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On Localization Aspects of Frequency-Domain
Scattering From Low-Contrast Objects

Timor Melamed, Senior Member, IEEE

Abstract—The (phase-space) local spectrum of the field scat-
tered by a low-contrast object due to Gaussian beam incidence, is
evaluated in the high-frequency regime. The scattering problem
is linearized using the Born approximation for which the incident
field and local transform domain Green’s function can be evalu-
ated asymptotically. The scattering phenomenology is described in
terms of local samplings of the object function which are localized
in the object domain according to the incidence and processing pa-
rameters. Application in the field of inverse scattering are expected
to yield fast and efficient algorithms due to the availability of an-
alytic solutions for both the incident wave and the local domain
Green’s function.

Index Terms—Born approximation, frequency domain scat-
tering, inverse patterns, local transform, phase-space analysis.

I. INTRODUCTION AND STATEMENT OF THE PROBLEM

AS STATED in the abstract, the present study is con-
cerned with extending the previously formulated pulsed

plane-wave based time-domain global [1] and local-processing
[2], [3] diffraction tomography for forward and inverse scat-
tering, to a highly localized frequency domain Gaussian beam
(GB)-based tomography. The GB-based tomography links the
scattering medium, illuminated by a GB, to the (phase-space)
local spectrum of the scattered field. The local spectrum has
been the subject of intense research over the past few years
with application to propagation [4]–[7], scattering [2], and
inverse scattering [3], [8]. Localization aspect of time-domain
scattering from low contrast objects was introduced in [2],
but local scattering phenomena, associated with local pre- and
post- processing in the frequency domain does not seem to exist
in the literature even for Born-type media.

We are concern with the field scattered by a low-contrast ob-
ject characterized by a wave velocity of , embedded in a ho-
mogeneous background of (see Fig. 1). The total field ,
with time-dependence assumed and suppressed, satisfies
the scalar Helmholtz equation

(1)

where , are the conventional Cartesian
coordinate frame. The scattered field may be approximated by
the Born approximation, which linearizes the scattering due to
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small deviations of the scattering medium from the background
, which, for convenience, are described by the object function

(2)

Following the strategy outlined in the introduction, we are
considering a Gaussian-beam incidence propagating in the di-
rection of the unit vector , which determines the
incident beam axis. Denoting as the incident
beam coordinates, obtained via a conventional rotation trans-
form , where is a 3 3 matrix, the Gaussian
beam field can be modeled asymptotically within the paraxial
approximation by [6]

(3)

where and the parameter ,
with . Here and henceforth, subscript denotes inci-
dent beam constituents. In order to parameterized the Gaussian
beam, we write

(4)

where

(5)

(6)

By substituting (4) into (3), one readily identifies as the
beamwidth, while is the phase-front radius of curvature. The
GB waist is located at , while is the corre-
sponding collimation length.

The scattered field is evaluated over planar aperture
that, without loss of generality, is assumed to be the

plane. For low-contrast objects, the data field
is given by the Born approxi-

mation

(7)

where being the free-space
Green’s function. The conditions under which this approxima-
tion is valid are discussed in [9]. Equation (7) describes the scat-
tered field in term of induced sources , which are
radiating in the background media . Free-space Green’s func-
tion propagates these induced sources to the data plane

via the spatial convolution integral in (7).

1536-1225/03$17.00 © 2003 IEEE



MELAMED: LOCALIZATION OF FREQUENCY DOMAIN SCATTERING FROM LOW-CONTRAST OBJECTS 41

Fig. 1. Physical configuration and scattering phenomena. The object function
O(r) is illuminated by a Gaussian beam u (r ) propagating in the direction
�̂�� and the scattered field u (x) is measured on the plane z = 0. The local
spectrum of the data is obtained by spatial samplings (13) of the object function.
The sampling window � is oriented so that its normal bisects the angle between
the direction of incidence �̂�� and the spectral (processed) scattering direction �̂��.

II. LOCAL PROCESSING OF THE DATA

In this section, we summarize the phase-space analysis and
synthesis formalisms that parameterize the field on the
observation plane. For the desired local spectral analysis of the
data, we generate the frequency-domain local plane wave spec-
trum via a windowed Fourier transform of the data in configu-
ration space [6]

(8)

where the asterisk denotes the complex conjugate and
. In (8), is a spatial window function centered

at , with linear phasing specified by .
The vector incorporates the configuration-spectrum phase-
space coordinates , where is referred to as a phase-
space distribution of the data . The transform (8) extracts
from the local spectrum around the -directed propagation at
the window center . In typical scattering problems, the spec-
trum at a given is localized about a preferred spectral direction

that describes the direction of arrival of the scattered field
at this point. The local spectrum may be used for forward prop-
agation of the field away from the initial distribution plane. The
field at is synthesized via a phase-space superposition of
beams emerging from all points on the initial surface in all
directions (for detailed expressions see [4] and [6]).

