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Chapter �

Introduction

The objective of computational geometry is to design e�cient algorithms for
problems de�ned on sets of geometric data� The e�ciency of the algorithm
is measured in terms of its time and space complexity� One of the interesting
and extensively researched subjects in computational geometry is geometric
optimization� which has applications in transportation� station placement�
facility location� statistics and other areas� During the years many opti�
mization techniques have been developed such as� parametric searching by
Megiddo �
��� matrix searching by Frederickson and Johnson ����� expander
graphs by Katz and Sharir �
	�� randomized optimization technique by Chan
�	�� and others�

Covering problems fall into the area of geometric optimization� Given a
set S of n points in a metric space� and given an object Q� a covering problem
is de�ned as ��nd the smallest object�s� congruent to Q whose union contains
a subset of S with given properties�� Although the common theme of most
of the geometric optimization problems� particularly for covering problems�
is that they can be solved using parametric searching� matrix searching� or
related optimization techniques� each of them requires a problem�speci�c�
and often fairly sophisticated� approach� The goal of this research is to �nd
e�cient algorithms for solving various covering problems and other problems
related to them� For achieving our goal we use a battery of techniques� some
of which are standard and will be reviewed below� We develop a new frame�
work and a new dynamic optimization technique� that will be described in
Chapters 	 and �� respectively�

The problems that we deal with in this thesis can be divided into the
following three groups�

The �rst group� G�� is related to piercing problems which are� e�g�� �Given
a set R of n objects in metric space and some positive integer p� �nd whether
there exists a set P of p points such that each member of R is intersected by
at least one point of P � The members of P are called piercing points�

We present several algorithms for �xed values of p and rectangles or

�
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squares serving as objects� Actually� the problems in G� group are dual
to the following kind of problems� �Given a set S of n points in metric space�
an object Q of some �xed size r and some integer p� �nd p objects congruent
to Q whose union contains S��

The second group� G�� belongs to the class of the classical facility location
problems and can be described as follows� �Given a set S of n sites �points�
in a region contained in a metric space �L�� L� or L� metric�� position a
point �facility�� or a number of facilities� in the region such that the distance
between the facility and the sites is minimized or maximized�� This type of
problems arises when we are asked� eg�� to position supermarkets� garbage
dumps� postal agences and so on for a bunch of consumers� There is a
strong connection between this group of problems and the group G�� This
connection together with a new data structure enable us to provide e�cient
algorithms for solving several facility location problems�

The third group� G�� is related to the following kind of problems� �Given
a set S of n points in metric space and some positive integer k �which is
usually between � and n� �nd some property of the set S that depends
on k�� For example� �nd the smallest axis�parallel rectangle that contains
exactly k points of S� �nd the k farthest neighbours for each point of S�
enumerate the k smallest or largest distances de�ned by points of S and so
on� We call these problems k�point problems� For this kind of problems we
have developed a new framework that helps in �nding e�cient algorithms for
L� and L� metrics�

The signi�cance of this thesis is developing a new approach for tack�
ling variants of these problems by connecting the three groups of problems
and thus getting e�cient algorithms� meanwhile coming up with and apply�
ing new frameworks and data structures� discovering a new combinatorial
structure of the problems and a new variant on sorted matrix optimization
technique�

��� The methodology of the research

Most of the algorithms that solve covering problems e�ciently follow a gen�
eral pattern� They solve a �xed size decision problem in which� given a value
d of the size of the geometric object concerned� they determine whether S�
or a subset of S� can be covered by objects of this size� The answer to the
decision problem is Y es or No� An analysis of the optimal con�guration
generally leads to a set � of candidate values among which the optimal size
is found� The set � is called the feasible solution space� The �nal stage con�
sists of �nding the optimal size d�� At this stage a search over the set � is
accomplished by applying a decision algorithm which yields the solution to
the whole problem� Unfortunately� it turns out that in most of the covering
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problems the size of � is too large to allow constructing it explicitly without
loss of e�ciency of the algorithm� Therefore one has to apply an implicit
search technique for locating the optimal solution� Below we review some
previous techniques that allow us to solve e�ciently numerous optimization
problems that appear in the groups G� and G�� As was mentioned above�
we were able to �nd a new framework� based on posets� that helps in �nding
e�cient algorithms the group G� problems� This technique will be explained
in Chapter ��

��� The parametric search technique

The parametric search technique has been proposed by Megiddo �
�� for solv�
ing e�ciently a variety of optimization problems� The technique has recently
been successfully applied to a number of geometric selection and optimization
problems� e�g�� ��� �� ��� 
�� 
�� ���� We want to emphasize that�

� Parametric search usually adds a factor of log� n to the complexity of
the decision algorithm�

� Parametric searching requires parallelization of the decision algorithm
which in some cases is not easy to implement�

The basic idea behind this method is as follows� Suppose we have a deci�
sion problem P�n� d� that receives as input n data items and a real parameter
d� we need to �nd the minimal value d� of the parameter d such that P�n� d�
satis�es certain properties� Furthermore� assume that these properties de�
pend on d monotonically� that is� for every real d if P�n� d� � Y es� then
P�n� d�� � Y es for d� � d �and� if P�n� d� � No then P�n� d�� � No for
d� � d�� In particular� there exists a real number d� such that

P�n� d� �
�
Y es if d � d�

No if d � d�

Assume we have e�cient sequential and parallel algorithms As and Ap�
respectively� for solving P�n� d� for any given d� As a result� As and Ap can
also determine whether the given d is equal to� smaller than� or larger than
d�� Assume that the �ow of execution of Ap depends on comparisons� each of
which involves testing the sign of a low�degree polynomial in d and in the in�
put items� Megiddo�s technique runs the algorithm Ap �generically�� without
specifying the value of the parameter d� with the intention of simulating its
execution at the unknown d�� If Ap uses P processors and runs in Tp parallel
steps� then each such step involves at most P independent comparisons� that
is� each can be carried out without having to know the outcome of the others�
One can compute the roots fd�� d�� ��� dO�P �g of the P polynomials associated
with these comparisons� and run an implicit binary search sequentially to
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�nd among them the interval which contains d� using the serial algorithm
As as an oracle� Once the location of d� among the roots fd�� d�� ��� dO�P �g
is known� we can resolve all the P comparisons at d� and thus resume one
parallel step of the algorithm Ap� Each such step constrains the range where
d� can lie� and we thus obtain a nested sequence of progressively smaller
intervals� each known to contain d�� until we either hit d� as one of the roots
being tested� or terminate with a �nal interval I� Then� by construction� the
outcome of Ap will be the same for any d � I� Since we seek the smallest
d that satis�es certain properties of the problem P�n� d�� it follows that d�

must be the left endpoint of I� Assume that the runtime of the algorithm As

is Ts� Then the parametric search requires O�P � Ts logP � time per parallel
step of the algorithm Ap� for a total of O�PTp�TsTp logP � time� Notice that�
since Ap is simulated sequentially� we can assume the weak parallel model of
computation of Valiant ������

Parametric search is a very general technique� and the cost of this general�
ity is the requirement of an e�cient parallelization of the decision algorithm�

��� Selection and optimization via sorted ma�

trices�

Another approach to parametric search has been proposed by Frederickson
and Johnson ����� It is based on constructing and searching in monotone
matrices� We give a brief explanation of this approach� Consider a set S of
arbitrary elements� Selection in the set S determines� for a given rank k� an
element that is kth in some total ordering of S� The complexity of selection
in S has been shown to be proportional to the cardinality of the set �	���
Fredrickson and Johnson ���� considered selection in a set of sorted matrices�
An n � m matrix M is a sorted matrix if each row and each colum of M
is in nondecreasing order� Fredrickson and Johnson have demonstrated that
selection in a set of sorted matrices� that together represent the set S� can
be done in time sublinear in the size of S� They have also observed that�
given certain constraints on the set S� one can construct implicitly the set
of sorted matrices representing S� For instance� the sums of the pairs in a
Cartesian product of two input sets� denoted by X�Y � can be represented by
means of the sorted vectors X and Y � In ���� ��� ���� a number of selection
and optimization problems on trees were considered� For example� in ����
an O�n log n� time algorithm for selecting the kth longest path in a tree has
been presented�

We illustrate Frederickson and Johnson optimization technique on an
example of a single sorted matrix� The main ideas of this technique can be
easily extended to a collection of sorted matrices�

Theorem �
�
� ���� Let M be a sorted matrix of dimension n �m� where
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n � m� Let Td be the runtime of a decision algorithm which� given a value
d� answers 	yes
 or 	no
� Assume that the answers are monotone with respect
to d� Then the total time needed to �nd the least element in M � for which
the answer is 	yes
� is O�Td log n � n��

The algorithm performs a sequence of iterations which includes matrices of
smaller size in each iteration� The matrices in any iteration are divided into
submatrices called cells� In each iteration� two representative elements are
chosen from each cell� the smallest value and the largest value� These repre�
sentative elements are used to discard certain cells from further consideration�
For ease of exposition it is assumed that M is a square matrix� whose dimen�
sion is a power of 	 �if not� we can extend the size of matrix�� Hence every
cell will be of size which is a power of �� After a number of iterations all cells
consist of single elements� Continue the iterations as before� except without
cell division� until a single element remains�

The structure of the matrix induces a partition of the set of remaining
cells into subsets called chains� Two cells belong to the same chain if and
only if they are in the same diagonal of the cells obtained from the original
matrix M by partitioning it into submatrices of the same dimensions as the
cells� Let bi be the ratio of the dimension of matrix M to the current cell
dimension at the end of the ith iteration� Clearly� bi � 	i� The maximum
possible number of chains after splitting cells on the ith iteration is 	bi � ��
Interesting that the number of cells does not increase too quickly as the
iterations progress�

Lemma �
�
� ���� Let Bi � �bi��� For all iterations in which the cells are
divided� the number of remaining cells after the ith iteration is not greater
than Bi�

From the preceding lemma� the number of cells remaining at the end of
iteration i�� is no more than Bi��� Hence no more than O�Bi� work is done
in dividing and selecting among cells on the ith iteration� Thus the total work
for dividing and selecting cells is O��i�Bi�� � O��i�bi�� � O�n�� Iterations
with no cell division will begin when there are O�n� elements� The number
of remaining elements will decrease by a factor of 	 each time� yielding O�n�
time for the iterations� ultimately giving a least feasible element � the entry
in matrix with the positive answer� For feasibility testing� O�log n� iterations
with cell division are performed� and O�log n� iterations without cell division
�cells with one element� are performed� Hence all feasibility testing requires
O�Td log n� time� yielding the total O�Td log n�n� runtime of the algorithm�
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��� Problems solved in this thesis and their

background

In covering problems� one looks for an optimal covering of a given set S of n
points in the plane by a number of congruent geometric objects � e�g�� by a
disk� by a strip� by two strips� by two disks� by two squares� etc�� or in d�space
by d�dimensional congruent objects� The optimality is measured with respect
to some size feature of the geometric object� for example� the radius of the
covering disk� the width of the strip or the size of the square� We classi�ed
the covering problems we deal with in this thesis into one of the following�
piercing problems� facility location problems and k�point problems� In this
thesis we enumerate twenty covering problems and denote them by p��p���
For many of these problems we present our algorithms and improvements�

����� Piercing Problems

In the following we will mention some previous work related to piercing prob�
lems and will present our results�

Euclidean p�center

p�� Given a set S of n demand points in d�dimensional space� �nd a set
P of p supply points so that the maximum Euclidean distance between a
demand point and its nearest supply point in P is minimized� It can be
solved e�ciently� when p is small� using the parametric search technique� The
decision problem in this case is to determine� for a given radius r� whether S
can be covered by the union of p balls of radius r� In some applications� P
is required to be a subset of S� in which case the problem is refered to as the
discrete �or constrained� p�center problem� Note that Problem p� belongs to
G� while its decision variant belongs to G��

For the planar case Hwang et al� ��	� gave an O�nO�
p
p�� algorithm for the

p�center problem� Drezner ��	� presented some heuristics for this problem�
An algorithm with the same runtime was presented in Hwang et al� ��
� for
the discrete p�center problem�

Euclidean ��center

The ��center problem is to �nd the smallest ball enclosing S� The decision
procedure for the ��center problem is thus to determine whether S can be
covered by a ball of radius r� In other words� we ask whether the set of n
balls of radius r centered at the points of S has a non�empty intersection� i�e�
is ��pierceable� For d � 	� the decision problem can be solved in O�log n�
parallel steps using O�n� processors� e�g�� by testing whether the intersection
of the disks of radius r centered at the points of S is nonempty� This yields
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an O�n log� n��time algorithm for the planar Euclidean ��center problem�
Using the prune�and�search paradigm� one can solve the ��center problem in
linear time ����� and this approach extends to higher dimensions� where� for
any �xed d� the running time is O�dO�d�n� ����� Chan �	�� solved the three
dimensional Euclidean discrete ��center problem in O�n log n� expected time
using a randomized optimization technique�

Euclidean ��center

In this problem we want to cover a set S of n points in d�dimensional space
by two balls of smallest possible common radius� Agarwal and Sharir �
� gave
an O�n� log n��time algorithm for determining whether S can be covered by
two balls of radius r� Plugging this algorithm into the parametric search
machinery� one obtains an O�n� log� n��time algorithm for the Euclidean 	�
center problem� The runtime of the decision algorithm was improved by
Hershberger ���� to O�n��� It has been used in the algorithm of by Jaromczyk
and Kowaluk ����� which runs in O�n� log n� time�

A major progress in this problem was recently made by Sharir ��
�� who
gave an O�n log� n��time algorithm� by combining the parametric search tech�
nique with several additional techniques� including a variant of the matrix
search algorithm of Frederickson and Johnson ����� Eppstein ���� has sim�
pli�ed Sharir�s algorithm� using randomization and di�erent data structures�
and obtained an improved solution� whose expected runtime is O�n log� n��

Recently Agarwal et al� ��	� have developed an O�n
�
� log	 n��time algo�

rithm for the discrete 	�center problem�

Rectilinear p�center

In this problem the metric is L�� The decision problem in this case is as
follows�
p�� Let R be a set of compact convex regions �rectangles� with nonempty
interior� in the plane� where every region r � R is assigned a scaling point cr
in its interior� We call set R p�pierceable if there exist a set of p points that
intersects each member of R� Our problem� thus� is to determine whether R
is p�pierceable� and� if so� to produce a set of p piercing points� For r � R
and a real number � � �� let r��� be the homothetic copy of r obtained by
scaling r by the factor � about cr �i�e�� r��� � fcr���a�cr�ja � rg�� Finally�
R��� � f r���j r � Rg� The p�center problem for R looks for

�R � minf �jR��� is p�pierceable g�
If R is a set of translates of a square and the scaling points are the respective
centers� then we talk about the rectilinear p�center problem� If the squares
are still axis�parallel but of possible di�erent sizes� then we have the weighted
rectilinear p�center problem� and if R is a set of arbitrary axis�parallel rect�
angles �and the scaling points are also arbitrary�� then we face the general
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rectilinear p�center problem� In other words� in the p�center problem we are
given a set S of n points in the plane� some compact convex set C� and a
positive integer p� The goal is to �nd p isothetic copies of C of smallest possi�
ble scaling factor� whose union covers S� The paper of Sharir and Welzl ����
explains a reduction from the p�center problem to the p�piercing problem�

The rectilinear ��center problem is trivially solved in linear time� and a
polynomial time algorithm for the rectilinear 	�center problem is given in �����
A linear time algorithm for the planar rectilinear 	�center problem is given
by Drezner ��
�� There are several papers in which the p�piercing problem
for axis�parallel rectangles is investigated we mention only the very recent
papers� The ��piercing problem was solved in linear time using the observa�
tion that ��piercing problem for rectangles is equivalent to �nding whether
the intersection of rectangles is empty or not� In Sharir and Welzl ���� 	� and

�piercing problems in the plane are solved in linear time� while they achieve
an O�n log� n� bound for the ��piercing problem and O�n log� n� bound for
the ��piercing problem� Katz and Nielsen �
�� present a linear time algorithm
for d�dimensional boxes �d � 	� for 	�piercing problem� Sharir and Welzl ����
have developed a linear expected time algorithm for the rectilinear 
�center
problem� by showing that it is an LP�type problem� They have also ob�
tained an O�n log n��time algorithm for computing a rectilinear ��center and
an O�n log	 n��time algorithm for computing a rectilinear ��center� The algo�
rithms for the ��center and ��center employ the Frederickson�Johnson matrix
searching technique� Recently� Chan �	�� has developed O�n log� n� expected
time algorithm for rectilinear ��center problem� In Chapter 	 we present e��
cient algorithms for �nding a piercing set �i�e�� a set of p points as above� for
values of p � �� 	� 
� �� � �Problem p��� Our algorithms for � and ��piercing
improve the existing result of O�n log� n� and O�n log� n� to O�n log n� time�
The result for ��piercing can be applied as an O�n log� n� time algorithm
for the planar version of Problem p�� L� metric and p � �� Applying the
technique of Chan �	�� immediately leads to the O�n log n� expected time
algorithm for this problem� We improve the existing O�np�� log	 n� time al�
gorithm ���� for a general �but �xed� p to O�np�� log n� running time� and
we also extend our algorithms to higher dimensional space� Recently� Nuss�
baum ���� and Makris and Tsakalidis �
�� presented algorithms with similar
runtimes for various piercing problems�

Euclidean p�line�center

p�� Let S be a set of n points in d�dimensional space and � be the Euclidean
distance function� We wish to compute the smallest real value w� so that
S can be covered by a union of p strips of width w�� Problem p� does not
belong �directly� to any of the groups G�� G�� G�� but satis�es the de�nition
of covering problem�

The ��line center is the classical width problem� For d � 	� an O�n log n��
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time algorithm was given by Houle and Toussaint ����� For the 	�line center
problem in the plane� Agarwal and Sharir �
� present an O�n� log	 n��time
algorithm� using parametric search� This algorithm is very similar to their
	�center algorithm� i�e�� the decision algorithm �nds all subsets of S that
can be covered by a strip of width w and for each such subset S�� it de�
termines whether S � S� can be covered by another strip of width w� The
runtime for the optimization problem was improved to O�n� log� n� by Katz
and Sharir �
	� who use expander graphs� and by Glozman et al� ��
� who
apply Frederickson�Johnson matrix search technique� The best known algo�
rithm� by Jaromczyk and Kowaluk ����� runs in O�n� log� n� time and does
not use any of the mentioned above optimization techniques� It is an open
problem whether a near�linear �or just subquadratic� time algorithm exists
for computing a 	�line center problem�

Two�covering

p�� Given a set S of n points in d�dimensional space� d � 	� �nd two
axis�parallel boxes b� and b� that together cover the set S and minimize the
maximum of measures 	�b�� and 	�b��� where 	 is a monotone function of the
box� i�e� b� � b� implies 	�b�� � 	�b��� Examples of the box measure 	 are
the volume of the box� the perimeter of the box� the length of the diagonal
etc� The min�max two box problem is a classical �covering problem�� On
the other hand it belongs to �partition problems� where we are interested in
partitioning a set of points into two subsets �not necessarily disjoint� in order
to optimize some given function of the �sizes� of two subsets ��
� ��� ��� ����

This problem is closely related to the rectilinear p�center problem �and in
particular to the 	�center problem� � p� for L�� In a very recent paper Sharir
and Welzl ���� using LP�type framework and Helly�type results obtained an
O�n� expected time algorithm for the general rectilinear 	�center problem
in the plane� Hershberger and Suri ���� solve the following problem� Given
a planar set of points S� a rectangular measure 	 acting on S and a pair
of values 	� and 	�� does there exist a bipartition S � S� � S� satisfying
	�Si� � 	i for i � ��� 	�! They present an algorithm which solves this
problem in O�n log n� time� Based on this algorithm and using the sorted
matrix technique of Frederickson and Johnson ����� Glozman et al� ��
�
obtained an O�n log n� time algorithm that solves min�max box problem in
the plane�

In Chapter 	 we present an e�cient algorithm for solving the min�max
two box �problem p�� for �xed arbitrary dimension d � 	� The runtime of
the algorithm is O�n log n�nd���� Our algorithm is simpler than that in ��
�
for the planar case�
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Center problems

We consider yet another version of rectilinear p�center problem� We are given
a set S of n demand points and a set C of m supply points in the plane� Call
a square �rectangle� discrete or constrained if its center lies on some point of
C� One can de�ne the following problems�
p�� Find two constrained axis�parallel squares whose union covers S� so as
to minimize the size of the larger square�
p
� Find two constrained parallel squares whose union covers S� so as to
minimize the size of the larger square� The squares are allowed to rotate but
must remain parallel to each other�
p�� Find two constrained squares whose union covers S� so as to minimize the
size of the larger square� where each square is allowed to rotate independently�

The three problems above continue a list of optimization problems that
deal with covering a set of points in the plane by two geometric objects
of the same shape� We mention some of them� The two center problem�
solved in time O�n log� n� by Sharir ����� and recently in time O�n log� n�
by Eppstein ���� �by a randomized algorithm� the constrained two center

problem� solved in time O�n
�
� log	 n� by Agarwal et al� ��	� the two line�

center problem� solved in time O�n� log� n� by Jaromczyk and Kowaluk ����
�see also ��
� 
	�� the two square�center problem� where the squares are with
mutually parallel sides �the unconstrained version of Problem p
�� solved in
timeO�n�� by Jaromczyk and Kowaluk ����� The algorithm in ���� is based on
a new data structure called 
�silhouettewhich allows e�cient maintenance
of the point dominances�

In Chapter 	 we describe an O�n log� n��time and O�n log n� space algo�
rithm for Problem p� when C � S� O�max�n log n� m log n�log n� logm����
time algorithm for general C and O�mn logm log n��time algorithm for the
case of rectangles and general C� We also consider the dynamic versions of
this problem where the points of S are allowed to be inserted or deleted�

For Problem p
 �C � S� our algorithm runs in O�n� log� n� time and uses
O�n�� space� Finally� we solve Problem p� �C � S� by an O�n� log� n��time
and O�n���space algorithm�

����� Facility Location Problems

There is a very strong relationship between the problems that belong to
groups G� and G�� In some sense the decision version of a problem that
belongs to G� group usually belongs to G� as well� The facility location is a
classical problem of operations research that has also been examined in the
computational geometry community� The task is to position a point in the
plane �a facility� such that a distance between the facility and given points
�sites� is minimized or maximized� Most of the problems described in the
facility location literature are concerned with �nding a �desirable� facility
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location� the goal is to minimize a distance function between the facility
�e�g�� a service� and the sites �e�g�� the customers�� Just as important is the
case of locating an �undesirable� or obnoxious facility� In this case instead
of minimizing the largest distance between the facility and the destinations�
we maximize the smallest distance� Applications for the latter version are�
e�g�� locating garbage dumps� dangerous chemical factories or nuclear power
plants� The latter problem is unconstrained if the domain of possible loca�
tions for the facility is the entire plane� Practically the location of the facility
should be in a bounded region R� whose boundary may or may not have a
constant complexity description�

Undesirable location

p�� Let S be a set of n points in the plane� enclosed in a rectangular region
R� Let each point p of S have two positive weights w��p� and w��p�� Find a
point c � R which maximizes

min
p�S

fmaxfw��p� 	 dx�c� p�� w��p� 	 dy�c� p�gg�

where dx�c� p� de�nes the distance between the x coordinates of c and p� and
dy�c� p� de�nes the distance between the y coordinates of c and p�

Problem p� is concerned with locating an obnoxious facility in a rect�
angular region R under the weighted L� metric� where each site has two
weights� one for each of the axes� An application for two�weighted distance
is� e�g�� an air pollutant which is carried further by south�north winds than by
east�west winds� For the unweighted case of this problem� where R is a simple
polygon with up to n vertices and under the Euclidean metric� Bhattacharya
and Elgindy �	
� present an O�n log n� time algorithm� For weighted sites
one can construct the Voronoi diagram and look for the optimal location
either on a vertex of this diagram or on the boundary of the region R� For
weighted sites� the Voronoi diagram is known to have quadratic complexity
in the worst case� and it can be constructed in optimal "�n�� time ����� Thus�
the optimal location� using the Voronoi diagram� can be found in O�n�� time
����� The �rst subquadratic algorithm for the weighted problem under L�
metric and a rectangular region R was presented by Follert et al� ��	�� Their
algorithm runs in O�n log� n� time�

Desirable location

p	� Given a set S of n points and a number � � k � n � �� �nd a point p
such that the sum of the L��L�� distances from p to its k nearest neighbors
in S is minimized�

Problem p	 deals with locating a desirable facility under the min�sum
criterion� Some applications for this problem are locating a component in a
VLSI chip or locating a welding robot in an automobile manufacturing plant�
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Elgindy and Keil ��
� consider a slight variation of the problem under the L�

metric� Given a positive constant D� locate a facility c that maximizes the
number of sites whose sum of distances from c is not greater than D� They
consider the discrete and continuous cases� The runtimes of their algorithms
are O�n log� n� for the discrete case and O�n� log n� for the continuous case�
respectively�

Facilities in region

Another variant of the facility location problem is to place k obnoxious fa�
cilities� with respect to n given demand sites and m given regions� where the
goal is to maximize the minimal distance between the demand sites and the
facility under the constraint that each of the regions must contain at least
one facility� More speci�cally�
p��� Let S be a set of n points in the plane �called demand points�� and
let R be a set of m� m � n� regions in the plane �called neighborhoods��
Let k be a positive integer �k is the number of facilities� e�g�� garbage
dumps� to be placed�� Find k sites c�� � � � � ck for the k facilities� such that �i�
C � fc�� � � � � ckg is a piercing set for R� that is� each of the neighborhoods
in R is served by at least one facility that is located in the neighborhood�
�ii� The minimal distance between a demand point in S and a site in C is
maximized� Brimberg and Mehrez �	�� solve the following problem� Find k
locations in the rectangle R �for k facilities�� such that �i� the distance be�
tween any two locations is at least some given value d� and �ii� the minimal
distance between a demand point and a facility is at least some given value
r� The running time of their algorithms is O�n�k��

We solve problems p�� p	� p�� in Chapter 
� For Problem p� we
present O�n log� n� runtime algorithm� Our algorithm for Problem p	 runs
in time O�n log� n� for the discrete case� and for the continuous case in
O��n � k�� log� n � n log n� time� We also solve several variants of prob�
lem p��� For example� for L� metric and for k � 	� Problem p�� can be
solved in O�n log� n� time�

����� k�point Problems

Below we list several problems that belong to G�� Some of them appear
as natural extensions of problems from G� and G�� By applying our posets
framework� we were able to obtain e�cient algorithms for this set of problems�

k�point rectangle

A closely related problem to the rectilinear ��center problem is the following�
p��� Given a set S of n points in the plane and an integer k� �nd the smallest
axis�parallel rectangle �smallest in terms of perimeter or area� that encloses
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exactly k points of S� One can also think about the query version of the
problem above�
p��� Given a number k decide whether a query rectangle contains k points
or less�

Problem p�� has been investigated by many researchers� some of whose
results we cite below� Aggarwal et al� �
� present an algorithm which runs
in time O�k�n log n� and uses O�kn� space� Eppstein et al� ���� and Datta
et al� �
�� show that this problem can be solved in O�n log n � k�n� time 
the algorithm in ���� uses O�kn� space� while the algorithm in �
�� uses O�n�
space� These algorithms are e�cient for small k values� but become ine�cient
for large k values� The paper of Chan �	�� presents an O�n log n� expected
time algorithm for �nding the minimum L��diameter k�point subset of a
planar n�point set� i�e� for �nding the smallest square that encloses exactly
k points�

For Problem p�� we present an e�cient algorithm ���� for k values in the
range n

� � k � n� It is based on posets ��� and runs in time O�n� k�n� k���
and O�n� space�

Problem p�� is a variant of orthogonal range searching where we are
given a set S of n points and want to �nd how many points are enclosed
in the query rectangle� This problem was e�ciently solved by Bentley ����
in O�log n� query time� using the range search tree and with preprocessing
time and space O�n log n�� For this problem we obtain an algorithm with
O�n � �n� k� log n� preprocessing time and space and O�log �n � k�� query
time �for k � n

�
�� We also show how to extend the algorithms of both p��

and p�� for higher dimensional space�

k�point circle

A problem related to the ones we tackle in this thesis is� p��� Given a set
S of n points in the plane and an integer k� �nd a disk of the smallest ra�
dius that contains k of the n input points� The best known deterministic
algorithm runs in time O�n log n� nk log k� using O�n� k� log k� space �����
Matou#sek �
�� also showed that the smallest disk covering all but k points
can be computed in time O�n log n � k�n�� for any � � ��

Selecting distances

p��� Let S be a set of n points in the plane� and let � � k � n�n���
� � We

wish to compute the k�th smallest distance between a pair of points of S�
The solution can be obtained using a parametric searching� The decision
problem is to compute� for a given real r� the sum �p�SjDr�p� 
 �S � fpg�j�
where Dr�p� is the closed disk of radius r centered at p� Agarwal et al�

��� gave an O�n
�
� log

�
� n� expected�time randomized algorithm for the deci�
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sion problem� which yields an O�n
�
� log

�
� n� expected�time algorithm for the

distance�selection problem� Goodrich ���� derandomized this algorithm� at
a cost of an additional polylogarithmic factor in the runtime� Katz and
Sharir �
	� obtained an expander�based O�n��� log�
� n��time deterministic
algorithm for this problem� By applying a randomized approach Chan �	
�
was able to obtain an O�n log n � n���k��� log	�� n� expected time algorithm
for this problem�

The problem of selecting distances is closely related to the problem of
�nding the nearest �farthest� neighbors� The problem is de�ned as follows�
p��� Find the k nearest �farthest� neighbors for each point of S� Dickerson et
al� �
�� present an algorithm for this problem which runs in time O�n log n�
nk log k�� and works for any convex distance function� Eppstein and Erickson
���� solve the problem on a random access machine model in time O�n log n�
kn� and O�n log n� space� In the algebraic desicion tree model their time
bound increases by a factor of O�log log n�� Flatland and Stewart ���� present
an algorithm which runs in time O�n log n � kn� in the algebraic decision
tree model� Finally� a recent paper of Dickerson and Eppstein ���� describes
an O�n log n � kn� time and O�n� space algorithm for this problem� This
algorithm works for any metric and is extendable to higher dimensions� Our
algorithm ��
� for L� metric runs in time O��n � k�n� �assuming k � n

�
��

uses linear space and has the same runtime for any �xed� high dimension�

The following enumeration problems is tightly connected to the previous
problem�
p�
� Enumerate the k largest �smallest� rectilinear distances in decreasing
�increasing� order and�
p��� given a distance � � �� �nd all the pairs of points of S which are of
rectilinear distance � or less �more�� For our best knowledge only two pa�
pers� one by Dickerson and Shugart ���� and one by Katoh and Iwano ��
�
present an algorithm for the second problem �for the largest k distances��
The algorithm in ���� works for any metric� and requires O�n � k� space
with expected runtime of O�n log n � k logk logn

