
Two-dimensional relativistic longitudinal Green’s
function in the presence of a moving planar

dielectric–magnetic discontinuity

Tatiana Danov and Timor Melamed*

Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
*Corresponding author: timormel@ee.bgu.ac.il

Received September 19, 2011; revised October 23, 2011; accepted October 26, 2011;
posted October 26, 2011 (Doc. ID 154988); published February 14, 2012

The current contribution is concerned with obtaining the relativistic two-dimensional (three-dimensional in re-
lativity jargon) Green’s function of a time-harmonic line current that is embedded in a moving dielectric–magnetic
medium with a planar discontinuity. By applying a plane-wave (PW) spectral representation for the relativistic
electromagnetic Green’s function of a dielectric–magnetic medium that is moving in a uniform velocity, the exact
reflected and transmitted (refracted) fields are obtained in the form of a spectral integral over PWs in the so-called
laboratory and comoving frames. We investigate these spectral representations, as well as their asymptotic
evaluations, and discuss the associated relativistic wave phenomena of direct reflected/transmitted rays and
relativistic head waves (lateral waves). © 2012 Optical Society of America
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1. INTRODUCTION AND STATEMENT OF
THE PROBLEM
Green’s functions of electromagnetic (EM) wave propagation
in a moving medium have been a subject of a continuing
research [1–4]. The dyadic Green’s functions of an homoge-
neous isotropic dielectric–magnetic medium have been de-
rived in closed form in [5] and an alternative simple
derivation was presented in [6].

Plane-wave (PW) spectral representations have been an im-
portant tool for solving relativistic scattering and diffraction
problems. Such spectral representations have been utilized
for scattering of a PW by a uniformly moving perfectly con-
ducting half-plane [7], for the two-dimensional problem of
the uniformly moving perfectly conducting cylinder [8], for
solving the EM field radiated by an infinitely long thin wire
antenna that uniformly translates in a direction parallel to
a plane interface [9], for the EM radiation from fractal anten-
nas [10], and for EM wave scattering from moving rough
surfaces [11].

EM scattering from moving objects is of fundamental
importance in antenna and scattering theory, cellular and
satellite communication, radar applications, inverse scatter-
ing, remote sensing, and more. Although impressive advances
have been made in this field, little effort has been made to
adjust basic stationary wave theories [such as the geometrical
theory of diffraction (GTD), the uniform theory of diffraction,
and direct time-domain methods] to the scatterer dynamics.
Basic wave phenomena of relativistic scattering, such as
high-frequency/short-pulsed canonical forms and diffraction
coefficients, are not yet fully understood. Furthermore, little
attention has been given to problems concerning scattering in
a moving dielectric medium where the electrodynamics intro-
duces wave phenomena that are unique to special relativity
and that are not found in classical (stationary) GTD, such
as relativistic lateral waves and their wave phenomena,

Čerenkov-type scattering and its high-frequency forms,
and more.

Recently, a PW spectral representation of the relativistic
electric and magnetic dyadic Green’s functions of a uniformly
moving dielectric–magnetic medium was obtained in [12]. By
applying a simple coordinate transformation, scalarization of
the EM vectorial problemwas obtained in which the EM dyads
are evaluated from Helmholtz’s free-space (isotropic) scalar
Green’s function. The spectral PW representations of the dya-
dic Green’s functions were obtained by applying the spatial
two-dimensional (2D) Fourier transform to the scalar Green’s
function in both the under and over phase-speed medium
velocity regimes.

In the current work, we apply the spectral representations
in [12] in order to obtain the EM Green’s function of a time-
harmonic line current that is located at �y; z� � �0; 0� and is
embedded in a uniformly moving dielectric–magnetic medium
with a planar discontinuity. In K -frame, the medium is moving
in a constant translation velocity v � vẑ, where we assume
that the velocity is in the direction of the z axis. Unit vectors
in the conventional Cartesian coordinate system, �x; y; z�, are
denoted by a hat over bold fonts. Under the framework of spe-
cial relativity, a three-dimensional (space–time) event �y; z; t�
in the so-called laboratory frame (K -frame) is mapped to the
event �y0; z0; t0� in the comoving frame (K 0-frame) by the Lor-
entz transformation (LT) and the inverse LT (ILT), which are
defined for the K 0-frame velocity of v � vẑ by

y0 � y; z0 � γ�z − βct�; t0 � γ�t − βz∕c�; (1)

y � y0; z � γ�z0 � βct0�; t � γ�t0 � βz0∕c�; (2)

where c � 1∕
����������ϵ0μ0

p
is the speed of light in vacuum and
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β � v∕c; γ � 1∕
�������������
1 − β2

q
: (3)

Here and henceforth, all physical quantities in the K 0-frame
are denoted by a prime. The EM field transformation that
is corresponding to v � vẑ is given by [13]

E0�r0; t0� � V · �E� v × B�;
B0�r0; t0� � V · �B − v × E∕c2�;
D0�r0; t0� � V · �D� v ×H∕c2�;
H0�r0; t0� � V · �H − v × D�; (4)

where r0 � �y0; z0�, the r � �y; z� and t coordinates are trans-
formed into �r0; t0� via ILT in Eq. (2), and the (diagonal) dyadic
V is given by

V � diagfγ; γ; 1g: (5)

Here and henceforth, underlined boldfaced letters denote ma-
trices/dyads. The inverse of Eq. (4) is form invariant and thus
can be obtained by interchanging all primed and unprimed
quantities where V0 � V and v0 � −v.

