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Abstract—The present contribution is concern with an exact frame-
based expansion of planar initial time-harmonic electromagnetic fields.
The propagating field is described as a discrete superposition of
tilted and shifted electromagnetic beam waveobjects over the frame
spatial-spectral lattice. Explicit asymptotic expressions for the
electromagnetic Gaussian beam propagators are obtained for the
commonly used Gaussian windows.

1. INTRODUCTION

Beam-type (phase-space) spectral representations have been the
subject of an intense research in the past decade, due to spectral
and spatial localization, as well as the capability to propagate these
waveobjects in complex environments [1–7]. In these expansion
schemes, the propagating elements are Gaussian beams (or pulsed
beams for time-dependent fields), which have been termed phase-
space (spectral) Green’s functions, as they link induced sources in
the configuration-space to phase-space distributions of scattered fields,
as well as phase-space distributions of incident fields to phase-space
distributions of scattered fields [5, 8].

The beam locality feature yields the ability to obtain closed-
form analytic expressions for propagation and scattering in complex
media. Such scalar wave solutions have been obtained in homogeneous
medium [1, 2, 4], anisotropic medium [9–11], dispersive medium [12–
14] and inhomogeneous medium [15–17]. Several electromagnetic
beam scattering and diffraction problems have been solved for rough
surface scattering [18, 19], dielectric interfaces [20], PEC plates [21, 22],
stratified [23] and negative isotropic media [24] , and more.
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The frame-based field expansion [4, 25] utilizes the key feature of
the beam continues spectrum [1, 2] (i.e., being highly overcomplete),
and hence may be discretized with no loss of essential data for recon-
struction. For time-dependent fields, the overcompleteness was origi-
nally utilized in [26] by applying the Gabor series representation [27–
30]. A recently developed theory for discrete field expansion, the frame-
based beam summation method, overcomes inherent problems of Ga-
bor representation by reducing the overcompleteness nature of beams
spectrum [4]. Application of the theory for cylindrical apertures was
presented in [31] using periodic frame-based decomposition.

In the frame-based spectral representation, the field is described
by superposition of beams that emanate from a discrete set of points
in the aperture and in a discreet set of directions (see Fig. 1). The
excitation amplitudes of the beam spectral propagators, are the local
(windowed) spectrum of the initial field distribution. Thus, only those
beams that match the local radiation direction are significantly excited
and should be accounted for the spectral (summation) representation.
Thought beam-expansion schemes for scalar fields has been the subject
of intense research, electromagnetic expansions in terms of Gaussian
beams has been significantly less explored. In [32–34] Gaussian beams
have been used for for analysis of large reflector antennas, in which the
expansion coefficients are obtained by numerically matching Gaussian
beams to the far zone field of the feed antenna. These methods, do
not employ an exact field expansion schemes and therefore, cannot
be applied for near-field analysis, or in exact field calculations.
The present contribution is aimed at obtaining an exact beam-type
electromagnetic waves expansion in the time harmonic regime which
are define by their planar initial transverse field distribution.

Figure 1. Discrete frame lattice. The fields in z ≥ 0 are evaluated
by superposition of tiled and shifted beams which are emanating from
the initial distribution plane over the discrete frame spatial-spectral
lattice in (6). Each beam propagator emanates from a lattice point
(x̄, ȳ) = (mxΔx̄,myΔȳ), in a direction of (ϑ̄x, ϑ̄y) = cos−1[(k̄x, k̄y)/k]
with respect to the corresponding axis.



