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Abstract

The propagation characteristics of the scalar Gaussian Beam in a homogeneous anisotropic medium is considered.
The medium is described by a generic wavenumber profile wherein the field is formulated by a Gaussian plane wave
distribution and the propagation is obtained by saddle point asymptotics to extract the Gaussian Beam phenomenology
in the anisotropic environment. The resulting field is parameterized in terms of the spatial evolution of the Gaussian
beam curvature, beam width, etc., which are mapped to local geometrical properties of the generic wavenumber
profile.

. INTRODUCTION AND STATEMENT OF THE PROBLEM

Anisotropic materials are of interest for optical waveguides, microwave devices, plasma science, and dif-
ferent propagation environments. Comprehensive studies have been performed for the problem of Gaussian
Beam (GB) 2D and 3D propagation for specific wavenumber profiles [1], [2], [3], [4], [5], [6], [7], [8], [9].
[10], [11], [12], [13], [14], [15], [16], [17], [18]. The generic profiles of the three-dimensional problem asso-
ciated with a GB with complex wavenumber spectral constituents, are of fundamental significant, since GB
propagation is a practical problem as well as theoretically significant, since GBs form the basis propagators
for the “phase-space beam summation method”, which is a general analytical framework for local analy-
sis and modelling of radiation from extended source distributions [19]. Using GBs as basis waveobjects for
modelling different anisotropic propagation and scattering problems were introduced in [20], [21]. The prop-
agation of GB over genericanisotropy has been studied in [22] using the Complex Source Point method.
By applying the saddle point asymptotic technique, approximated over dixes, the authors arrived at a

close form analytic solution for the GB field. In our view, the Complex Source Point method cannot account
for astigmatic effects which are present in our analysis of the generic wavenumber profiles, and therefore the
results in [22] may be applied only to the case of uniaxially anisotropic medium. Alternatively, by applying

a planewave spectral representation for the propagation problem, an alternative rigorous solution for the GB
field is presented here, which is suitable for any generic wavenumber profile (see discussion following (8)) .
The current study is concerned with the effects of anisotropy on the propagation characteristics of the scalar
Gaussian beam field in a homogeneous medium described by the generic wavenumbeét, p¢ofildnere

& is wavenumber normalized coordinate. The field is formulated in the frequency-domain via a plane wave
spectral integral and is evaluated asymptotically by saddle point technique. Given afigldwhere a
exp(—iwt) time dependence is assumed and suppressedy andz;, x5, z) are conventional Cartesian
coordinates, the wavenumber spectral (plane wave) transform pairs ertlanitial surface are given by

Uo(&) :/ d?x uy(x) e (1 a)

o0

uo(x) = (k/2m)? / PE T, (€) (1 b)

where¢ = (£, &) is the normalized spatial wavenumber vectok- (x4, z5), k is the homogenous media
wavenumbert = w/c , with ¢ being the phase velocity of the homogeneous media, andentifies a
wavenumber spectral function. The normalization with respect to the wavenéméederingé frequency-
independent. Therefore, the GB field is formulated via the Gaussian distribution

wo(x) = expl~ /] @
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Fig. 1. Fig. 1. The local beam coordinate frame for the Gaussian beam propagating in the anisotropic medium. The beam axis is directed along
the unit vectoik. The local transverse coordinates, are given by the transformation in (13). The transverse local coordinates are located over

the (z1, z2) plane which is in general non-orthogonal to the beam axis. The rotation transforation ot ) to (zs1, zs2) by « is carried out

so that the resulting field in (16) exhibits Gaussian decay in the local coordinates.

were3 = 3, +i3; with 3. > 0 is a parameter, anf = x - x = 22 + z3. By inserting (2) into (1), we obtain
the plane wave spectral distribution corresponding to (2)

0(€) = (2mB/k) expl - 5 KBE?], (3)

The plane wave distribution in (3) can be propagated inta:the) half space using the generic anisotropic
propagatoexplik( (&) z], where, as in (1), we normalize the longitudinal wavenumply k. Using this
propagator, the field propagating into the- 0 half space is given by

u(r) = B [ 6 explib@(E X)), D) = (€% +C(E)2 + 5587). @

The field in (4) cannot be evaluated in close form. In the next section we shall evaluate it asymptotically to
obtain an analytic expression for the beam field in the high frequency regime.

II. ASYMPTOTIC EVALUATION AND PARAMETERIZATION

The field representation in (4) may be evaluated asymptotically by the saddle point technique. The stationary
point&, satisfies

Ve =x+Ve((§)|g 2 +i0€, = 0. (5)

Equation (5) has eeal solution only if¢, = 0 and for observation points

x + 2Ve(o = 0, (6)



3

where, here and henceforth, subscript O denotes samplée-di, i.e., V() = V£C|£zo- The condition in
(6) defines thdbeam axideing as a tilted line in the configuration space, with a anisotropy-dependent tilt.

