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Asymptotic Analysis of Plane Wave Scattering
by a Fast Moving PEC Wedge

Ram Tuvi and Timor Melamed, Senior Member, IEEE

Abstract— This contribution is concerned with the exact and
asymptotic scattering of an oblique incident time-harmonic
electromagnetic plane wave from a fast moving perfectly elec-
tric conducting wedge. By utilizing the Lorentz transformation
and applying Maxwell’s boundary conditions in the (scatterer)
co-moving frame, an exact solution for the total fields is obtained
in both the co-moving (scatterer) and the laboratory (incident
field) frames. The fields are evaluated asymptotically in the high
frequency regime in which the scattered field is presented as a
sum of three wave types: the direct (reflected) wave, a shadowing
wave, and a diffraction wave. Novel relativistic wave phenomena
that are associated with the scatterer dynamics are explored.

Index Terms— Asymptotic analysis, special relativity, wedge
diffraction.

I. INTRODUCTION

THE subject of electromagnetic (EM) field scattering from
uniformly moving objects is a significant discipline due

to its numerous applications in different fields such as commu-
nication, RADAR, and object recognition. By obtaining solu-
tions to canonical problems, a generalization for approximated
models can be made in order to address the more generic and
complex scatterers. Such canonical problem is the scattering
from a moving perfectly electric conductor (PEC) half-plane
and PEC wedge.

Various solutions for diffraction of plane waves (PWs) by
a stationary wedge are explored in the literature. By applying
eigenfunction and integral representation the exact fields were
obtained in [1]. Asymptotic solutions were derived in [2] for
a wedge with an angle which is less than π . In [3] and [4],
a high frequency solutions were obtained, which are valid
only outside the shadow and reflection boundaries (transition
regions). A uniform asymptotic solutions were derived in [5]
and [6], where the dyadic diffraction coefficients were obtained
in the form of Fresnel integrals.

In many situations of practical importance, engineers and
physicists deal with scattering of EM waves from moving
objects (see [7]). The case of a PW normally incident on
a moving PEC flat plate (half-plane) was considered in [8].
Exact, as well as, uniform quasi-stationary approximated
solutions were constructed from the wave profile of the
scattered field. This problem was further investigated in [9],
where the effect of the motion on the reflection and shadow
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zones, aberration, Doppler shift, edge-diffracted wave, etc.,
was explored and parameterized. In [10], the problem of EM
wave scattering by a PEC wedge in uniform translating motion
is treated by means of a PW spectra representation approach.
The exact analytical solution was compared with two different
numerical techniques. The scattering of an EM PW from
moving PEC half-plane and PEC wedge was investigated
in [11]–[13]. These investigations were conducted for the
2-D case and do not include several 3-D wave phenomena.
Other recent contributions to relativistic scattering can be
found in [14]–[20].

The canonical problem of EM scattering from wedges has
gained a large intention in the literature due to its significant
theoretical and practical importance. Its asymptotic analysis
that reveals unique wave phenomena is considered as a mile-
stone in wave theory. Nevertheless, to the best of the authors’
knowledge, a complete 3-D asymptotic analysis of moving
wedge scattering has not yet been carried out. Such analysis
reveals novel wave phenomena such as the impact of the
wedge velocity on the structure of Keller’s cone, shifts in the
reflection/shadow boundaries, and so on. The analysis is used
in order to adjust canonical local interaction field models to
the scatterer movement. On the practical side, the resulting
models can serve for characterizing communication channels
where the antenna or the environment is moving such as urban
environment and indoor communication. The present canonical
problem of EM PW scattering can be extended for a wider
class of problems, such as Gaussian beam scattering, using
PW spectral decomposition of the incident field.