We are aiming at obtaining the relativistic 2D (3D in rela-
tivity jargon) Green’s function of the time-harmonic line
current,

J�r; t� � I0δ�z�δ�y� exp�jωt�x̂; (6)

that is located in the so-called laboratory K -frame at r �
�y; z� � �0; 0� (see Fig. 1). The source is embedded in a uni-
formly moving dielectric–magnetic medium with a planar
discontinuity. The medium’s discontinuity is located at z �
z0 > 0 at time t � 0 in K -frame. The medium is assumed to
be a linear isotropic dielectric–magnetic in the frame at rest
(the “comoving” K 0-frame) with ϵ01;2 and μ01;2 denoting its
permittivity and permeability, where indices 1 and 2 refer
to either side of the discontinuity. Thus, the constitutive rela-
tions in K 0-frame are

D0 � ϵ01E0; B0 � μ01H0; z0 < z00;

D0 � ϵ02E0; B0 � μ02H0; z0 > z00; (7)

where z00 � γz0 denotes the interface location in K 0-frame,
which is obtained from LT in Eq. (1). In the current contribu-
tion, we assume that the medium is lossless and dispersion
free and that its velocity does not exceed the K 0-frame phase

velocities of c∕
���������������
ϵ01;2μ01;2

q
.

The outline of the paper is as follows: in Section 2 we briefly
describe the spectral representation of the incident field that
was derived in [12] and, in Section 3, the spectral representa-
tion of the Green’s function in the presence of a moving
discontinuity is obtained by applying Maxwell’s boundary
conditions in K 0-frame. The spectral representation is
obtained in both K 0- and K -frames of reference in
Subsections 3.A and 3.B, respectively. The asymptotic evalua-
tions of the incident, reflected, and transmitted (refracted)
waves in the high-frequency regime are obtained in Sections 4
and 5 for fields in K 0- and K -frames, respectively.

2. SPECTRAL REPRESENTATION OF THE
INCIDENT FIELD
The incident EM field in K -frame is the field that is radiated by
the current line source in Eq. (6). The line current is em-
bedded in a uniformly moving dielectric–magnetic medium
of (K 0) permittivity and permeability of ε01 and μ01, respectively
(for all r0). In K -frame, the corresponding constitutive rela-
tions can be stated as [6]

D � ϵ01α · E� c−1mẑ ×H;

B � μ01α ·H − c−1mẑ × E; (8)

where

m � β n02
1 − 1

1 − n02
1 β2

; n0
1 � c

����������
ϵ01μ01

p
; (9)

and α is the diagonal matrix

α � diagfα; α; 1g; α � 1 − β2
1 − n02

1 β2
: (10)

The spectral representation of the incident EM field that is
denoted by Ei�r; t� can be obtained by formulating the current
source Green’s function in K 0-frame where the constitutive re-
lations have simple expressions, while the source density
function involves distributions that are moving along the z
axis with velocity v (see, for example, [14]). In the current con-
tribution we use the results that were obtained in [12] in which
the incident EM field was derived directly in K -frame by using
the normalized longitudinal coordinate and wavenumber

�z � ���
α

p
z; �k1 � ω

������������
αϵ01μ01

p
: (11)

Note thatm in Eq. (9) and α in Eq. (10) are positive (assuming
that the medium velocity does not exceed the medium’s phase
velocity of c∕n0

1) so that
���αp
> 0 is real.

By using these definitions, the incident electric field is
decomposed into PWs in the form

Ei�r; t� � 1
2π

Z
dky~E

i�r; t; ky�; (12)

where the incident electric field spectral PWs that are denoted
by ~Ei are given by

~Ei�r; t; ky� � −
I0ωμ01

���αp

2�kz1
x̂ exp�jΨi�;

Ψi � ωt − kyy − �kz1�z� kmz; (13)

Fig. 1. Physical configuration of the relativistic Green’s function of a
line current that is embedded in a dielectric–magnetic medium with a
planar discontinuity. The medium is uniformly moving in the z direc-
tion with a velocity of v � vẑ in the laboratory frame and the discon-
tinuity is located in z � z0 at t � 0. The medium is an isotropic
dielectric–magnetic in the comoving frame with ε01;2 and μ01;2 denoting
its permittivity and permeability on either side of the discontinuity.
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where k � ω∕c is the wavenumber in vacuum, and the long-
itudinal wavenumber that is denoted by �kz1 is given by

�kz1 �
���������������
�k21 − k2y

q
; Re �kz1 ≥ 0; Im �kz1 ≤ 0. (14)

Here and henceforth, over tilde (∼) denotes PW constituents.
The integration contour is described in Fig. 2 where the upper
Riemann sheet is define by Re �kz1 ≥ 0.

The integral in Eq. (12) represents the incident electric field
as a superposition of the spectral PWs in z > 0 half-space.
Propagating PWs occur for spectral wavenumbers jkyj ≤ �k1.
For all other ky values, �kz1 is imaginary and the PWs are eva-
nescent and decay exponentially away from the source loca-
tion. The incident magnetic field that is denoted by Hi�r; t� is
given by the PW spectral integral

Hi�r; t� � 1
2π

Z
dky ~H

i�r; t; ky�; (15)

over the magnetic spectral PWs

~Hi�r; t; ky� �
I0
2�kz1

�−�kz1 ŷ�
���
α

p
kyẑ� exp�jΨi�; (16)

where Ψi is given in (13).
The scattering wave is obtained by transforming the

incident EM field spectral PWs in Eqs. (13) and (16) to the
K 0-frame and applying Maxwell’s boundary conditions at
the interface. By inserting Eqs. (12) and (15) into Eq. (8), we
obtain the electric displacement and magnetic flux density
spectral PW representations, which are required for the EM
field transformation in (4). Thus

Di�r; t� � 1
2π

Z
dky ~D

i�r; t; ky�;

Bi�r; t� � 1
2π

Z
dky~B

i�r; t; ky�; (17)

where the corresponding spectral PWs fields are

~Di�r; t;ky��−
I0
2�kz1

�
ωμ01ε01α3∕2 −

m�kz1
c

�
x̂ exp�jΨi�;

~Bi�r; t;ky��−
μ01

���αp
I0

2�kz1

�� ���
α

p
�kz1 −

mω
c

�
ŷ−kyẑ

�
exp�jΨi�: (18)

3. SPECTRAL REPRESENTATION OF
GREEN’S FUNCTION
In this section we derive the spectral representations of the
reflected and transmitted waves on either side of the inter-
face, z0≶z00.

