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Gaussian-beam propagation in generic anisotropic
wave-number profiles
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The propagation characteristics of a scalar Gaussian beam in a homogeneous anisotropic medium are con-
sidered. The medium is described by a generic wave-number profile wherein the field is formulated by
a Gaussian plane-wave distribution and the propagation is obtained by saddle-point asymptotics to extract
the Gaussian beam phenomenology in the anisotropic environment. The resultant field is parameterized in
terms of e.g., the spatial evolution of the Gaussian beam’s curvature, beam width, which are mapped to local
geometrical properties of the generic wave-number profile. © 2003 Optical Society of America
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Anisotropic materials are of interest for use as optical
waveguides and microwave devices, in plasma science,
and in various propagation environments. Compre-
hensive studies have been made of Gaussian-beam
(GB) two- and three-dimensional propagation for spe-
cific wave-number profiles.1 – 18 The generic profiles
of the three-dimensional problem associated with a
GB with complex wave-number spectral constituents
are of fundamental significance. This is so because
GB propagation is a practical issue as well as being
theoretically significant, inasmuch as GBs form the
basis propagators for the phase-space beam summa-
tion method, which is a general analytical framework
for local analysis and modeling of radiation from
extended source distributions.19 With GBs used as
basis wave objects for modeling, various anisotropic
propagation and scattering problems were introduced
in Refs. 20 and 21. The propagation of a GB over a
generic anisotropy was studied22 by the complex source
point method. Applying the saddle-point asymptotic
technique approximated over the z axis, Shin and
Felsen arrived at a closed-form analytic solution for
the GB field. In our view, the complex source point
method cannot account for the astigmatic effects
that are present in our analysis of the generic wave-
number profiles; therefore the results in Ref. 22 may
be applied only to a uniaxially anisotropic medium.
Alternatively, by applying a plane-wave spectral
representation to the propagation problem, we present
an alternative rigorous solution for the GB field that
is suitable for any generic wave-number profile [see
the discussion following Eq. (8) below].

The current study is concerned with the effects of
anisotropy on the propagation characteristics of the
scalar Gaussian-beam field in a homogeneous medium
described by the generic wave-number profile kz�j�,
where j is a wave-number-normalized coordinate.
The field is formulated in the frequency domain
by a plane-wave spectral integral and is evaluated
asymptotically by the saddle-point technique. Given
a field u�r� in which an exp�2ivt� time dependence
is assumed and suppressed, where r � �x1, x2, z� are
conventional Cartesian coordinates, the wave-number
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spectral (plane wave) transform pairs on the z � 0
initial surface are given by

ũ0�j� �
Z `

2`

d2xu0�x�exp�2ikj ? x� , (1a)

u0�x� � �k�2p�2
Z

d2jũ0�j�exp�ikj ? x� , (1b)

where j � �j1, j2� is the normalized spatial wave-
number vector, x � �x1, x2�, k is the homogeneous
medium wave-number k � v�c, where c is the phase
velocity of the homogeneous medium, and � identifies
a wave number’s spectral function. The normal-
ization with respect to wave number k renders j
frequency independent. Therefore the GB field is
formulated by means of the Gaussian distribution

u0�x� � exp�21/2kx2�b� , (2)

where b � br 1 ibi, with br . 0 a parameter, and x2 �
x ? x � x1

2 1 x2
2. Substituting Eq. (2) into Eq. (1), we

obtain the plane-wave spectral distribution that corre-
sponds to Eq. (2):

ũ0�j� � �2pb�k�exp�21/2kbj2� . (3)

The plane-wave distribution in Eq. (3) can be propa-
gated into the z . 0 half-space by use of the generic
anisotropic propagator exp�ikz �j�z�, where, as in
Eq. (1), we normalize longitudinal wave number z by
k. With this propagator, the f ield propagating into
the z . 0 half-space is given by

u�r� � b
k
2p

Z
d2j exp�ikF�j ,r�� ,

F�j ,r� �

∑
j ? x 1 z �j�z 1

i
2

bj2
∏
. (4)

The field in Eq. (4) cannot be evaluated in closed
form. Next, we evaluate it asymptotically to obtain
an analytic expression for the beam field in the high-
frequency regime.

