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The paper deals with inhomogeneous medium Green’s functions in the phase-space
domain by which the phase-space~local! spectral distributions of the field, scattered
by a high contrast object due a genetic time-harmonic incidence, are evaluated.
Two forms of phase-space Green’s functions are considered: one that links induced
sources in the configuration-space to phase-space distributions of the scattered
field, while the other one directly links the phase-space distribution of the incident
field to phase-space distributions of the scattered field. The scattering mechanism is
described in terms of local samplings of the object function which are localized in
the object domain according to the scattered- and incidence-processing parameters.
Applications in the field of inverse scattering may be expected to yield fast and
efficient algorithms, due to the capability of analytically evaluating~forward! scat-
tering Green’s functions. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1737812#

I. INTRODUCTION

The conventional spectral elements for wave synthesis are Green’s functions or plane waves.1

However, tracking theseglobal basis functions in inhomogeneous environments or through inter-
actions with objects is complicated, and the resulting representation integrals are spectrally dis-
tributed. Invoking constructive interference yields local observables in the form of ray fields, but
in many situations a wider spectral range of basis functions is required.2 Instead of using global
basis functions that lead to distributed integrals, the representation may be localizeda priori by
using phase-space~PS! spectral representations in which thelocal basis wave-functions are beams.
Each beam basis function then accounts for the radiation from a finite region in the source domain,
thereby leading to compact spectral representations.

Several PS expansion schemes for wave propagation have been introduced. Forpoint source
configurations the source field can be expanded into an angular spectrum of beams that emanate
from the source in all directions3 ~see also extension to the time-domain in Ref. 4!. A different
class of expansions applies forextended sourceconfigurations, utilizing a spectrum of shifted and
tilted beams which emanate in all directions from all points in the source domain. Several alter-
native formulations for time-harmonic fields have been introduced:5–11 In Refs. 8, 10, and 11, they
have been placed within a unified PS format in which a PS distribution of beam propagators is
locally matched to the source distribution. Recently, discrete PS spectral representations have been
introduced, based on the discrete Wilson basis12 and on frame theory.13

Inhomogeneous medium Green’s functions are of fundamental significance for modeling wave
propagation, inverse scattering, numerical methods, etc. Green’s functions are wave objects that
link sources in the configuration space,r 8, to the configuration observation domain,r , by a
convolution integral. These wave objects are global in nature in the sense that each point in ther 8
source domain contributes toall points in ther -observation domain, hence, the difficulty in
evaluating of these wave objects, both analytically and numerically. Since modeling wave propa-
gation directly in the configuration-space implies global Green’s functions, transferring the fields
via phase-space~windowed-! Fourier transform facilitates the search afterlocalized Green’s func-
tion, which can be easily evaluated both asymptotically and numerically~see Ref. 3 and also
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extension to the time-domain in Ref. 14!. Furthermore, since wave interactions with scattering
medium have been found to be local in nature, it is suggested that the evaluation of Green’s
functions should not be carried out in the configuration-space but rather in aphase-space~PS!
transform domain, which extracts local radiation properties of the data and by that synthesizes
local wave-medium interactions.15,16 The above considerations have been applied in previous
publications to the simple case of scattered field due to plane-wave incidence within the Born
approximation.15,16The present contribution constitutes a general framework for the synthesis and
analysis ofinhomogeneousbackground scattering due to agenericincident wave with applications
to inverse scattering, integral equation representation for propagation and scattering, and more.

Following this strategy, we are concerned with the field scattered by an object which is
characterized by a wave velocity ofv(r ), where r5(x1 ,x2 ,z) is the conventional Cartesian
coordinate system, embedded in a homogeneous medium of save speedvo ~see Fig. 1!. The total
field u(r ), with a e2 ivt time-dependence assumed and suppressed, satisfies the scalar Helmholtz
equation

@¹21k2~r !# u~r !50, k~r !5v/v~r !, ~1!

subject to Sommerfeld radiation conditionr̂•¹u(r )2 iku(r )5o(r 21), for r→`.
In the present investigation, the propagation of the fieldu(r ) in the inhomogeneous medium

is formulated by the use of an inhomogeneous backgroundvb(r ) wave speed profile, and the
deviation of the scattering mediumv(r ) from the backgroundvb(r ) is described by the so-called
object function

O~r !5vo
2@v22~r !2vb

22~r !#. ~2!

The scattering object is illuminated by an incident field,ub
i (r ), defined by the initial field distri-

bution onz50 planeuo
i (x). Note thatuo

i (x) consists of incident~i.e., having sources inz,0 half
space! field constituents only, and is therefore, independent of the background medium.

We are concerned with applying PS~local! spectrum techniques to the scattered field, there-
fore, the scattered field constituents shall be evaluated over planar apertures~observation planes!,
characterized byzs50, wherer s5(xs,zs) with xs5(x1

s ,x2
s) are the Cartesian coordinate system

associated with the observation plane~see Fig. 1!. The scattered field over the observation plane,
ub

s(xs)[@u(r )2ub
i (r )#uzs50 , satisfies the Lipman–Schwinger integral equation

ub
s~xs!5ko

2E d3r 8O~r 8!u~r 8!Gb~r s,r 8!uzs50 , ko5v/vo , ~3!

FIG. 1. Physical configuration; the object functionO(r ) is illuminated by an incident waveub
i (r ) defined by its initial field

distribution over thez50 plane, whereas, the scattered fieldub
s(r ) is measured on a data planezs50 between which the

object is situated.
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whereu5ub
i 1ub

s is the total field propagating invb background medium, andGb is the inhomo-
geneousbackgroundmedium Green’s function

@¹21kb
2~r !# Gb~r ,r 8!52d~r2r 8!, kb~r !5v/vb~r !. ~4!

