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The paper deals with inhomogeneous medium Green’s functions in the phase-space
domain by which the phase-spagecal) spectral distributions of the field, scattered

by a high contrast object due a genetic time-harmonic incidence, are evaluated.
Two forms of phase-space Green'’s functions are considered: one that links induced
sources in the configuration-space to phase-space distributions of the scattered
field, while the other one directly links the phase-space distribution of the incident
field to phase-space distributions of the scattered field. The scattering mechanism is
described in terms of local samplings of the object function which are localized in
the object domain according to the scattered- and incidence-processing parameters.
Applications in the field of inverse scattering may be expected to yield fast and
efficient algorithms, due to the capability of analytically evaluafiftgward) scat-

tering Green’s functions. €004 American Institute of Physics.

[DOI: 10.1063/1.1737812

I. INTRODUCTION

The conventional spectral elements for wave synthesis are Green’s functions or plané waves.
However, tracking thesglobal basis functions in inhomogeneous environments or through inter-
actions with objects is complicated, and the resulting representation integrals are spectrally dis-
tributed. Invoking constructive interference yields local observables in the form of ray fields, but
in many situations a wider spectral range of basis functions is reqirestead of using global
basis functions that lead to distributed integrals, the representation may be localziexdti by
using phase-spac@9 spectral representations in which fbeal basis wave-functions are beams.

Each beam basis function then accounts for the radiation from a finite region in the source domain,
thereby leading to compact spectral representations.

Several PS expansion schemes for wave propagation have been introducpdinEspurce
configurations the source field can be expanded into an angular spectrum of beams that emanate
from the source in all directioigsee also extension to the time-domain in Ref.Aldifferent
class of expansions applies fextended sourceonfigurations, utilizing a spectrum of shifted and
tited beams which emanate in all directions from all points in the source domain. Several alter-
native formulations for time-harmonic fields have been introdicédn Refs. 8, 10, and 11, they
have been placed within a unified PS format in which a PS distribution of beam propagators is
locally matched to the source distribution. Recently, discrete PS spectral representations have been
introduced, based on the discrete Wilson bi&sind on frame theory?

Inhomogeneous medium Green’s functions are of fundamental significance for modeling wave
propagation, inverse scattering, numerical methods, etc. Green'’s functions are wave objects that
link sources in the configuration spaag, to the configuration observation domain, by a
convolution integral. These wave objects are global in nature in the sense that each poimt in the
source domain contributes t@all points in ther-observation domain, hence, the difficulty in
evaluating of these wave objects, both analytically and numerically. Since modeling wave propa-
gation directly in the configuration-space implies global Green'’s functions, transferring the fields
via phase-spac@vindowed) Fourier transform facilitates the search afteralized Green’s func-
tion, which can be easily evaluated both asymptotically and numeri¢sélg Ref. 3 and also
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FIG. 1. Physical configuration; the object functioxr) is illuminated by an incident wavel,(r) defined by its initial field
distribution over thez=0 plane, whereas, the scattered figfr) is measured on a data plaze=0 between which the
object is situated.

extension to the time-domain in Ref. )14-urthermore, since wave interactions with scattering
medium have been found to be local in nature, it is suggested that the evaluation of Green's
functions should not be carried out in the configuration-space but rathephase-spacéPS
transform domain, which extracts local radiation properties of the data and by that synthesizes
local wave-medium interactiort3:!® The above considerations have been applied in previous
publications to the simple case of scattered field due to plane-wave incidence within the Born
approximation>*®The present contribution constitutes a general framework for the synthesis and
analysis oinhomogeneoukackground scattering due tayanericincident wave with applications
to inverse scattering, integral equation representation for propagation and scattering, and more.
Following this strategy, we are concerned with the field scattered by an object which is
characterized by a wave velocity of(r), wherer=(x4,X,,z) is the conventional Cartesian
coordinate system, embedded in a homogeneous medium of savevspeee Fig. 1 The total
field u(r), with ae '“! time-dependence assumed and suppressed, satisfies the scalar Helmholtz
equation

[VZ2+K3(r)] u(r)=0, k(r)=wlv(r), )

subject to Sommerfeld radiation conditiénVu(r) —iku(r)=o(r 1), for r—c.

In the present investigation, the propagation of the figld) in the inhomogeneous medium
is formulated by the use of an inhomogeneous backgraytd) wave speed profile, and the
deviation of the scattering mediuo(r) from the backgrouna,(r) is described by the so-called
object function

O(r)=vzlv (1) —vy %(1)]. @)

The scattering object is illuminated by an incident fialg(r), defined by the initial field distri-
bution onz=0 planeug(x). Note thatu,(x) consists of incidenti.e., having sources in<0 half
space field constituents only, and is therefore, independent of the background medium.

