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Gaussian Beam Propagation in Generic Anisotropic Wavenumber Profiles

Igor Tinkelman and Timor Melamed

Abstract

The propagation characteristics of the scalar Gaussian Beam in a homogeneous anisotropic medium is considered.
The medium is described by a generic wavenumber profile wherein the field is formulated by a Gaussian plane wave
distribution and the propagation is obtained by saddle point asymptotics to extract the Gaussian Beam phenomenology
in the anisotropic environment. The resulting field is parameterized in terms of the spatial evolution of the Gaussian
beam curvature, beam width, etc., which are mapped to local geometrical properties of the generic wavenumber
profile.

I. I NTRODUCTION AND STATEMENT OF THE PROBLEM

Anisotropic materials are of interest for optical waveguides, microwave devices, plasma science, and dif-
ferent propagation environments. Comprehensive studies have been performed for the problem of Gaussian
Beam (GB) 2D and 3D propagation for specific wavenumber profiles [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18]. The generic profiles of the three-dimensional problem asso-
ciated with a GB with complex wavenumber spectral constituents, are of fundamental significant, since GB
propagation is a practical problem as well as theoretically significant, since GBs form the basis propagators
for the “phase-space beam summation method”, which is a general analytical framework for local analy-
sis and modelling of radiation from extended source distributions [19]. Using GBs as basis waveobjects for
modelling different anisotropic propagation and scattering problems were introduced in [20], [21]. The prop-
agation of GB over agenericanisotropy has been studied in [22] using the Complex Source Point method.
By applying the saddle point asymptotic technique, approximated over thez axis, the authors arrived at a
close form analytic solution for the GB field. In our view, the Complex Source Point method cannot account
for astigmatic effects which are present in our analysis of the generic wavenumber profiles, and therefore the
results in [22] may be applied only to the case of uniaxially anisotropic medium. Alternatively, by applying
a planewave spectral representation for the propagation problem, an alternative rigorous solution for the GB
field is presented here, which is suitable for any generic wavenumber profile (see discussion following (8)) .
The current study is concerned with the effects of anisotropy on the propagation characteristics of the scalar
Gaussian beam field in a homogeneous medium described by the generic wavenumber profilekz(ξ) where
ξ is wavenumber normalized coordinate. The field is formulated in the frequency-domain via a plane wave
spectral integral and is evaluated asymptotically by saddle point technique. Given a field,u(r), where a
exp(−iωt) time dependence is assumed and suppressed, andr = (x1, x2, z) are conventional Cartesian
coordinates, the wavenumber spectral (plane wave) transform pairs on thez = 0 initial surface are given by

ũo(ξ) =

∫ ∞

−∞
d2x uo(x) e−ikξ·x (1 a)

uo(x) = (k/2π)2

∫
d2ξ ũo(ξ) eik ξ·x (1 b)

whereξ = (ξ1, ξ2) is the normalized spatial wavenumber vector,x = (x1, x2), k is the homogenous media
wavenumberk = ω/c , with c being the phase velocity of the homogeneous media, and˜ identifies a
wavenumber spectral function. The normalization with respect to the wavenumberk renderingξ frequency-
independent. Therefore, the GB field is formulated via the Gaussian distribution

u0(x) = exp[−1

2
kx2/β] (2)
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Fig. 1. Fig. 1. The local beam coordinate frame for the Gaussian beam propagating in the anisotropic medium. The beam axis is directed along
the unit vector̂κ. The local transverse coordinates,xb, are given by the transformation in (13). The transverse local coordinates are located over
the(x1, x2) plane which is in general non-orthogonal to the beam axis. The rotation transforation of(x1, x2) to (xb1, xb2) by α is carried out
so that the resulting field in (16) exhibits Gaussian decay in the local coordinates.

wereβ = βr + iβi with βr > 0 is a parameter, andx2 = x ·x = x2
1 +x2

2. By inserting (2) into (1), we obtain
the plane wave spectral distribution corresponding to (2)

ũ0(ξ) = (2πβ/k) exp[−1

2
kβξ2]. (3)

The plane wave distribution in (3) can be propagated into thez > 0 half space using the generic anisotropic
propagatorexp[ikζ(ξ) z], where, as in (1), we normalize the longitudinal wavenumberζ by k. Using this
propagator, the field propagating into thez > 0 half space is given by

u(r) = β
k

2π

∫
d2ξ exp[ikΦ(ξ, r)], Φ(ξ, r) = (ξ · x + ζ(ξ)z +

i

2
βξ2). (4)

The field in (4) cannot be evaluated in close form. In the next section we shall evaluate it asymptotically to
obtain an analytic expression for the beam field in the high frequency regime.