Here and henceforth, subscriptb denotes background dependent constituents. Equation~3! de-
scribes the scattered field in terms of induced sources,O(r 8)u(r 8), which are radiating in the
perturbed mediumvb(r ). The backgroundvb-medium Green’s function,Gb(r ,r 8), propagates
these induced sources to the aperturezs50 via the spatial convolution integral in~3!. Relation~3!
has been used for the so-called ‘‘Distorted Wave Born Approximation,’’ in which the total field
u(r 8) on the right-hand side of~3!, is replaced by the incident fieldub

i (r 8) propagating in the
background medium~see also discussion following~15!!. This approximation is used for itera-
tively solving ~forward! propagation and scattering problems, and for inverse scattering. In the
following sections we will aim at obtainingPS Green’s functionsthat link sources to scattered
fields in a PS transform domain, rather than in the configuration-space.

II. CONFIGURATION-SPACE TO PHASE-SPACE GREEN’S FUNCTIONS

In order to obtainPS Green’s functionsthat link sources to scattered PS field distributions, we
shall project the scattered field distribution onto the PS~local! domain. In the next subsections, we
shall define the~global! plane-wave spectrum and PS transform of the scattered field which are
required for the formulation of the PS Green’s function representation.

A. Space-wave-number „global … transforms

The wave number~plane-wave! spectrum,ũo(j), of an initial field distribution,uo(x), on a
planar surface is defined by the spatial Fourier transform

ũo~j!5E
2`

`

d2x uo~x!exp~2 iko j " x!, ~5a!

where, here and henceforth, plane-wave spectral distribution is denoted by superscript . In~5a!,
j5(j1 ,j2) is the normalized spatial wave number vector~with respect toko5v/vo), and x
5(x1 ,x2). Accordingly, the reconstruction of the initial field distribution is

uo~x!5S ko

2p D 2E d2j ũo~j! exp~ iko j " x!. ~5b!

The normalization with respect to the wave numberko anticipates extension to the time-domain,
renderingj frequency-independent, with direct geometrical interpretation in terms of the spectral
plane-wave propagation angles. For the sake of simplicity, integration limits are omitted on all
integrals extending from2` to 1`.

B. Phase-space processing of the scattered field

In this section, we summarize the PS analysis and synthesis formalisms that parameterize the
scattered field on the initial planezs50 ~for further details refer to Ref. 11!. For the desiredlocal

spectral analysis of the field distribution, we generate thePS spectral distribution, Ub
s(X̄s), via a

windowed Fourier transform of the distribution in the configuration-space,

Ub
s~X̄s!5E d2xs ub

s~xs! Ws* ~xs;X̄s!, Ws~xs;X̄s!5ws~xs2 x̄s!exp@ ikoj̄ s
• ~xs2 x̄s!#, ~6!

where, here and henceforth, superscripts denotes scattered field constituents, the asterisk denotes
the complex conjugate andX̄s5( x̄s,j̄ s). Here,ws(xs) is a spatial window function, centered at
xs5(0,0). The vectorX̄s incorporates the configuration-spectrumPS coordinates( x̄s,j̄ s), whence
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Ub
s(X̄s) is referred to as aPS distributionof the initial field distributionub

s(xs) over thezs50
plane. The transform in~6! extracts fromub

s(xs) the local spectrum around thej̄ s-directed propa-
gation at the window centerx̄s. In typical propagation/scattering problems, the spectrum at a given
x̄s is localized about a preferred spectral directionj̄ s( x̄s) that describes the~stationary! direction
of propagation of the field atx̄s point ~the so-called Lagrange manifold!. Consequently, the PS
spectrumUs(X̄s) is localizeda priori about the subdomain (x̄s,j̄ s)5( x̄s,j̄ s( x̄s)) in theX̄s-domain
~see synthetic examples in Refs. 8, 11!. Note that the PS spectrum of the scattered field depends on
the specific background medium profile,vb(r ), since according to~3!, both the inhomogeneous
medium Green’s function, the medium object function, and the incident field propagating in the
vb(r ) medium, affect the scattered field.

The degree of spatial and spectral localization achieved by the PS transform can be quantified
in terms of the spatial and spectral RMS widths of the window, defined, respectively, by

Dxs5
1

Ns F E d2xsuxsu2 uws~xs!u2G1/2

, ~7a!

Djs5
ko

2pNs F E d2jsuj su2 uw̃s~j s!u2G1/2

, ~7b!

wherew̃s(j s) is the plane-wave distribution~5a! of the windowws(xs), and

Ns5F E d2xsuws~xs!u2G1/2

5
ko

2p
F E d2jsuw̃s~j s!u2G1/2

~8!

is theL xs
2 norm ofws. Note thatDxsDjs>1/ko according to the uncertainty principle. The inverse

PS transform is given by11

ub
s~xs!5S ko

2pNsD 2E d4X̄s Ub
s~X̄s! Ws~xs;X̄s!, ~9!

whereWs is given in~6!. This representation has been used to obtain a PS field representation for
homogeneous medium in the 2D~Refs. 8, 17! and 3D~Ref. 11! frequency- and time-domains.