We are concerned with applying RBcal) spectrum techniques to the scattered field, there-
fore, the scattered field constituents shall be evaluated over planar apéotusesvation plangs
characterized by®=0, wherer®=(x%,z°) with x3=(x},x3) are the Cartesian coordinate system
associated with the observation plaisee Fig. 1L The scattered field over the observation plane,
up(x®)=[u(r) —uy(r)]|;s=o, satisfies the Lipman—Schwinger integral equation

uﬁ(x5)=k§f A3’ O(r")Hu(r)Gy(rs,r'")|,s—0, ko= wlv,, ©)
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whereu=u‘b+ up is the total field propagating in, background medium, an@,, is the inhomo-
geneousackgroundmedium Green’s function

[V24+K2(1)] Gp(r,r)=—8(r—r"), kp(r)=wlvy(r). (4)

Here and henceforth, subscriptdenotes background dependent constituents. Equétiode-
scribes the scattered field in terms of induced sour@ds;)u(r’), which are radiating in the
perturbed mediunmv,(r). The background ,-medium Green’s functionGy(r,r'), propagates
these induced sources to the aperzire 0 via the spatial convolution integral {8). Relation(3)

has been used for the so-called “Distorted Wave Born Approximation,” in which the total field
u(r’) on the right-hand side ofd), is replaced by the incident field,(r') propagating in the
background mediuntsee also discussion followin@5)). This approximation is used for itera-
tively solving (forward propagation and scattering problems, and for inverse scattering. In the
following sections we will aim at obtainin@S Green’s functionthat link sources to scattered
fields in a PS transform domain, rather than in the configuration-space.

II. CONFIGURATION-SPACE TO PHASE-SPACE GREEN’S FUNCTIONS

In order to obtairPS Green’s functionghat link sources to scattered PS field distributions, we
shall project the scattered field distribution onto the(le8al) domain. In the next subsections, we
shall define theglobal) plane-wave spectrum and PS transform of the scattered field which are
required for the formulation of the PS Green’s function representation.

A. Space-wave-number (global ) transforms

The wave numbe(plane-wave spectrumi, (&), of an initial field distribution,uy(x), on a
planar surface is defined by the spatial Fourier transform

U&= | uwooexn—ik, %) (5a

where, here and henceforth, plane-wave spectral distribution is denoted by superscri{pg), In
&=(£,,&,) is the normalized spatial wave number vectaith respect tok,= w/v,), and x
=(X1,X5). Accordingly, the reconstruction of the initial field distribution is

ko |2
uo(X)=(§> fdzf TUo(&) expliky &+ X). (5b)

The normalization with respect to the wave numkganticipates extension to the time-domain,
renderingé frequency-independent, with direct geometrical interpretation in terms of the spectral
plane-wave propagation angles. For the sake of simplicity, integration limits are omitted on all
integrals extending from-o to +o.

B. Phase-space processing of the scattered field

In this section, we summarize the PS analysis and synthesis formalisms that parameterize the
scattered field on the initial plarE=0 (for further details refer to Ref. 11For the desiredbcal

spectral analysis of the field distribution, we generateRBespectral distributionuf,(fs), via a
windowed Fourier transform of the distribution in the configuration-space,

US(X%)= f d23 UR(X®) WS (x5 X5),  WE(xE X5) =wS(x*— ) ex iko&® - (x*=%°)], (6)

where, here and henceforth, superscsipienotes scattered field constituents, the asterisk denotes
the complex conjugate and®= (x5,&£%). Here,w%(x®) is a spatial window function, centered at

x°=(0,0). The vectoiX® incorporates the configuration-spectri#8 coordinate$x®, £5), whence
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Uﬁ(fs) is referred to as @S distributionof the initial field distributionuy(x®) over thez®=0

plane. The transform if6) extracts fromug(x®) the local spectrum around ti€-directed propa-
gation at the window cente®. In typical propagation/scattering problems, the spectrum at a given
X® is localized about a preferred spectral directifx®) that describes théstationary direction
of propagation of the field at® point (the so-called Lagrange manifgldConsequently, the PS
spectrumUS(X®) is localizeda priori about the subdomaing, £%) = (X5, £5(x%)) in the X5-domain
(see synthetic examples in Refs. 8).1Mote that the PS spectrum of the scattered field depends on
the specific background medium profilg,(r), since according t@3), both the inhomogeneous
medium Green'’s function, the medium object function, and the incident field propagating in the
vp(r) medium, affect the scattered field.

The degree of spatial and spectral localization achieved by the PS transform can be quantified
in terms of the spatial and spectral RMS widths of the window, defined, respectively, by

1 1/2
Axs:N_SU d?(x%2 [wi(x9)[?| (7a)
k 1/2
2 2 2
Ap=5— NsUdélgSl le(gﬂ , (7
whereWs(£°) is the plane-wave distributiotba) of the windoww>(x®), and
1/2 ko 1/2
Ne= f A2 () |2 :z[ f 2w £5)|2 (®)

is theﬁiS norm ofw®. Note thatA,sA ;s=1/k, according to the uncertainty principle. The inverse
PS transform is given By

ko |2 — _ —
u) = (2 Ns) [ a5 ugoe weoe, ©)

whereW? is given in(6). This representation has been used to obtain a PS field representation for
homogeneous medium in the 2Refs. 8, 17 and 3D(Ref. 1)) frequency- and time-domains.