A. Fields in K0-Frame
By inserting the spectral representations in Eqs. (12), (15),
and (17) into the field transformation in Eq. (4) and using
the LT in Eq. (1), we obtain the spectral integral of the incident
EM field in K 0-frame:

Ei0�r0; t0� � 1
2π

Z
dky~E

i0�r0; t0; ky�;

Hi0�r0; t0� � 1
2π

Z
dky ~H

i0�r0; t0; ky�; (19)

where the spectral PWs are given by

~Ei0�r0; t0; ky� � −~E0
0x̂ exp�jΨi0�;

~Hi0�r0; t0; ky� � −
1
η01

ω
ω0

~E0
0

�
γα
��kz1
�k1

− n0
1β
�
ŷ −

ky
���αp

�k1
ẑ
�

× exp�jΨi0�: (20)

Here η01 �
������������
μ01∕ε01

p
, n0

1 is given in Eq. (9), �kz1 is given by
Eq. (14), the amplitude ~E0

0 is given by

~E0
0 �

I0ωμ01α3∕2
2�kz1

γ�1 − n0
1β�kz1∕�k1�; (21)

and the phase Ψi0 is given by

Ψi0�r0; t0; ky� � ω0t0 − kyy0 − k0z1z
0; (22)

where

ω0 � ωγα�1 − n0
1β�kz1∕�k1�; k0z1 �

���
α

p
γ��kz1 − n0

1β�k1� (23)

are identified as the temporal frequency (Doppler shift) and
the longitudinal wavenumber of the spectral PW in K 0-frame.

Next we define normalized z0 and t0 coordinates:

�z0 � ���
α

p
γz0; �t0 � ���

α
p

γt0; (24)

and recast Eq. (22) in the form

Ψi0�r0; t0; ky� � �ω0�t0 − kyy0 − �k0z1�z
0; (25)

where we define the normalized frequency and longitudinal
wavenumber:

�ω0 ≡ ω0∕
���
α

p
γ � ω

���
α

p �1 − n0
1β�kz1∕�k1�;

�k0z1 ≡ k0z1
���
α

p
γ � ��kz1 − n0

1β�k1�: (26)

The reflected and transmitted fields on either side of the
(stationary) interface at z0 � z00 can be obtained from the
well-known results of PW scattering from stationary dielec-
tric–magnetic planar discontinuity (i.e., the Fresnel coeffi-
cients) since, for a given ky, the incident spectral PW is a
time-harmonic field that carries the temporal frequency of
ω0 in Eq. (23). Thus, the reflected EM field, which is denoted
by Er0 and Hr0, is given by a spectral representation similar to
Eqs. (12) and (15):

Fig. 2. Integration contour of the PW spectral representation in
Eq. (14). The upper Riemann sheet is define by Re �kz1 ≥ 0.
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Er0�r0; t0� � 1
2π

Z
dky~E

r0�r0; t0; ky�;

Hr0�r0; t0� � 1
2π

Z
dky ~H

r0�r0; t0; ky�; (27)

over their spectral PWs

~Er0�r0; t0; ky� � −~E0
0Γ0�ky�x̂ exp�jΨr0�;

~Hr0�r0; t0; ky� �
1
η01

Γ0�ky�~E0
0
γ−1
�k1

ω
�ω0 �k0z1 ŷ� kyẑ� exp�jΨr0�: (28)

Here ω0 is given in Eq. (23) and the phase Ψr0 is given by

Ψr0�r0; t0; ky� � �ω0�t0 − kyy0 − �k0z1�2�z00 − �z0�; (29)

with �z0 in Eq. (24) and �z00 �
���αp γz00. In Eq. (28), Γ0�ky� denotes

the Fresnel reflection coefficient [13]:

Γ0�ky� �
μ02�k0z1 − μ01�k0z2
μ02�k0z1 � μ01�k0z2

; (30)

where

�k0z2 �
�����������������������������������
�ω02ε02μ02 − k2y∕αγ2

q
; (31)

and �ω0 and �k0z1 are given in Eq. (26).
Similarly, the transmitted field that is propagating in

z0 > z00 is given by the spectral integrations

Et0�r0; t0� � 1
2π

Z
dky~E

t0�r0; t0; ky�;

Ht0�r0; t0� � 1
2π

Z
dky ~H

t0�r0; t0; ky�; (32)

over the transmitted spectral PWs

~Et0�r0; t0; ky� � −~E0
0T

0�ky�x̂ exp�jΨt0�;
~Ht0�r0; t0; ky� � −

1
ω0μ02

~E0
0T

0�ky��k0z2 ŷ − kyẑ� exp�jΨt0�; (33)

where the phase Ψt0 is given by

Ψt0�r0; t0; ky� � �ω0�t0 − kyy0 − �k0z2 ��z0 − �z00� − �k0z1�z
0
0; (34)

and the transmission coefficient T 0�ky� of the interface at
z0 � z00 is given by

T 0�ky� � 1� Γ0�ky�: (35)

The spectral PWs in Eq. (33) are propagating in (y0; z0 > z0o)
half-space in the direction of the unit vector κ̂t0 � ŷ sin φt0 �
ẑ cos φt0 where, by using the phase Ψt0 in Eqs. (34) and (31),
we obtain

sin φt0 � ky
�ω0 ���αp γ

���������
ε02μ02

p : (36)

B. Fields in K-Frame
The spectral integral of the reflected EM fields in K -frame are
obtained by inserting Eqs. (27) and (28) with Eq. (7) into

Eq. (4) and using the ILT in Eq. (2). The resulting spectral
integrals of the EM fields are

Er�r; t� � 1
2π

Z
dky~E

r�r; t; ky�;

Hr�r; t� � 1
2π

Z
dky ~H

r�r; t; ky�; (37)

over the spectral PWs

~Er�r; t; ky� � −x̂~E0
0Γ0�ky�

�
1 − n0

1β
���
α

p ω�k0z1
�ω0�k1

�
γ exp�jΨr�;

~Hr�r; t; ky� �
~E0
0Γ0�ky�
η01

�
γ ω

���αp �k0z1 − �ω0n0
1β�k1

�ω0�k1 − ωn0
1β

���αp �kz1
ŷ� ω

�ω0
kyγ−1
�k1

ẑ
�

× exp�jΨr�: (38)

Here �ω0 is given in Eq. (26) and the phase Ψr is given by

Ψr�r; t; ky� �
���
α

p
γ2��ω0 − βc�k0z1�t − kyy

−
���
α

p
γ2��ω0βc−1z� �k0z1�2z0 − z��: (39)

The spectral integrals in Eq. (37) are evaluated asymptotically
in Section 5.

