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We present a practical algorithm for designing an aperture
field (source) that propagates along a predefined generic
beam trajectory that consists of both convex and concave
sections. We employ here the mechanism that forms the
well-known Airy beam in which the beam trajectory follows
a smooth convex caustic of the geometric optics rays and
generalize it for a class of beams that are referred to as
“caustic beams” (CBs). The implementation is based on
“back-tracing” rays from the predefined beam trajectory
to the source’s aperture to form its phase distribution.
The amplitude is set in order to form a uniform smooth
amplitude of the CBs along their trajectories. Several
numerical examples are included. © 2017 Optical Society
of America

OCIS codes: (080.0080) Geometric optics; (260.1960) Diffraction
theory; (080.7343) Wave dressing of rays.
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Designing a beam propagation axis that follows an arbitrary
predefined curved trajectory in a homogeneous medium was
considered in recent years both theoretically and experimentally
in connection with the various types of “accelerating beams,”
e.g., Airy beams [1-9] or in a wider perspective in [10-13].
The motivation in using these beams arises mainly from their
weakly diffractive curved trajectory that is useful in numerous
applications such as particle manipulation and optical tweezers
[14-16], super-resolution imaging [17,18], plasmon excitation
[19,20], and plasma channel generation [21].

A recent study [7] clarified the wave-field mechanism form-
ing the Airy-type beams and demonstrated that it does not ad-
here to the strict definition of a beam (i.e., a localized wave-field
solution that has an evolution along the trajectory dictated by
local dynamics), but is the (weakly diffractive) wave-field
solution along the smooth convex caustic of the geometric
optics (GO) rays (see also [22]). Hence, this type of beam
can be regarded as a special case of a more generic type of
beam which, adopting the notation in [10], is referred to as
a “caustic-beam” (CB).

This contribution is aimed at introducing a practical algo-
rithm for designing an aperture field that propagates along a
predefined CB trajectory. Noting that the source GO caustic’s
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trajectory depends on the phase distribution of the aperture
source, the proposed implementation is based on “back-
tracing” rays from the predefined beam trajectory to the
source’s aperture to form its phase distribution. This general
framework was also used in [10,11]. The corresponding aper-
ture source amplitude can be assigned arbitrarily; however, it
can be set in order to give rise to a smooth amplitude caustic.

A general “accelerating beam” has a convex trajectory (see, for
example, the discussion in [10,11,13]). The algorithm that is
presented here can be utilized for designing CBs that meander
along complex trajectories that consist of convex and concave
sections. To that end, the source’s phase distribution is set
in order to form each of these caustic sections, while the am-
plitude is set to form a smooth uniform amplitude along the
trajectory. An alternative formulation for the design of beam
trajectory was reported both theoretically and experimentally
in [23,24] for Bessel-type beams. Note that in this latter for-
mulation, each point along the desired trajectory is a focal point
of a bundle of rays propagating from subsections of the aper-
ture. The formulation that is presented here utilizes the GO
eikonal to give a CB trajectory which is not a focal point,
but an envelope of rays (caustic).

Following the introductory discussion, given the generic tra-
jectory in the two-dimensional (2D) domain [x(s), z(s)], with s
as a parameter in the interval s € [0, s,,,,. ], we are seeking a prac-
tical algorithm for the evaluation of a source (aperture field)
that corresponds to a 2D beam-type field whose beam trajec-
tory follows the curved trajectory in free space. The aperture

field is of the high frequency (ray-) field of the form
u(x9) = Ag(x0) exp[-7kS,(xo)] ()

where £ = w/c is the wavenumber, with ¢ denoting free space
wave speed. In Eq. (1), xq is the coordinate along the aperture;
Ay and S, are identified as the aperture field amplitude and
phase distributions, respectively. The algorithm that is pre-
sented in this Letter evaluates the two functions, A, and S,
from the desired trajectory [x(s), z(s)]

First, we discuss beam trajectories that consist of a single
convex (or a single concave) curve. We identify the predefined
(desired) trajectory, [x(s), z(s)], as a caustic trajectory. Therefore,
we are seeking an aperture (ray) field that, within GO conven-
tions, radiates ray trajectories that form the desired curved
caustic. The envelope of the straight-line ray trajectories
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emanating from the z = 0 aperture constitutes the caustic
trajectory.