Gaussian beam expansion of electromagnetic waves 977

2. PLANE-WAVE EXPANSION

We are concerned with obtaining a discrete exact spectral representa-
tion for the time-harmonic electromagnetic (EM) field in z ≥ 0 due to
sources in z < 0, given the transverse electric field components over
z = 0 plane

E0(x, y) = Ex(x, y)x̂ + Ey(x, y)ŷ. (1)

The propagation medium is homogeneous with ε0 and μ0 denoting
the free space permittivity and permeability, respectively, and a time-
dependence of exp(jωt) is assumed for all field quantities. The spatial
Fourier transform (plane-wave spectrum) of the initial field transverse
components, which is denoted here by

Ẽ0(kx, ky) = Ẽx(kx, ky)x̂ + Ẽy(kx, ky)ŷ, (2)

is defined as

Ẽ0(kx, ky) =
∫
dxdyE0(x, y)ej(kxx+kyy), (3)

where x̂ and ŷ are the convectional cartesian unit-vectors. Throughout
this work, all integral limits of −∞ to ∞ are omitted and plane-wave
(wavenumber) spectral distributions, such as Ẽ0(kx, ky), are denoted
by an over ∼. By applying a standard plane-wave analysis, the
longitudinal spectrum, Ẽz, is given by [35, 36]

Ẽz(kx, ky) = −(kxẼx + kyẼy)/kz , (4)

where kz =
√
k2 − k2

x − k2
y, Imkz ≤ 0, Rekz ≥ 0, is the longitudinal

wavenumber with k = ω/c denoting the medium’s wavenumber. Thus,
the electric field in z ≥ 0 is given by the plane-wave superposition

E(r) =
1

(2π)2

∫
dkxdky[Ẽ0(kx, ky) + ẑẼz(kx, ky)]e−jk·r, (5)

where k = (kx, ky, kz), r = (x, y, z), and Ẽz is given in (4). The plane-
wave representation in (5) describes the electric field in term of EM
plane-wave propagators each emanates from z = 0 plane in direction
of unit-vector κ̂ = k/k.

3. SCALAR FRAME-BASED BEAM EXPANSION

In order to establish the EM frame-based beam expansion, we shall
briefly review here the main results of the scalar frame-based beam
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decomposition which was introduced in [4]. The later is constructed
on a discrete frame spatial-spectral lattice

(x̄, ȳ, k̄x, k̄y) = (mxΔx̄,myΔȳ, nxΔk̄x, nyΔk̄y), (6)

where (Δx̄,Δȳ) and (Δk̄x,Δk̄y), are the unit-cell dimensions in the
(x, y) and (kx, ky) coordinates, respectively, and the index μ =
(mx,my, nx, ny) is used to tag the lattice points (see Fig. 1). These
unit-cell dimensions satisfy

Δx̄Δk̄x = 2πνx, ΔȳΔk̄y = 2πνy, (7)

where 0 ≤ νx,y ≤ 1 are the overcompleteness (or oversampling)
parameters in x and y axes, respectively. The lattice is overcomplete
for νx,y < 1, critically complete in the Gabor limit νx,y ↑ 1 [26, 28, 37],
and for νx,y ↓ 0 the discrete parametrization attains the continuity
limit as in [1, 2].

Upon setting the frame lattice (see considerations in [4]), one
proceeds by choosing a proper “mother” window, ψ(x, y), and
construct the windowed Fourier transform frame in the space of all
the square integrable functions L2(R) on the frame lattice. The 2D
frame window, ψ(x, y), is attained by a Cartesian multiplication of
two 1D windows, each one yielding a proper frame in L2(R). The
frame representation of some initial scalar field distribution over z = 0
plane, u0(x, y), is given by

u0(x, y) =
∑
μ
aµψ(x, y;μ), (8)

where the expansion functions, ψ(x, y;μ), are obtained from the
“mother” window via

ψ(x, y;μ) = ψ(x− x̄, y − ȳ)e−j[k̄x(x−x̄)+k̄y(y−ȳ)], (9)

and the expansion coefficients, aµ, are given by the inner product of
the initial distribution with the so-called dual frame, ϕ(x, y), namely

aµ =
∫
dxdy u0(x, y)ϕ∗(x, y;μ), (10)

where, similarly to (9),

ϕ(x, y;μ) = ϕ(x− x̄, y − ȳ)e−j[k̄x(x−x̄)+k̄y(y−ȳ)]. (11)

The dual frame may be evaluated by several ways which are listed
in [4]. Here, we shall make use of high-oversampling approximation

ϕ(x, y) ∼= νxνy

‖ψ‖2
ψ(x, y), (12)
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which, for Gaussian windows, is valid for νx,y < 0.4 (for further details
please refer to [4]).