C. PS Green’s functions

In order to establish the locally-transformed Data–Object relation, we insert~3! into ~6!,
obtaining

Ub
s~X̄s!5ko

2E d3r 8O~r 8!u~r 8!Bb
s~r 8;X̄s!, ~10!

with the scattering propagators

Bb
s~r 8;X̄s!5E d2xs Ws* ~xs;X̄s!Gb~r s;r 8!uzs50 , ~11!

whereGb(r ,r 8) is the background medium Green’s function in~4! andWs(xs;X̄s) is given in~6!.
Equation~10! describes the local spectrum of the data in terms of a spatial convolution integral of
the induced sourcesO(r 8)u(r 8) in the configuration-space, withBb

s(r 8;X̄s). Comparing relation
~10! with the Lipman–Schwinger equation in~3!, one finds that the two have essentially the same
form. Therefore,Bb

s(r 8;X̄s) may be regarded asconfiguration-space to phase-space~CS2PS!
Green’s function~see Appendix A for operator representation of the CS2PS Green’s function!. The
CS2PS Green’s function propagates the contribution of the configuration-space induced sources to
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the PS transform of the data over the observation plane. Also, from~11!, we note that the scat-
tering propagators satisfy the wave equation in thevb background medium, and therefore, for a
proper choice of window functionws, may be evaluated asymptotically using the method de-
scribed in Sec. IV C~see also Fig. 2!. Finally, usingu(r )5ub

i (r )1ub
s(r ), we rewrite~10! in the

form

Ub
s~X̄s!5Ui

s~X̄s!1Us
s~X̄s!, ~12!

where

Ui
s~X̄s!5ko

2E d3r 8O~r 8!ub
i ~r 8!Bb

s~r 8;X̄s!, ~13!

and

Us
s~X̄s!5ko

2E d3r 8O~r 8!ub
s~r 8!Bb

s~r 8;X̄s!, ~14!

in which Us
i andUs

s are the contributions of the sources induced by either the incident or scattered
fiels, respectively. The above exact formalism may be used for the Distorted Wave Born Approxi-
mation ~DWBA! in which the total fieldu(r 8) in the exact formulation~3! is replaced by the
incident fieldub

i (r 8) propagating in the background medium. The DWBA is often used for solving
high contrast scattering iteratively, especially in inverse scattering scenarios. In the framework of
the DWBA, we may use

Ub
s~X̄s!'Ui

s~X̄s!. ~15!

The scattering propagators,Bb
s(r 8;X̄s), result in a beam wave objects which, for the case of the

Gaussian window in~23!, are Gaussian beams localized about ray trajectories~i.e., beam-axes!.
Therefore, the CS2PS mapping in~10! ~or ~13!!, is obtained by integrating over induced sources
locally about beam-axes. The ray trajectories that describe the beam-axes depend on the back-
ground mediumvb and on the processing parameters:x̄s determines the emanating point of the ray
from the data plane whilej̄ s sets its direction in ther 8 ~source! domain~see Fig. 2!.

FIG. 2. Configuration-space to phase-space Green’s function; the CS2PS Green’s function is obtained by a spatial inte-

gration of the induced sourcesu(r 8)O(r 8) multiplied by the scattering propagator,Bb
s(r 8;X̄s). This results in a link

between the total field propagating in the background medium, and a single phase-space constituent of the scattered field,

Ub
s(X̄s). The integration domain is limited to points near theBb

s beam-axis; thus, unlike the Lipman–Schwinger integral
~3!, the PS spectral distribution of the scattered field synthesizes wave interaction only near the beam-axis.
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The CS2PS representation in~10! or ~12!, has several advantages over the Lipman–Schwinger
representation:~a! the inhomogeneous Green’s function,Gb(r ,r 8) is difficult to evaluate both
analytically and numerically, while the scattering propagators may be evaluated asymptotically
~see Sec. IV C!; ~b! the integration domain in~3! includes the entire object domain, since the
induced sources,O(r 8)u(r 8) exist in the entire object domain and contribute to each pointxs on
the observation plane. Using the CS2PS relation, the integration domain is limited to points near
the local Green’s function~beam-! axis, since the beam exhibits Gaussian decay away from its axis
~see ~49! and Fig. 2!. Though the induced sources exist in the entire object domain, the PS
transform for a given set of PS variables,X̄s, extracts from the scattered field only those constitu-
ents that are scattered in the directionj̄ s and are aimed at the pointx̄s; and finally,~c! there exist
applications in which the PS spectrum, rather than the scattered field, needs to be evaluated.15,16In
such cases, direct evaluation using PS Green’s function in~10! is more efficient than the conven-
tional route of possibly solving~3!, followed by PS processing via~6!.

The CS2PS mapping in~10! exhibitsa priori localization in the source domain only about the
coordinatestransverseto the beam-axis. Furthermore, the incident fieldub

i (r ), propagating in the
inhomogeneous background medium,vb(r ), has no closed form analytic expression. In the next
section, we shall apply local processing to bothscatteredand incidentfields, resulting ina priori
localization in all three coordinates, as well as analytical~asymptotic! expressions for the local
incident propagators and Green’s functions.

III. PHASE-SPACE TO PHASE-SPACE GREEN’S FUNCTIONS

Following the strategy outlined in the previous section, we shall now consider applying PS
processing to bothscatteredand incident fields. The PS transform operations over the scattered
field have been introduced in Sec. II B. Next we define, in a similar way, the operations related to
local processing of the incident field.

A. Local processing of the incident field

We generate theincident fieldPS spectral distribution in a way similar to~6!, i.e.,

Ui~X̄ i !5E d2x uo
i ~x! Wi* ~x;X̄ i !, Wi~x;X̄ i !5wi~x2 x̄i !exp@ ikoj̄ i

•~x2 x̄i !#, ~16!

where, as in~6!, wi(x) is a spatial window function. Here and henceforth, superscripti denotes
incidentfield constituents andX̄ i5( x̄i ,j̄ i) are the incidencePS coordinates. A key feature in~16!
is that, unlike the scattered local spectrum, the incident one isindependentof the propagation
medium,vb(r ). The window’s properties~RMS widths, etc.! have been presented in Sec. II B
~relations~7!, ~8!!.