Each point [x(s), z(s)] on the caustic trajectory is mapped to
the corresponding tangent ray emanating from point x;(s)
and in the direction €y[x((s)] from the aperture. Referring
to Fig. 1, we identify the tangent ray trajectory emanating from
point x, as

xo = -2z(s) cot Oy(xq) + x(s), cot By(xy) = x'(s)/2'(5),

2

where the prime denotes a derivative with respect to the argu-
ment. By using Eq. (2), we obtain an interval [x(0), x (Sya0)]
over the aperture from which the rays that form the caustic are
radiated. For each point x; in the interval we calculate the
corresponding angle 6y(x,) (see Fig. 1). The ray angle
0y (xp) is related to the aperture phase in Eq. (1) via [25]

8’0 (xg) = cos 6. (3)

Referring to Fig. 1, we identify a single interval over the
aperture from which the caustic rays are emanating,
xo € [x0(0), x9(smax)]- By using Eq. (2) in Eq. (3), we obtain
the desired aperture field phase

So(xg) = /"0 [1 + tan? 6, (x'o)]"/2dx’. 4)
%0(0)

The aperture field phase in Eq. (4) gives rise to a CB along
the trajectory [x(s), z(s)]. For simple caustics, near the caustic
trajectory the field is described asymptotically by (see the
extended discussion in [26])

u(s, n) ~ A (s)e7* 4 A, —n | 24 , (5)
\/ £.(5)

where A;(s) denotes the Airy function, (s, 7) are the parallel and
normal local trajectory coordinates along the caustic, respec-
tively, p, is the radius of curvature of the caustic, and A4, is
a reference amplitude on the caustic.

The maxima of the caustic field in Eq. (5) are not obtained
over the desired trajectory where 7 = 0, since the Airy function
maximum is obtained at § = -1.019. By using Eq. (5), we ob-
tain the off-axis deviation of the maximum from the beam tra-
jectory, A, .., and the CB normal width, W, (s), in the form

%
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Fig. 1. Single section beam trajectory: for caustic trajectories that
are either convex or concave, the aperture rays emanate from a single
interval [x((0), x( (smay)] over the aperture. The mapping of s — x(s)
is obtained via Eq. (2).
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Ao () R 1OIE I ko (5) /2, W () = 8,67/ ko (5) /2.

(6)

Here 6, = 1.627 denotes the Airy function -3 dB width. In
the method presented here, the aperture size is adjusted to the
predefined trajectory such that no diffraction occurs along the
trajectory. Note that the proposed finite-energy beams are dif-
fractionless over a finite distance determined by the predefined
trajectory.

We present here two implementations for single section
beams: an Airy type and a (half-period) sine trajectory. The aper-
ture fields phases are obtained via Eq. (4). Here the amplitude is

taken as a constant over the interval [x(0), x((smax)] in which
the caustic forming rays are emanating; i.c.,
_ 1 xo € [x0(0), X0 (5ima)]
Aolxo) = {0 elsewhere ' 0

In order to verify the resulting CBs, the z = 0 aperture
fields are propagated into a z > 0 half-space via the standard
exact plane wave spectral representation

o 2) =5 [ Uk eplejiha + koldk, (@)

where k, = \/k* - k2 with Re{k,} >0 and Im{k,} <0

denotes the longitudinal spectral wavenumber, and

Uk = [ atoso) explib) o ©
is the plane wave spectrum that corresponds to the aperture
field #(x,). Since the aperture field-caustic field relation is lin-
ear, we plot in all the following figures the caustic field that is
normalized to the mean of its on-axis field. The on-axis field is
defined as the maximum (amplitude) field along constant z
lines in the (x, z) plane.

