5) and (3) in Eq. (22) we obtain the two
unitary-vectors of this 2D coordinate system [37]

a; = dr/dz, = t, + x, K (cos 9, — sin 9,),

a, = dr/dx, = sin 9N, + cos IH,. (23)
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As in Eq. (3), subscript o denotes sampling on-axis at the
origin r,, i.e., K,=K,(z;), etc. The elements g;;=a; a; of
the 2 X2 metric coefficients tensor G are given by
{1 — 2x; sin 9K, + x2K> cos 15‘}
G(xp,2p) = . (29)
cos ¥ 1

The inverse (contravariant) metric-tensor is given by

g% gszbj|

G_l(xbrzb) = |:gxbzb gxbxb

1 1 —cos
- ﬁ[— cos 9 1-2x;sin ﬂKo+x§Kf} ’
(25)
where

h(xb,zb) = \,’det(G) =sin ¥ - beo(Zb) . (26)

B. Non-Orthogonal Domain Parabolic Equation
The Laplacian operator in a general 2D non-orthogonal
system (x!,x2) is given by [37]

122 9 d
V2= _Z > —{gifh—u] , (27

where g¥7(x!,x2) denotes the (i,j)th element of G~! matrix
that corresponds to system (x!,x2), and A (x!,x2) is defined
in Eq.(26). By inserting Eq.(25) with Eq.(26) into
Eq. (27), Helmholtz equation (2) in the local non-
orthogonal system reads

6

> Thlxp,2,) =0, (28)
k=1

where

T1(xp,2p) = M1 (xp,2p) 10, (%5,2) 5
TZ(xbrzb) = MZ(xb7Zb)uxb(xb7zb) ’

Ts(xp,2p) = Ms(xp,2p)u, . (Xp,25),

Zp*p

T y(xp,2p) = My(xp,2p)u,, ,, (X5,2p)

Zb%b

T'5(xp,25) =M5(xb,2b)uxbxb(xb,2b),

Te(xp,2p) = Mg(xp,2)(x5,25) (29)
with
Ml(xbazb) = (hgzbzb)zb + (hgbeb)xb’

My(xp,20) = (hg'ts),, + (hg®™), ,

M(xp,2) = h(g7™0 + g*¥%),
M y(xp,2p) = hg®®,

M5(xp,2p) = hg™,
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Mg(xp,23) = ho*V2(xp,2,), (30)

in which the g elements are given in Eq. (25). As in Eq. (9)
subscript x; or z, denotes the corresponding partial de-
rivative. We aim at obtaining asymptotic (paraxial) solu-
tions of Eq. (28) in x; coordinates. Following conventional
paraxial ray-theory [1,2,27,31], we assume in the follow-
ing derivation, that the transverse coordinate x; is of the
order of O(1/ \s“;) [see Eq. (16)]. In the following, we ex-
pand Helmholtz’s equation into power series of w. To that
extent, we introduce the normalized transverse coordi-
nate in Eq. (7), namely x;,=x,; \JZ. The asymptotic solution
is assumed to have the ray-field form in Eq. (6), where
phase ¥ (x;,z;) in Eq. (8) is accumulated along the beam-
axis arclength Eikonal s(xj,z;) and U(xp,z;) denotes the
ray-field amplitude.

Next we insert ray-field (6) into Helmholtz’s equation
(28) and collect elements of similar w-order. The phase ¥
in Eq. (6) is given inexplicitly by integration along the ray
trajectory. Thus, partial derivatives of the phase include
s(xy,2p), its derivatives, as well as v(s) and its derivatives,
which are all w-dependent (via x;). The paraxial equation
procedure requires the use of the on-axis wave velocity
and its derivatives at point r,. Therefore, we expand As
=s-z;, in o series. For a given point over the ray trajec-
tory r(s)=r,+Ar(As) we approximate (see Fig. 3)

dr 1 d*r
AI‘(AS) = d_ As + 5 ﬁ
S S

o o

As?. (81)

The order of this approximation is justified below [after
Eq. (37)]. By using the ray-trajectory differential relations
in Eq. (3), we evaluate

dzr/dsz|r0 = df/ds\ro =K n,, (32)
and by inserting Eq. (32) into Eq. (31), we obtain
Ar(As) = Ast, + K,As*0 /2. (33)