Using the inverse transform~as in~9! with s→ i ), the PS superposition~16! of the initial field
can be propagated into the regionz.0, giving

ub
i ~r !5S ko

2pNi D 2E d4X̄i Ui~X̄ i !Bb
i ~r ;X̄ i !, ~17!

whereNi is the L x
2 norm of wi ~similar to ~8!!, and thePS incident propagator Bb

i is the field
radiated by each PS window elementWi(x;X̄ i) in ~9!, and can therefore be expressed by
Kirchhoff-type integration of the form

Bb
i ~r ;X̄ i !5E 2Wi~x;X̄ i !]z8Gb~r ;r 8!uz850 , ~18!

whereGb(r ;r 8) is thevb medium Green’s function, andWi is given in ~16!.
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The representation in~17! describes the radiated field as a continuous superposition of shifted
and tilted beams, centered at and directed alongx̄ andj̄, respectively. The PS distributionUi(X̄ i)
defines the excitation strengths of these beams via local matching to the aperture fielduo

i (x).

B. PS Green’s functions

By inserting the incident field PS representation in~17! into ~13!, and inverting the order of
integration, one obtains

Ui
s~X̄s!5S ko

2

2pNi D 2E d4X̄i Ui~X̄ i !E d3r 8O~r 8!Bb
i ~r 8;X̄ i !Bb

s~r 8;X̄s!. ~19!

Equation~19! links contributions of PS initial field distribution to the PS scattered field distribu-
tion over thezs50 observation plane in the following manner: the windowed incident~initial-!
field distribution is propagated into ther 8 configuration-space via the local domain PS incident
propagatorsBb

i (r 8;X̄ i), which are beam-type wave objects. For a givenX̄ i , the beam emanates
from the processing-dependent point,x̄i , in a processing-dependent direction,j̄ i , into r 8 space.
The PS scattering propagators,Bb

i (r 8;X̄ i), accumulate, viad3r 8 integration, contributions of the
incident beams to the local scattered field PS distribution at pointx̄s on the observation plane,
arriving from direction j̄ s. The PS spectral distribution of the scattered field is obtained by
collecting these contributions from all beams emanating from the incidence plane points, in all
directions via thed4X̄i integration. The contribution of each incident-window element to the
scattered PS spectrum is weighted by the PS distribution of the initial incident field.

In order to gain insight into the scattering mechanism, we rewrite~19! in the form

Ui
s~X̄s!5ko

2E d4X̄i Ui~X̄ i !Cb~X̄s,X̄ i !, ~20!

where

Cb~X̄s,X̄ i !5E d3r 8O~r 8!Lb~r 8;X̄ i ,X̄s!, ~21!

is hereby termed thephase-space to phase-space~PS2PS! Green’s function, andLb(r 8;X̄ i ,X̄s) is
a sampling window in ther 8-object domain

Lb~r 8;X̄ i ,X̄s!5S ko

2pNi D 2

Bb
i ~r 8;X̄ i !Bb

s~r 8;X̄s!. ~22!

Relation~20! presents the PS spectrum of the time-harmonic scattered field distribution in terms of
local spatial samples ofO(r ) ~Fig. 3!. Since bothBb

i (r 8;X̄ i) andBb
s(r 8;X̄s) are beam-like wave

objects, the multiplication in~22! results in alocal scattering cellwhich exhibits a spatial Gauss-
ian decay away from its center over the intersection of the incident and scattered beam-axes. Here,
Lb provides windowing along the beam-axis as determined by the PS parametersX̄ i andX̄s. The
above results imply that the interaction of the incident spectral beam with the object domain, when
parameterized in terms of scattered Gaussian beam propagators~i.e., the scattered PS spectrum!,
occurs as if each scattered beam werespecularly reflectedfrom the local medium inhomogeneities
~see Fig. 3 and further discussion following~56!!.

IV. GAUSSIAN WINDOWS

In this section, we examine the special case of Gaussian windows, which have been used
extensively for modeling beam propagation since they maximize the PS localization as implied by
the uncertainty principle, and yield analytically trackable beam-type propagators.3,8,14,11
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A. Definitions

For locally ~PS-!processing the scattered field distribution, we use a Gaussian window whose
spatial and spectral distributions are

ws~xs!5expF i

2
koxs Gs

•xsG , w̃s~j s!5
2p i

koGs expF2
i

2
koj s ~Gs!21

•j sG , ~23!

whereGs5GsI , with I being the unity matrix andGs5G r
s1 iG i

s is the window complex parameter
with G i

s.0. Anticipating extension to the time-domain, definition~23! has been constructed so that
the frequencyko5v/vo appears explicitly in the exponent, whileGs is frequency-independent.
These features may be used to construct collimated time-domain wave objects.Gs is a complex
symmetric matrix with ImGs positive definite, so that the quadratic phase in the exponent in~23!,
xs Gs

•xs5@(x1
s21x2

s2)#Gs, has a positive imaginary part that is generating a smooth Gaussian
window which is strongest foruxsu50 and weakens asuxsu increases. The spatial and spectral
localization can be quantified in terms of the spatial and spectral RMS widths of the windows
given in ~7!, ~8!

~Ns!25p/~koG i
s!, Dxs51/AG i

sko5Djs /uGsu. ~24!

Note the uncertainty principleDxsDjs5uGsu/G i
sko>1/ko with an equality forG r

s50.
Following the definition in~23!, we shall define theincident field distribution processing

window, wi(x), having the same structure as in~23!, with the processing parameterG i , i.e.,

wi~x!5expF i

2
kox Gi

•xG , Gi5G i I , ~25!

etc. All the parametrization and analysis following~23! apply to wi by replacingGs→G i and
xs→x in ~23!–~24!.

B. Special case: The Born approximation

In order to gain insight into the PS2PS mapping process, we first consider the Born approxi-
mation in which the background medium is thehomogeneousmedium vo . In this case, the
background Green’s function is free-space Green’s function,G(r ,r 8)5exp(ikour2r 8u)/(4pur

FIG. 3. Phase-space to phase-space mapping phenomenology; the phase-space transform, applied to both incident and
scattered field distributions, synthesizes local reflections between isolated local cells,Ln , dynamically oriented and located

according to the phase-space processing parametersX̄ i andX̄s. The PS2PS Green’s function in~21! is obtained by a spatial
windowing of the object function with the scattering cells.
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2r 8u) and the PS propagators and scattering cells yield clear and simple asymptotic expressions.
The general scattering over an inhomogeneous background is discussed in Sec. IV C.