II. PROBLEM DEFINITION

In the present contribution, we address the exact and the
asymptotic scattering solution for the fast moving wedge
and discuss the relativistic wave phenomena that are asso-
ciated with the scatterer dynamics. In order to address the
problem of PW scattering from a wedge that is translating
uniformly, we consider here two inertial frames of reference,
the incident-wave frame and the co-moving scatterer frame
that is translating uniformly with respect to the incident-
wave frame. According to Einstein’s Special Relativity, an
event (x, y, z, ct) in the incident-wave frame is mapped to
an event (x ′, y ′, z′, ct ′) in the scatterer frame via the Lorentz
transformation (LT) [7]

x ′ = γ (x − vt), y ′ = y, z′ = z, ct ′ = γ (ct − βx) (1)

where, in the present investigation, we assume that the scat-
terer’s velocity is

v = vx̂ (2)
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Fig. 1. Physical configuration. (a) Time-harmonic PW is impinging on a
PEC wedge that is translating with a speed of v in the direction of the x-axis.
The scatterer co-moving frame is denoted by (x ′, y′, z′). (b) Scattering object
is a PEC wedge with a α′ head angle in the scatterer co-moving frame.

with x̂ denoting the unit vector in the direction of the x-axis.
In (1), c = 1/

√
ε0μ0 denotes the speed of light in vacuum,

and

γ = 1/
√

1 − β2, β = v/c. (3)

Quantities in the scatterer frame are denoted by a prime.
According to Special Relativity, the EM field transforma-

tion (FT) that is corresponding to the velocity in (2) is given
by [7]

E ′
x = Ex , E ′

y = γ (Ey − vμ0 Hz), E ′
z = γ (Ez + vμ0 Hy)

H ′
x = Hx, H ′

y = γ (Hy + vε0 Ez), H ′
z = γ (Hz − vε0 Ey)

(4)

where β and γ are given in (3). The corresponding inverse
LT (ILT) and the inverse FT (IFT) are obtained by interchang-
ing all primed and un-primed quantities in (1) and (4), and
replacing v with −v.

We consider the scattering of the time-harmonic PW that is
given by

Ei (r, t) = E0 exp [ j (ωt − kκ̂ i · r)]
Hi (r, t) = H0 exp [ j (ωt − kκ̂ i · r)] (5)

where k = ω/c denotes the wavenumber and

κ̂ i = (
κ i

x , κ
i
y, κ

i
z
) = (− cosφ0 sin θ0,− sin φ0 sin θ0, cos θ0)

(6)

is a unit vector in the direction of propagation of the PW as
in Fig. 1(a). Anticipating the use of the LT in (1), we have
kept the time dependence of exp ( jωt) explicitly in (5).

The PW in (5) is impinging on a PEC wedge that is
translating uniformly in vacuum. The wedge velocity is given
by (2) [see Fig. 1(a)]. The wedge is infinite in the z-direction,
with a head angle of α′ < π [see Fig. 1(b)]. This angle is

measured in the scatterer co-moving frame. In the scatterer
frame, where the wedge is stationary, the boundary conditions
of the PEC surfaces are given by

n̂′ × E′ = 0, n̂′ · B′ = 0 (7)

where n̂′ = ŷ over the φ′ = 0 upper surface, and n̂′ = −φ̂′ =
− sin α′x̂ − cosα′ŷ over the φ′ = (2π − α′) lower surface.
Here φ′ denotes the conventional cylindrical coordinate in the
scatterer frame.

III. EM FIELDS IN THE SCATTERER CO-MOVING FRAME

By applying the transformations in (1), (4), to (5), we obtain
the incident PW in the scatterer frame in the form

Ei′(r′, t ′) = E′
0 exp [ j (ω′t ′ − k ′κ̂ ′i · r′)]

Hi′(r′, t ′) = H′
0 exp [ j (ω′t ′ − k ′κ̂ ′i · r′)]. (8)

Here,

E′
0 =

⎡
⎣

E0x

γ (E0y − vμ0 H0z)

γ (E0z + vμ0 H0y )

⎤
⎦, H′

0 =
⎡
⎣

H0x

γ (H0y + vε0 E0z)

γ (H0z − vε0 E0y )

⎤
⎦

(9)

γ is given in (3)

ω′ = γω
(
1 − κ i

xβ
)
, k ′ = γ k

(
1 − κ i

xβ
)

(10)

and

κ̂ ′i = [
γ
(
κ i

x − β
)
, κ i

y, κ
i
z
]
/
[
γ
(
1 − κ i

xβ
)]
. (11)

The scatterer frame spherical angles of the incident PW unit
vector κ̂ ′i in (11) can be expressed directly by the incident-
wave frame κ̂ i components via

cos θ ′
0 = κ i

z/γ
(
1 − κ i

xβ
)

cosφ′
0 = −(

κ i
x − β

)
/
[(
κ i

x − β
)2 + κ i

y
2γ−2]1/2

. (12)

In view of (8), the scattering problem in the scatterer frame is
reduced to a PW diffraction by a stationary wedge (with the
corresponding frequency and wavenumber).