Recall that subscript o in the above equations denotes
sampling at r,, i.e., at As=0. Next by using Eq. (33) we
evaluate the unit-vector £(As) at a trajectory point s near
r, by (up to O(As?))

dr dAr(As)

(34)

Fig. 3. As approximation. The difference between the Eikonal s
and the beam local coordinate z;, As=s-z;, is expressed in terms
of on-axis point r, using a Taylor series. Unit-vectors f, and t,
denote the normal and tangent to the trajectory at r,, respec-
tively, and unit-vectors fi(As) and t(As) denote the normal and
tangent to the trajectory at point s.
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A(As) = h, - K, Ast,. (35)

For a given point r along the x; axis, we can write x,X;
=Ar+nn(As) where n is measured along the normal n
from the trajectory to point r. By substituting f in
Eq. (35) as well as Ar in Eq. (33), we obtain

X%y = t,As(1 - Kon) + 0y (K ,As%/2 +n). (36)

Finally, by inserting %X, in Eq. (4) to the left-hand-side of
Eq. (36) and comparing the two expressions, we obtain
the desired approximation for As using a Taylor expan-
sion in x; (recall that x, ~O(w™12)) as

As =x; cos (1 + K x; sin 9) + O(w™%?). (37)

Using Eq. (37), we note that x;, and As are of the same or-
der of w V2. The following asymptotic formulation re-
quires approximation of As up to order w™! [see Eq. (38)].
Therefore, approximation (31) up to O(As?) is justified.

Next we evaluate the asymptotic series of the Eikonal
partial derivatives. By using Eq. (37) we approximate (up
to 1)

s

— =0 Y2 cos 9+ K,0 1%, sin 20 + Cgpw?2,

X

s 1

— =1+ -K/Xi0w 'sin 29, (38)
‘9Zb 2

where the prime denotes an on-axis derivative with re-
spect to zy, i.e., K,=dK(zp)/ dzb|ro. In order to be consis-
tent in the asymptotic procedure, the coefficient Cg)
needs to be taken into account. Nevertheless there is no
need to evaluate it explicitly, since it cancels out upon in-
sertion into Helmholtz’s equation. The on-axis velocity
v(s) can now be approximated up to the desired order us-
ing a Taylor expansion:

dv
vls(xp,2p)]=vo+ —

As? + O(As®).
ds

S=Zb

(39)

By inserting As in Eq. (37), we obtain v(s)=vgp,(Xp,25)
+0(w3?), in which

/25

Vapp(Xpr2p) = Vo + 0 V2x,0! cos & + 0 % v K, sin 20

app
+ vl cos? 9)/2. (40)

Next we evaluate the partial derivatives in Eq. (30) for
ray-field (6). By applying d/dz;, to Eq.(6) and using
Eq. (38), we obtain

u,, = Ut(xp,2)exp[iW (xp,25) ], (41)
where
U? =iwv " (z,) Uy, 2p) + O(0?). (42)

Here and henceforth, we denote U? as the amplitude
function corresponding to Uz, with respect to the expo-
nent, and so forth. Using this definition, we can evaluate
in a similar manner
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iwcos ¥
U% = U(xp,25) + O(0?),
UO
{ o oKX sinzmiv;)]
Utb=—| ——+ 3
Uapp Vo
2iw
+——U,, +0(0"?),
v(zp)

ds \? o?

XX — I
U~ s = — p 5

b vapp

iw() cos® ¥ - K,v, sin 29) :|
U

+ 2

Vo

+ +
L Vo Vapp

+ (L)U;Cbgcb + O((DI/Z),

[ 2iwK X, sin 29 2iw¥? cos 191
Xy

w2 s ds  iwv,cos
U?v"b = — 2——T+— U
| Vapp %26 9%y v

iwv Xy cos O
- |Us, + O(w'?), (43)
UO

as well as the M_5 coefficients in Eq. (30):
M, = - cot 9 csc 9K, + O(w?),

My = (csc? 9 - 2)K, + O(w™?),

M = -2 cot 9(1 + csc IK X 2

+csc? 9K XrwY) + O(w™%?),

M, = csc 9(1 + csc 9K Xy V2

+csc? 9K K20 Y) + O(0™%?),

Ms=csc O+ (csc? 9 - 2)K X0 2
+cot? 9 csc WK 2w ' + O(0™2?).  (44)

By inserting ray-field (6) with Eqgs. (42)—(44) into Helm-
holtz’s equation (28), we obtain a partial differential equa-
tion for amplitude U(xy,zy).