1. Asymptotic evaluation of the scattering propagators

The formal integral representation of the scattering propagators using Gaussian windows may
be obtained by inserting~23! into ~11!, with Gb5G being free-space Green’s function. Alterna-
tively, a plane-wave spectral representation may be more useful for asymptotic evaluation. In
order to obtain such a representation, we insert free-space Green’s function plane-wave spectral
representation1

G~r ,r 8!5S ko

2p D 2E d2j
1

22ikoz
exp@ iko~j•~x2x8!1zuz2z8u!# ~26!

into ~11! and invert the order of integration, yielding

Bb
s~r s;X̄s!5S ko

2p D 2E d2j
i

2koz
w̃s* ~j2 j̄ s!exp@ iko~2j•~xs2 x̄s!2zzs!#, ~27!

wherew̃s(j) is given in~23!. For the Gaussian~scattering! window in ~23!, the scattering propa-
gator has been evaluated asymptotically in Ref. 15 with connection to the PS processing of pulsed
plane-wave excited scattering. It was found there that if the window is ‘‘large’’ on a wavelength
scale,Bb

s(r s;X̄s) in ~27! yields collimated beam fields in ther 8-domain. Via asymptotic evaluation
and paraxial approximation, one obtains

Bb
s~r ;X̄s!5

i

2koz̄s
AdetGi~zb

s!

detGs~0!
expF ikoS 2zb

s1
1

2
xb

sGs~zb
s!•xb

sD G , ~28!

where

Gs~zb
s!5F ~2zb

s2 z̄s2
/Gs* !21 0

0 ~2zb
s21/Gs* !21G , ~29!

with z̄s5A12 j̄ s
• j̄ s. In ~28!, we utilize thebeam-coordinates(xb1

s ,xb2

s ,zb
s), defined, for a given

PS pointX̄s, by the rotation transformation

F xb1

s

xb2

s

zb
s
G5F cosq̄s cosw̄s cosq̄s sinw̄s 2sinq̄s

2sinw̄s cosw̄s 0

sinq̄s cosw̄s, sinq̄s sinw̄s cosq̄s
G F x1

s2 x̄1
s

x2
s2 x̄2

s

zs
G , ~30!

where (q̄s,w̄s) are the spherical angles associated with the unit-vector~see Fig. 4!

kR s5~ j̄ s,z̄ s!5~sinq̄s cosw̄s,sinq̄s sinw̄s,cosq̄s!. ~31!

Thus, thezb
s axis coincides with the beam-axis in the positive~outward! kR s direction; the trans-

verse coordinatesxb
s5(xb1

s ,xb2

s ) are rotated such thatxb2

s is parallel to thezs plane whilexb1

s lies

in the plane (j̄ s,kR s) with its positive direction defined so thatj̄ s
• x̂b1

s .0 ~see Fig. 4!. Furthermore,

the system (xb
s ,zb

s) is defined to be right-handed. Accordingly, the linear phasej̄ s
•(xs2 x̄s) im-

plied by the window function in thezs50 plane is operative in thexb1

s directionbut notin thexb2

s

direction. Consequently,j̄ s affects only theG11
s term in ~29! but not theG22

s term, thereby describ-
ing astigmaticbeams.
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The parameters of this astigmatic beam field, may be obtained by rewriting the diagonal
elements in~29! in the formG5diag(G1,G2) whereG1,2

s (zb
s)5(2zb

s1Z1,2
s 2 iF 1,2

s )21 with

Z1
s52 z̄s2

G r
s/uGsu2, Z2

s52G r
s/uGsu2, ~32!

are identified as the beamwaist location in the (zb
s ,xb1,2

s ) plane, and

F1
s5 z̄s2

G i
s/uGsu2, F2

s5G i
s/uGsu2, ~33!

are the correspondingcollimation lengths. Furthermore, thebeam widthsin the (zb
s ,xb1,2

s ) plane,

D1,2
s are found from ReGs(zb

s), giving

D1,2
s 5AF1,2

s /koA11~zb
s2Z1,2

s !2/Fs
1,2
2 , ~34!

and thephase front radius of curvature, R1,2
s may be obtained from ImGs(zb

s), giving

R1,2
s 5~Z1,2

s 2zb
s!1F1,2

2 /~Z1,2
s 2zb

s!. ~35!

The beam propagator astigmatism is caused by the beam tilt which reduces the effective initial
beam width in thexb1

direction. Note that the waist locationZ, the collimation lengthF as well
as the phase as a whole, are frequency-independent. However, beam widthD is frequency depen-
dent, being proportional toko

21/2. These properties identify the scattering propagators as ‘‘iso-
diffracting’’ wave packets.18

2. Asymptotic evaluation of the incident propagators

Using Gaussian windows, the PS incident propagators,Bb
i (r ;X̄ i) may be evaluated by insert-

ing free-space Green’s function into~18!. In the present context it is convenient to express the
free-space propagators by the plane-wave representation

Bb
i ~r ;X̄ i !5S ko

2p D 2E d2j w̃~j2 j̄ i ! exp@ iko~j•~x2 x̄i !1zz!#. ~36!