The exact and asymptotic solutions for the total EM field
due to a PW diffraction by a stationary wedge are well
known [6], [21]. The procedure applies the two Hertz poten-
tials, � ′

A and � ′
F , that are corresponding to either the elec-

tric (TM) or the magnetic (TE) z-components of the incident
PW, respectively. The EM fields are derived from the potentials
by applying the differential operators in [6].

Following [6], the total field potentials in the scatterer frame
that are corresponding to the incident field in (8) are given by

� ′
A(r

′, t ′) = � ′
A0

g′
s

(
ρ′, φ′;φ′

0, θ
′
0

)
exp

(
jω′t ′ − jk ′z′ cos θ ′

0

)

� ′
F (r

′, t ′) = � ′
F0

g′
h

(
ρ′, φ′;φ′

0, θ
′
0

)
exp

(
jω′t ′ − jk ′z′ cos θ ′

0

)

(13)

where (ρ′, φ′) are the conventional cylindrical coordinates in
the scatterer frame and

� ′
A0

= jω′ε0
(
k ′ sin θ ′

0

)−2
E ′

0z

� ′
F0

= jω′μ0
(
k ′ sin θ ′

0

)−2
H ′

0z. (14)
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Here k ′ and ω′ are given in (10), κ̂ ′i is given in (11), and
E ′

0z and H ′
0z are given in (9).

The TM (soft) and TE (hard) wedge Green’s functions (GFs)
that are denoted by g′

s,h are given by

g′
s,h

(
ρ′, φ′;φ′

0, θ
′
0

) = g′(ρ′, φ′;φ′
0, θ

′
0

) ∓ g′(ρ′, φ′; −φ′
0, θ

′
0

)

(15)

with 0 < φ′ < N ′π and g′(ρ′, φ′;φ′
0, θ

′
0) is given by the

integral representation in [6]. In (15), the ∓ signs correspond
to either the TM or TE GFs.

Next, we discuss the asymptotic form of the GFs in (15),
for the special case α′ < π . Following the formulations
in [6] and [21], the asymptotic TM and TE GFs in (15) consist
of geometrical optics (GO) GFs and diffraction GFs, that is

g′
s,h

(
ρ′, φ′;φ′

0, θ
′
0

)∼g′G O
s,h

(
ρ′, φ′;φ′

0, θ
′
0

)+g′d
s,h

(
ρ′, φ′;φ′

0, θ
′
0

)
.

(16)

The explicit expressions for the TE or TM EM asymptotic
fields are obtained by applying the differential operators
in [6] to (13) with (16) and collecting the higher order
k ′-terms.

The GO GFs, g′G O
s,h , are given by

g′G O
s,h

(
ρ′, φ′;φ′

0, θ
′
0

)

= U(π−|�′−|) exp
[

jk ′ρ′ sin θ ′
0 cos(�′−)

]

∓ U(π−|�′+|) exp
[

jk ′ρ′ sin θ ′
0 cos(�′+)

]

∓ U(π−|2πN ′−�′+|) exp
[

jk ′ρ′ sin θ ′
0 cos(2πN ′−�′+)

]

(17)

where

N ′ = (2π − α′)/π. (18)

U(t) denotes the (Heaviside) unit step function, the ∓ signs
proceeding the Heaviside functions correspond to either the
TM or the TE polarizations, respectively, and �′+ and �′−
are given by

�′∓ = φ′ ∓ φ′
0. (19)

Using (17) in (13), we identify the first term in (17) as the
incident PW potential. The second term is identified as the
reflected PW from the surface φ′ = 0 and the third term as
the reflected PW from the lower φ′ = N ′π surface.