Next we expand each element in the resulting equation
into power series of \; up to order of w [see discussion be-
low following Eq. (50)]. For simplicity, we normalize the
T:_¢ elements in Eq. (28) by the phase exponent exp(i\V),
i.e., the normalized T';, which is denoted by (an overbar)

Ty, is defined as
Ty =T, exp[- i¥] = M, (%y,2,) U, (45)

and so forth, so that Helmholtz’s equation (28) reads
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6
> Tixp,2) = 0. (46)
k=1

By inserting Eqs. (42) and (44) into Eq. (45) and collecting
terms of w-orders, we obtain

T,=-iwcot Jcsc ﬁKov;1U+ O(w'?). (47)

The same procedure is applied for Ty—Ts terms in
Eq. (46), and the resulting expressions are given in Ap-
pendix A.

Finally we evaluate the leading w-components in the

last term of the Helmholtz equation (28), namely, T. By
expending V~2(x;,2;) in Taylor series in the normalized
transverse coordinate, X;, about the trajectory point r,,
we obtain

2
21 12 2% N 3/2
V- =—2—w_ —Suxb—w"xb 3 —3—4 +O(w™?),
UO UO UO o
(48)
where (see details in Appendix B)
Vs, = IV/dnyly, = — sin Jv K, + cos v,
Vg, = SIN% B0,y + cOS® Hvg + Kov,) — sin 200K,
(49)

By inserting Eq. (48) with Eqs. (49) and (26) into the last
term of Eq. (28) and then expanding into power series of
w, we obtain

Te= v;3{ o? sin 9v, — 0¥?x,[cos 20K, + sin 29v]

1
- tw‘c%[sins Y, + SIn 301{(2,1)0 - E(COS 9
+3 cos 3K, — 2 cos & sin? 9K v,

— 3 cos? ¥ sin 9v.%v;! + cos? 9 sin ﬂvg:| }U +0(w'?).

(50)

By inserting series (47), (A.1)—(A.4), as well as Eq. (50),
into Helmholtz’s equation (46) and collecting coefficients
of the same order in w, we find that the coefficients of w?
and »*2 cancel out. By setting the highest term, the o co-
efficient, to zero we obtain the novel NoDope in inhomo-
geneous media in Eq. (9).

C. Tilted GB solutions

Following the motivation in the introduction we explore
in this subsection solutions of the NoDope in Eq. (9) that
are suitable for beam-type expansions. These wave solu-
tions are identified by the aperture distributions in
Eq. (1). Thus, we assume that the GBs are of the form in
Eq. (11). By inserting U(z,,%;) in Eq. (11) into the NoDope
in Eq. (9), and setting the resulting two coefficients of 3?%
and of 3_62 to zero, we obtain
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Zd_ +A(z)| ese? dv(z,)T(z,) -

dA U'(Zb)]
=0, (51)
2y U(zb)

as well as the Ricatti-type equation

I''(z,) + esc? dv(z,)T2(zp) + sin® dv~2(zp)v,,(25) = 0.

(52)
The Ricatti equation can be solved by setting
I'(z,) = sin® 9q'/(qu), (53)
which transforms Eq. (52) into the linear equation
v(23)q"(2p) = V' (25)q " (25) + U (2)q(23) = 0. (54)

By setting q'(zp) =v(zp)p(2p), we obtain I'(z) in Eq. (12), in
which p and q are evaluated by solving Eq. (13) along the
ray trajectory.