FIG. 4. Scattering propagators’ local beam-coordinates; for a given PS spectral parameterX̄s, the corresponding phase-

space scattering propagatorBb
s(r 8;X̄s) behaves like a collimated beam generated in ther 8-domain, whose axis reaches

point x̄s on the z8s50 plane along the direction of the beam-axis unit-vectorkR s. The figure depicts the global fixed
(x18

s ,x28
s ,z8s) coordinate frame as well as the beam-centered coordinates (xb1

8s ,xb2
8s ,zb8

s) ~referenced to thez8s50 plane!,
which extend along the beam-axis and along the two orthogonal directions perpendicular to the beam-axis.
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If w is wide on a wavelength scale then the spatial and spectral distributions ofw̃ are localized
aroundx5 x̄i and j5 j̄ i , respectively. Consequently,Bb

i (r ;X̄ i) behaves like a collimated beam
whose axis emerges from thez50 plane atx5 x̄i with a direction

k̄ i5~ j̄ i ,z̄ i !, z̄ i5A12uj̄ i u2, ~37!

whereuj̄ i u25 j̄ i
• j̄ i . Next, the general formulation for the scattering process is evaluated for the

special case of the Gaussian windows in~25!. These windows enable closed form asymptotic
evaluation of the PS2PS Green’s function,Cb(X̄s,X̄ i), and the scattering cellLb . Via asymptotic
evaluation and paraxial approximation, one obtains11

Bb
i ~r ;X̄ i !5AdetGi~zb

i !

detGi~0!
expF ikoS zb

i 1
1

2
xb

i Gi~zb
i !•xb

i D G , ~38!

where

Gi~zb
i !5F ~zb

i 1 z̄ i 2/G i !21 0

0 ~zb
i 11/G i !21G , ~39!

with z̄ i5A12 j̄ i
• j̄ i . In ~38!, we utilize the beam-coordinates (xb1

i ,xb2

i ,zb
i ) defined, for a given

PS pointX̄ i , by the transformation in~30! with (q̄s,w̄s)→(q̄ i ,w̄ i) where (q̄ i ,w̄ i) are the spherical
angles associated with the unit-vector

kR i5~ j̄ i ,z̄ i !5~sinq̄ i cosw̄ i ,sinq̄ i sinw̄ i ,cosq̄ i !. ~40!

The parametrization of the beam field in~38! may be obtained in a similar manner to~32!–~35!.
The asymptotic beams in~38! facilitate insight into the role of the paraxial approximation:

these beams do not satisfy the boundary conditionBi(r ;X̄ i)uz505Wi(x;X̄ i), since near thez50
plane, the paraxial approximationzb

i @Axb1

i 21xb2

i 2 is invalid. The paraxially approximated~as-

tigmatic! beam is obtained by projecting the initial window onto the transverse planezb
i 50 over

which the initial effective beam width in thexb1

i direction is reduced by a factor ofz̄ i whereas the

width in thexb2

i direction remains unchanged. Therefore, the paraxial beam boundary conditions

on a plane transverse to the beam propagation direction (zb
i 50) are

Bi~rb
i ;X̄ i !uz

b
i 505expF i

2
koxb

i Gparax
i

•xb
i G , ~41!

with

Gparax
i 5FG i / z̄ i 2 0

0 G i G . ~42!

Comparing the scattering propagator in~28! to the incident propagator in~38!, one finds that they
have a similar Gaussian beam type form. They differ mainly in the beam-axis directions: in~40!
the beam-axis is directed along theoutgoingdirection~i.e., towards the scattering object! whereas
in ~31!, the scattering propagators are directedaway from the object. Furthermore, the incident
beam is forward propagating~i.e., accumulates positive phase along the beam-axis!, whereas the
2zb

s term in ~29! implies that the scattering propagators areback-propagatedinto the scattering
object domain.
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3. PS2PS mapping

Next, we examine the local scattering cell in ther 8 object domain,Lb(r 8;X̄), under the Born
approximation. By inserting~38! with ~28! into ~22!, one obtains

Lb~r 8;X̄ i ,X̄s!5
iko

3

8z̄s~pNi !2
AdetGi~zb

i !

detGi~0!
AdetGs~zb

s!

detGs~0!

3expF ikoS zb
i 2zb

s1
1

2
xb

i Gi~zb
i !•xb

i 1
1

2
xb

sGs~zb
s!•xb

sD G . ~43!

Relation~43! describes a local 3D spatial window; it is centered at the intersection of the incident
and scattering propagators axes, where bothxb

i andxb
s are zero, and exhibits a Gaussian decay as

the transverse coordinatesxb
i and xb

s increase. The orientation of the cell is determined by the
rotation transformation in~30! for incident and scattering propagators, and by the processing
parametersG i andGs. For the special caseG i5Gs, the exponent in~43! contains the sum ofxb

i

andxb
s . Since both are determined by a rotation transformation of the~30! kind, the result is a new

rotation transformation that bisects the incident directionkR i in ~37! with the scattering directionkR s

in ~31!. Therefore, the interaction of the incident spectral beam with the object domain, when
parameterized in terms of scattered Gaussian beam propagators, occurs as if each scattered beam
werespecularly reflectedfrom the local medium inhomogeneities~see Fig. 3 and further discus-
sion following ~56!!.

C. Propagation in the perturbed medium

Next, we consider the propagation of beam propagators~such asBb
i andBb

s) in an inhomo-
geneous mediumwith a wave velocityvb(r ).

1. Local beam-coordinates

An asymptotic solution for general beam-type propagation in an inhomogeneous medium is
given in Ref. 3~see also extension to the time-domain in Refs. 14 and 19!. It has been shown there
that the field is propagating along a ray trajectory,S ~see Fig. 5!. Denotings as the arc length
along the ray trajectory, the ray local coordinates are defines by the unit-vectorst̂, n̂, n̂b5 t̂3n̂,
denoting the tangent, normal, and bi-normal ofS at a pointro(s) on S, respectively. They are
related by the Fernet equations20

ro85 t̂, t̂85Kn̂, n̂852K t̂1kn̂b , n̂b852kn̂, ~44!

where the prime denotes a derivative with respect tos, K is the curvature ofS, andk is its torsion.
The ray coordinates are nonorthogonal forkÞ0. A locally orthogonal coordinate system along the
ray may be obtain by transverse rotation of the unit-vectors20 ~see Fig. 5!