The spectral integrals of the transmitted EM field in K -
frame are obtained by inserting Eqs. (32) and (33) with
Eq. (7) into Eq. (4) and using ILT in Eq. (2). This procedure
yields

Et�r; t� � 1
2π

Z
dky~E

t�r; t; ky�;

Ht�r; t� � 1
2π

Z
dky ~H

t�r; t; ky�; (40)

where the spectral PWs are given by

~Et�r; t; ky� � −~E0
0T

0�ky�γ
�
1� cβ

�k0z2
�ω0

�
x̂ exp�jΨt�;

~Ht�r; t; ky� � −
1
η02

~E0
0T

0�ky�
�
γ
�
n0
2β�

c�k0z2
n0
2�ω0

�
ŷ −

cky
n0
2ω0 ẑ

�

× exp�jΨt�: (41)

Here �k0z2 is given in Eq. (31) and the phase Ψt is given by

Ψt�r; t; ky� �
���
α

p
γ2��ω0 � cβ�k0z2�t − kyy

−
���
α

p
γ2���ω0βc−1 � �k0z2�z� ��k0z1 − �k0z2�z0�: (42)

Note that, by evaluating ~Dt and ~Bt in the same manner, the
resulting spectral PWs and the ones in Eq. (41) satisfy the con-
stitutive relations in Eq. (8) by replacing ε01 and μ01 with ε02 and
μ02, respectively.

4. ASYMPTOTIC EVALUATION
IN K0-FRAME
In the high-frequency regime, the dominant contributions to
the scattered field spectral integrals in Eqs. (19), (27), and
(32) arise from the vicinity of spectral saddle points. In order
to evaluate the spectral integrals asymptotically, it is
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convenient to apply here the spectral angle ~φ, which is defined
for a given spectral wavenumber ky by the transformation

ky � �k1 sin ~φ: (43)

The spectral angle eliminates the branch points ky � ��k1 of
the spectral ky integrals since �kz1 � �k1 cos ~φ. Next we evalu-
ate the incident and scattered fields in K 0-frame asymptoti-
cally and identify the associated relativistic wave phenomena.

A. Incident Wave
To simplify the form of spectral integrals in Eq. (19), we
introduce the incident wave coordinates, �Ri0;φi0�, that are de-
fined for a given event �y0; z0; t0� by the transformation [see
Fig. 4(a)]

Ri0 cos φi0 � �z0 � v�t0; Ri0 sin φi0 � y0: (44)

By using these coordinates and ~φ in Eq. (43), we recast
Eq. (19) in the Fourier integral form:

Ei0�r0; t0� � −x̂Ii�r0; t0� exp�jΨi0
0 �; Ψi0

0 � γαωt0 � βn0
1
�k1�z0:

(45)

In Eq. (45), Ii�r0; t0� denotes the spectral integral

Ii�r0; t0� � 1
2π

Z
C
d~φf i�~φ� exp�jΨi0�r0; t0; ~φ�� (46)

over the integration contour in Fig. 3, where the phase Ψi0�~φ�
and the amplitude f i�~φ� are given by

Ψi0�r0; t0; ~φ� � −�k1Ri0 cos�~φ − φi0�; f i�~φ� � I0μ01
���
α

p
ω0∕2.

(47)

Here ω0 that is defined in Eq. (23) is a function of ~φ:

ω0�~φ� � ωγα�1 − n0
1β cos ~φ�: (48)

Upon setting ∂~φΨi0 � �k1Ri0 sin�~φ − φi0� � 0, we find that the
phase in Eq. (47) has a saddle point ~φi

s � φi0. The amplitude
f i�~φ� has no singularities near the saddle point and the inte-
gral in Eq. (46) can be evaluated asymptotically along the stee-
pest descent path (SDP) using the isolated saddle point
contribution [15]:

Ii�r0; t0� ∼ IiSDP �
�����������������������������

1
2πj∂2~φΨi0�~φi

s�j

s
f i�~φi

s�

× exp�jΨi0�~φi
s� � jπ∕4�; (49)

where the ± sign corresponds to ∂2~φΨi0�~φi
s�≶0.

By inserting Eqs. (47) into Eq. (49), we obtain

IiSDP � ���
α

p
μ01ω0�φi0� I0 exp�−j�k1Ri0 − jπ∕4�����������������

8π�k1Ri0p ; (50)

where ω0�φi0� is obtained from Eq. (48).
In a similar manner, using ~Hi0 in Eq. (20) as well as ~φ in

Eq. (43) and the coordinates in Eq. (44), we obtain

Hi0�r0; t0� ∼ 1
η01

IiSDP exp�jΨi0
0 �ĥi0�φi0�;

ĥi0�φi0� � −ŷ�cos φi0 − n0
1β� � ẑ sin φi0∕�γ ���αp �

�1 − βn0
1 cos φi0� ; (51)

where η01 �
������������
μ01∕ε01

p
.