The scalar field in z > 0, due to sources in z < 0, is obtained
by propagating each ψ(x, y;μ) window element in summation (8), into
z > 0 half-space. Therefore, the frame-based representation of the field
is given by

u(r) =
∑
μ
aµB(r;μ), (13)

where each beam field, B(r;μ), satisfies the scalar Helmholtz equation[∇2 + k2
]
B(r;μ) = 0, (14)

and may be evaluated via several spectral representations, such as
plane-wave or Green’s function (Kirchhoff’s) integration (see details
in [2, 4]). The spectral representation in (13) describes the field as a
discrete superposition of beam waveobjects which emanate from points
(x̄, ȳ) on the frame lattice, in a discrete set of directions which are
determine by the spectral wavenumbers (k̄x, k̄y) over the frame lattice
(see Fig. 1). In the next section, the vectorial EM analogue of this
representation is obtained, in which the electric and magnetic fields
are described by a similar superposition of EM beam propagators (see
(21) and (24)).

In order to obtain a discrete vectorial frame-based representation,
we shall relate the plane-wave spectrum of u0(x, y) to its frame
representation in (8). The (scalar) plane-wave spectrum is obtained
applying the Fourier integral in (3) to u0(x, y). By inserting (8) into
the later and inverting the order of integration and summation, we
obtain

ũ0(kx, ky) =
∑
µ

aµ ψ̃(kx, ky ;μ), (15)

where
ψ̃(kx, ky ;μ) = ψ̃(kx − k̄x, ky − k̄y)ej(kxx̄+ky ȳ), (16)

with ψ̃(kx, ky) denoting the plane-wave spectral distribution of ψ(x, y),
which is obtained using the Fourier operator in (3).

4. VECTORIAL EM FIELD EXPANSION

In order to obtain a frame-based representation of the electric field,
E(r), we introduce the coefficients vector

aµ = aµ
x x̂ + aµ

y ŷ =
∫
dxdy E0(x, y)ϕ∗(x, y;μ), (17)
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where ϕ(x, y;μ) is given in (11). Using (15) for each electric field
transverse component, we may write

Ẽ0(kx, ky) =
∑
µ

aµ ψ̃(kx, ky;μ), (18)

where ψ̃(kx, ky;μ) is given in (16). By inserting (18) with (4) into (5)
and inverting the order of integration and summation, we obtain

E(r) =
∑
µ

1
(2π)2

∫
dkxdky[aµ

x Ṽx + aµ
y Ṽy]ψ̃(kx, ky;μ)e−jk·r, (19)

where aµ
x and aµ

y are given in (17), and

Ṽx = x̂ − k−1
z kxẑ, Ṽy = ŷ − k−1

z ky ẑ. (20)

By using kx exp(−jk · r) = j∂x exp(−jk · r), and so forth, we rewrite
(19) in the form

E(r) =
∑
µ

aµ
x EB

x (r;μ) + aµ
y EB

y (r;μ), (21)

where the electric fields of the EM beam propagators, EB
x (r;μ) and

EB
y (r;μ), are obtained from the scalar beam propagator, which is

defined by

B(r;μ) =
1

(2π)2

∫
dkxdky (−jkz)−1ψ̃(kx, ky;μ)e−jk·r, (22)

via

EB
x (r; µ) = (x̂∂z − ẑ∂x)B(r;μ),

EB
y (r;μ) = (ŷ∂z − ẑ∂y)B(r;μ),

(23)