FIG. 5. Local beam-coordinates and ray trajectories; the beam propagator is propagating along ray trajectoryS. The local
orthogonal coordinate systemr5ro(s)1x1x̂11x2x̂2 , wheres is the arc length along the ray trajectory, is obtained by the
rotation transformation in~45!.
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S x̂b1

x̂b2
D 5S cosu 2sinu

sinu cosu D S n̂
n̂b

D , ~45!

whereu~s! satisfies

u8~s!5k~s!. ~46!

Points near the ray may now be expressed as

r5ro~s!1nn̂~s!1nbn̂b~s!5ro~s!1xb1
x̂b1

1xb2
x̂b2

, ~47!

where the coordinate frame (s,xb1
,xb2

) is locally orthogonal with dr5 t̂hsds1 x̂b1
dxb1

1 x̂b2
dxb2

, with the Lame´ coefficient

hs512K~s!@x1 cosu1x2 sinu#512K~s!n. ~48!

2. Asymptotic evaluation of the scattering propagator

The ray coordinate system may now be applied to the scattering propagators,Bb
s(r 8;X̄s). Each

propagator arrives at the observation plane to pointx̄s from a directionj̄ s; thus, we associate a ray
coordinate system to each beam, so that ray parameterss, xb1

andxb2
are all processing param-

eters (X̄s)-dependent, and are denoted asss5s(X̄s), xb
s5(xb1

(X̄s),xb2
(X̄s)), etc. The inhomo-

geneous medium in the high frequency-localized beam excitation regime may be modelled by the
wave speed along the excited ray and its second order transverse derivative matrixVb

(2)(ss),
whose (i j ) elements are]xbi

]xbi
vbuSs . Using the ray coordinate frame, the paraxially approxi-

mated scattering propagators may be evaluated in the high frequency regime, giving~see details in
Appendix B!

Bb
s~r s;X̄s!5

i

2koz̄s
Avb~ss!

vo

detQb
s~0!

detQb
s~ss!

exp@ iFb
s~r s;X̄s!#, ~49!

with

Fb
s~r s;X̄s!52F E

0

ss

ds8kb~s8!G1
1

2
kb~ss!xb

s Gb
s~ss!•xb

s , ~50!

wherekb(ss)5v/vb(r )urPSs is the wave number along the excited raySs. The transverse matrix
Gs(ss) is a complex symmetric 232 matrix with ImGs positive definite. One may calculateGs by
the standard procedure of solving the matrix Riccati equation, setting

Gb
s~ss!5vb~ss!Pb~ss!Qb

21~ss!, ~51!

and solving, alongSs, the first order system of coupled differential equations

Qb8~ss!5vb~ss!Pb~ss!, Pb8~ss!52vb~ss!22Vb
(2)~ss!Qb~ss!, ~52!

where the prime denotes a derivative with respect to the argument. Relation~52! is subject to the
initial conditions

Qb~0!5I , Pb~0!5voGs. ~53!

As in the special case of homogeneous background medium~i.e., the Born approximation! in ~28!,
one can show that ifGs(0) is symmetric with ImGs(0) positive definite, thenGs(ss) has these
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properties for allss, and thatQ(ss)Þ0 for all ss. Following the procedure in~32!–~35!, one
identifies ReGs(ss) and ImGs(ss) as the beam curvature and beam-amplitude matrices, respec-
tively. Note that the special case of the Born approximation in~28!, in which the background
medium is homogeneous, may be obtained by substitutingvb(r )5vo into ~49!–~53!.

The scattering propagators,Bb
s(r 8;X̄s), are backpropagating along the ray trajectory initiating

from the scattered data plane inzs50, from a processingx̄s-dependent point, in a processing
j̄ s-dependent direction. The propagator exhibits a Gaussian decay normal to the ray trajectory, i.e.,
in xb

s .

3. Asymptotic evaluation of the incident propagators

For the case of the incident propagators,Bb
i (r 8;X̄ i), in ~18!, each propagator emanates from

point x̄i on the initial distribution plane, in a directionj̄ i ~see Fig. 3!; thus, the ray coordinates
associated with each processed beam are denoted accordingly ass i5s(X̄ i), etc. As in~49!, the
inhomogeneous medium may be modeled by the wave number along the excited ray,kb(s i), and
its second order transverse derivative matrixVb

(2)(s i) along the beam-axis. Using the ray coordi-
nate frame, the paraxially approximated scattering propagators may be evaluated in the high
frequency regime in a manner similar to~49!, giving

Bb
i ~r ;X̄ i !5Avb~s i !

vo

detQb
i ~0!

detQb
i ~s i !

exp@ iFb
i ~r ;X̄ i !# ~54!

with

Fb
i ~r ;X̄ i !5F E

0

s i

ds8kb~s8!G1
1

2
kb~s i !xb

i Gb
i ~s i !•xb

i , ~55!

where the matrixGb
i (s i) is found by solving~52! along the incident beam-axiss iPS i with the

initial conditionsQb(0)5I andPb(0)5voGi .

4. PS2PS mapping

Next, we consider the scattering cell under Gaussian windows processing. By inserting
Bb

s(r 8;X̄s) in ~49! with Bb
i (r 8;X̄ i) in ~54! into ~22!, we obtain the asymptotic expression for the

scattering cell

Lb~r 8;X̄ i ,X̄s!5
iko

8p2z̄sNi
A vb~ss!vb~s i !/vo

2

detQb
s~ss!detQb

i ~s i !
exp$ i @Fb

s~r s;X̄s!1Fb
i ~r ;X̄ i !#%, ~56!

whereFb
s andFb

i are given in~50! and~55!, respectively. Relation~56! implies the following: The
local scattering cell exhibits Gaussian decay normal to both the incident and scattering ray trajec-
tories ~i.e., in xb

i and xb
s). Thus, the window center is located at the intersection of the incident

spectral beamBb
i (r 8;X̄ i) and the scattered beam propagatorBb

s(r 8;X̄s) axes. Therefore, the loca-
tion of the scattering cell is resolved by the PS processing parametersX̄s andX̄ i , which determine,
via ~30!, the PS propagators ray trajectories~see Fig. 3!.

