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Abstract: We present an algorithm for manipulating and controlling 3-D field patterns, with
energy confined to the narrow vicinity of predefined 3-D trajectories in free-space, which are
of arbitrary curvature and torsion. This is done by setting the aperture field’s phase to form
smooth caustic surfaces that include the desired trajectory. The aperture amplitude distribution is
constructed to manipulate both the on-axis intensity profile and the off-axis beam-width, and
is updated iteratively. Once the aperture distribution is calculated, the radiation from a finite
sampled aperture is computed numerically using a Fast Fourier Transform-based scheme. This
allows for both verification of the design and examination of its sensitivity to parameters of
realistic discrete implementation. The algorithm is demonstrated for the cases of an Airy beam
of a planar trajectory, as well as for helical and conical-helical trajectory beams.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Enhanced intensity field distributions that follow curved trajectories in free-space have been a
subject of intense research in recent years. These field intensity profiles, often termed accelerating
beams [1–10], have gained attention due to their weakly-diffractive curved and self-healing nature
[11–13]. With their energy confined to the narrow vicinity of predefined trajectories, such field
patterns have been shown useful for various applications. These include particle manipulation
[14–18], super-resolution imaging [19,20], plasmon excitation [21,22], light-sheet microscopy
[23], optical coherence tomography [24], and plasma-channel generation [25], to name but a few.
The ray construction is nondispersive, and hence the theory can be formulated a priori also in the
short-pulse time domain [26,27].

Several methods have been proposed, aiming at tailoring the on-axis intensity profile of curved
beams. In [17], analytical solutions of Maxwell’s equations with losses, propagating in absorbing
media, were presented. These wave objects maintain their peak intensity along the beam-axis
for large distances. Arbitrarily tailoring of the intensity distribution along the beam-axis of
two-dimensional (2-D) surface-plasmon beams was implemented in [28]. The generation of such
field patterns requires the design of source field distributions, often defined over wide apertures.
For example, strong intensity profiles can be obtained at focal points of a bundle of geometrical
optics (GO) rays (Bessel-type beams) [29,30] or along a smooth caustic of GO rays [6,7,31–33].
For these cases, aperture field distributions (phase and amplitude) that give rise to the desired
pattern can be calculated analytically.

Several methods have been proposed for shaping the accelerating beam trajectory and intensity
profile. In [34], non-paraxial accelerating beams over arbitrary convex trajectories were designed.
Some control over the intensity profiles along the caustic was obtained by changing the aperture
field amplitude. In [35], independent control of both the trajectory and the maximum amplitude
along it was achieved for 2-D caustic beams (CBs) using catastrophe theory. A practical algorithm
for designing 2-D caustic beams, that meander along trajectories, consisting of both convex and
concave segments, was introduced in [32]. The implementation was based on the generation
of a caustic at the desired trajectory. This was done by “back-tracing” rays from the predefined
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beam trajectory to the source aperture, to determine the source distribution’s phase. The aperture
amplitude distribution was set to form a uniform intensity of the produced CB along its trajectory.
These field design approaches are limited to particular 2-D cases with limited control over the
beams’ parameters. Yet, the principles used in these works inspire the design of more general
field patterns that are of intensity confined to the vicinity of arbitrary three-dimensional (3-D)
trajectories. Specifically, we are interested in the design of aperture distributions that produce
patterns with 3-D trajectories of various curvature and torsion parameters. Moreover, along these
trajectories, we would like to control the intensity profile and the beam-width.

In this work, we present a 3-D extension of the algorithm in [32], for the design of beam field
patterns, along desired beam-axis trajectories with arbitrary curvature and torsion (as defined in
section 2). In the proposed scheme, confining the field to the vicinity of the predefined beam-axis
trajectory is done by designing the aperture field’s phase, to give rise to a smooth caustic surface
(section 3.1) that formed around the beam-axis "skeleton". Following the 2-D methodology (and
using the definitions in section 3.2), we design the aperture amplitude distribution, with the aim
of manipulating the on-axis intensity profile (section 3.3). In the 3-D case, another controllable
feature of the pattern is the off-axis beam-width. It can be manipulated via the corresponding
aperture distribution’s effective off-axis width (section 3.4). The proposed technique is validated
via numerical experimentation; Once the aperture distribution is calculated, the radiation from a
finite sampled aperture is computed numerically using a Fast Fourier Transform (FFT)-based
scheme (section 4). This technique also enables the examination of the design’s sensitivity to
parameters of realistic discrete implementation, in an experimental set-up, for example by using a
finite emitters array. The algorithm is demonstrated for the cases of Airy beam planar trajectory,
as well as for helical and conical-helical trajectories, in sections 5.1, 5.2, and 5.3, respectively.