In (16), g′d
s,h denotes the soft or hard diffraction GFs

g′d
s,h

(
ρ′, φ′;φ′

0, θ
′
0

) =
√

sin θ ′
0 D′

s,h

(
φ′;φ′

0, θ
′
0

)

× exp
( − jk ′ρ′ sin θ ′

0

)
√
ρ′ (20)

where Ds,h denotes the uniform (soft or hard) diffraction
coefficients that are given by

D′
s,h

(
φ′;φ′

0, θ
′
0

)

= (
sin θ ′

0

)−1{
d+(�′−)F

[
k ′ρ′ sin θ ′

0a+(�′−)
]

+d−(�′−)F[k ′ρ′ sin θ ′
0a−(�′−)

]

∓d+(�′+)F
[
k ′ρ′ sin θ ′

0a+(�′+)
]

∓d−(�′+)F
[
k ′ρ′ sin θ ′

0a−(�′+)
]}
. (21)

Here,

F(x) = 2 j |√x | exp( j x)
∫ ∞

|√x|
exp(− jτ 2)dτ (22)

denotes the transition function, and

d±(�′) = − 1

2N ′
exp(− jπ/4)√

2πk ′ cot

(
π ±�′

2N ′

)

a±(�′) = 2 cos2
(

2N ′πn′± −�′

2

)
(23)

with n′± is an integer which mostly satisfies the condition

n′± = (∓π +�′)/(2πN ′). (24)

The integral in (22) is identified as the Fresnel integral.
The diffraction GFs in (20) are in the standard GTD form [4]

in which the incident PW is sampled at the edge point
x ′ = 0, y ′ = 0, and multiplied by the UTD diffraction
coefficient. The phase term in (13) with (20) is in the form of
a diffraction cone with a head angle of θ ′. Note that unlike the
GTD diffraction coefficients, the UTD diffraction coefficients
are continuous over the illumination and reflection boundaries.
For k ′r ′ sin θ ′

0 � 10, one can replace F(x) → 1, and the UTD
and GTD diffraction coefficients converge [21].

IV. EM FIELDS IN THE INCIDENT-FIELD FRAME

A. Exact Solution

The exact fields in the incident-field frame are obtained in
the following procedure: first, we derive the EM fields in the
scatterer frame in cylindrical coordinate. Next, we present the
scatterer frame EM fields in a cartesian coordinates using

ρ̂′ = cosφ′x̂ + sin φ′ŷ, φ̂′ = − sin φ′x̂ + cosφ′ŷ. (25)

Finally, by applying the IFT and the ILT, we obtain the EM
fields in the the incident-field frame from the potentials in (13).
This procedure yields

E(r, t) = EA(r, t)+ EF (r, t)

H(r, t) = HA(r, t)+ HF (r, t) (26)

where

EA,F (r, t) = LE (r, t)
[D’A,F�

′
A,F (r

′, t ′)
]∣∣{

r′(r,t)
t ′(r,t)

HA,F (r, t) = LH (r, t)
[D’A,F�

′
A,F (r

′, t ′)
]∣∣{

r′(r,t)
t ′(r,t)

. (27)

Here,

LE (r, t)

=
⎡
⎣

C(t) −S(t) 0 0 0 0
γ S(t) γC(t) 0 0 0 ϒμ

0 0 γ −ϒμS(t) −ϒμC(t) 0

⎤
⎦

LH (r, t)

=
⎡
⎣

0 0 0 C(t) S(t) 0
0 0 −ϒε γ S(t) γC(t) 0

ϒεS(t) ϒεC(t) 0 0 0 γ

⎤
⎦ (28)

where ϒμ = γ vμ0, ϒε = γ vε0, and S(t) = sin φ(t),
C(t) = cosφ(t), with

φ(t) = tan−1
[

y

γ (x − vt)

]
. (29)
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In (27),

D′
A =

⎡
⎢⎢⎢⎢⎢⎢⎣

− cos θ ′
0η0∂ρ′

− cos θ ′
0ρ

′−1η0∂φ′(
k ′ sin θ ′

0

)2
( jω′ε0)

−1

ρ′−1∂φ′
−∂ρ′

0

⎤
⎥⎥⎥⎥⎥⎥⎦

D′
F =

⎡
⎢⎢⎢⎢⎢⎢⎣

−ρ′−1∂φ′
∂ρ′
0

− cos θ ′
0η

−1
0 ∂ρ′

− cos θ ′
0(η0ρ

′)−1∂φ′(
k ′ sin θ ′

0

)2
( jω′μ0)