where, we denote, ∂x = ∂/∂x, and so forth. Equation (21) with (22)
and (23) represent the electric field, E(r), as a discrete superposition
of EM beam waveobjects, EB

x and EB
y , which are the electric field

propagators due to the initial electric field x and y components over
z = 0 plane, respectively. The excitation amplitudes of these EM
waveobjects are obtained from the initial field distribution, E0, via
(17). The spectral summation in (21), represents the electric field in
terms of a discrete superposition of localized beam propagators which
emanate from each processing (spectral) point, (x̄, ȳ), in a processing-
dependent (spectral), (k̄x, k̄y) direction. The beam propagators are
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characterized by transversal localization and high directivity (see
specific example for Gaussian windows in (32)–(35)).

By applying Faraday’s low, H = (−jωμ0)−1∇ × E, to (21), we
obtain the corresponding magnetic field in z ≥ 0

H(r) =
∑
µ

aµ
x HB

x (r;μ) + aµ
y HB

y (r;μ), (24)

where the magnetic field of the EM beam propagators, HB
x and HB

y ,
are given by

HB
x (r;μ) =

1
jωμo

[x̂∂2
xy − ŷ(∂2

x + ∂2
z ) + ẑ∂2

yz ]B(r;μ)

HB
y (r;μ) =

1
jωμo

[x̂(∂2
y + ∂2

z ) − ŷ∂2
xy − ẑ∂2

xz]B(r;μ),
(25)

where the scalar beam propagator, B(r;μ), is given in (22).

5. GAUSSIAN FRAMES AND ASYMPTOTIC
EVALUATION

The general frame representation in (8) is applied here for the special
case of Gaussian windows which have been used extensively for
modeling beam propagation, since they maximize the localization as
implied by the uncertainty principle, and yield analytically trackable
beam-type propagators [1–6, 15, 16]. The Gaussian “mother” frame
spatial and spectral distributions are

ψ(x, y) = e−jkΓ(x2+y2)/2,

ψ̃(kx, ky) = −2πj(kΓ)−1ej(k
2
x+k2

y)/(2kΓ),
(26)

where Γ = Γr + jΓj is the window complex frequency independent
parameter with Γj < 0. Thus, by inserting ‖ψ‖2 = −π/(kΓj) into (12),
we may approximate the corresponding dual frame by

ϕ(x, y) =
(−ν2kΓj/π

)
e−jkΓ(x2+y2)/2, (27)

where ν = νx = νy is the oversampling parameter in (7).
This type of windows gives rise to Gaussian beam waveobjects
which exhibits frequency independent collimation (Rayleigh) distance
and therefore are termed iso-diffracting [38]. The iso-diffracting
nature makes these waveobjects highly suitable for UWB radiation
representations [2, 4, 10, 25, 39, 40].



982 Melamed

The scalar beam propagators are obtained by inserting (26)
into (22). The resulting plane-wave spectral integral was evaluated
asymptotically in [2]. The resulting paraxial scalar Gaussian beam
waveobjects are obtained by utilizing the local beam coordinates, rb =
(xb, yb, zb), which are defined, for a given spectral point (x̄, ȳ, k̄x, k̄y)
on the frame lattice, by the transformation[

xb

yb

zb

]
=

⎡⎣ cos ϑ̄ cos ϕ̄ cos ϑ̄ sin ϕ̄ − sin ϑ̄
− sin ϕ̄ cos ϕ̄ 0

sin ϑ̄ cos ϕ̄ sin ϑ̄ sin ϕ̄ cos ϑ̄

⎤⎦ [
x− x̄x

y − x̄y

z

]
(28)

where (ϑ̄, ϕ̄) are the spherical angles that define the plane-wave unit-
vector (k̄x, k̄y , k̄z)/k, where k̄z =

√
k2 − k̄2

x − k̄2
x, i.e.,

cos ϑ̄ = k̄z/k, cos ϕ̄ = k̄x/
√
k̄2

x + k̄2
y , sin ϕ̄ = k̄y/

√
k̄2

x + k̄2
y . (29)