2. Problem definition

Given a trajectory in a 3-D domain

rb(σ) = [x(σ), y(σ), z(σ)], (1)

with σ ∈ [σmin,σmax] denoting the arc length along the beam-axis trajectory, we aim at designing
a source (aperture field) in the z = 0 plane that produces a 3-D beam-field, with a beam-axis
that follows this curved trajectory, in free-space. The trajectory can be intricate, with arbitrary
curvature and torsion. In this work, we assume that the characteristics of the trajectory are large
on a wavelength scale and limit the discussion to trajectories with tangent vectors of positive
z-component. The beam-field’s desired transverse width is denoted Wb(σ) (see Fig. 1) and Ib(σ)
denotes the desired intensity profile along the beam-axis. Our design approach relies on the
observation that the radiated field’s intensity can be confined to the vicinity of a given trajectory
rb(σ), if the aperture phase, asymptotically, gives rise to a caustic surface that contains rb(σ). In
other words, the approach produces a 3-D CB along the trajectory. To that end, the designed
aperture field, denoted u0(x′, y′), is sought in the form of a ray-field

u0(x′, y′) = A(x′, y′) exp[−jkS(x′, y′)], (2)

where k = ω/c is the wavenumber, with c being the free-space wave velocity. Also in (2), (x′, y′)
are coordinates in the z = 0 plane, and A and S are identified as the aperture field’s amplitude and
phase (Eikonal) distributions, respectively. In what follows, we present a method for designing
the two functions, A and S, given the desired beam-axis trajectory, rb(σ), intensity, Ib(σ), and
beam-width, Wb(σ).
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Fig. 1. Mapping the beam-axis to the aperture curve. Each point on the beam-axis rb(σ) is
mapped to a point r′a(σ) over the aperture from which the ray is emanating in the direction
[θx(σ), θy(σ)]. The mapping is carried out using (4).

3. Aperture field design

The design of an aperture that gives rise to a CB of desired properties consists of three parts:
first, an aperture phase distribution is designed, in accordance with the desired CB’s beam-axis
trajectory. It is worth noting that, for planar trajectories, this part reduces to application of the
2-D technique in [32], for computing the phase along the trajectory’s projection onto the z = 0
plane, followed by an extension of the phase in the normal direction. However, for treatment
of arbitrary 3-D trajectories, both steps of forming the phase distribution must be generalized.
Then, the aperture amplitude distribution is designed to control (i) the CB’s on-axis intensity
profile and (ii) the CB’s width. While the phase distribution is computed only once per given
trajectory, the aperture amplitude distribution can be further adjusted, iteratively.

3.1. Beam-axis manipulations

The proposed method attempts to form a caustic on a surface containing the beam-axis rb(σ).
This is done by setting the aperture phase to give rise, at each point on the aperture, to a ray
that participates in forming the caustic surface. First, we construct the phase that forms the
beam-axis, which can be though of as the caustic "skeleton". Refereing to Fig. 1, from each
point rb(σ) along the beam-axis, we follow the tangent ray back to its emanating point on the
aperture, denoted r′a(σ). The ray angles formed between the ray and the corresponding axes, θx,y,
are obtained via the unit vector tangent to the parametric trajectory in (1). i.e.,

cot θx(σ)

cot θy(σ)

 =
1
Ûz(σ)


Ûx(σ)

Ûy(σ)

 . (3)

In (5), the over dot denotes a derivative with respect to the argument, i.e., Ûz(σ) = dz(σ)/dσ.
Referring to Fig. 1, we identify the tangent ray trajectory emanating from point (x′, y′) on r′a(σ)
as 

x′(σ)

y′(σ)

 =

x(σ) − z(σ) cot θx(σ)

y(σ) − z(σ) cot θy(σ)

 . (4)