−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(30)

where η0 = (μ0/ε0)
1/2 is the free space impedance. The

EM fields in (27) are obtained by applying the differential
operators D′

A,F to the scatterer-frame Hertz potentials in (13)
and then sampling at the corresponding incident-wave frame
event in (1). Alternatively, by inserting D′

A,F in (30) into (27)
and using the LT in (1), this operation can be recast in the
form

EA,F (r, t) = LE (r, t)DA,F�A,F (r, t)

HA,F (r, t) = LH (r, t)DA,F�A,F (r, t). (31)

In this representation, the EM fields are obtained by apply-
ing differential operators directly in the incident-field frame.
To that extent, we define two incident-field frame potentials
that are denoted by �A,F (r, t). These potentials are obtained
by sampling the scatterer frame Hertz potentials at the corre-
sponding incident-wave frame event according to the LT in (1),
that is

�A,F (r, t) = � ′
A,F (r

′, t ′)
∣∣{

r′(r,t)
t′(r,t)

. (32)

The differential operators DA,F (r, t) in (31) are obtained by
replacing in (30) the partial derivations, ∂ρ′ and ∂φ′ , with

∂ρ′ = γ cosφ′∂x + sin φ′∂y + γ cosφ′βc−1∂t ,

∂φ′ = −γρ′ sin φ′∂x + ρ′ cosφ′∂y − γβρ′ sin φ′c−1∂t (33)

and then replacing φ′ with φ(t) in (29) and ρ′ with

ρ(t) =
√
γ 2(x − vt)2 + y2. (34)

Note that the ψA,F (r, t) potentials in (32) are not the conven-
tional Hertz potentials so that the derivation of the EM fields
from ψA,F (r, t) is carried out via (31) (and not by applying
the standard operators in [6]).

Next, we evaluate the asymptotic scattered potentials in (32).
By inserting (16) into (13) and applying the ILT, the asymp-
totic incident-field frame potentials, �A(r, t) and �F (r, t), are
recast in the form

�A,F (r, t) = �GO
A,F (r, t)+�d

A,F (r, t). (35)

The GO and the diffraction potentials are defined and dis-
cussed in Sections IV-B and IV-C, respectively. Note the
solution is valid for 0 < φ(t) < N ′π , i.e., outside the scatterer,
and for (κ i

x
2 + κ i

y
2)1/2kρ(t) � 1 where ρ(t) is given in (34).

B. GO Potentials

Following the discussion after (19), the GO potentials
in (35) are composed of the incident PW, � i

A,F , and of the
reflected PWs from the upper and lower surfaces, which are
denoted by �ru

A,F and �rl
A,F , respectively. Thus

�GO
A,F (r, t) = � i

A,F (r, t)+�ru
A,F (r, t)+�rl

A,F (r, t) (36)

where

� i
A,F (r, t) = � ′

A0,F0
U

(
π−∣∣φ(t)− φ′

0

∣∣) exp
[− jk�GO

i (r, t)
]

�ru
A,F (r, t) = ∓� ′

A0,F0
U

(
π−∣∣φ(t)+φ′

0

∣∣) exp
[− jk�GO

ru (r, t)
]

�rl
A,F (r, t) = ∓� ′

A0,F0
U

{
π−∣∣2πN ′−[

φ(t)+φ′
0

]∣∣}

× exp
[ − jk�GO

rl (r, t)
]
. (37)

Here φ(t) is given in (29) and N ′ is given in (18), � ′
A0,F0

are
given in (14), and the GO phases are given by

�GO
i (r, t) = κ̂ i · r − ct, �GO

ru (r, t) = κ̂ru · r − ct

�GO
rl (r, t) = s · r − ctγ 2[1 − κ i

xβ + β
(
γ cos 2α′(κ i

x − β
)

− sin 2α′κ i
y

)
/γ

]
(38)

where κ̂ i is the incident PW normalized wavenumber in (6),
κ̂ru = (κ i

x ,−κ i
y, κ

i
z) and the vector s = (sx , sy, κ

i
z) with

sx = γ 2 cos 2α′(κ i
x − β

) − γ sin 2α′κ i
y + γ 2β

(
1 − κ i

xβ
)

sy = − sin 2α′γ
(
κ i

x − β
) − cos 2α′κ i

y . (39)

These vectors are identified as the PWs directions of prop-
agation of the corresponding potentials in the incident-wave
frame.