The physical interpretation of the asymptotic field in
Eq. (50) is plotted in Fig. 4(a). At time t0, the normalized time
�t0 � ���αp γt0 so the source is located in �z0 � −v�t0 over the �z0 axis.
The source is moving at constant speed away from the station-
ary interface at �z0 � �z00. Here R

i0 in Eq. (44) is identified as the
distance from the moving source to the observation space–
time event �y0; �z0;�t0�. The asymptotic scalar field IiSDP resem-
bles the 2D asymptotic scalar Green’s function in free space in
which the phase is commutated along Ri0. Thus the main con-
tribution to the integral in Eq. (19) arises from the ray that
emanates from the moving source and moves along the
straight line to the observation point. Apart from Ri0 depen-
dence on t0, the electric field in Eq. (45) exhibits harmonic os-
cillations of exp�αγωt0�. Note that the field accumulates an
additional z0-dependent phase term in Eq. (45) due to the
z-directed medium velocity.

B. Reflected Wave
The asymptotic evaluation of the reflected wave is obtained
by introducing the reflected wave polar coordinates, �Rr0;φr0�,
which are defined for a given event �y0; �z0;�t0� by the transfor-
mation [see Fig. 4(b)]

Rr0 cos φr0 � 2�z00 − �z0 � v�t0; Rr0 sin φr0 � y0: (52)

By using Eq. (52), we recast the spectral integrals in Eq. (27) in
the form

2

C

Fig. 3. Integration contour in the spectral ~φ plane.
Fig. 4. Geometrical optics interpretation of the ray field forms:
(a) the incident field in Eq. (50) and (b) the reflected field in Eq. (58).
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Er0�r0; t0� � −x̂Ir�r0; t0� exp�jΨr0
0 �;

Ψr0
0 � γαωt0 − βn0

1
�k1��z0 − 2�z00�: (53)

In Eq. (53), Ir�r0; t0� denotes the spectral integral

Ir�r0; t0� � 1
2π

Z
C
d~φf r�~φ� exp�jΨr0�r0; t0; ~φ��; (54)

over the integration contour in Fig. 3 with

Ψr0�r0; t0; ~φ��−�k1Rr0 cos�~φ−φr0�; f r�~φ��Γ0�~φ�f i�~φ�; (55)

with f i�~φ� in Eq. (47). Γ0�~φ� denotes the reflection coefficient

Γ0�~φ��
μ02�cos ~φ−n0

1β�−μ01
���������������������������������������������������������������������
n02
21�1−n0

1β cos ~φ�2−sin2 ~φ∕�αγ2�
q

μ02�cos ~φ−n0
1β��μ01

���������������������������������������������������������������������
n02
21�1−n0

1β cos ~φ�2−sin2 ~φ∕�αγ2�
q ;

(56)

with n0
21 ≡ n0

2∕n
0
1. The reflection coefficient has two branch

points that are denoted by ~φb1;2 . By setting the square root
in Eq. (56) to zero, we obtain in range ∣~φb1;2 ∣ ≤ π∕2

cos ~φb1;2 �
n0
21n

0
2βαγ2 �

�����������������������������������������������������������������������������������������
�n0

21n
0
2βαγ2�2 − �n02

2 β2αγ2 � 1��n02
21αγ2 − 1�

q
n02
2 β2αγ2 � 1

: (57)

The branch points define two relativistic critical angles for
which the spectral transferred PWs propagate parallel to
the interface [see Eq. (36)].

The integral in Eq. (54) has the stationary point ~φr
s � φr0.

We distinguish two scattering regimes: under critical angle in-
cidence in which ~φb1 < ~φr

s < ~φb2 and over critical angle inci-
dence in which either ~φr

s < ~φb1 or ~φr
s > ~φb2 .

1. Under Critical Angle Incidence
The integration contour in this regime can be deformed into
integral along the SDP as plotted in Fig. 5(a). The reflected
wave is evaluated asymptotically by using the isolated saddle
point contribution in (49). This procedure yields

Ir ∼ IrSDP � Γ0�φr0� ���
α

p
μ01ω0�φr0� I0 exp �−j�k1Rr0 − jπ∕4������������������

8π�k1Rr0p ; (58)

where, from Eq. (48), ω0�φr0� � ωγα�1 − βn0
1 cos φr0�. In a simi-

lar manner, by using ~Hr0 in Eq. (28) we obtain

Hr0�r0; t0� ∼ 1
η01

IrSDP exp�jΨr0
0 �ĥr0�φr0�;

ĥr0�φr0� � ŷ�cos φr0 − n0
1β� � ẑ sin φr0∕�γ ���αp �

�1 − βn0
1 cos φr0� : (59)

The physical interpretation of the asymptotic EM field in
Eq. (58) is plotted in Fig. 4(b). The source, which is located
in �z0 � −v�t0 over the �z0 axis, is moving at speed v away from
the stationary interface. Here Rr0 in Eq. (52) is identified as the
length of the reflected ray from the interface to the observa-

tion space–time event �y0; �z0;�t0�. The ray path satisfies Snell’s
law in �y0; �z0� space (i.e., the angle of reflection equals the an-
gle of incidence at time �t0).

2. Over Critical Angle Incidence
The reflected field asymptotic evaluation for over critical an-
gle incidence is preformed by deforming the integration path
of Ir in Eq. (54) to the integration contour in Fig. 5(b). The
electric field is consist of two contributions

Er0�r0; t0� � Er0
SDP�r0; t0� � Er0

b �r0; t0�; (60)

where Er0
SDP denotes the contribution of the integration along

the SDP and E0
b denotes the contribution of the integration

around the branch cut of ~φb1 (or ~φb2) in Eq. (57). The asymp-
totic SDP contribution that arises from the vicinity of the sta-
tionary point in the upper Riemann sheet is given in Eq. (53)
with Eq. (58).