Stationary point js satisfies
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=jF � x 1 =jz �j �jjs z 1 ibjs � 0 . (5)

Equation (5) has a real solution only if js � 0 and for
observation points

x 1 z=jz0 � 0 , (6)

where, here and henceforth, subscript 0 denotes sam-
pling at j � 0; i.e., =jz0 � =jz jj�0. The condition in
Eq. (6) defines the beam axis as a tilted line in the
configuration space, with an anisotropy-dependent tilt.
For isotropic materials, where z �

p
1 2 j2, yielding

=jz0 � 0, the beam axis coincides with the z axis. For
the generic z�j� wave-number profile, the beam axis is
directed along the unit vector

k̂ � �cos q1, cos q2, cos q3� , (7)

where q1, 2, 3, are the beam axis angles with respect to
the �x1, x2, z� axes, repsectively. In view of Eq. (6),
they are given by
cos q1, 2 �2cos q3≠j1,2z0 ,

cos q3 �
1

��≠j1z0�2 1 �≠j2z0�2 1 1�1�2
. (8)

Note that the beam axis direction as defined in
Eq. (6) is different from the definition given in Ref. 22,
in which the propagation of a Gaussian beam in a
generic wave-number profile was investigated by the
complex source point method. The beam axis as de-
fined in Ref. 22 is directed along the complex source b
parameter, which, for our problem, coincides with the
z axis. Clearly, from Eq. (6), the z axis may serve as
the beam axis only for symmetrical z , where =jz0 � 0,
as in an isotropic or a uniaxially anisotropic medium.
The condition in Eq. (6) may therefore serve as a more
generalized definition of the beam axis that accounts
for astigmatic effects of the medium’s anisotropy (see
Fig. 1).

For off-axis observation points, Eq. (5) could not be
solved explicitly. Furthermore, the off-axis station-
ary point is complex and the solution requires analytic
continuation of wave-number profile z � z �j� for com-
plex j . To obtain a closed-form analytic solution for
the beam field, we notice that the beam field decays
away from the beam axis. Therefore we may apply a
Taylor expansion of phase F about on-axis stationary
point js � 0:

F � F0 1 F1 ? j 1 1/2jF2j , (9)

with
F0 � Fjj�0 � z0z , F1 � =Fjj�0 � =jz0z 1 x ,

(10)

F2 �

∑
ib 1 ≠j1

2z0z ≠j1j2
2z0z

≠j1j2
2z0z ib 1 ≠j2

2z0z

∏
, (11)

where subscript 0 implies sampling at j � 0. Using
relation (9), we find that the saddle point for both on-
and off-axis observation points is js �2F2

21F1, and
the field in Eq. (4) may be evaluated asymptotically by

u�r� �
b

p
2det F2

exp�ikS�r�� ,

S�r� � F0 2 1/2F1F2
21F1 . (12)

The beam field in Eq. (12) may be represented in
terms of local beam coordinates over which the f ield
exhibits a Gaussian decay away from the beam axis.
The local beam coordinates, rb � �xb1, xb2, zb�, are de-
fined by the nonorthogonal transformation
rb � Tr , T �

2
4 cos a sin a �2cos q2 sin a 2 cos q1 cos a��cos q3

2sin a cos a �2cos q2 cos a 1 cos q1 sin a��cos q3

0 0 1�cos q3

3
5 , (13)
where cos q1, 2, 3 are defined in Eqs. (8) and angle a is
given by

tan 2a �22≠j1j2
2z0��≠j2

2z0 2 ≠j1
2z0� . (14)