The incident and upper surface reflection potentials phase
terms are identical to the stationary scatterer phases in [21].
These potentials differ from the stationary scatterer ones only
in the Heaviside functions arguments in (37), which restrict
the contributions to the time-dependent shadow and reflection
regions. For the stationary scatterer, the shadow boundary is
given by y = tan φ0x and the reflection boundaries are given
by y = − tan φ0x for the upper surface, and

y = − sin θ0 cosφ0 tan 2α′ − sin θ0 sin φ0

sin θ0 cosφ0 − tan 2α′ sin θ0 sin φ0
x (40)

for the lower one. Here φ0 and θ0 denotes the conventional
spherical angles that are associated with the incident PW unit
vector in (6), namely

κ̂ i = (− sin θ0 cosφ0,− sin θ0 sin φ0, cos θ0). (41)

Note that unlike the stationary case, the moving wedge
shadow and reflection boundaries are not parallel to the inci-
dent and reflected PWs direction of propagation, respectively
(similar to the phenomenon in [9]). The time dependent
shadow boundary is obtained by setting to zero the Heaviside
function argument of � i

A,F in (37), giving

φ(t) − φ′
0 = ±π. (42)

Using (12) and (29) in (42), this condition reads [see more
details after (49)]

y = sin θ0 sin φ0

sin θ0 cosφ0 + β
(x − vt). (43)
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In a similar manner, the lower surface reflection boundary is
given by

y = − sin θ0 sin φ0

sin θ0 cosφ0 + β
(x − vt). (44)

For the special case of normal incidence, θ0 = π/2, these
results agrees with those in [9].

The time dependence of the reflection boundaries are due to
the (incident-field frame) time dependent boundary conditions.
The boundary conditions in the scatterer frame are given
in (7). By applying the ILT and IFT to (7), the corresponding
incident-field frame boundary conditions of the upper PEC
surface take the form

Ex = Hy = 0 at y = 0, x > vt

Ez = 0 at y = 0, x > vt . (45)

These conditions are similar to the stationary wedge with
the exception of the x = vt time-dependent location of the
wedge’s edge. This is a special case where the normal to
the surface has no components in the direction of the surface
velocity v [see (48)].

Next, we examine the reflected potential and the reflection
boundary of the lower surface in (44). By comparing the phase
term of lower surface reflected potentials, �rl

A,F (r, t), to the
phase term of the upper surface reflected potential, �ru

A,F (r, t),
in (38) we note that unlike the upper surface reflection, the
reflected potentials from the lower surface exhibits a frequency
scaling of ωγ 2[1−κ i

xβ+β(γ cos 2α′(κ i
x −β)−sin 2α′κ i

y)/γ ].
The scaling is a result of the wedge velocity component
normal to the surface.

In the scatterer frame, the wedge angle is α′ and the lower
surface satisfies φ′ = N ′π , i.e., y ′ = −x ′ tan α′. Using the
ILT this surface in the incident-field frame is given by

y = −(x − vt) tan α, tan α = γ tan α′. (46)

Here α is identified as the incident-field frame head angle.
The normal unit vector to the lower surface is given by

n̂ = −(sin α, cosα, 0). (47)

Note that both the normal and the head angle are velocity
dependent.

In the incident-field frame the boundary conditions are given
by [7, Chap. 5, Eqs. (5.3) and (5.5)]

n̂ · B = 0, n̂ × E − (n̂ · v)B = 0. (48)

Similar to the upper surface, the lower surface reflection
boundary is not parallel to the reflected ray that impinges on
the edge at the origin at time t . The reflection boundary from
the lower surface, which is obtained by setting the argument
of the Heaviside function in (36) to zero, is given by

y = −γ (sin θ0 cosφ0 + β) tan 2α′ − sin θ0 sin φ0

γ (sin θ0 cosφ0 + β)− tan 2α′ sin θ0 sin φ0
γ (x − vt).

(49)

Next, we examine the shift of the lower surface reflection
boundary in (49) from the stationary case one. For simplicity,
we examine the special case of κ i

z = 0 (i.e., θ0 = π/2).