C. PS Green'’s functions

In order to establish the locally-transformed Data—Object relation, we ii8giinto (6),
obtaining

ug(ﬁ):kgf d3r'o(r Hu(r)By(r';X®), (10)
with the scattering propagators
Bg(r’;fs)=f d?x® WS (x5 X%)Gp(rSr')|,s—o, (12)

whereGy(r,r") is the background medium Green'’s function(#) andWs(x®; X®) is given in(6).
Equation(10) describes the local spectrum of the data in terms of a spatial convolution integral of
the induced source®(r’)u(r’) in the configuration-space, withy(r’ XS) Comparing relation

(10) with the Lipman—Schwinger equation (8), one finds that the two have essentially the same
form. Therefore,By(r'; X%) may be regarded asonfiguration-space to phase-spat@S2P$
Green’s functiorn(see Appendix A for operator representation of the CS2PS Green'’s funclios

CS2PS Green’s function propagates the contribution of the configuration-space induced sources to
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FIG. 2. Configuration-space to phase-space Green'’s function; the CS2PS Green’s function is obtained by a spatial inte-

gration of the induced sourcag(r’)O(r’) multiplied by the scattering propagatch)(r’;Ys). This results in a link
between the total field propagating in the background medium, and a single phase-space constituent of the scattered field,

Uf,(fs). The integration domain is limited to points near B beam-axis; thus, unlike the Lipman—Schwinger integral
(3), the PS spectral distribution of the scattered field synthesizes wave interaction only near the beam-axis.

the PS transform of the data over the observation plane. Also, fidim we note that the scat-
tering propagators satisfy the wave equation indhebackground medium, and therefore, for a
proper choice of window functiow®, may be evaluated asymptotically using the method de-
scribed in Sec. IV Jsee also Fig. R Finally, usingu(r) =ug(r) +ug(r), we rewrite(10) in the

form
US(X%)=US(X%)+U(X®), (12)
where
Uﬂ?5=k§fd%'ouvuurwsartiﬁ, (13)
and
Uii%=k§[d%'ouwumrwsarni%, (14

in which U} andU? are the contributions of the sources induced by either the incident or scattered
fiels, respectively. The above exact formalism may be used for the Distorted Wave Born Approxi-
mation (DWBA) in which the total fieldu(r’) in the exact formulatior(3) is replaced by the
incident fielduy(r’) propagating in the background medium. The DWBA is often used for solving
high contrast scattering iteratively, especially in inverse scattering scenarios. In the framework of
the DWBA, we may use

UR(X5) =~ U(X9). (15)

The scattering propagatorB;(r’;X%), result in a beam wave objects which, for the case of the
Gaussian window ir{23), are Gaussian beams localized about ray trajectdries beam-axes
Therefore, the CS2PS mapping(ib0) (or (13)), is obtained by integrating over induced sources
locally about beam-axesThe ray trajectories that describe the beam-axes depend on the back-
ground mediumv, and on the processing parametersdetermines the emanating point of the ray

from the data plane whiIES sets its direction in the’ (source domain(see Fig. 2
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The CS2PS representation(itD) or (12), has several advantages over the Lipman—Schwinger
representation(a) the inhomogeneous Green’s functioB,(r,r") is difficult to evaluate both
analytically and numerically, while the scattering propagators may be evaluated asymptotically
(see Sec. IV (b) the integration domain i3) includes the entire object domain, since the
induced source€)(r')u(r’) exist in the entire object domain and contribute to each pdimn
the observation plane. Using the CS2PS relation, the integration domain is limited to points near
the local Green’s functiofbeam) axis, since the beam exhibits Gaussian decay away from its axis
(see(49) and Fig. 2. Though the induced sources exist in the entire object domain, the PS
transform for a given set of PS variablé€, extracts from the scattered field only those constitu-
ents that are scattered in the directighand are aimed at the poirt; and finally,(c) there exist
applications in which the PS spectrum, rather than the scattered field, needs to be evafi#ted.
such cases, direct evaluation using PS Green’s functighOnis more efficient than the conven-
tional route of possibly solving3), followed by PS processing vi®).

The CS2PS mapping if10) exhibitsa priori localization in the source domain only about the
coordinategransverseo the beam-axis. Furthermore, the incident figldr), propagating in the
inhomogeneous background mediumg(r), has no closed form analytic expression. In the next
section, we shall apply local processing to betatteredandincidentfields, resulting ina priori
localization in all three coordinates, as well as analytieslymptoti¢ expressions for the local
incident propagators and Green’s functions.

lll. PHASE-SPACE TO PHASE-SPACE GREEN’'S FUNCTIONS

Following the strategy outlined in the previous section, we shall now consider applying PS
processing to botlscatteredand incidentfields. The PS transform operations over the scattered
field have been introduced in Sec. Il B. Next we define, in a similar way, the operations related to
local processing of the incident field.

A. Local processing of the incident field

We generate thencident fieldPS spectral distribution in a way similar ¢6), i.e.,
ui(%)zf d?x uh(x) W* (XD, W(;XH)=wi(x—X)exdik,&' - (x=X)],  (16)

where, as in6), w'(x) is a spatial window function. Here and henceforth, superserifinotes
incidentfield constituents an¥' = (Y'r,?) are the incidenc®S coordinatesA key feature in(16)
is that, unlike the scattered local spectrum, the incident oriediependenbf the propagation
medium,v(r). The window’s propertiesRMS widths, etd. have been presented in Sec. IIB
(relations(7), (8)).