The first example is a caustic trajectory of z/1 = ay/x/4,
where @ is a scaling parameter. This trajectory corresponds to
the conventional Airy beam [7]. By setting @ = -3 and using
Egs. (2)—(4), we obtain the phase functions. By setting the am-
plitudes according to Eq. (7) and evaluating the propagating
fields in the z >0 half-space via Eq. (8), we obtain the
CB-fields in Fig. 2(a).
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Fig. 2. Single section trajectory. (a) Airy type beam with a = -3.
(b) Sine trajectory over a half-period. Note that the maxima of the CB
deviate from the desired (dashed line) trajectory.
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The CB trajectories in Fig. 2 deviate from the desired ones
(curved line). According to Eq. (6), this deviation increases as
the radius of curvature of the desired beam trajectory increases.
In these figures, the radius of curvature increases as z increases.

The second example involves a sine trajectory caustic with
x/A = 60 sin(7z/604) for z < 60A. Following a similar pro-
cedure, we obtain the CB field in Fig. 2(b). Note that the am-
plitude of the resulting CB along its trajectory deviates
significantly from its maximum value.

The caustic trajectory in Fig. 3 consists of both convex and
concave segments. In this case, we map each segment via
Eq. (2) to a corresponding interval over the aperture from
which the caustic rays are emanating, x, € [x2(s3), % (sa™1)].
Here 5(1) = 0, and s} are the concave/convex transition points
over the trajectory. Note that the intervals that correspond to
the different trajectory segments can overlap to share a common
physical aperture, as illustrated in Fig. 3.

By applying the procedure in Eqs. (2)—(4), we evaluate the
aperture fields’ phases that form each of the caustic segments,
S, (x0). Thus, the aperture field that forms the entire trajectory
is obtained by summing over the fields, i.e.,

o) = > A, (x0) exp[-j&S, (x0)] (10)

where the A,s are the amplitudes of the different sections’
intervals [see the discussion preceding Eqs. (7) and (11)].

Next, we evaluate the aperture field that radiates a (one
period) sine caustic trajectory. The aperture field phases of each
segment were obtained via the algorithm that is given in the
previous paragraph, and the amplitudes were set according
to Eq. (7). The trajectory x/A = 60 sin(7z/604) over 0 < z <
1204 is plotted in Fig. 4(a). We identify two segments, a con-
cave curve (relative to the z-axis) ranging from 0 < z < 604,
and a convex curve (for 604 < z < 1204).

The z =0 aperture field is propagated into z >0 via
Egs. (8) and (9). The resulting field amplitude is plotted in
Fig. 4(a). One can clearly observe that the resulting caustic
trajectory follows the desired one. As in Fig. 2(b), the need
for adjusting the aperture field amplitude in order to obtain
a constant caustic amplitude is clearly identified. This is carried
out in Eq. (11).

The inflection point of the CB in Fig. 4(a) forms a bifur-
cation of the beam trajectory. This is due to the maxima
deviation from the caustic trajectory in Eq. (6) that shifts
the maxima curve left or right to the trajectory in concave
or convex segments, respectively. Note that the deviation in

Second

Fig. 3. Multi-segment trajectory. The trajectory consists of (lower)
concave and (upper) convex segments with respect to the z-axis. Each
of these segments is formed by rays that are emanating from corre-
sponding intervals over the aperture with possible overlaps.
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Fig. 4. Multi-segment sine trajectory over one period. (a) Original
field in the vicinity of the caustic and (b) the field after applying the
shifts to the segment aperture fields in order to obtain a continuous
beam trajectory.

Eq. (6) is not valid in the vicinity of the inflection point, since
the radius of curvature at that point is infinite.

In order to obtain a single beam trajectory, we shift the con-
stituent field segments in Eq. (10) by the corresponding devia-
tions. This deviation is easily evaluated numerically by
sampling the amplitude of the field in Fig. 4(a) over the line
z/A = 60. The resulting CB is plotted in Fig. 4(b), which
demonstrates that the resulting beam maxima trajectory is con-
tinuous.

The amplitudes of the caustic fields along the caustic trajec-
tories in all the above examples are clearly not constant. Next,
we introduce a practical and simple algorithm that is aimed at
adjusting the aperture field amplitude in order to improve the
beam field homogeneity along the caustic trajectory. This
algorithm can be easily adapted for other specifications that
may arise in different applications.