In order to facilitate the “initial” conditions for p and q
in Eq. (13), we approximate the aperture distribution in
Egs. (6) and (8) up to the relevant asymptotic orders.
First we approximate about the beam’s departure point
o=0:

v (o) = Vit - ViViPo, (55)
where we denote V= dv(0)/do|,-o. By using Eq. (55) we
evaluate

fs(") ) sx) sHx)V}
HNodo=— - . 56
) v (o)do v, 2V (56)

The asymptotic terms of s(x) are obtained by substituting
As=0, xp, =%, and z,=0 in Eq. (37). By inserting Eqgs. (56)
and (37) into Eq. (10) with Eq. (11), we obtain the re-
quired asymptotic approximation of the tilted GB over z
=0 plane as

x cos O
u(x,0) =A(0)expy iw
0
1 Kysin29 V{cos® 9
+—x2| '(0) + -
2 Vo V2

(57)

By comparing Eq. (1) with Eq. (57), we identify A(z,=0)
=1 and

I'(0) =Ty - K,Vy' sin 29 + V{ V2 cos? 0. (58)

Equation (13) is solved along the beam-axis with “initial”
conditions g(0) and p(0) such that I'(0)=sin? 9p(0)/¢(0),
for example, the ones presented in Eq. (14).

Finally, the amplitude A(z;) is found by inserting
Eq. (53) into Eq. (51) and evaluating the resulting differ-
ential equation by separation of variables. The result is
given in Eq. (15). The new GB waveobjects can now be
written explicitly by using Eqgs. (15) and (12) in Eq. (11),
and inserting into Eq. (6). This procedure yields the tilted
GB in Eq. (16).
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6. NUMERICAL EXAMPLE: PLANE-
STRATIFIED MEDIUM

The general solution in Subsection 4.B is applied in this
section to z plane-stratified medium with linear velocity
profile of

V(iz)=Vy+az, z=0, (59)

where V| is the wave-velocity at z=0 and « denotes the
wave-velocity gradient.

By solving the Eikonal equation for velocity profile (59),
one finds that the beam-axis is a circle that is identified
by center-point (x.,z.) and radius R, of

(x,2,) = (tan IVy/a,— Vo/a), R,=Vy/acos I, (60)

so that the beam-axis exhibits a turning point at x;=x,,
and

z;=—-R,(1-sec?). (61)
For a given on-axis point, r,=(x,,2,),

%=, 7[R~ (2o~ 201", (62)
where (x.,z,) are given in Eq. (60) and F corresponds to
observation points before or after the turning point, re-
spectively. The arclength o along the beam-axis can be

easily obtained from Eq. (60), giving

o=R,[sin"!(cos 9 +2,/R,) + I - 7/2]. (63)

A. Tilted GB Evaluation

Let r, =(x, ,z,) be the origin of the conventional or-
thogonal local beam coordinate system (s,n) over ray tra-
jectory (60). For a given observation point r=(x,z)

X=X, 2=z
x, =R, +sind|, z, =R, —cos V|,
d ° d

(64)

where

d(x,z) =V (x - xc)2 + (Z - 20)2' (65)

By inserting z,, in Eqgs. (64) into Eq. (63), we obtain

X=X
n=R,-d, s:Ro{sin‘1< 7 )+a}. (66)

Applying Snell’s law to the plane-stratified medium,
and using Eq. (63), we observe that the on-axis wave-
velocity is related to the arclength along the ray via

v(o) =V cos(¥ — ao cos 9/Vy)/cos O, (67)

so that Eq. (13) with initial condition (14) can be solved
for medium profile (59) explicitly. Thus, using Eq. (12),
I'(0)=sin? 9p(0)/q(o) where
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p(o) =p(0),

Vg p(0) ao
q(0)=1+————|sin| ¥-cos¥— | -sin 9 |,
a cos” ¥ Vo

(68)

where p(0) is given in Eq. (14). For observation point r
=(x,2), the (xp,2;) coordinates in the local non-orthogonal
system, are obtained by using basic trigonometry:

xp= £R[\(1-n/R,)*-cos® 9—sin¥], d=R,,

zp =s — R, sin"![x, cos %/(R, - n)]. (69)

Thus, the (x;,2,) coordinates in terms of (x,z) coordinates
are obtained by inserting d(x,y) in Eq. (65) with Eq. (60)
into Eqs. (69), and the analytic tilted GB at point (x,z) is
obtained by inserting the resulting (x;,z,) into Eq. (16)
with ¢ in Eq. (63), v(o) in Eq. (67), and p(o) and g(o) in
Eqgs. (68).