This procedure maps points on the axis to points on a curved trajectory r′a(σ) in the aperture as
depicted in Fig. 1.
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Following this, we define the local curve coordinates, (σ′, n′), on the aperture plane, where
σ′ is the arc length along the curve r′a(σ′) and n′ denotes the distance of a point (x′, y′)
from r′a(σ′) (in the normal direction), with corresponding unit vectors, σ̂′ and n̂′ (see Fig. 2).
Here and henceforth, we use hat over bold fonts to denote unit vectors. Thus, the parameter
σ ∈ [σmin,σmax] is mapped to σ′ ∈ [0,σ′max] via (4). This mapping is denoted by σ′(σ). From
each point (x′, y′) on the curve r′a(σ′), the ray that forms the caustic over the beam-axis trajectory
emanates in the direction of the unit vector

ŝ(σ′) = [cos θx(σ′), cos θy(σ′), cos θz(σ′)], (5)

where cos θz(σ′) =
√
1 − cos2 θx(σ′) − cos2 θy(σ′).

Fig. 2. The local curve coordinates, (σ′, n′). For each point over the planar curve r′a(σ′)
we project the ray direction ŝ onto the unit vectors σ̂′ and n̂′ namely, the tangent and normal
to the curve r′a. The aperture phase distribution is first constructed along r′a via (7) and
extended via (9) to other points with in the marked beam width domain wt in (12).

Using these definitions, we first evaluate the phase, S(σ′, n′), along the curve r′a(σ′), i.e.,
S(σ′, 0). By using the angles [θx(σ′), θy(σ′)], we evaluate the phase gradient along the curve
r′a(σ′) via [36]

∇′S|r′a(σ′) = [cos θx(σ′), cos θy(σ′)]. (6)

Thus, the phase along the curve r′a(σ′) can be reconstructed via

S(σ′, 0) =
∫ σ′

0
∇′S[r′a(σ′′)] · dσ′′. (7)

Here, ∇′S is evaluated by substituting θx,y in (3) into (6) and dσ′′ = dσ′′σ̂′ (σ̂′ being the tangent
unit vector along r′a(σ′) (see Fig. 2)).

Next, the phase is extended to other points on the aperture. The extension is not unique and it
dictates the caustic surface’s shape. First we consider the phase extension for the special case of
planar beam-axis where y(σ) = 0 in (1). In this case, cos θy(σ′) = 0 and therefore, using (6), the
normal phase derivative ∂S/∂n′ = ∂S/∂y = 0 for all points along r′a(σ′). Any extension of the
phase S(σ′, n′) is subject to this boundary condition. The simplest form of extension is the linear
one in which ∂S/∂n′ = 0 for all points over the aperture. This choice will reproduce the caustic
curve for rays in any constant y plane, forming a ∂/∂y = 0 caustic surface (within the beam width
domain), see Fig. 3 (though our method of phase construction from tangent rays guarantees the
formation of a caustic surface, this can be easily verified by evaluating the ray Jacobian using
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(3) and setting its determinant to zero). Other continuous extension, subject to the boundary
condition, are possible but yield intricate caustic surfaces (a special interesting limit case is the
conventional 3-D Airy beam where the caustic takes the form of a cusped double-layered caustic
- see [9]).

Fig. 3. The caustic surfaces for (a) the 3-D planar CB; (b) a CB following a helical trajectory,
with both curvature and torsion. These surfaces were evaluated by setting the ray Jacobian
determinant to zero for all rays emanating from the aperture.

The phase extension for the general (non-planar) beam-axis is performed in a manner similar
to that of the planar beam extension: since the integration in (7) reconstructs the phase along the
curve r′a(σ′), it sets the directional derivative along the curve to dS/dσ′ = ∇′S · σ̂′. In order to
satisfy (6) for points over r′a(σ′), the directional phase derivative normal to the curve should
satisfy the boundary condition

∂S
∂n′
(σ′) = ŝ(σ′) · n̂′(σ′), (8)

with ŝ as defined in (5) (see Fig. 2). By using (8), and following the planar beam-axis phase
extension, we extend the phase S(σ′, 0) in (7) for small n′ values via a linear extension of the
form

S(σ′, n′) = S(σ′, 0) + n′ŝ(σ′) · n̂′(σ′). (9)

The phase in (7) and (9) forms a smooth caustic surface that passes through the beam-axis. The
normal extension in (9) is carried out for n′ values for which the aperture field amplitude is not
null (the amplitude reconstruction is discussed in the next sub-section). Here, it is assumed that
the phase at each contributing point can be assigned uniquely, in accordance with the point’s
distance to the aperture curve. This requirement is satisfied for n′ values smaller than the local
radius of curvature of r′a(σ′). This implies that the transverse aperture amplitude distribution
must be sufficiently localized (i.e., with energy confined to a finite width around the axis, denoted
wt in (12)). Figure 3(b) shows the caustic surface for a 3-D Helical trajectory, similar to that
described in detail in the results section. The surface was evaluated by setting the determinant of
the ray Jacobian to zero for all rays that are emanating from the aperture within the beam domain
(in the vicinity of r′a(σ′)).