II. A SYMPTOTIC EVALUATION AND PARAMETERIZATION

The field representation in (4) may be evaluated asymptotically by the saddle point technique. The stationary
pointξs satisfies

∇ξΦ = x +∇ξζ(ξ)|ξs
z + iβξs = 0. (5)

Equation (5) has areal solution only ifξs = 0 and for observation points

x + z∇ξζ0 = 0, (6)
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where, here and henceforth, subscript 0 denotes sampling atξ = 0, i.e.,∇ξζ0 ≡ ∇ξζ|ξ=0
. The condition in

(6) defines thebeam axisbeing as a tilted line in the configuration space, with a anisotropy-dependent tilt.
For isotropic materials, whereζ =

√
1− ξ2, giving∇ξζ0 = 0, the beam axis coincides with thez-axis. For

the genericζ(ξ) wavenumber profile, the beam axis is directed along the unit vector

κ̂ = (cos ϑ1, cos ϑ2, cos ϑ3) (7)

whereϑ1,2,3, are the beam axis angles with respects to the(x1, x2, z) axes, respectively. In view of (6), they
are given by

cos ϑ1,2 = − cos ϑ3∂ξ1,2
ζ0, cos ϑ3 =

1√
(∂ξ1ζ0)2 + (∂ξ2ζ0)2 + 1

. (8)

Note, that the beam axis direction, as defined in (6), is different from the definition given in [22] where the
propagation of Gaussian beam in a generic wavenumber profile was investigated using the Complex Source
Point method. The beam axis as defined in [22] is directed along the complex sourceb parameter which,
for our problem, coincides with thez axis. Clearly, from (6), thez axis may serve as the beam axis only for
symmetricalζ, where∇ξζ0 = 0, as in isotropic or uniaxially anisotropic medium. The condition in (6) may
,therefore, serves as a more generalized definition for the beam axis which accounts for astigmatic effects
due to the medium anisotropy (see figure1).
For off-axis observation points, equation (5) could not be solved explicitly. Furthermore, the off-axis sta-
tionary point is complex and the solution requires analytic continuation of the wavenumber profileζ = ζ(ξ)
for complexξ. In order to obtain a closed form analytic solution for the beam field, we notice that the beam
field decays away from the beam axis. Therefore, we may apply a Taylor expansion of the phaseΦ about
the on-axis stationary pointξs = 0.

Φ ≈ Φ0 + Φ1 · ξ + 1
2
ξΦ2ξ (9)

with
Φ0 = Φ|ξ=0

= ζ0z, Φ1 = ∇Φ|ξ=0
= ∇ξζ0z + x, (10)

and

Φ2 =

[
iβ + ∂2

ξ1
ζ0z ∂2

ξ1ξ2
ζ0z

∂2
ξ1ξ2

ζ0z iβ + ∂2
ξ2

ζ0z

]
, (11)

where subscript0 implies sampling atξ = 0. Using (9), one finds that the saddle point for both on- and
off-axis observation points isξs = −Φ2

−1Φ1 and the field in (4) may be evaluated asymptotically by

u(r) =
β√

− detΦ2

exp[ikS(r)], S(r) = Φ0 −
1

2
Φ1Φ2

−1Φ1. (12)

The beam field in (12) may be presented in terms oflocal beam coordinatesover which the field exhibits a
Gaussian decay away from the beam axis. The local beam coordinates,rb = (xb1, xb2, zb), are defined by the
non-orthogonal transformation

rb = Tr, T =

 cos α sin α (− cos ϑ2 sin α− cos ϑ1 cos α)/ cos ϑ3

− sin α cos α (− cos ϑ2 cos α + cos ϑ1 sin α)/ cos ϑ3

0 0 1/ cos ϑ3

 (13)

wherecos ϑ1,2,3 are defined in (8), and the angleα is given by

tg2α = −2∂2
ξ1ξ2

ζ0/(∂
2
ξ2

ζ0 − ∂2
ξ1

ζ0). (14)