In the high-frequency regime, the main contribution to E0
b

arises from points in the vicinity of the corresponding branch
point in the upper Riemann sheet [16]. Therefore, in order to
evaluate E0

b asymptotically, we apply a first-order Taylor ap-
proximation to Γ0�~φ� in Eq. (56) about the branch point. Thus,
for ~φ ≈ ~φb1;2 ,

Γ0�~φ�≃ 1� j2μ01

���������������������
2 sin ~φb1;2

p �����������������
~φ − ~φb1;2

p
γ ���αp ��������������������������������������������������������������������������

�cos ~φb1;2 − n0
1β��1 − n0

1β cos ~φb1;2 �
q :

(61)

Equation (54) with Eq. (61) has the generic form of the
branch-cut integral [16]:

Ib �
Z
Pb

d~φ
�
a� b

��������������
~φ − ~φb

p �
exp�Ωq�~φ��

∼
b

���πp

�−Ωq0�~φb��3∕2
exp�Ωq�~φb��; (62)

where Pb is a contour encircling the branch cut in the positive
sense [see Fig. 5(b)], Ω is a large parameter, a and b are

Fig. 5. Integration contour in ~φ plane for the reflected field (a) under
and (b) over critical angle incidence.
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constants, q�~φ� is a regular in the vicinity of ~φb, and exp�Ωq�~φ��
decays along the contour. Thus, by applying Eq. (62) to
Eq. (54) with Eqs. (57) and (61) for large real k1 values we
obtain

Er0
b �r0; t0� ∼ −x̂Er0

b1D
0Er0

b2E
r0
b3 exp�jαγωt0�; (63)

where

Er0
b1 �

I0
���αp μ01ω0�φr����������������
8π�k1L0

1

q exp�jΨ0
b1�; (64)

with

Ψ0
b1 � −�k1L0

1 − �π∕4� � βn0
1
�k1�z00; L0

1 � ��z00 − v�t0�∕ cos θ0c:
(65)

By comparing Eq. (64) to Eqs. (45) with (50), E0
b1 is identified

as the incident ray that propagates from the source and im-
pinges on the interface at the critical angle (angle of total re-
flection) θ0c that is defined by

sin θ0c � n0
21 (66)

(see Fig. 6). The D0 term in Eq. (63), which is given by

D0 �
2j sin2θ0c

����������
�k1L0

1

q
���αp γ�cos θ0c�3∕2

���������������������������
cos θ0c − n0

1β
p �������������������������������

1 − n0
1β cos θ0c

p ; (67)

is identified as the relativistic diffraction coefficient. The Er0
b2

and Er0
b3 terms in Eq. (63) are given by

Er0
b2 �

exp�−j�k2L0
2�

��k2L0
2�3∕2

; L0
2 � y0 − L0

1 sin θ0c � ��z0 − �z00� tan θ0c;

(68)

where �k2 � ω
������������
αϵ02μ02

p
, and

Er
b3
0 � exp�−j�k1L0

3� exp�jβn0
1
�k1��z00 − �z0��;

L0
3 � ��z00 − �z0�∕ cos θ0c: (69)

The Er0
b2 field term in Eq. (68) describes the relativistic lateral

ray that is propagating along L0
2 parallel to the interface in the

z0 � z0�0 medium. The lateral ray ��k2L0
2�−3∕2 decay along its tra-

jectory is due to the Er
b3
0 field radiation back to n0

1 medium. By
comparing Eqs. (53) with (58) to Eq. (69), the Er0

b3 field term is
identified as the ray that is propagating from the interface at
angle θ0c to the observation point �y0; z0� along L0

3 (see Fig. 6).

Finally, by sampling the amplitude of ~Hr0 in Eq. (28) at ~φ �
~φb1;2 and applying the same analytic procedure, we obtain the
asymptotic head-wave magnetic field:

Hr0
b �r0; t0� ∼

1
η01

Er0
b1D

0Er0
b2E

r0
b3 exp�jαγωt0�ĥr0�~φb1;2�;

ĥr0�~φb1;2� �
ŷ�cos ~φb1;2 − n0

1β� � ẑ sin ~φb1;2∕�γ
���αp �

�1 − βn0
1 cos ~φb1;2�

: (70)

C. Transmitted Field
The exact transmitted EM field in K 0-frame is given by a spec-
tral representation in Eq. (32). To simplify the form of the
spectral integrals, we introduce the transmitted wave polar
coordinates, �Rt0

1 ; R
t0
2 ;φt0

1 ;φt0
2�, that are defined for a given

space–time event �y0; z0; t0� by the transformation (see Fig. 7)

Rt0
1 cos φt0

1 � �z00 � v�t0; Rt0
2 cos φt0

2 � �z0 − �z00; (71)

where angles φt0
1 and φt0

2 satisfy

tan φt0
2 �

�n0
21αγ2�−1 sin φt0

1 −n
0
2�1−n0

1β cos φt0
1�β tan φt0

1�����������������������������������������������������������������������
�1−n0

1β cos φt0
1�2 − sin2φt0

1∕n
02
21αγ2

q : (72)

Equation (72) is identified later as the relativistic Snell’s law
[see discussion following Eq. (83)]. Note that, by inverting the
transformation in Eq. (71), we obtain

y0 � Rt0
1 sin φt0

1 � Rt0
2 sin φt0

2 : (73)

By using Eq. (71) and the complex angle ~φ in Eq. (43), we
recast the spectral integrals in Eq. (32) in the form

Et0�r0; t0� � −x̂ exp�jΨi0
0 �r0; t0��It�r0; t0�;

It�r0; t0� � 1
2π

Z
C
d~φf t�~φ� exp�jΨt0�r0; t0; ~φ��; (74)

where Ψi0
0 is given in Eq. (45), the amplitude

f t�~φ� � T 0�~φ�f i�~φ�; (75)

with f i in Eq. (47), and the spectral phase Ψt0�~φ� is given
by

Fig. 6. Geometrical optics interpretation of the lateral (head) wave
in Eq. (63).