3.2. Local beam coordinates

In order to manipulate and control the on-axis intensity and the beam-width, we apply the local
beam coordinates that are associated with the beam-axis in (1). Denoting σ the arc length along
the beam-axis trajectory, the beam local coordinates are defined by the unit vectors t̂(σ), n̂(σ),
and n̂b = t̂ × n̂, being the tangent, normal, and bi-normal to rb directions, respectively at a point
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rb(σ) on rb. They are related by the Frenet-Serrer equations

Ûrb(σ) = t̂(σ), Û̂t(σ) = K(σ)n̂(σ), Û̂n(σ) = −K(σ)t̂(σ) + κ(σ)n̂b, Û̂nb(σ) = −κ(σ)n̂(σ), (10)

where K(σ) is the curvature of rb and κ(σ) is its torsion. Note that the beam coordinates are
non-orthogonal for κ , 0. A locally orthogonal coordinate system along the beam may be
obtained by transverse rotation of the unit vectors [37]. Points near the beam may now be
expressed as

r = rb(σ) + nn̂(σ) + nbn̂b(σ). (11)

By using these definitions, we can discuss the controlling of the beam intensity profile along
each of the three local coordinates, σ, n and nb. Since rb is a trajectory over a caustic surface, we
identify the mechanism of enhanced intensity along the local coordinate n as the caustic local
structure. This implies that, asymptotically (and paraxially), the intensity profile in the direction
normal to the caustic surface is, as in any simple caustic, of the form of the (squared) Airy
function profile (not to be confused with the Airy beam trajectory). Therefore, in the proposed
method, control over the width of the beam intensity in the local n̂ direction is not possible.
However, the beam-width in the transverse nb coordinate and the intensity profile along σ are
controllable. In what follows, we propose a simple technique for separately controlling each of
the two. To that end, in our implementation, we design the aperture field amplitude in (2) to be
of the general form

A(x′, y′) = wt(n′,σ′)wl(σ
′). (12)

We term wt and wl the transverse filter and longitudinal window, respectively. In the next sections
we discuss the properties of these filter and window and their usage for controlling features of the
beam intensity.

3.3. On-axis beam intensity profile manipulations

The longitudinal (amplitude-equalizing) window wl(σ
′) controls the field intensity profile along

the beam-axis. The desired intensity profile, Ib(σ), can be any continuous function of σ, pending
on the application. Finer adjustments of the on-axis intensity profile can be carried out iteratively,
after setting the transverse filter according to section 3.4. In this procedure, we start by setting

wl(σ
′) =

√
Ib(σ′), σ′ ∈ [0,σ′max]. (13)

In each (nth) step, the aperture field is propagated into the z>0 half space (by using the method
described, later, in section 4). The field’s intensity, denoted I(n)l (σ), is sampled along the
beam-axis. We then use the mapping σ′(σ) and adjust the amplitude-equalizing window via
multiplication by the (real) function

Fn(σ
′) = 1 − β(n)l + β

(n)
l

√
Ib(σ′)/I(n)l (σ

′). (14)

In (14), β(n)l ∈ [0, 1] is a feedback parameter that is chosen to facilitate convergence. This
can be carried out in several ways: For example, a line search can be performed to find β(n)l
that minimizes the beam-width error in the L2 norm sense, with respect to the desired one. A
simpler approach would be to maintain β(n+1)l = β

(n)
l , unless the error increases in the nth step,

in which case the value of β(n+1)l is reduced. Examples for this procedure are presented in
section 5. Following this approach, the amplitude can be designed to be roughly uniform, by
setting Ib(σ′) = 1 for all σ′ ∈ [0,σ′max] (see examples in section 5).
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3.4. Off-axis beam-width manipulations