It is advantageous to use Gaussian windows since they yield
analytically trackable beam-type propagators. In the frequency
domain, we use a Gaussian window whose spatial and spectral
distributions are

(9)

where the parameter , with . The
Gaussian window in (9) is localized around . Recalling
that , the argument of the exponent function generating
a smooth Gaussian window, which is strongest for and

weakens as increases. The degree of spatial and spectral lo-
calization achieved, can be quantified in terms of the spatial
and spectral root mean square (rms) widths of the window
[6]

(10)

Note the uncertainty principle with
an equality for . Further properties of this window,
in particular those pertaining to numerical implementation for
analysis of space-time data, have been explored in [6, Sec. 4.2].

III. LOCAL SPECTRUM ANALYSIS UNDER THE BORN

APPROXIMATION

Next, we explore weak scattering by applying the spectral
analysis tools described in Section II to the Born-approximated
data gathered on the observation plane of Fig. 1. By
inserting (7) into (8), we obtain

(11)

with

(12)

where is the free space Green’s function [see (7)].
Equation (11) describes the local spectrum of the data in
terms of a spatial convolution integral of the induced sources

with . Comparing (11) with the Born
approximation in (7), one finds that the two has essentially
the same form. Therefore, may be regarded as Born
approximated Green’s function in the local transform domain.
The local Green’s function, , propagates the contri-
bution of the induced sources in the configurational space, ,
to the local transform of the data over the observation plane,
parameterized by the phase-space coordinate . Also,
from (12), we note that the local Green’s function satisfies the
Helmholtz in the medium and, therefore, for a proper choice
of window function , may be evaluated asymptotically (see
Section IV) and even extends the present Born-approximated
scatterings to a more general framework for scattering from
high-contrast objects.

In order to gain insight into the scattering phenomena, we
rewrite (11) in the form

(13)

where is a sampling window in the object domain

(14)

Equation (13) represents the local spectrum of the time har-
monic data in terms of local samples of the object function

. Since both and are beam-like waveob-
jects, the multiplication in (14) results in a local scattering cell
which exhibits a Gaussian decay away from its center over the
intersection of the beam axes. Therefore, provides
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windowing of the object function along the beam axis as de-
termined by the phase-space parameter . The above results
imply that the interaction of the incident GB with the object do-
main, when parameterized in terms of scattered Gaussian beams
propagators (i.e., the local spectrum), occurs as if each scattered
beam were specularly reflected from the local medium inhomo-
geneities (Fig. 1). This interpretation is a localized version of the
“pseudoreflection law” discussed in connection with the tran-
sient plane-wave incidence in [1] and in [2].

IV. ASYMPTOTIC EVALUATION OF THE PROPAGATORS

In this section, the general formulation for the scattering
process is evaluated for the special case of the Gaussian
windows in (9). These windows enable close form asymptotic
evaluation of the local Green’s function and the scattering
cell . The formal integral representation of the local Green’s
function for Gaussian windows is obtained by inserting (9) into
(12). The resulting expression has been evaluated asymptoti-
cally in [2] with connection to the local processing of pulsed
plane-wave excited scattering. It was found there that if the
window is “large” on a wavelength scale in (12),
yields collimated beam fields in the -domain. Via asymptotic
evaluation and paraxial approximation, one obtains

(15)

where and

(16)

In (15), we utilize the beam coordinates defined,
for a given phase-space point by the transformation

(17)

where are the spherical angles associated with the unit
vector . Thus,
the axes coincide with the beam axes in the positive (out-
ward) direction; the transverse coordinates
are rotated such that is parallel to the plane while lies
in the plane .The parameters of this astigmatic beam field,
may be obtained by the method described in [2].

Next, we consider the scattering kernel under Gaussian win-
dows processing. By inserting in (15), with (3) into
(14), we obtain the asymptotic expression of . The
result implies the following: The local scattering cell exhibits
Gaussian decay normal to both the incident and scattering axes

directions. Therefore, the window center is located at the in-
tersection of the incident beam and the local Green’s function
axes. The location of the scattering cell is determine by the
phase-space processing variable , which determine, via (17),
the beam axis of . Furthermore, the exponential decay
of , is determine by the sum of the rotation transformation
and (17). Since the sum of two rotation transformations may
be represented as a rotation transformation in the direction of
the bisector between the two unit vectors associated with each
transformation, one finds that the sampling window is oriented
so that its normal bisects the angle between the direction of
incidence and the spectral scattering direction

.

V. CONCLUDING REMARKS

In this paper, a previously developed pulsed plane-wave- and
pulsed-beam-based time domain diffraction tomography for for-
ward Born-type scattering, was extended to a more localized
Gaussian beam pre- and post-processing version which confines
interrogation of the scattering domain to scattering cells cen-
tered along the incident beam axis. Operating in the configura-
tion-spectrum phase-space accessed by windowed transforms,
the mathematical methodology for forward Gaussian beam scat-
tering was developed, and the results were explained in terms
of physically meaningful wave phenomena, thereby laying the
foundation for an inversion procedure. In the inverse scattering
scenario, the phase-space variable should be chosen so as to
ensure probing of the object function along the incident-wave
axis. The location of the scattering cell over the indecent-wave
axis, implies that several beam-incidence angles are required for
probing of the entire object domain.
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