Fig. 7. Geometrical optics interpretation of asymptotic transferred
field in Eq. (80).
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Ψt0�r0; t0; ~φ� � −�k1

�
Rt0
1 cos�~φ − φt0

1� � Rt0
2

�
sin φt0

2 sin ~φ� n0
21 cos φt0

2

����������������������������������������������������������������������
�1 − n0

1β cos ~φ�2 − sin2 ~φ∕n02
21αγ2

q ��
: (76)

The Fresnel transmission coefficient in the amplitude in Eq. (75) in terms of the spectral angle ~φ is given by

T 0�~φ� � 2μ02�cos ~φ − n0
1β�

μ02�cos ~φ − n0
1β� � μ01n0

21

����������������������������������������������������������������������
�1 − n0

1β cos ~φ�2 − sin2 ~φ∕n02
21αγ2

q : (77)

The stationary point that is denoted by ~φs1 is obtained by
setting ∂~φΨt0�~φ�j~φs1

� 0. By using Eqs. (71), (75), and (76), we
find that ~φs1 satisfies

y0 − tan ~φs1��z00 � v�t0� − tan ~φs2��z0 − �z00� � 0; (78)

where ~φs2 is related to ~φs1 by

tan ~φs2 �
�n0

21αγ2�−1 sin ~φs1 − n0
2�1 − n0

1β cos ~φs1�β tan ~φs1����������������������������������������������������������������������������
�1 − n0

1β cos ~φs1�2 − sin2~φs1∕n02
21αγ2

q :

(79)

By comparing Eqs. (78) and (79) with Eqs. (72) and (73), we
deduce that ~φs1 � φt0

1 and, therefore, ~φs2 � φt0
2 .

By inserting Eqs. (78), (79) with (77) and (76), (75) into
(49), we obtain the asymptotic expression of the transferred
field:

Et0�r0; t0� ∼ −x̂Et0
1E

t0
2 exp�jωγαt0�; (80)

where

Et0
1 � ���

α
p

μ01ω0�φt0
1�
I0 exp�−j�k1Rt0

1 � jβn0
1
�k1�z00 − jπ∕4�����������������

8π�k1Rt0
1

q (81)

and

Et0
2 � T 0�φt0

1� exp�−j�k2Rt0
2������������������������

1� Rt0
2∕ρt0

p ; (82)

where T 0�φt0
1� is given in Eq. (77), and

ρt0 � Rt0
1

sin φt0
2 cos

2φt0
1

×
�

n0
12�1−β2�n02

1 −n02
2 ��sin φt0

1 −n
0
2β tan φt0

1

n0
12�1−β2�n0

1
2 −n0

2
2��−n0

2β∕cos3φt0
1 �n0

12 tan
2φt0

2

�
: (83)

Equation (78) sets the ray path that is shown in Fig. 7,
where observation event �y0; �z0; t0� is represented by φt0

1 ,
φt0
2 ; R

t0
1 ; R

t0
2 via Eq. (71). Following this definition, we identify

Eq. (78) as the path from the source along a straight line with
angles ~φt

s1;2 � φt0
1;2 and lengths Rt0

1;2 in �z0 < �z00 or �z0 > �z00, re-
spectively. Thus Eq. (79) [or Eq. (72)] describes the relativistic
Snell’s law for this specific scattering scenario. This relation
adjusts the angles to the source velocity. The spectral Doppler

shift in Eq. (23) changes the conventional (stationary) Snell’s
law, which is obtained for (K 0-frame) time-harmonic excita-
tion. Note that, by setting β � 0 in Eq. (79), we obtained
the well-known (stationary) Snell’s law.

The transferred field in Eq. (80) consists of Et0
1 in Eq. (81)

and Et0
2 in Eq. (82). By using Eq. (50) in Eq. (45), Et0

1 is identi-
fied as the incident electric field at point P over the interface.
This point is the intersection of the incident ray, which is ema-
nating from the source with departure angle φt0

1 and the inter-
face at �z0 � �z0 0. Thus, Rt0

1 is identified as the radius of
curvature of the incident wavefront at point P (see Fig. 7).
The second term in the transferred field, Et0

2 , is identified as
the ray field that is propagating in �z0 > �z0 0 medium along
the optical path Rt0

1 . By using Eq. (83), we identify ρt0 as the
principal radius of curvature of the transferred wavefront
at point P.

The corresponding magnetic transferred field is obtained
from Eq. (33), giving

Ht0�r0; t0� ∼ 1
η02

Et0
1E

t0
2 exp�jωγαt0�ĥt0�φi0�;

ĥt0�φi0� �
−ŷ cos φt0

2 � ẑ sin φt0
1∕

�
n0
21γ

���αp �
�1 − n0

1β cos φt0
1�

: (84)

5. ASYMPTOTIC FIELDS IN K-FRAME
A. Incident Field
The asymptotic fields in K 0-frame are transformed to K -frame
by applying the inverse field transformation of Eq. (4) and ILT
Eq. (2) to Eqs. (45), (50), and (51) with K 0-frame constitutive
relations in Eq. (7). This results in

Ei�r; t� ∼ −x̂Ei
x�r� exp�jωt�;

Ei
x�r� � I0ωμ01α1∕2

exp �−j�k1Ri − jπ∕4����������������
8π�k1Ri

p exp�jkmz�;

Hi�r; t� ∼ 1
η01

Ei
x�r� exp�jωt�

�
−ŷ cos φi � ẑ

���
α

p
sin φi

�
; (85)

where Ri �
����������������
y2 � �z2

p
and cos φi � �z∕Ri. These expressions

are used later for identifying the incident ray field contribution
to the reflected and transmitted fields.

B. Reflected Field
In Subsection 4.B we distinguished two reflection regimes in
which the K 0-frame incident ray is impinging on the interface
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with an angle that is larger or smaller than the critical angle. In
this subsection, we identify the K -frame relativistic wave phe-
nomena associated with these two scattering regimes.