The tapering of the beam intensity along the coordinate nb is controlled by the transverse filter,
wt(n′,σ′) in (12) - a real function of finite support centered about n′ = 0. There is a trade-off
between the desire for a sharp decay of the field intensity away from the beam-axis and the
diffraction caused by abrupt changes in the aperture field. Therefore, the window profile, which
determines the intensity profile parameters (width, decay rate, diffraction artifacts, etc.), should
be selected carefully. Good candidates for the transverse filter, wt, include the Gaussian windows,
as well as other gracefully decaying window functions.
In the examples presented in section 5, we use a scaled Tukey window, in order to minimize

the diffraction. This window is given by

wt(n′,σ′) = T
(
n′ +Wt(σ

′)

2Wt(σ′)
; r

)
, (15)

where T denotes the standard definition of the Tukey window

T(t; r) =



1
2 [1 + cos(2π( tr −

1
2 ))] , 0 ≤ t< r

2

1 , r
2 ≤ t<1 − r

2
1
2 [1 + cos(2π( t−1r +

1
2 ))] , 1 − r

2 ≤ t<1

0 , elsewhere

(16)

with the parameter 0<r 6 1, which sets the half amplitude width of T(t; r) to r/2 (see Fig. 4). In
(15), the transverse window-width Wt(σ

′) varies along r′a(σ′) (see also Fig. 2). The local source
distribution width, Wt, controls Wb(σ) at the corresponding points along the trajectory and is
adjusted iteratively, in order to obtain the desired beam widthWb(σ), in the following manner:
we first use the mapping σ′(σ) following (3) and set Wt(σ

′) = Wb[σ
′(σ)]/ea, where ea denotes

the aperture efficiency, which, in the case of the Tukey window, is given by

ea(r) =
∫ 1

0
T(t; r)dt = 1 − r/2. (17)

Then, to improve the control of the beam width, the filter-width, Wt(σ
′), is updated iteratively, in

a manner similar to that in section 3.3: In each step, after calculating the field intensity profile in
z>0 (as be described in section 4), we evaluate the resulting beam-width along the beam-axis,

Fig. 4. The Tukey window for various choices of r.
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denoted by W (n)t (σ). Next, we assign the beam-width to the aperture curve r′a(σ′) and adjust the
window width Wt(σ

′) in (15) via multiplication by the (real) filter

F(n)t (σ
′) = 1 − β(n)t + β

(n)
t

Wb(σ
′)

W (n)t (σ
′)
. (18)

Here, β(n)t ∈ [0, 1] is a feedback parameter, similar to β(n)l in section 3.3.

4. Validation

In order to verify the proposed CB synthesis approach, the fields radiated by the aperture
distribution are computed in the half-space z>0. Ideally, this should be done by applying the
Kirchhoff-Huygens integral to the aperture distribution at z = 0, such that

u(x, y, z>0) = 2
∫ ∞

−∞

∫ ∞

−∞

u0(x′, y′)∂n′G(r − r′)dx′dy′. (19)

In (19), ∂n′ = ∂z′ denotes the normal derivative of the 3-D free-space Green’s function

G(r, r′) = exp(−jkR)/4πR, R = |r − r′ |. (20)

Note that the infinite integral is truncated according to the finite aperture’s support of size
Lx × Ly. However, analytical calculation of (19) for an arbitrary u0 is neither practical nor it is
representative of a realistic implementation. In practice, it can be assumed that any realistic
aperture implementation will be inherently discrete [1,38], e.g., a spatial light modulator or
a patch antenna array, with uniform spacing between elemental sources. The field produced
by these sources will be calculated on a regular Cartesian grid. Therefore, the infinite field
integration is replaced with a discrete summation and the radiated field can, thus, be written as

u(r) = 2∆x′∆y′
M′,N′∑
m′n′

u0(m′∆x′, n′∆y′)∂z′G(r − r′m′n′). (21)

In (21) , ∆x′ and ∆y′ are the grid spacings, (x′, y′) = (m′∆x′, n′∆y′), M′ = Lx/(∆x′ + 1) and
N ′ = Ly/(∆y′ + 1) are the numbers of aperture samples in each coordinate. If the field is
evaluated, at a given z, also on a regular x − y grid, with the same ∆x and ∆y, the summation can
be written as a discrete convolution of the sampled u0 and ∂z′G, such that

u[m, n, z] = 2∆x∆y
M′,N′∑
m′n′

u0[m′, n′]∂z′G[m − m′, n − n′, z], (22)

Here, u[m, n, z], u0[m′, n′], and ∂z′G[m − m′, n − n′, z] are discrete functions, consisting of the
sampled u(r), u0(x′, y′), and ∂z′G(r − r′), respectively.