Using the inverse transforifas in(9) with s—i), the PS superpositiofi6) of the initial field
can be propagated into the regiar 0, giving

up(r)=

Ko \2[ o o o
%—N) [ a5 uByrx, @

whereN' is theﬁ)z( norm of w' (similar to (8)), and thePS incident propagator ﬁis the field

radiated by each PS window elemewi(x;ﬁ) in (9), and can therefore be expressed by
Kirchhoff-type integration of the form

B{)(r;ﬁ):f 2W (x: XD, Gp(r:1) |3 o, (18)

whereGy(r;r') is thev, medium Green’s function, and/ is given in(16).
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The representation iflL7) describes the radiated field as a continuous superposition of shifted

and tilted beams, centered at and directed aﬁagdg respectively. The PS distributjdmi(ﬁ)
defines the excitation strengths of these beams via local matching to the aperturg (figld

B. PS Green'’s functions

By inserting the incident field PS representation(17) into (13), and inverting the order of
integration, one obtains

2
0

27N

2
uf(fS)z( ) fd‘% ui(%)f d3r’O(r")BL(r’;X)BS(r’; X). (19)

Equation(19) links contributions of PS initial field distribution to the PS scattered field distribu-
tion over thez®=0 observation plane in the following manner: the windowed incidanitial-)
field distribution is propagated into thé configuration-space via the local domain PS incident

propagatorsBL(r’;)?), which are beam-type wave objects. For a giv€n the beam emanates
from the processing-dependent poixf, in a processing-dependent directitﬁ, into r’ space.
The PS scattering propagatol%;,(r’;ﬁ), accumulate, vial®r’ integration, contributions of the
incident beams to the local scattered field PS distribution at p6imtn the observation plane,
arriving from directiongs. The PS spectral distribution of the scattered field is obtained by
collecting these contributions from all beams emanating from the incidence plane points, in all
directions via thed*X' integration. The contribution of each incident-window element to the
scattered PS spectrum is weighted by the PS distribution of the initial incident field.

In order to gain insight into the scattering mechanism, we rewii® in the form

uf(%)zkgf d*XT U (XD W (X3,XD), (20)
where
«Ifbo?%ﬁ):f d3r’O(r ) Ay(r’; X7, X5), (21)

is hereby termed thphase-space to phase-spa&S2P$ Green’s functionandAb(r’;ﬁ,fs) is
a sampling window in the'-object domain

_— — ko 2 i 1 VT
Ab(r’;X',Xs):(ZTr_N'—) B(r';X)BE(r’;X5). (22)

Relation(20) presents the PS spectrum of the time-harmonic scattered field distribution in terms of
local spatial samples dd(r) (Fig. 3). Since botr‘Bib(r’;X‘) andBg(r';X®) are beam-like wave
objects, the multiplication if22) results in docal scattering celwhich exhibits a spatial Gauss-

ian decay away from its center over the intersection of the incident and scattered beam-axes. Here,
Ay, provides windowing along the beam-axis as determined by the PS paranieterd X°. The

above results imply that the interaction of the incident spectral beam with the object domain, when
parameterized in terms of scattered Gaussian beam propagatarthe scattered PS spectium
occurs as if each scattered beam wapecularly reflectedfom the local medium inhomogeneities

(see Fig. 3 and further discussion followigp)).

IV. GAUSSIAN WINDOWS

In this section, we examine the special case of Gaussian windows, which have been used
extensively for modeling beam propagation since they maximize the PS localization as implied by
the uncertainty principle, and yield analytically trackable beam-type propagdtdhs!
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FIG. 3. Phase-space to phase-space mapping phenomenology; the phase-space transform, applied to both incident and
scattered field distributions, synthesizes local reflections between isolated locahkgelynamically oriented and located

according to the phase-space processing paran@tamfs. The PS2PS Green'’s function (1) is obtained by a spatial
windowing of the object function with the scattering cells.

A. Definitions
For locally (PSyprocessing the scattered field distribution, we use a Gaussian window whose
spatial and spectral distributions are

W5 = o exp[—i—k £ (%) L. 23
’ kOFS 20 !

i
w3(x3) = exr{ > kox® I'S-x3

whereI'*>=T"%I, with | being the unity matrix andfs=T"7+il’{ is the window complex parameter
with T'7>0. Anticipating extension to the time-domain, definiti@8) has been constructed so that
the frequencyk,= w/v, appears explicitly in the exponent, whil& is frequency-independent
These features may be used to construct collimated time-domain wave objeatsa complex
symmetric matrix with InT™® positive definite, so that the quadratic phase in the expong@sjn

xS TS xS=[(x32+x39) TS, has a positive imaginary part that is generating a smooth Gaussian
window which is strongest folx®|=0 and weakens al®| increases. The spatial and spectral
localization can be quantified in terms of the spatial and spectral RMS widths of the windows
given in(7), (8)

(NS2=m/(koI'§),  Ays=1NTko=As/|T9. (24
Note the uncertainty principla A ;s=|T"%|/T"?k,=1/k, with an equality forl'’=0.