1. Under Critical Angle Incidence
The under critical angle scattering regime for which in K 0-
frame ~φb1 < ~φr

s < ~φb2 was investigated in Subsection 4.B.1.
By applying ILT we obtained that, in K -frame, the stationary
point is given by

~φr
s � cos−1

� γ2 ���αp �2�z0 � vt� − z�1� β2������������������������������������������������������������������������
y2 � γ4α�2�z0 � vt� − z�1� β2��2

p �
. (86)

By inserting Eqs. (53) and (59) with Eq. (58) into Eq. (7) and
then into the field transformation in Eq. (4) and using ILT in
Eq. (2), we obtain the reflected field (isolated saddle point
contribution) in K -frame in the form

Er�r; t� ∼ −x̂Er
x�r; t� exp�jΨr�; (87)

where

Ψr � γ2α�1� β2n02
1 �ωt − βγ2

���
α

p
�k1�z�1� n02

1 �∕n0
1 − 2n0

1z0�;

Er
x�r; t� � ωμ01γ2α3∕2Γ�φr�

I0 exp
�
−j�k1Rr − j π4

�
����������������
8π�k1Rr

p ; (88)

with

Rr �
����������������������������������������������������������������������
y2 � γ4α�2�z0 � vt� − z�1� β2��2

q
;

cos φr � γ2
���
α

p �2�z0 � vt� − z�1� β2��∕Rr;

Γ�φr� � �1 − 2βn0
1 cos φr � β2n02

1 �Γ0�φr�. (89)

Γ0 is given in Eq. (56).
In a similar manner,

Hr�r; t� ∼ 1
η01

Er
x exp�jΨr�ĥr�φr�;

ĥr�φr� � ŷ�cos φr�1� β2n02
1 � − 2βn0

1� � ẑ sin φr∕γ2 ���αp

1 − 2βn0
1 cos φr � β2n02

1

: (90)

2. Over Critical Angle Incidence
The over critical angle scattering regime for which, in
K 0-frame, ~φr

s < ~φb1 or ~φr
s > ~φb1 was investigated in

Subsection 4.B.2. ~φr
s in K -frame is given in Eq. (86). Following

the discussion preceding Eq. (60), the reflected electric field
consists of two contributions

Er�r; t� � Er
SDP�r; t� � Er

b�r; t�; (91)

where Er
SDP denotes the contribution of the integration along

the SDP, which is given in Eq. (87), and Eb denotes the con-
tribution of the integration around the branch cut of ~φb1 (or
~φb2) in Eq. (57). Following the K 0-frame representation in
Eq. (63), we define

L1 �
���
α

p
γ2�z0 � β2z − vt�∕ cos θ0c;

L3 �
���
α

p
γ2�z0 − z� vt�∕ cos θ0c;

L2 � Rr sin φr − L1 sin θ0c �
���
α

p
γ2�z − z0 − vt� tan θ0c: (92)

By inserting Eqs. (63) and (70) into Eq. (7) and then into the
field transformation in Eq. (4) and using ILT in Eq. (2), we
obtain

Er
b�r; t� ∼ −x̂Er

b1DE
r
b2E

r
b3 exp �jαγ2ω�t − βz∕c��; (93)

where

Er
b1�

I0γ2α3∕2μ01ω�φr����������������
8π�k1L1

p �1−2βn0
1 cosφr�β2n02

1 �exp�jΨb1�; (94)

with

Ψb1 � −�k1L1 − π∕4� βn0
1
�k1

���
α

p
γ2z0: (95)

By comparing Eq. (64) to Eqs. (45) with (50), Er
b1is identified

as the incident ray that propagates from the source and im-
pinges on the interface at the critical angle θ0c in Eq. (66).
The D term in Eq. (93), which is given by

D � 2j sin θ0c
����������
�k1L1

p
���αp γ�cos θ0c�3∕2

���������������������������
cos θ0c − n0

1β
p �������������������������������

1 − n0
1β cos θ0c

p ; (96)

is identified as the relativistic diffraction coefficient. The Er
b2

and Er
b3 terms in Eq. (93) are given by

Er
b2�

exp�−j�k2L2�
��k2L2�3∕2

; (97)

Er
b3� exp�−j�k1L3� exp�jβn0

1
�k1

���
α

p
γ2�z0 − z� vt��: (98)

C. Transferred Field
By applying the field transformation to Eq. (80), we obtain the
asymptotic refracted fields in K -frame:

Et
x�r; t� ∼ −x̂Et

1�r; t�Et
2�r; t� exp�jαγ2ω�t − βz∕c��; (99)

where

Et
1 � I0μ01γ2α3∕2ω�φt

1�
exp�−j�k1Rt

1 � j�k1n0
1β

���αp γ2z0 − jπ∕4�����������������
8π�k1Rt

1

q ;

Et
2 �

T�φt
1� exp�−j�k2Rt

2����������������������
1� Rt

2∕ρt
p ; (100)

with T�φt
1� � T 0�1 − n0

1β cos φt
1 � n0

2β cos φt
2�. T 0 is given in

Eq. (77), and

cos φt
1 �

���
α

p
γ2�z0 � vt − β2z�∕Rt

1;

cos φt
2 �

���
α

p
γ2�z − z0 − vt�∕Rt

2; (101)
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Rt
1 �

�����������������������������������������������������
y2P � αγ4�z0 � vt − β2z�2

q
;

Rt
2 �

�������������������������������������������������������������
�y − yP�2 � αγ4�z − z0 − vt�2

q
; (102)

where yP � Rt0
1 sin φt0

1 denotes the y-axis value of the intersec-
tion point P of the incident ray and the interface (see Fig. 7).

6. CONCLUSIONS
In this paper we have investigated the canonical problem of
the 2D longitudinal Green’s function of a uniformly moving
(lossless and dispersion-free) dielectric–magnetic medium
with a planar discontinuity. The exact solution in the form
of PW spectral integrals, as well as asymptotic solutions, were
obtained in both the laboratory frame and the comoving
frame. Interpretation of the relativistic asymptotic solutions
in the form of ray fields was given. New canonical ray forms
were derived for the relativistic incident fields, reflected
fields, lateral wave, and transmitted (refracted) fields. This re-
search and future investigations can eventually lead to estab-
lishing a relativistic geometrical theory of diffraction.
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