The localization in the object domain as determined byLb(r 8;X̄ i ,X̄s) may be interpreted by
using fundamental wave physics. Consider an incident propagator emanating fromz50 plane
from point x̄i at angleū i along rayS i , arriving at thezs50 scattering plane at pointx̄s at angleūs.
In this case, the scattering propagator,Bb

s(r ;X̄s), corresponding tox̄s and ūs, backpropagates
along the same ray trajectorySs5S i , and the corresponding scattering cell exhibits Gaussian
decayonly in the transverse coordinates (xb1

,xb2
) and not along the~shared! beam-axis. There-

fore, the integration domain in~21! is local only normal toS i , which indicates the stationary
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contribution to PS spectral distribution at that particularX̄s in accord with the Fermat principle.

Furthermore, the phase accumulation alongS i , 2*0
s i

ds8kb(s8), when introduced into~21!, acts
as a ‘‘scaled Fourier transform’’ operating along the ray trajectory; thus, large contributions toCb

in ~21! arise from medium variationsalong S in accord with fundamental 1D wave physics.

V. CONCLUDING REMARKS

Inhomogeneous medium Green’s function in the phase-space domain were presented, linking
the phase-space spectral distributions of the field scattered by a high contrast object to a genetic
time-harmonic incident field. Two forms of phase-space Green’s function were presented:~a! A
configuration-space to phase-spaceGreen’s function that links induced sources in the object
domain to phase-space distributions of the scattered field is obtained by applying PS transform to
the scattered field over planar surfaces; and~b! a phase-space to phase-spaceGreen’s function,
which directly links incident- to scattered-phase-space distribution, obtained by applying the PS
transform toboth incident and scattered field distributions,s. The scattering mechanism has been
described in terms of local samplings of the object function which are localized in the object
domain according to the scattered- and incidence-processing parameters. The special case of
Gaussian windows has been considered and asymptotic expressions for the PS Green’s functions
and scattering cells have been derived for both the Born approximated- and the generic-
inhomogeneous medium profiles. The wave phenomenology associated with the PS Green’s func-
tions and the scattering mechanism have also been explored.

Equations~20!–~22! establish the building blocks for aninverse scatteringprocedure in which
the strong scatterer is found via iterative algorithm where at thenth iteration, the background
vb(r )5vn(r ) is known, and the sampling operation in~20! is inverted to evaluateO(r ), from
which the nextvn11 is found. This operation may be carried out for large scatterers since it can be
shown that under appropriate illuminating conditions, the operation in~20! may be reduced to 1D
samplings along the~synthesized! scattered ray trajectories.
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APPENDIX A: OPERATOR REPRESENTATION OF CS2PS GREEN’S FUNCTION

In order to establish the scattering propagators in~11! as Green’s functions, an operator
equation associated with the CS2PS is derived hereby. We define the Helmholtz operator
(L1u)(r )

~L1u!~r ![@¹21kb
2~r !#u~r !, ~A1!

and the inverse-PS operator (L2U)(X̄)

~L2U !~X̄![S ko

2pNsD 2E d4X̄s U~X̄,zs! Ws~xs;Xs!, ~A2!

where U(X̄,zs) are PS distributions over planar surfaces of constantzs. Next, we define the
cascade operator (LU)(X̄)5@L1(L2U)(X̄)#@r #. Using ~9!, in ~1!, we identify the operator equa-
tion

~LUs!~X̄s!52 f ~r !, f ~r !5ko
2O~r !u~r !. ~A3!

The Green’s function,Bb
s , associated with the operator Eq.~A3! is obtained by solving
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~LBb
s!~X̄s!52d~r2r 8! ~A4!

and the resolvent operator ofL, Us5(L21f )(r ) takes the form in~10!, thereby identifyingBb
s in

~11! as a Green’s function. Furthermore, by substituting~11! into ~A3! and inverting the order of
integration, one finds that the PS scattering propagators satisfy definition~A4!.

APPENDIX B: EVALUATION OF EQ. „49…

In order to establish Eq.~49!, we note that generic solution for beam-type wave objects
propagating in the background mediumvb(r ), along the raySs, is given by3,14,19

Bb
s~r !5AAvb~ss!

vo

detQb~0!

detQb~ss!
exp@ iFb~r !#, ~B1!

whereA is a constant, and the phase

Fb~r !56F E
0

ss

ds8kb~s8!G1
1

2
kb~ss!xb Gb~ss!•xb . ~B2!

Since, according to~11!, the scattering propagatorBb
s(r 8;X̄s) satisfies wave equation~1! with

v(r )5vb(r ), we seek for solutions in the form of~B1!. Under the paraxial approximation, the
initial distribution of the scattering propagator over thezs50 plane may be replaced by the initial
parameter matrix~see discussion following~42!!

Gparax
s 5FGs* / z̄s2

0

0 Gs* G , ~B3!

over thezb
s50 plane. Note that the projected initial paraxial distribution, which was originally

obtained for homogeneous medium, may serve for inhomogeneous propagation as well, as long as
the initial plane is embedded in an homogeneous medium, since in the high-frequency limit
Bremmer-type reflections are negligible, and the beam-type field is forward propagating along the
ray trajectories.3,14 Therefore, we may use the homogeneous background asymptotic field in~28!
with the above-mentioned initial distribution in the general solution~B1! yielding ~49!. Note that
solution~49! satisfies the radiation condition of sources in thezs,0 as exhibited by the propaga-

tion phase accumulation of2*0
ss

ds8kb(s8) for ss,0 ~see also Fig. 4!.
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