B. Conventional GB Evaluation

The conventional GB solution in Eq. (18) is obtained by
projecting the aperture complex curvature, Iy, on a plane
normal to the beam initial direction. Thus the conven-
tional aperture complex curvature is FNO(O)=F0/ sin2 9,
and the conventional beam field is obtained by solving
Eq. (13) along the ray trajectory, with initial condition I'y
[that is, by replacing I'g with FNO in Eq. (18)]. Coordinates
(n,s) are given in Egs. (66), and p and ¢ are given in
Egs. (68) with o=s and p(0)=Iy,.

C. Reference Field Evaluation

The reference field is obtained by applying the Fourier
transform in the x direction and propagating the result-
ing local plane-wave spectra via the WKBJ approxima-
tion. Thus the reference field in z>0, which is denoted
here by u,.dx,z), is given by the following spectral repre-
sentation [38,39]:

1 —Tilted GB
---Conventional GB|
0.8 —Reference GB

Jul

0.6/
0.4+
0.2+
0= ‘
—4 -2 0 2 4
X/

(a)

Vol. 27, No. 8/August 2010/J. Opt. Soc. Am. A 1847

1 | io
uref(x’z) = Vo 27TF0 f d‘fc(g)
12\

& _
X <m) explioV(x,2;8)],

@ (cos & — &)2 - : oy
(x,z,f)— Tgro"' 0 fo {(Z 76) Zz

+ V{,lgx] , (70)

where {(z,§8) = \J’V(Z)/Vz(z)—§2, Im (=0, and C(¢) is given by

24(8) =
f {(2',8)dz’ —f ((2’,§)d2’}
0 0

(71)

CO=1-i 2iw
= i exp 7

In Egs. (70) and (71), z,(¢) denotes the turning point of a
local plane-wave with spectral variable ¢ where {(z;,¢)
=0. The second term in Eq. (71) is identified as the caustic
reflection coefficient of the local plane-wave of spectral &
By applying the saddle-point procedure to the phase inte-
gral in Egs. (70) one can easily observe that the local
plane-waves in the spectral representation interfere con-
structively along and in the vicinity of the beam-axis that
emanates from the origin with angle 9 with respect to the
x-axis.

The [-o,»] integration in Egs. (70) is numerically
implemented by integration over an effective contribution
interval around the phase on-axis stationary point, &
=&y=cos I, i.e., [ —AE, & +A¢&]. We set the spectral inter-
val Aé=\Mc?/ Im{FBl}w, which corresponds to the maxi-
mal spectrum attenuation of e™™. The sampling rate 8¢ is
chosen according to 6§<A¢/M, so that the sampling rate
is small on the scale of the integrand oscillation period. It
was found that in order to achieve a numerical conver-
gence with a maximal relative error of 10~® on-axis it is
sufficient to choose M =5 and 66=10"3A¢/M.

2 —Tilted GB
Z U ||---Conventional GB
—Reference GB
1 L 4

24 =) 0 2,4

50

(b)

Fig. 4. Tilted GB (solid curve), the conventional GB (dashed curve), and the reference field (light gray) curves that are sampled over a
line perpendicular to the beam-axis. (a) Absolute value, (b) phase in radians. The inhomogeneous parameters are V=1, «=0.01, and the

fields parameters are w=5000, I'y=:/3, 9=15° and s,,=32X\,.
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D. Error Comparison

In Fig. 4 we plot the tilted GB (solid curve), the conven-
tional GB (dashed curve) and the reference field (light
gray) curves that are sampled over a line perpendicular to
the beam-axis (where the conventional GB carries a sym-
metrical Gaussian distribution). The line intersects the
beam-axis at arclength s,,=32\,, where \y=27V/w de-
notes the local wavelength at the beam’s departure point.
The inhomogeneous medium is given in Eq. (59) with V,,
=1, «=0.01, and the field parameters are »=5000, I
=i1/3, and 9=15°. Figures 4(a) and 4(b) presents the field’s
absolute value and phase (in radians), respectively, as a
function of x,/\y. The plots reveal good agreement be-
tween the tilted GB and the reference field, whereas the
conventional GB plots exhibit a significant error in the
off-axis field, especially in the phase (Fig. 4(b)), where the
reference and tilted GBs are not symmetrical with respect
to the x;, =0 on-axis point.