Following the definition in(23), we shall define thencident field distribution processing
window, w'(x), having the same structure as(8), with the processing parametEt, i.e.,

, =11, (25)

. i .
W'(x)=ex;:{§kox I'-x

etc. All the parametrization and analysis followi(2g) apply tow' by replacingl’>—T"" and
x3—x in (23)—(24).
B. Special case: The Born approximation

In order to gain insight into the PS2PS mapping process, we first consider the Born approxi-
mation in which the background medium is themogeneousnediumuv,. In this case, the
background Green’s function is free-space Green's funct®(r,,r')=expik,|r—r'|)/(4x|r
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—r'|) and the PS propagators and scattering cells yield clear and simple asymptotic expressions.
The general scattering over an inhomogeneous background is discussed in Sec. IV C.

1. Asymptotic evaluation of the scattering propagators

The formal integral representation of the scattering propagators using Gaussian windows may
be obtained by inserting23) into (11), with G,=G being free-space Green'’s function. Alterna-
tively, a plane-wave spectral representation may be more useful for asymptotic evaluation. In
order to obtain such a representation, we insert free-space Green’s function plane-wave spectral
representatioh

2 1
| @iz exikog (x=x)+4lz-2)] 26)

Ko
G(r,r’)z(z
into (11) and invert the order of integration, yielding
s IVX: kO 2 2 [ ~ Y .
(55 = 52| | g e Brextik(-£00-R)- ) @0

whereW®(£) is given in(23). For the Gaussiafscattering window in (23), the scattering propa-
gator has been evaluated asymptotically in Ref. 15 with connection to the PS processing of pulsed
plane-wave excited scattering. It was found there that if the window is “large” on a wavelength

scale,Bg(rS;fs) in (27) yields collimated beam fields in thé-domain. Via asymptotic evaluation
and paraxial approximation, one obtains

_ [ detl'(z}) 1
Bo(r; X%) = —— exp iko| —zp+ —xeI'S(z5) - %3 | | (28
k.25 ¥ detl(0) 2
where
_ZS__SZIFS*)—:L 0
rg=| P s (29
0 (—zp—1%*)

with £5=V1— £5- £5. In (28), we utilize thebeam-coordinatex; x5, ,z5), defined, for a given
PS pointX®, by the rotation transformation

Xp . cosd®cosep® cos¥ sing® —sind® XX

X1
S| = —sines S s_ s
Xp, | = sing cos¢ 0 X5 sz , (30)
S . Tac T Y
zZy sin®®cose®, sindsing®  cosy® z

where (°,¢°) are the spherical angles associated with the unit-veete Fig. 4

K= (&5,7%) = (sin9°cosg®,sind°sing®,cosd®). (32)
Thus, thez; axis coincides with the beam-axis in the positieaitward k* direction; the trans-
verse coordinates; = (x ,xp ) are rotated such thag is parallel to thez® plane whilex;_ lies

in the plane Es,i‘é) with its positive direction defined so thgf- >‘<§1>0 (see Fig. 4. Furthermore,

the system X3 ,z}) is defined to be right-handed. Accordingly, the linear ph&sgxs—x°) im-
plied by the window function in the*=0 plane is operative in thuef,l directionbut notin the xgz

direction. Consequentlg® affects only thd'3, term in(29) but not thel3, term, thereby describ-
ing astigmaticbeams.
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FIG. 4. Scattering propagators’ local beam-coordinates; for a given PS spectral paranemH corresponding phase-

space scattering propagaiBE(r’;YS) behaves like a collimated beam generated inrthdomain, whose axis reaches
point X® on thez’S=0 plane along the direction of the beam-axis unit-vedr The figure depicts the global fixed
(x1°,%5°,2"%) coordinate frame as well as the beam-centered coordinaf@s{”,z;°) (referenced to the’'s=0 plang,
which extend along the beam-axis and along the two orthogonal directions perpendicular to the beam-axis.

The parameters of this astigmatic beam field, may be obtained by rewriting the diagonal
elements in(29) in the formI'=diag’;,I',) wherel'§ (z) = (—z5+Z3 ,—iF3,) ~* with

Z5=-TUT?, Z5=-T3r9? (32
are identified as the beawmaist location in the ¢ ,xglz) plane, and
F$=5TH2, F5=T3/|T9%, (33

are the correspondingpllimation lengths Furthermore, théseam widthsn the (z; ,xglz) plane,
D$ , are found from R&%(z), giving '

1= VFLdKoV1+ (=23 )% IF 5 (34)
and thephase front radius of curvatuydR , may be obtained from IH%(z), giving
o= (2 ) +FIA(Z3 7). (35)

The beam propagator astigmatism is caused by the beam tilt which reduces the effective initial
beam width in the(b1 direction. Note that the waist locatidéfy the collimation length= as well

as the phase as a whole, are frequency-independent. However, beanbvigdffequency depen-
dent, being proportional t&, 12 These properties identify the scattering propagators as “iso-
diffracting” wave packets?