First, we discuss single segment trajectories. In the proposed
procedure, we sample the caustic field that was obtained by
using the constant aperture amplitude in Eq. (7) along the
ray trajectory [x(s), z(s)] and map each point to the correspond-
ing point over the aperture by using the mapping in Eq. (2),
[x0(0), X9 (sax)]- Next, we multiply the aperture by the (real)
fileer

F(x0) = lttmax| /|]x(s(x0)), 2(s(x )], (11)

where |#[x(s(x()), z(s(x))]| is the amplitude of the caustic field
over the caustic trajectory, and |u,,,,,| denotes its on-axis maxi-
mum. The filter in Eq. (11) pre-amplifies the intervals that
form the weak amplitude sections of the caustic. On the prac-
tical side, spatial light modulators can be used for imprinting a
phase profile on an optical beam, as well as to shape its ampli-
tude using the beam polarization.

Figure 5(a) plots the on-axis amplitude of the CB in
Fig. 2(b) as a function of z/A. The figure demonstrates that
the peak of the amplitude; about z/4 = 30 is significantly
larger than its minimum at the lower (0 < z/4 < 10) and
upper (50 < z/4 < 60) parts of the trajectory. The corre-
sponding filter in Eq. (11) as a function of the aperture coor-
dinate x; is plotted in Fig. 5(b). The filter amplifies rays that
are emanating from the intervals -20 <x,/A<0 and
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Fig. 5. Adjusting the CB amplitude. (a) On-axis amplitude of the
CB in Fig. 2(b), (b) the corresponding pre amplifier filter in Eq. (11),
(c) the on-axis amplitude of the pre-amplified CB, and (d) the
pre-amplified CB amplitude.

-200 < xy/4 < -160. These aperture intervals form the lower
and upper caustic parts in Fig. 2(b), respectively.

The resulting (pre-amplified) CB is plotted in Fig. 5(d), and
its corresponding on-axis amplitude is plotted in Fig. 5(c).
By comparing the on-axis field in Fig. 5(a) [corresponding
to Fig. 2(b)] to the pre-amplified one in Fig. 5(c) [correspond-
ing to Fig. 5(d)], we note that the pre-amplified on-axis field is
more homogeneous. In order to quantify this inhomogeneity,
we calculate the standard deviations of the on-axis fields, after
normalizing each to its mean. This criterion is impartial to
multiplication by a constant. The standard deviations were cal-
culated to be 0.5 or 0.27 for the constant or pre-amplified
fields, respectively. Therefore, we conclude that this process
improves the homogeneity of the on-axis caustic field. This
process can be repeated at the cost of increasing off-axis zones
so the procedure can be stopped pending on the application
requirements.

For multi-segment trajectories, we basically repeat the same
procedure for each of the segments while keeping the resulting
filter continuous. By applying this procedure to the one period
sine CB in Fig. 4(b), we obtain the pre-amplified aperture field
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Fig. 6. Adjusting the multi-segment CB amplitude. (a) Amplitude
of the pre-amplified aperture field and (b) the corresponding
pre-amplified CB amplitude.
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in Fig. 6(a). Note that the aperture field amplitude emphasizes
the ray tubes that form the lower (0 < xy/4 < 20), middle
(150 < x9/4 <200), and upper (-400 < x,/4 < -300)
on-axis fields in Fig. 4(b).

The corresponding pre-amplified caustic field is plotted in
Fig. 6(b). By comparing this figure to Fig. 4(b) we conclude
that the pre-amplified on-axis CB is more homogeneous than
the constant amplitude one. The standard deviation of the nor-
malized on-axis fields, which are 0.47 or 0.27 for the constant
or pre-amplified fields, respectively, support this conclusion.

In this Letter, a practical algorithm for the construction of
the aperture field distribution that corresponds to a (prede-
fined) custom-made 2D CB is presented. The procedure in-
volves the construction of the aperture source phase and
amplitude distributions. Numerical examples demonstrate
the efficiency of the algorithm to calculate the desired source
for complex beam trajectories that consist of both convex and
concave sections. This Letter can be extended to include
generic three-dimensional beam trajectories (see, e.g., [9]) that
are characterized by curvature and torsion.
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