The transformation in Eq. (13) consists of a rotation
transformation in the �x1, x2� plane by a, in which
phase S�r� in Eq. (12) exhibits Gaussian decay, fol-
lowed by tilting of the z axis beam axis direction k̂

in Eq. (7) (Fig. 1). The inverse transform is given by

T21 �

"cos a 2sin a cos q1

sin a cos a cos q2

0 0 cos q3

#
. (15)

Fig. 1. Local beam coordinate frame for a Gaussian beam
propagating in an anisotropic medium. The beam axis is
directed along unit vector k̂. The local transverse coordi-
nates xb are given by the transformation in Eq. (13). The
transverse local coordinates are located over the �x1, x2�
plane, which is in general nonorthogonal to the beam axis.
The rotation transformation of �x1, x2� into �xb1, xb2� by a
is carried out such that the resultant field in Eq. (16) ex-
hibits Gaussian decay in the local coordinates.
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Substituting beam coordinate system (13) into
Eq. (12), we may present the f ield in the Gaussian
form

u�r� �
b

p
2G1G2

3 exp
Ω
ik

∑
z0zb cos q3 1

1
2

µ
xb1

2

G1
1

xb2
2

G2

∂∏æ
, (16)

where
G1,2 �2
≠j1

2z0z 1 ≠j2
2z0z 1 2ib 7 ��≠j1

2z0z 2 ≠j2
2z0z�2 1 4�≠j1j2

2z0z�2�1�2

2
. (17)
Substituting Eq. (14) into Eq. (17), we obtain

G1,2 � zba1, 2 2 ib ,

a1, 2 �
cos q3

cos�2a�

∑
≠j1

2z0

Ω
2cos2 a

sin2 a

æ
1 ≠j2

2z0

Ω
sin2 a

2cos2 a

æ∏
.

(18)

Equation (16) has the form of a Gaussian beam prop-
agating along beam axis zb. The beam field exhibits
a Gaussian decay in transverse local coordinate xb,
which is, in general, tilted with respect to beam axis di-
rection k̂. To parameterize the beam field we rewrite
the element of G1, 2 in the form

1
G1, 2

�
1

R1, 2
1

i
kD1, 2

2
, (19)

where

D1, 2 �
q
F1,2�k �1 1 a1, 2

2�zb 2 Z1, 2�2�F1, 2
2�1�2, (20)

R1, 2 � a1, 2�zb 2 Z1, 2� 1 F1,2
2��a1,2�zb 2 Z1, 2�� , (21)

with

Z1, 2 �2bi�a1, 2 , F1,2 � br . (22)

By substituting Eq. (19) into Eq. (16) we can readily
identify D1, 2 as the beam width in the �z, xb1,2 � plane,
whereas R1, 2 is the phase front’s radius of curvature.
The resultant GB is therefore astigmatic; its waist in
the �z, xb1,2 � plane is located at zb � Z1, 2, whereas F1,2
is the corresponding collimation length. This astig-
matism is caused by the beam tilt, which reduces the
effective initial beam width in the xb1,2 directions.

The compact presentation in Eqs. (16)–(22) parame-
terizes the GB field in terms of local properties of the
generic wave-number profile about stationary point
j � 0. This general parameterization can be com-
pared to the isotropic profile in which z �j � � �1 2 j ?
j�1�2, in which case z0 � 1, ≠j1,2z0 � 0, and the beam
axis in Eq. (7) coincides with the z axis. Further-
more, using ≠j1j2
2z0 � 0 in Eq. (14), we obtain a � 0,

and therefore, from Eq. (18), G1,2 � z 2 ib. By sub-
stituting G1, 2 into Eq. (16) we obtain the well-known
isotropic asymptotic GB field19

u�r� �
2ib

z 2 ib
exp	ik�z 1 1/2x2��z 2 ib��
 . (23)

In this Letter we have been concerned with parame-
terization of the effects of spectral anisotropy on the
propagation characteristics of a paraxially approxi-
mated Gaussian beam in a medium with a generic
wave-number profile. Various beam parameters have
been systematically found to quantify the effect of
anisotropy on various observables associated with
the GB field. Introducing the anisotropy-dependent
nonorthogonal local beam coordinate system enabled
us to quantify the beam parametrization in terms of
the local properties of the anisotropic surface z �j � at
stationary on-axis point j � 0.

T. Melamed’s e-mail address is timormel@bgumail.
bgu.ac.il.
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