2. Asymptotic evaluation of the incident propagators

Using Gaussian windows, the PS incident propagaBi'ger,;)?) may be evaluated by insert-
ing free-space Green’s function int@8). In the present context it is convenient to express the
free-space propagators by the plane-wave representation

[k \? _ _
BL(r;x'>=(5) | @ wie#) exikye -3+ 221 (36)
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If w is wide on a wavelength scale then the spatial and spectral distributicsaoé localized

aroundx=X" and £&= &', respectively. Conseq_uentlﬁib(r;ﬁ) behaves like a collimated beam
whose axis emerges from tlze=0 plane atx=Xx" with a direction

K=(£.0), {=V1-]€% (37)

where|£'|?=¢'- £'. Next, the general formulation for the scattering process is evaluated for the
special case of the Gaussian windows(2%). These windows enable closed form asymptotic
evaluation of the PS2PS Green’s functidh,(X5,X'), and the scattering ceN,. Via asymptotic
evaluation and paraxial approximation, one obtdins

R detl™(z,) [ (. 1. . .
Bb(r;X')z meXF{IkO Zb+§XbFI(Zb)~Xb), (38
where
@y 0
I'(z,)= 0 (Z+ 1)) (39

with ?= \/1—Ei ? In (38), we utilize the beam-coordinatexibg ,xibz ,zib) defined, for a given

PS pointX', by the transformation if30) with (9°%,¢%)— (9, ¢') where @', ¢) are the spherical
angles associated with the unit-vector

i'=(&,0)=(sind cosg',sind' sing',cosd'). (40)

The parametrization of the beam field (B8) may be obtained in a similar manner @2)—(35).
The asymptotic beams i(88) facilitate insight into the role of the paraxial approximation:

these beams do not satisfy the boundary condiB&m;W)h:O:Wi(x;%), since near the=0

plane, the paraxial approximatio:@>\/x'blzﬂtx'bz2 is invalid. The paraxially approximate(dis-
tigmatic) beam is obtained by projecting the initial window onto the transverse Zjgné over
which the initial effective beam width in thei)1 direction is reduced by a factor ¢f whereas the
width in thex'b2 direction remains unchanged. Therefor_e, the paraxial beam boundary conditions
on a plane transverse to the beam propagation direcign @) are

Bl(rlb;xl)lzib—O:eXF{Ekoxlb 1_‘lparax' le ’ (41)
with
. [rig® o
1—‘parax: 0 ril (42)

Comparing the scattering propagator(#8) to the incident propagator if88), one finds that they
have a similar Gaussian beam type form. They differ mainly in the beam-axis directioi@g) in
the beam-axis is directed along thetgoingdirection(i.e., towards the scattering objg¢ethereas

in (31), the scattering propagators are directady from the objectFurthermore, the incident
beam is forward propagating@e., accumulates positive phase along the bean);axisereas the
—z;p term in (29) implies that the scattering propagators bezk-propagatednto the scattering

object domain.
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(o)

A

X5 Ray Trajectory

sz

r,(o)

i,

FIG. 5. Local beam-coordinates and ray trajectories; the beam propagator is propagating along ray ttajdtterpcal
orthogonal coordinate systerr (o) +X;X;+X,X,, whereo is the arc length along the ray trajectory, is obtained by the
rotation transformation iri45).

3. PS2PS mapping

Next, we examine the local scattering cell in tHeobject domainAb(r’;Y), under the Born
approximation. By inserting38) with (28) into (22), one obtains

ik3 \/detri(z‘b) detl'(z})

Ay (r’: X X5 = :
ol )= = detr(0) V detI™(0)

803(mN')?

. (43

4 i |
xex;{iko(z'b—zfﬁ—Ex'bl“'(z'b)-x'b+EXEFS(ZE)xg)

Relation(43) describes a local 3D spatial window; it is centered at the intersection of the incident
and scattering propagators axes, where bgtandx; are zero, and exhibits a Gaussian decay as
the transverse coordinatey and x;, increase. The orientation of the cell is determined by the
rotation transformation in(30) for incident and scattering propagators, and by the processing
parameterd” andI'S. For the special casE' =TS, the exponent if43) contains the sum of,,
andx;, . Since both are determined by a rotation transformation of3Bekind, the result is a new
rotation transformation that bisects the incident direcforin (37) with the scattering directiok®

in (31). Therefore, the interaction of the incident spectral beam with the object domain, when
parameterized in terms of scattered Gaussian beam propagators, occurs as if each scattered beam
were specularly reflectedrom the local medium inhomogeneiti¢see Fig. 3 and further discus-
sion following (56)).

C. Propagation in the perturbed medium

Next, we consider the propagation of beam propagasrsh asBib andBy) in aninhomo-
geneous mediumwith a wave velocityv,(r).

1. Local beam-coordinates

An asymptotic solution for general beam-type propagation in an inhomogeneous medium is
given in Ref. 3(see also extension to the time-domain in Refs. 14 anditlBas been shown there
that the field is propagating along a ray trajectdty(see Fig. 5. Denotingo as the arc length
along the ray trajectory, the ray local coordinates are defines by the unit-vecforé,=txf,
denoting the tangent, normal, and bi-normal3oft a pointr,(o) on 3, respectively. They are
related by the Fernet equatidfis