In Fig. 5 we compare the tilted GB Ly error norm with
respect to the reference field (70) to the corresponding er-
ror of the conventional GB. The error is evaluated along
an observation line that is normal to the beam-axis and is
located at an on-axis arclength of s,,, according to the
norm definition

1 L/2
H-‘Z[u’uref] = \/ZJ |u(sm’n) - uref(smin)|2dn’ (72)
-L/2

where u denotes either the tilted or the conventional GB
and n denotes the conventional (orthogonal system) nor-
mal coordinate.

The figure plots the relative error with respect to the
on-axis reference field, u,.As,,,0), in percent as a function
of the on-axis location s,,, which is normalized by the
homogeneous  medium  collimation  length F),
=V, sin® 9 Im I'y! [31]. The error was evaluated for three
different 9 values: 10°, 20°, and 30°. Here we set Re I’y
=0 so that the waists are located on the z=0 plane. The
curves are arranged in pairs with continuous and dashed

15

10¢

0.2 04 0.6 0.8 1

s /F,

m- h

Fig. 5. L, error norms of the tilted and approximated GBs in
percent as a function of the normalized on-axis arclength s,,/F},
are plotted for three different values of 9. The curves are ar-
ranged in pairs with continuous and dashed lines corresponding
to errors of the tilted GB and the approximated one, respectively.
The medium and field parameters are as in Fig. 4. The figure
demonstrates the enhanced accuracy of tilted GBs within the col-
limated beam domain s,, <0.7F},.
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lines, corresponding to errors of the tilted GB and the con-
ventional one, respectively. Each of the curve pairs in Fig.
5 share a common gray shade corresponding to the field’s
spectral angle 9.

The figure demonstrates that for s,,/F), <0.7 tilted GBs
exhibit better accuracy over the conventional beams, that
is in the well-collimated regime. Note that beam-type ex-
pansions are used so as to take advantage of the analytic
simplicity that is introduced by the spatial and spectral
localization of these waveobjects. Thus, these expansion
schemes are tuned such that the GBs remains well-
collimated within all domains of interest. Similar results
were obtained for homogeneous media in [32].

7. CONCLUDING REMARKS

We have presented the concept of utilizing non-orthogonal
coordinates for tilted GB propagation in 2D inhomoge-
neous media, in order to obtain asymptotically exact
beam type solutions to the wave equation in the time-
harmonic regime. By utilizing these novel coordinates, we
attained in Eq. (9) a novel non-orthogonal generalization
of the paraxial wave equation which was termed NoDope.
While the procedure of obtaining the NoDope in a homo-
geneous medium [31] is straightforward, the correspond-
ing procedure in inhomogeneous media exhibits an addi-
tional degree of complexity due to the inexplicit
expressions for the ray-field form in which the phase is
given by integration along ray trajectories. Applying a
consistent asymptotic procedure in ray centered non-
orthogonal coordinates was feasible, and a generic novel
parabolic wave equation was obtained.

Asymptotically exact beam-type solutions to the
NoDope were presented and termed tilted Gaussian
beams. Comparing the tilted GB fields to the conventional
(orthogonal) ones, it was found that the two have essen-
tially the same form. The difference is in the complex cur-
vature I' sampling point and in transverse coordinate x,
values. For a given observation point, r, the complex cur-
vature in the tilted GB solution is sampled on-axis at the
origin of the non-orthogonal coordinate system z,,
whereas in the conventional solution it is sampled on-axis
at the origin of the orthogonal system.

The present work introduced a new family of
asymptotic beam-solutions a priori matched to Gaussian
distributions over planes that are tilted with respect to
the beam-axes. Through numerical example we demon-
strated that tilted GBs exhibit enhanced accuracy over
the conventional ones in the well-collimated regime.
Thus, these novel waveobjects whose numerical evalua-
tion is as cost effective as the conventional ones can be
considered as another significant contribution to beam-
type spectral expansion schemes.