The computation of (22) for all points on the observer grid is accelerated by using a 2-D FFT
-based algorithm, similar to that in [39]. The 2-D FFTs of u0[m′, n′] and ∂z′G[m, n, z] are first
computed, and are then multiplied in the spectral domain, and the result is transformed back to
spatial domain by using a 2-D inverse FFT to obtain u[m, n, z]. Note that, for an aperture that is
modeled as an array of uniformly spaced point sources and measurements on a regular grid, this
fast scheme for computing the field is exact (that is, in contrast to the z-propagation of sampled
plane-wave spectra of the aperture fields).

In this work, we model the aperture as an array of such point sources, weighted by the sampled
values of the aperture distribution. We use a typical discretization length of ∆x = ∆y = λ/10. For
more accurate modeling of a particular realistic implementation, one could replace ∂n′G(r − r′)
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by a function describing the field produced by an element of the array. This field representation
enables the study of the proposed synthesis approach’s sensitivity to implementation specifications
dictated by realistic system limitations, e.g., array length, element spacing, and elemental sources’
field [4,11]. Finally, it should be noted that the need for fast radiation integral computation is
even more pronounced when repeated field evaluation is required. That is the case when an
iterative procedure for adjusting the beam’s (on-axis) intensity and (off-axis) width in sections
are used, as in sections 3.3 and 3.4.

5. Examples

In this section, the proposed method is demonstrated for several representative examples. The
approach is first validated for the simple case of a planar (beam-axis) trajectory. This case is
geometrically very similar to the 2-D case, in terms of the design of aperture phase distribution.
Therefore, it enables us to conveniently study the sensitivity of the design to the aperture’s
discretization. Then, we present results for more complex cases of helical and helical-conical
CBs. These cases challenge the proposed scheme and allow us to showcase its advantages.

5.1. Planar beam: analytical example

For the first example, we chose an Airy-type planar (torsion free) CB, for which the beam-axis is
defined by the parametric trajectory

rb(t) = [t, t,α
√
t], 0 ≤ t ≤ 60λ (23)

This beam-axis describes a planar trajectory on the x = y plane, where zb(t) = α
√
t is identified

as the well-known Airy beam trajectory. In this example, we synthesize a constant-width beam
with Wb = 15λ for α = 5. By using (3)–(6) we evaluate for r′a(σ′) = −1√2 [σ

′,σ′]:

∇′S|r′a(σ′) =

[√
σ̄′/2
σ̄′ + ᾱ

,
√

σ̄′/2
σ̄′ + ᾱ

]
, σ̄′ = σ′/

√
2, ᾱ = α2/8. (24)

By using (24) in (7), we evaluate the phase along r′b(σ
′) as

S(σ′, 0) =
√
2
(
ᾱ ln
√
σ̄′ +

√
σ̄′ + ᾱ

√
ᾱ

−
√
σ̄′ (ᾱ + σ̄′)

)
. (25)

In the special case of a planar trajectory, ∂n′(σ′) = 0. By using (8), we extend the phase
S(σ′, n′) = S(σ′, 0).

In this example, the beam-axis in (23) is defined for σ ∈ [σmin,σmax]. In order to avoid
diffraction effects at the end of the beam-axis, rb(σmax), and to obtain the desired beam-width
there, we extend the beam-axis to the interval σ ∈ [σmin, 1.25σmax] and calculate the phase and
amplitude of the sources accordingly. This extension is used in the following two examples as
well.

Following the procedure in section 3.4, the initial CB aperture distribution is obtained by
setting Wt = Wb/ea = 30λ with r = 1 in (15). By using a grid spacing of λ/10, we obtain the
aperture field distribution in Fig. 5. The corresponding CB-field intensity is evaluated according
to section 4. Figure 6(a) depicts the field intensity over the x = y plane, demonstrating that
the on-axis intensity profile follows the desired trajectory (marked by the black dashed curve).
Figure 6(b) plots the projection onto the z = 0 plane, of points in the half-space z>0 of field
intensity greater than half the maximum at their respective z-plane. The solid black line indicates
the desired beam trajectory, whereas the dashed black lines to each side of the trajectory indicate
the desired -3dB width. This point of view shows clearly the control of the beam-width in the n̂b
local direction.
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Fig. 5. The aperture field for the planar Airy-type CB. r′a(σ) is marked by the black line.
(a) Aperture field’s amplitude; (b) Aperture field’s phase.