=1, t'=Kf, A'=—Kt+xh,, A,=—«A, (44)

where the prime denotes a derivative with respeet,tid is the curvature ok, andx is its torsion.
The ray coordinates are nonorthogonal £6# 0. A locally orthogonal coordinate system along the
ray may be obtain by transverse rotation of the unit-ve®deee Fig. 5
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(i(bl) _ ( c?so —sin 6) ( i ) s
Xb, sing cos@ |\ Ny’
where 0(o) satisfies
0'(o)=«k(o). (46)
Points near the ray may now be expressed as

r=ro(o)+nh(o)+nyip(a) =ro(0) +Xp Ky, +Xp Xp,, (47)

where the coordinate framecr(xbl,xbz) is locally orthogonal with dr=fh(,d<r+>‘<bldxtJl
+%p,d%,,, with the Lamecoefficient

h,=1-K(o)[X; cosf+Xx,sinf]=1—K(o)n. (48)

2. Asymptotic evaluation of the scattering propagator

The ray coordinate system may now be applied to the scattering propaﬁt(crﬁs)?s). Each
propagator arrives at the observation plane to pairfitom a directionf S; thus, we associate a ray
coordinate system to each beam, so that ray parametess and Xp, are all processing param-
eters K%)-dependent, and are denotedceis= o(X), X5=(Xp (X),%5,(X%)), etc. The inhomo-
geneous medium in the high frequency-localized beam excitation regime may be modelled by the
wave speed along the excited ray and its second order transverse derivative V@Q(r&r@),
whose (j) elements are?xbiaxbivblzs. Using the ray coordinate frame, the paraxially approxi-

mated scattering propagators may be evaluated in the high frequency regime (géérdetails in

Appendix B
_ i vp(o®) detQp(0) ) —
BS(rS;XS): — J ex |(I)S(rs;xs) ' (49)
b 2k0§5 Ug deth( O'S) F{ b ]
with
— pe 1
DY(rs;X5) =~ fo do’kn(o) |+ SKn(0%)XG Th(0%)-xG, (50

whereky(o®) = w/vp(r)|, . ss is the wave number along the excited &3; The transverse matrix
I'3(o®) is a complex symmetric:2 2 matrix with ImI'® positive definite. One may calculak® by
the standard procedure of solving the matrix Riccati equation, setting

Ty(0%) =vp(0%)Py(0%)Q, *(0°), (51)
and solving, along.®, the first order system of coupled differential equations
QU =vh(a9Py(0%),  PL(0%)=—04(0%) V(0% Qy( o), (52

where the prime denotes a derivative with respect to the argument. Rela®ois subject to the
initial conditions

Qp(0)=1,  Pp(0)=v,I™. (53

As in the special case of homogeneous background mediemthe Born approximationn (28),
one can show that iF5(0) is symmetric with InT°(0) positive definite, thed™(¢®) has these
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properties for allo®, and thatQ(c®)#0 for all o°. Following the procedure i1632)—(35), one
identifies RA™S(¢°) and ImI'S(¢®) as the beam curvature and beam-amplitude matrices, respec-
tively. Note that the special case of the Born approximatiori2i®), in which the background
medium is homogeneous, may be obtained by substitutijig) =v, into (49)—(53).

The scattering propagato3y(r’; s), are backpropagating along the ray trajectory initiating
from the scattered data plane m=0, from a processing®-dependent point, in a processing
Es—dependent direction. The propagator exhibits a Gaussian decay normal to the ray trajectory, i.e.,
in Xg -

3. Asymptotic evaluation of the incident propagators

For the case of the incident propagatd%%(r’;xi), in (18), each propagator emanates from
point X' on the initial distribution plane, in a directiof (see Fig. 3 thus, the ray coordinates
associated with each processed beam are denoted accordingly: a§X'), etc. As in(49), the
inhomogeneous medium may be modeled by the wave number along the excitig{#dy, and
its second order transverse derivative mavﬁﬁ)(a‘) along the beam-axis. Using the ray coordi-
nate frame, the paraxially approximated scattering propagators may be evaluated in the high
frequency regime in a manner similar 9), giving

v Ub(o-i) dethb(O) N I
Bb(r,X)—\/ oo deth(ai)qu'qu(r’x)] (54

with

) . o 1 o S )
Dh(r: X)) = fo do'ke(0") |+ skn(0)X Th(o') %, (55

where the matri>Tib(a‘) is found by solving(52) along the incident beam-axis € 3" with the
initial conditionsQ,(0)=1 andP,(0)=v,I".

4. PS2PS mapping

Next, we consider the scattering cell under Gaussian windows processing. By inserting
B5(r’;X5) in (49) with By(r’;X') in (54) into (22), we obtain the asymptotic expression for the
scattering cell

Ayt X0 5E) iko \/ vp(oS)vp(a)/v3 expli[D3(rs XE) 4+ Dl (r %)]} (56)
b 8w N detQy(o®)detQy(a') b b

where®d} and<I>ib are given in(50) and(55), respectively. Relatiofb6) implies the following: The
local scattering cell exhibits Gaussian decay normal to both the incident and scattering ray trajec-
tories (i.e., in xb and xb) Thus, the window center is located at the intersection of the incident

spectral beaan(r :X") and the scattered beam propagd@g(r’ XS) axes. Therefore, the loca-

tion of the scattering cell is resolved by the PS processing param@tamjx' which determine,
via (30), the PS propagators ray trajectorisge Fig. 3.