Fig. 2. Reflection boundary of the lower surface of the moving wedge in (49).
(a) At time t = 0, the incident ray is impinging near the edge of the wedge
and generates a reflected wavefront. (b) At time t > 0, the wedge’s edge is
located at the point x = vt . The straight line that connects the edge and the
reflected ray wavefront forms the reflection boundary.

To that end, we track an incident ray trajectory (wavefront).
We assume that the ray is impinging near the edge of the
wedge at time t = 0 as illustrated in Fig. 2(a). This ray reflects
from the lower surface in the direction of χ [see Fig. 2(b)].
Using the notations in (39)

tanχ = sy/sx . (50)

At time t > 0, the reflected ray travels a distance of
ct while the wedge travels a distance of vt as illustrated
in Fig. 2(b). The straight line that connects the edge of
the wedge and the reflected wave font forms the reflection
boundary. Referring to Fig. 2(b) and using the sine theorem,
�l/ sin δ = −�x/ sin(χ−δ). By setting �l = ct and �x = vt
we obtain

tan δ = sin χ/(cosχ − β). (51)

Finally, by substituting (50) into (51) and using (39), we obtain
the reflection boundary in (49).

C. Diffraction Potentials

The diffraction potentials in (35) are given by

�d
A,F (r, t) = � ′

A0,F0

√
sin θ ′

0 Ds,h
[
φ(t);φ′

0, θ
′
0

]

× exp (− jπ/4)√
ρ(t)

exp (− jk�d) (52)

where � ′
A0,F0

are given in (14), φ′
0 and θ ′

0 are given in (12),
φ(t) is given in (29), ρ(t) is given in (34), and the diffraction
phase term is given by

�d =
√
γ 2

(
κ i

x − β
)2 + κ i

y
2 ρ(t)+ κ i

zz

+ γ 2(1 − κ i
xβ

)
(βx − ct). (53)
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In (52), Ds,h denotes the soft or hard incident-wave frame
diffraction coefficients

Ds,h
[
φ(t);φ′

0, θ
′
0

]

= (
sin θ ′

0

)−1{
d+[�−(t)]F

[
k ′ sin θ ′

0ρ(t)a
+(�−(t))

]

+ d−[�−(t)]F
[
k ′ sin θ ′

0ρ(t)a
−(�−(t))

]

∓ d+[�+(t)]F
[
k ′ sin θ ′

0ρ(t)a
+(�+(t))

]

∓ d−[�+(t)]F
[
k ′ sin θ ′

0ρ; a−(�+(t))
]}

(54)

where d±() and a±() are given in (23), F is given in (22),
and

�∓(t) = φ(t)∓ φ′
0. (55)

Next, we examine the relativistic analog of Keller’s diffrac-
tion cone. Using (53), the surfaces of constant phase,�d = �d

0
are given by
√
γ 2

(
κ i

x − β
)2 + κ i

y
2ρ(t) = �d

0 − κ i
zz

+ γ 2(1 − κ i
xβ

)
(ct − βx). (56)

Referring to the diffraction potentials in (52), we note that
unlike in the stationary case, the phase term for the moving
wedge is not a (ρ-) cylindrical wave. Next by dividing (56)
by γ (1 − κ i

xβ) and inserting (12), we obtain

sin θ ′
0ρ(t) = C(z)− cos θ ′

0z + γ (ct − βx) (57)

where

C(z) = [
γ
(
1 − κ i

xβ
)]−1

�d
0 − cos θ ′

0z. (58)

Finally, by inserting ρ(t) in (34) into (57), we recast (56) in
the form

γ 2(sin2 θ ′
0 − β2)x2 − 2x

[
sin2 θ ′

0γ
2βct − γβC(z)− γ 2βct

]

+ sin2 θ ′
0y2 − D(z, t) = 0 (59)

where

D(z, t) = C2(z)+ 2C(z)γ ct + (γ ct)2 − (
γ sin θ ′

0βct
)2
.

(60)

Equation (59) is in the form of a conic equation. Its cross
sections over constant z-planes depend on the velocity and the
angle of incidence. For κ i

z = 0 the cross sections are circular
as shown in [13]. For κ ′

t > β, (59) describes elliptical cross
sections, and for κ ′

t ≤ β the cross sections are hyperbolas.