By utilizing the beam coordinates, the beam waveobject may be
evaluated asymptotically by

B(rb;μ) ∼ j

k cos ϑ̄

√
Γx(zb)
Γx(0)

√
Γy(zb)
Γy(0)

exp[−jkΨ(rb;μ)]

Ψ(rb;μ) = zb +
1
2

[
Γx(zb)x2

b + Γy(zb)y2
b

]
,

(30)

where

Γx(zb) = 1/(zb + cos2 ϑ̄Γ−1), Γy(zb) = 1/(zb + Γ−1), (31)

are the so-called complex curvatures of the Gaussian beams.
Parameterization of the waveobjects in (30) may be found in [2].

Next, the electric field Gaussian propagators are evaluated by
inserting (30) into (23) and collecting the higher asymptotic order.
Alternatively, the asymptotic electric field may be evaluated directly
from (19). Note, that the difference between the electric field spectral
integral (19) and the scalar field representation in (22), is only in the
amplitude elements, so we can sample the amplitude at the on-axis
stationary point (kx, ky) = (k̄x, k̄y). Thus, using (29), the electric field
EB

x is given by

EB
x (r; µ) ∼ (

x̂ − ẑ tan ϑ̄ cos ϕ̄
) √

Γx(zb)
Γx(0)

√
Γy(zb)
Γy(0)

exp[−jkΨ(rb;μ)],(32)

where Γx,y(zb) and Ψ(rb;μ) are given in (31) and (30), respectively.
The corresponding magnetic field spectral integral may be easily
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obtained from the electric field by using the well-known relation for
plane-waves H̃ = η−1

0 κ̂× Ẽ. Evaluating the resulting spectral integral
asymptotically, one obtains

HB
x (r; µ) ∼

(
sin2ϑ̄ sin 2ϕ̄

2 cos ϑ̄
x̂ +

sin2ϑ̄ sin2ϕ̄− 1
cos ϑ̄

ŷ + sin ϑ̄ sin ϕ̄ẑ
)

×−1
η0

√
Γx(zb)
Γx(0)

√
Γy(zb)
Γy(0)

exp[−jkΨ(rb;μ)], (33)

where η0 =
√
μ0/ε0 = 120πΩ is the (vacuum) wave impedance. The

EM wave components, EB
y and HB

y , may be obtained in a similar
manner. The result is

EB
y (r; µ) ∼ (

ŷ − ẑ tan ϑ̄ sin ϕ̄
) √

Γx(zb)
Γx(0)

√
Γy(zb)
Γy(0)

exp[−jkΨ(rb;μ)],(34)

and

HB
y (r; µ) ∼

(
sin2ϑ̄ cos2ϕ̄− 1

cos ϑ̄
x̂ +

sin2ϑ̄ sin 2ϕ̄
2 cos ϑ̄

ŷ + sin ϑ̄ cos ϕ̄ẑ
)

× 1
η0

√
Γx(zb)
Γx(0)

√
Γy(zb)
Γy(0)

exp[−jkΨ(rb;μ)]. (35)

The EM field frame-based Gaussian beam expansion is, therefore,
given by (21) and (24) with the expansion coefficients in (17), and the
EM beam propagators in (32)–(35).

6. CONCLUSIONS

An exact expansion scheme for EM wave in terms of Gaussian beams
has been introduced, in which the fields are defined by the transverse
electric field components. By applying a frame-based expansion, the
electric and magnetic fields are described as a discrete summation
of tilted and shifted Gaussian beams which emanate from the initial
distribution plane over the spectral frame lattice. The EM propagators
are obtained from a scalar one via differential operators which, in the
high-frequency regime, give rise to simple closed form expressions. This
EM field expansion is suitable for analyzing EM wave propagation and
scattering in complex environments, both in the near and far field
regions.
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