The localization in the object domain as determinedAtg;(r’;)?,Ys) may be interpreted by
using fundamental wave physics. Consider an incident propagator emanatingfronplane

from pointX” at angled’ along ray3, arriving at thez*=0 scattering plane at point at angle¢®.

In this case, the scattering propagalBﬁ,(r XS) corresponding to¢® and 0, backpropagates
along the same ray trajectoy*=3', and the corresponding scattering cell exhibits Gaussian
decayonly in the transverse coordinatexbg,xbz) and not along thésharedl beam-axis. There-

fore, the integration domain if21) is local only normal toX', which indicates the stationary
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contribution to PS spectral distribution at that partiCL)Tzirin accord with the Fermat principle.

Furthermore, the phase accumulation al&ig 2f{)"da’kb(a’), when introduced int@21), acts
as a “scaled Fourier transform” operating along the ray trajectory; thus, large contributidngs to
in (21) arise from medium variationalong 2, in accord with fundamental 1D wave physics.

V. CONCLUDING REMARKS

Inhomogeneous medium Green’s function in the phase-space domain were presented, linking
the phase-space spectral distributions of the field scattered by a high contrast object to a genetic
time-harmonic incident field. Two forms of phase-space Green’s function were presentéd:
configuration-space to phase-spaGeen’s function that links induced sources in the object
domain to phase-space distributions of the scattered field is obtained by applying PS transform to
the scattered field over planar surfaces; @mda phase-space to phase-spaGeeen’s function,
which directly links incident- to scattered-phase-space distribution, obtained by applying the PS
transform tobothincident and scattered field distributiorss, The scattering mechanism has been
described in terms of local samplings of the object function which are localized in the object
domain according to the scattered- and incidence-processing parameters. The special case of
Gaussian windows has been considered and asymptotic expressions for the PS Green’s functions
and scattering cells have been derived for both the Born approximated- and the generic-
inhomogeneous medium profiles. The wave phenomenology associated with the PS Green'’s func-
tions and the scattering mechanism have also been explored.

Equationg20)—(22) establish the building blocks for anverse scatteringrocedure in which
the strong scatterer is found via iterative algorithm where atntteiteration, the background
vp(r)=v,(r) is known, and the sampling operation (20) is inverted to evaluat©(r), from
which the nexw . 1 is found. This operation may be carried out for large scatterers since it can be
shown that under appropriate illuminating conditions, the operati@@dnmay be reduced to 1D
samplings along thésynthesizefscattered ray trajectories.
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APPENDIX A: OPERATOR REPRESENTATION OF CS2PS GREEN’S FUNCTION

In order to establish the scattering propagatorqli) as Green’s functions, an operator
equation associated with the CS2PS is derived hereby. We define the Helmholtz operator

(Lyu)(r)
(Lyu)(r)=[V2+kZ(r)Ju(r), (A1)

and the inverse-PS operatdr,U)(X)

_ ke \2( —  —
(LZU)(X)E(ZWNS) fd“xS U(X,z%) WS(xS;XS), (A2)

where U(Y,zs) are PS_distributions over planar surfaces of constintNext, we define the
cascade operatotJ)(X)=[L(L,U)(X)][r]. Using(9), in (1), we identify the operator equa-
tion

(LUS(XD)=~1(r), f(r)=kZO(r)u(r). (A3)

The Green's functionBy, associated with the operator Eé3) is obtained by solving
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(LB)(X®)=—8(r—r") (A4)

and the resolvent operator bf US=(L~1f )(r) takes the form ir(10), thereby identifying3; in
(11) as a Green'’s function. Furthermore, by substituiiby) into (A3) and inverting the order of
integration, one finds that the PS scattering propagators satisfy defiddon

APPENDIX B: EVALUATION OF EQ. (49)

In order to establish Eq49), we note that generic solution for beam-type wave objects
propagating in the background mediunyr), along the rays 3, is given by141°

o ool detQy0)
Bb(r)_A\/ Vo deth(US)qulq)b(r)]l (Bl)

whereA is a constant, and the phase

oS 1
CDb(r):i fo dO"kb(G") +§kb(0'S)Xb Fb(O'S)'Xb. (BZ)

Since, according td11), the scattering propagat®;(r’;X®) satisfies wave equatiofl) with
v(r)=wvp(r), we seek for solutions in the form @B1). Under the paraxial approximation, the
initial distribution of the scattering propagator over ttfe=0 plane may be replaced by the initial
parameter matrixsee discussion followin¢42))

rs+/z 0
0 I‘S*

s —
parax

: (B3)

over thez;=0 plane. Note that the projected initial paraxial distribution, which was originally
obtained for homogeneous medium, may serve for inhomogeneous propagation as well, as long as
the initial plane is embedded in an homogeneous medium, since in the high-frequency limit
Bremmer-type reflections are negligible, and the beam-type field is forward propagating along the
ray trajectories:** Therefore, we may use the homogeneous background asymptotic fié)in

with the above-mentioned initial distribution in the general solutidh) yielding (49). Note that
solution (49) satisfies the radiation condition of sources in tie 0 as exhibited by the propaga-

tion phase accumulation offgsdcr’kb(a’) for 0°<0 (see also Fig. ¥
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