4

The transformation in (13) is consist of a rotation transformation in the(x1, x2) plane byα, in which the
phaseS(r) in (12) exhibit Gaussian decay, followed by tilting thez-axis to the beam-axis direction̂κ in (7)
(see figure 1). The inverse transform is given by

T−1 =

 cos α − sin α cos ϑ1

sin α cos α cos ϑ2

0 0 cos ϑ3

 . (15)

Using the beam coordinate system (13) in (12), the field may be presented in the Gaussian form

u(r) =
β√

−Γ1Γ2

exp

{
ik

[
ζ0zb cos ϑ3 +

1

2

(
x2

b1

Γ1

+
x2

b2

Γ2

)]}
(16)

where

Γ1,2 = −
∂2

ξ1
ζ0z + ∂2

ξ2
ζ0z + 2iβ ∓

√
(∂2

ξ1
ζ0z − ∂2

ξ2
ζ0z)2 + 4(∂2

ξ1ξ2
ζ0z)2

2
. (17)

Using (14) in (17), we obtain

Γ1,2 = zba1,2 − iβ, a1,2 =
cos ϑ3

cos(2α)

[
∂2

ξ1
ζ0

{
− cos2 α
sin2 α

}
+ ∂2

ξ2
ζ0

{
sin2 α
− cos2 α

}]
(18)

Equation (16) has the form of a Gaussian beam, propagating along the beam axiszb. The beam field exhibits
a Gaussian decay in the transverse local coordinatexb which are, in general, tilted with respect to the beam
axis direction̂κ. In order to parameterize the beam field, we rewrite the element ofΓ1,2 in the form

1

Γ1,2

=
1

R1,2

+
i

kD2
1,2

(19)

where
D1,2 =

√
F1,2/k

√
1 + a2

1,2(zb − Z1,2)2/F 2
1,2 (20)

R1,2 = a1,2(zb − Z1,2) + F 2
1,2/[a1,2(zb − Z1,2)]. (21)

with
Z1,2 = −βi/a1,2, F1,2 = βr. (22)

By substituting (19) into (16) one readily identifiesD1,2 as thebeam widthin the(z, xb1,2) plane, whileR1,2

is thephase front radius of curvature. The resulting GB is thereforeastigmatic; its waist in the (z, xb1,2)
plane, is located atzb = Z1,2, whileF1,2 is the correspondingcollimation length. This astigmatism is caused
by the beam tilt which reduces the effective initial beam width in thexb1,2 directions.
The compact presentation in equations (16)–(22), parameterizes the GB field in terms of local properties
of the generic wavenumber profile about the stationary pointξ = 0. This general parameterization can be
compared to the isotropic profile whereζ(ξ) =

√
1− ξ · ξ. In which caseζ0 = 1, ∂ξ1,2ζ0 = 0, and the beam

axis in (7) coincides with thez-axis. Furthermore, using∂2
ξ1ξ2

ζ0 = 0 in (14), we obtainα = 0, and therefore,
from (18),Γ1,2 = z − iβ. By insertingΓ1,2 into (16) we obtain the well-knownisotropic asymptotic GB
field [19]

u(r) =
−iβ

z − iβ
exp[ik(z +

1

2
x2/(z − iβ))]. (23)
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III. C ONCLUSION

In this paper, we have been concerned with the parameterization of the effects of spectral anisotropy on the
propagation characteristics of a paraxially approximated Gaussian beam in a medium with generic wavenum-
ber profile. Various beam parameters have been systematically found to quantify the effect of anisotropy on
various observables associated with the GB field. Introducing the anisotropy-dependent non-orthogonallo-
cal beam coordinate systemenables the beam parameterization to be quantified in terms of local properties
of the anisotropic surfaceζ(ξ), at the stationary on-axis pointξ = 0.
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