APPENDIX A: EXPLICIT EXPRESSIONS FOR
T, ;
Following the procedure that was introduced in Egs. (45)
and (47), we obtain for Tj,j=2—5:

_ cot ¥ cos 29 csc 9K

To=iw U+0(0"?), (A.1)

Vo
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_ 2 cos ¥ cot ¥ 2(cot 9 +sin 20)K 4 cos® Yv,, cos® 9 cot Yv? cot 9
T3 = w2—2 + w3/2a_cb cot O 3 3 +w 6373127 1 + 203/2—2
UO UO UO o (o]
(2 cos O cot & + cot? ¥ ecsc K> cos® 9K’ cot & cos Y|, (5 — 3 cos 29)cot 9K,
+ 29?% 5 + 23?% 5 . 5 - 2%% cos ¥ cot ¥ 3
vO vO vO vO

+

3

Vo

Vo Vo

2
o

3 U2

_ csc & 2 cot v, csc? 9K
2 3/2= =
T,=|-w + w7y - —wcesc V| x

v

o] o

4 3

0 Vo Vo

cos? 9v/?  cos? Ov 2cscd
+ 3%7 —-x2 U+io U,, +0(0"),

cos? Sv!! 2 cot ¥ 2 cot Y esc 9K 2 cos 9 cot Jv,, 2 cot ¥ cos ¥
— )| tU-]iw®? +iwk, Uy, —io——————

3 Uzb+0(w1/2),

Vo

Vo

(A.2)

2csc2 IK? 1_2(cos 39 -5 cos F)csc 9Kv,  X; sin 20K’ +iv],

3 + 2

2
o Vo

+ —Xp
: 2

v

(A.3)

_ cos 9 cot & cot 9 csc 9 (cos 39— 3 cos K sin ¥ cos® Yv, cos 9K cos® O cot 9v,?
Ts= —w2—2+w Xy, 5 3 +w| 2i - 3x; 1
UO 2 UO UO vo vU
cot 9 _cos ¥cot® H2cos 29 -3)K>  cos ¥ cot Yv,, (5 -3 cos 29)cot 9Kv, cos? dv!
-2Csp—5— +X} 3 - + X2 cos ¥ cot & - +— U
v? v? v vl v

2
[

2 cot 9 2 cot Fesc 9K 2 cos 9 cot Jv,,
+ | iw? + LwXy

U, U, v

APPENDIX B: DERIVATION OF EQUATION
(49)

The gradient operator in terms of the orthogonal ray-
centered coordinates (s,n) is given by

V=14, +th s, (B.1)
with
h=1-K(s)n, (B.2)

where (1,h) are the orthogonal coordinate metric coeffi-
cients. The derivative in the direction of the unit-vector x,
is given by

0y, = (Xp-10)d, + hl(%, - t)o,. (B.3)
In order to evaluate d;, on-axis, we set x,=0 (or n=0), h

=1, t=t,, A=A, s=2; and d,=4,, in Eq. (B.3). Thus, on-
axis

dy, =sin 93, + cos 97, . (B.4)

The second directional derivative in the direction of %X, is

given by

&xbxb = }A(b . V(f(b . V) = [(}A(b . ﬁ)ﬁn A\ )A(b + h_l(f(b . f?)ﬁs \aE }A(b]
(B.5)

Since unit-vectors (t,f) are invariant with respect to nor-
mal coordinate n, by applying either d, or J, to Eq. (B.1)
and inserting Eq. (3), we obtain, respectively,

” Uz, + o csc 9Uzz, + O(0'?). (A.4)

0,V =02, +t[h 13, + K(s)h23,), (B.6)
and
0,V =10[#, + K(s)h™19,] + t[h ', — hh 20, — K(s)d,].
(B.7)
By inserting Egs. (B.6), (B.7), and (3) into Eq. (B.5) and

sampling on-axis at r,, we obtain

y x, = COS> ﬂ&gb +sin 2‘9‘73217 +sin? 942, + sin 29K,9,,

Xp%b
- cos? 9K, 9,. (B.8)

Finally, using K,=-v,(z;)/v(zp) in Eq. (B.8), we obtain the
final result in Eq. (49).
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