For isotropic materials, wherg= /1 — &2, giving V¢(, = 0, the beam axis coincides with theaxis. For
the generic/ (&) wavenumber profile, the beam axis is directed along the unit vector

K = (cos ¥y, cos ¥y, cos V3) (7

whered, , 3, are the beam axis angles with respects tothex., z) axes, respectively. In view of (6), they

are given by
1
costy g = —cosU30 (o, cosV3 = . (8)

\/(8§1<0>2 + (a§2C0>2 +1
Note, that the beam axis direction, as defined in (6), is different from the definition given in [22] where the
propagation of Gaussian beam in a generic wavenumber profile was investigated using the Complex Source
Point method. The beam axis as defined in [22] is directed along the complex $opatameter which,
for our problem, coincides with theaxis. Clearly, from (6), the axis may serve as the beam axis only for
symmetricakl, whereV,(, = 0, as in isotropic or uniaxially anisotropic medium. The condition in (6) may
,therefore, serves as a more generalized definition for the beam axis which accounts for astigmatic effects
due to the medium anisotropy (see figurel).
For off-axis observation points, equation (5) could not be solved explicitly. Furthermore, the off-axis sta-
tionary point is complex and the solution requires analytic continuation of the wavenumber profiég)
for complex&. In order to obtain a closed form analytic solution for the beam field, we notice that the beam
field decays away from the beam axis. Therefore, we may apply a Taylor expansion of thebpditamat
the on-axis stationary poigt, = 0.

O~ Py + Py - €+ L1EPE 9)
with
(PO = q)|£:0 = C0Z7 ®, = vq)|€:() = VEQOZ + X, (10)
and _ ) )
&, — iB+ 00z O e, 007 (11)

8§1§2C0z Zﬁ -+ 8§2C02 ’

where subscripd implies sampling at€ = 0. Using (9), one finds that the saddle point for both on- and
off-axis observation points &, = —®,~'®; and the field in (4) may be evaluated asymptotically by

u(r) = explikS(r)], S(r) = g — %@1@2—1@1. (12)

s
vV — det ‘I)z
The beam field in (12) may be presented in termmoél beam coordinatesver which the field exhibits a
Gaussian decay away from the beam axis. The local beam coordinateés,;, zy2, 21), are defined by the
non-orthogonal transformation

(13)

—sina cosa  (—cosvycos o+ cos vy sinar)/ cos s

cosa  sina  (—costysina — costy cosa)/ cos s
ry, = ’I‘I‘, T=
0 0 1/ cos ¥

wherecos ¥, » 5 are defined in (8), and the anglds given by

thOé = _28521&(0/(822(0 — 8521 <0> (14)
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The transformation in (13) is consist of a rotation transformation in(thezx,) plane by«, in which the
phaseS(r) in (12) exhibit Gaussian decay, followed by tilting thexis to the beam-axis directighin (7)
(see figure 1). The inverse transform is given by

cosaw —sina costy
T '=|[ sina cosa cosdy |. (15)

0 0 cos U3

Using the beam coordinate system (13) in (12), the field may be presented in the Gaussian form

(r) b e k| Cozp cOs s + = ! xfl + = Zin (16)
U(r) = ———exp 1t 2
o, P 0T T oA, T,
where
%z + oz + 2B F /(02— 0)? + 402
Mip=— . (17)
Using (14) in (17), we obtain
, cos U3 —cos? « sin® a
[ = 2pa1,2 — i3, a12 = W [C‘%Co { sin2 o } + 8522@ { — cos? a }} (18)

Equation (16) has the form of a Gaussian beam, propagating along the beain &kis beam field exhibits
a Gaussian decay in the transverse local coordixiatehich are, in general, tilted with respect to the beam
axis directionk. In order to parameterize the beam field, we rewrite the elemdntoin the form

1 1 )
= + (19)
F1,2 R1,2 kD122

where
D1’2 = \/FLQ/]{?\/]. + CLiQ(Zb - Z1’2)2/F1272 (20)
Rip = a1p(z — Z12) + F1272/[a172(zb — Z12)] (21)

with

Zyo=—FiJar2, Fia2=0. (22)

By substituting (19) into (16) one readily identifiés , as thebeam widthin the (z, z;, ,) plane, whileR, ;

is the phase front radius of curvatureThe resulting GB is thereforastigmatic its waistin the (z, z, ,)

plane, is located a, = Z; », while F} , is the correspondingollimation length This astigmatism is caused

by the beam tilt which reduces the effective initial beam width inathe directions.

The compact presentation in equations (16)—(22), parameterizes the GB field in terms of local properties
of the generic wavenumber profile about the stationary ppint 0. This general parameterization can be
compared to the isotropic profile whef€) = /1 — & - £. In which case, = 1, 0, ,(o = 0, and the beam

axis in (7) coincides with the-axis. Furthermore, using?l&go = 01in (14), we obtairv = 0, and therefore,

from (18),I',» = z — ¢3. By insertingl'; » into (16) we obtain the well-knowisotropic asymptotic GB

field [19]

u(r) =

_ _f S explik(= + %XZ Iz — iB))]. (23)



[II. CONCLUSION

In this paper, we have been concerned with the parameterization of the effects of spectral anisotropy on the
propagation characteristics of a paraxially approximated Gaussian beam in a medium with generic wavenum-
ber profile. Various beam parameters have been systematically found to quantify the effect of anisotropy on
various observables associated with the GB field. Introducing the anisotropy-dependent non-ortleegonal

cal beam coordinate systeemables the beam parameterization to be quantified in terms of local properties
of the anisotropic surfacg &), at the stationary on-axis poigt= 0.
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