V. SIMULATIONS

First we plot in Fig. 3 the diffraction surfaces of constant
phase (wave fronts) in (59) for the two diffraction regimes in
which κ ′

t is either larger or smaller than β. In Fig. 3(a) we
set β = 0.8, θ0 = π/4, and φ0 = 5π/3. The corresponding
elliptical cross sections over constant z-planes are plotted
in Fig. 3(b). By setting β = 0.9, θ0 = π/4, and
φ0 = 4π/3 we obtain the wavefront and its hyperbolic
cross sections in Fig. 3(c) and (d), respectively. The arrows
in Fig. 3(a) and (c) are local directions of the wavefront prop-
agation. These arrows form the dynamic version of Keller’s
cone.

Fig. 3. The diffraction surfaces of constant phase in (59). (a) Surface for
v = 0.8c, θ0 = π/4, and φ0 = 5π/3 and (b) its ellipsoidal contours over
constant z-planes, (c) Surface for v = 0.9c, θ0 = π/4, and φ0 = 4π/3 and
(d) its hyperbolic contours over constant z-planes.

Fig. 4. Shifts of the reflection and shadow boundaries. The total electric
potential and the boundaries for (a) stationary wedge and (b) moving wedge
with β = 0.4.

In order to demonstrate the shifts of the reflection and
shadow boundaries, we plot the total asymptotic poten-
tial amplitude at time t = 0 for stationary and moving
wedges in Fig. 4(a) and (b), respectively. In both figures the
TM polarized incident field is impinging from the direction
φ0 = 2/3π, θ0 = 0 and the wedge (scatterer frame) angle is
α′ = π/10. For these parameters, the field is reflected only
from the upper surface. The asymptotic potential is evaluated
using the uniform diffraction coefficients in (54). In Fig. 4(b),
the wedge is moving in v = 0.4c. Note the difference of the
reflection (blue line) and shadow (red line) boundaries between
the stationary and moving cases according to (43) and (44).

Finally, in Fig. 5 we plot the amplitude of the asymptotic
electric potential as a function of time at two observation
points, above (y = 10λ) and below (y = −10λ) the moving
wedge in Fig. 5(a) and (b), respectively. In both figures x = 0.
The wedge parameters are α′ = π/6 and β = 0.4. The
incident PW is as in Fig. 3. The uniform asymptotic potential
is plotted versus the normalized time vt/λ. Note that the
field is not a time-harmonic one. Thus the amplitude of the
asymptotic electric potential is the time-dependent (slowly
varying) envelope of the rapidly oscillating potential.
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Fig. 5. Total electric potential’s amplitude as a function of time at
two observation points (a) above and (b) below the moving wedge.

For the observation point above the wedge in Fig. 5(a), the
reflection boundary in (44) is passing through the observation
point at time vtr/λ = −1.26. Thus, for time t 
 tr , the
main contribution for the potential arises from the incident and
reflected potentials resulting in the constant amplitude that is
clearly viewed in the figure. For time t � tr , the observation
point is away from the transition region and the total potential
consists of mainly the incident potential resulting in a constant
amplitude. The potential in the transition region (about t = tr )
has a time dependent amplitude due to the contribution of the
diffraction term in (52).

For the observation point below the wedge in Fig. 5(b),
the observation point is located inside the PEC for
time vt/λ < −15.87. The shadow boundary in
(43) is passing through the observation point at time
vts/λ = −1.26. Thus for time t 
 ts the observation point
is located inside the wedge or deep into the shadow region
which results in the null potential in the figure. For time
t � ts the observation point is away from the transition
region and the total potential mainly consists of the incident
potential resulting in a constant amplitude. The potential in
the transition region (about t = ts ) has a time dependent
amplitude due to the contribution of the diffraction term
in (52).

VI. CONCLUSION

In this paper several novel wave phenomena that are asso-
ciated with PW scattering from a moving PEC wedge were
presented and explored, in order to gain insights regarding the
effect of the scatterer dynamics on the scattering mechanism
and on the field’s canonical forms. Furthermore, the incident
PW serve as the basis wave propagators for a generic EM
incident wave. Thus the solutions that are presented here,
can be applied for obtaining the scattered fields for different
waveobjects such as Gaussian beams and GFs.
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