Fig. 6. The planar CB example; (a) Intensity profile in the half-space z ≥ 0 (the desired
trajectory is marked by the black line). (b) The -3dB intensity widths at any z = const plane.
The desired beam-axis is marked by the black line and the dashed lines indicate the desired
beam-width.

This example is also a convenient test case for studying the sensitivity of the synthesized
aperture distribution to constraints imposed by a realistic implementation. Specifically, the
spacing between array elements that aim to mimic the continuous source distribution in the
aperture may be larger than of the order of a wavelength. Such is the case, for example, of
many existing spatial light modulators (SLMs) [1][4][11][40]. These devices for controlling the
aperture phase are designed to operate at 300nm–1000nm wavelength, but often use a typical
pixel edge length (also termed pixel pitch) that is, at best, currently, as small as 0.72 µm [41].
Antenna arrays are typically designed with a λ/2 spacing between elements. To evaluate the
effect of aperture (under-) sampling, we examine the fields produced by aperture distributions
sampled at various rates. For these fields, we calculate the standard deviations of the -3dB
beam-width in the local normal axis. These are plotted in Fig. 7 as a function of the grid spacing
(Note that, to maintain same grid spacing for both the aperture and the measurements, we use a
fixed grid spacing of λ/20 (smaller than the numerical rule-of-thumb spacing of λ/10) for both
aperture and measurement grids all cases, and for the coarser sampling cases, sparse filling of the
aperture is used as needed). It can be seen that the ability to maintain the desired beam-width
drops sharply for grid spacings greater than λ/2. This agrees with the well known λ/2-spacing
requirement for antenna pattern design. Fig. 8 shows, for various cases of grid spacings, the points
of maximal intensity for each z plane, alongside the desired beam trajectory. It can be seen that
even when exceeding the λ/2-spacing limit, e. g., for ∆ = λ, the field pattern’s maxima continue
to follow the desired trajectory. It is only for spacings greater than 2λ that the pattern begins
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failing to follow the desired trajectory. In other words, in the σ′ direction, some under-sampling
is tolerable, as the trajectory is dictated by the geometrical nature of the ray-field. That is not the
case for sampling in the n′ direction. Aiming for the design of arbitrary trajectories, which are
not necessary within a plane, the λ/2 restriction will hold for the entire aperture.

Fig. 7. Beam-width standard deviation as a function of the aperture grid spacing.

Fig. 8. Intensity peaks of the propagated field. The solid line represents the desired
trajectory. λ/20: blue circles, λ/2: green squares, 3λ/3: red circles.

5.2. Helical beam

With the basic features of the proposed technique demonstrated, we now turn to examine its
adequacy for the construction of CBs with more complex beam-axis trajectory (i.e., a trajectory
with arbitrary curvature and torsion) and intensity profile. As our second example, we choose a
CB that follows a right-handed helical beam-axis that is described by

rb(t) = [R cos t,R sin t,Pt], 0.5π ≤ t ≤ 3π, (26)

where R denotes the helix radius and the parameter P sets the pitch to be 2πP. The arc length of
this trajectory is σ = (t − tmin)

√
R2 + P2. In this example, the desired beam-width profile was

Wb(t) = A[1 + sin
(
2π t−tmin

tmax−tmin

)
/5] and the on-axis intensity profile was Ib(t) = 1.

By setting R = P = 20λ and following the procedure in section 3, we numerically calculate
S(x′, y′). Next, we calculate the amplitude A(x′, y′) by setting r = 0.8 in (12), with the transverse
filter wt(n′,σ′) in (15) and the longitudinal window wl(σ

′) in (13). Finally, we calculate the
propagating fields in the z>0 half-space via (22). At every σ, the beam-width is defined as
the Euclidean distance between the -3dB of the peak intensity points in the bi-normal local
direction (see Fig. 9). Using the initial aperture design, we evaluate the intensity. In Fig. 10, the
resulting iso-surfaces of -3dB of the peak intensity is plotted. The beam-width and the on-axis
intensity profile are shown (red dot markers) in Fig. 10(c,d), respectively. Clearly the resulting
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intensity profile and beam-width deviate substantially for the desired ones (black, solid). In order
to improve the result, we update the aperture field according to the desired on-axis profile and
beam-width, following the procedures in 3.3 and 3.4. The results for the updated aperture fields
are shown in Fig. 10(b) (for the -3dB iso-surface) and in Fig. 10(c,d) (red, dotted lines). Clearly,
in both beam-width and intensity profiles, the updated aperture distribution meets the design
requirement better.

Fig. 9. Beam-width definition in the plane containing the normal and the bi-normal local
vectors at σ = 3.0. The x and y axes are normalized with respect to the wavelength.

Fig. 10. Control of the on-axis and off-axis intensity profiles. (a,b) Iso-level surfaces of the
-3dB of the CB maximum intensity in the z>0 half-space (desired trajectory in black lines)
for the: (a) initial and (b) updated intensities. (c) Beam-width and (d) on-axis intensity
profile compared to the desired ones (black line), for both the initial and the iteratively
updated designs.

In order to quantify the improved performance of the updated design in the on- and off-axis
profiles, we use a criterion similar to the one introduced in [32], i.e., the deviation from the desired
profile is assessed via an index, defined as the standard deviations of the obtained parameter
minus the desired one. The computed off-axis and on-axis index are 2.87λ and 1.05, respectively
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for the initial CB, and 0.39λ and 0.03, for the updated CB. These numbers and Fig. 10, indicate
the significant control capabilities over the desired features of the methods.

5.3. Conical-helical beam

For the last example, we chose a CB with a conical-helical beam-axis (a helix of gradually
decreasing radius). This example sheds light over the aperture field structure obtained for complex
r′a curves. The desired beam-axis is given by

rb(t) =
1

tmax − 0.8tmin
[R cos t(tmax − 0.8t),R sin t(tmax − 0.8t),Pt], (27)

for tmin ≤ t ≤ tmax. In (27), R is identified as the initial helix radius, P sets the pitch to be
2πP(tmax − 0.8tmin)

−1, and tmax sets the cone height to Ptmax/(tmax − 0.8tmin). In this example,
we use R = 11.7πλ and P = 58.5πλ and set tmin = 0.1π and tmax = 4π.

Fig. 11. (a): The aperture curve r′a(σ′) corresponding to the beam-axis in (27). Note that
the curve is forming close loops. (b): The aperture field close to the intersection point
consists of the sum of terms corresponding to r′1 and r

′
2 of the form in (2).

Fig. 12. Iso-level surfaces for the conic helix beam-axis in (27).

The curve r′a(σ′) on the aperture, corresponding to the beam-axis in (27), forms closed loops
(see Fig. 11(a)). Here, we extend the approach proposed in [32] for the areas close to the
intersection points. For these areas, two sets of rays need to be synthesized, each forming different
sections of the caustic surface (see Fig. 11(b)). Therefore, the aperture field is a sum of ray fields
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of the form in (2). In the iterative process of adjusting the on-axis intensity profile or the off-axis
width, we apply the procedure to each of the terms separately, according to the mapping discussed
after (3). In this example, we chooseWt(σ

′) = 20λ and I(σ) = 1. The resulting -3dB iso-surface
of the CB intensity after applying the on- axis and off-axis procedure is plotted in Fig. 12.

6. Conclusions

In this paper, we introduced a practical algorithm for the construction of aperture field distributions
that correspond to 3D-CBs. The procedure involves the construction of the aperture field phase
and amplitude, and application of an iterative algorithm to manipulate and control the intensity
profile along the beam-axis as well as the beam-width profile. Numerical examples demonstrate
the algorithm’s capability to synthesize aperture field distributions that give rise to beams with
arbitrary curvature and torsion. Along these trajectories, control of the on-axis intensity profile
and beam-width in the bi-normal direction was demonstrated. The representation of the aperture
and measured fields as samples on uniform Cartesian grids allowed for the convenient acceleration
of the computation of exact field integrals. This was used for both validation of the approach
and as a part of the iterative improvement of the design. A preliminary study shows that the
sensitivity, in terms of beam-width deviations from the design specifications, to the aperture
sampling rate, is similar to that acceptable in antenna array design. However, if only the trajectory
formed by the peak intensity is of interest, the restrictions on the aperture sampling can be relaxed.
This suggests that an experimental validation set-up should include the lowest pixel-pitch SLM
available to date [41]. Future work may involve the design of optimization schemes to improve
the control of the beam parameters manipulated in this work, i.e., the beam-width in the nb local
direction and the intensity profile as well as for gaining control over the beam-width in the n
local direction.
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