log logn �� The paper of Katoh and

Iwano ��
� presents an algorithm for the second problem for the L� met�
ric with running time O�min�n�� n log n � k��� log n��log k������ and space
O�n � k�����log k���� � k log n�� Their algorithm is based on the k nearest
neighbor Voronoi diagrams� Dickerson et al� �
�� present an algorithm for
the problem� enumerate all the k smallest distances in S in increasing or�
der� Their algorithm works in time O�n log n � k log k� and uses O�n � k�
space� Lenhof et al� �
��� Salowe ����� Dickerson and Eppstein ���� solve this
problem too but they just report the k closest pairs of points without sorting
the distances� spending O�n log n � k� time and O�n � k� space� An algo�
rithm for solving the enumerating problem �for the smallest k distances� is
also presented in ����� spending O�n log n� k log k� time and using O�n� k�
space� Chan �	
� present O�n log n � k� expected time simlple algorithm for
reporting the k closest pairs of points that is based on the Lenhof et al� �
��
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algorithm� He also proposed an O�npolylog n � k� expected time algorithm
for enumeration the k farthest pairs� Dickerson and Eppstein ���� considered
the following problem� �nd all pairs of points of S separated by distance � or
less� They give an O�n log n� k� time and O�n� space algorithm� where k is
the number of distances not exceeding �� For the enumeration Problem p�


we present two algorithms� one for enumerating the largest and the other
for the smallest distances� The �rst runs in time O�k log n � n�� and uses
O�n� space� The second runs in time O�n log n � k log n�� and uses O�n�
space� These algorithms can be easily extended to high dimensional space
without a�ecting the runtime and space requirements� For Problem p�� we
give algorithms with the similar running times as in ���� for the rectilinear
distances�

Circle �tting

p��� Given a set S of n points in the plane� �t a circleC through S so that the
maximum distance between the points of S and the circle C is minimized�
This is equivalent to �nding an annulus of minimum width containing S�
Ebara et al� ���� observed that the center of a minimum�width annulus is
either a vertex of the closest�point Voronoi diagram of S� or a vertex of the
farthest�point Voronoi diagram� or an intersection point of a pair of edges of
the two diagrams� Based on this observation� they obtained a quadratic time
algorithm� Using parametric search� Agarwal et al� ���� have shown that the
center of the minimum�width annulus can be found without checking all of
the O�n�� candidate intersection points explicitly their algorithm runs in

O�n
�
�
�� time� Using randomization and an improved analysis� the expected

runtime has been improved to O�n
�
�
�� by Agarwal and Sharir ���� Finding

an annulus of minimum area that contains S is a simpler problem� since it
can be formulated as an instance of linear programming in ��dimensional
space� and can thus be solved in O�n� time�

Some variations of Problem p�� have been considered in previous papers�
Efrat et al����� consider the problem from the group G� of enclosing k points
within a minimal area circle and pose an open problem of covering k points
by a ring� They gave two solutions for the smallest k�enclosing circle� When
using O�nk� storage� the problem can be solved in time O�nk log� n�� When
only O�n log n� storage is allowed� the running time is O�nk log� n log n

k
�� The

problem of computing the roundness of a set of points� which is de�ned as
the minimum width concentric annulus that contains all points of the set
was solved in ��� 

� ����� The best known running time is O�n

�
�
��� given

in ���� where 
 � � is an arbitrary small constant� The paper of Barequet
et al� ���� presents algorithms for several variants of the polygon annulus
placement problem� given an input polygon P and a set S of points� �nd
an optimal placement of P that maximizes the number of points in S that
fall in a certain annulus region de�ned by P and some o�set distance � � ��
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Other variants on the problem of circle �tting are �
p�	� �nd the smallest ring that contains k �k � n

�
� points of S�

p��� �nd the smallest area sector in a constrained circular ring that covers
k � n

�
points� We can consider Problem p�	 for circular or rectangular ring

and for both constrained and unconstrained case �recall that by constrained
we mean that the center of the ring is one of the points of S�� A rectan�
gular ring consists of two concentric rectangles� the internal rectangle fully
contained in the external one� As a measure we take the maximum width
or area of the ring� We solve Problem p�	 in O�n�n � k� log �n� k�� time
and O�n� space for rectangular ring� constrained case� while for the non con�
strained case we present an algorithm with runtime O�n�n � k�� log n� and
O�n� space� For a circular ring that covers k �k � n

�
� points �Problem p�	�

we present an algorithm that runs in O�n� � n�n � k� log n� time and uses
O�n� space� and we �nd a sector of a constrained circular ring �Problem p���
that covers k points �k � n

�
� in O�n��nk�n�k��� time and O�n�� space� We

also show how to extend all of the above algorithms to higher dimensional
space�

A possible motivation for this kind of problems �group G�� is to cover all
but a small number of points by one or more objects comes from statistics�
In the analysis of statistical data one would like to get rid of outliers in the
data� Assuming n � k data points are outlyers� one way to �nd the �good�
k data points is to enclose them in a small given shape �or shapes�� Chapter
� is dedicated to these problems�

On the next page we present a table in which we summarize our and
previous results for the problems described above�
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Pbm Previous results Our results

	
p � �� O�n log� n�����
p � �� O�n log� n�����

O�n log n�

� O�n log n�� d � 	���
� O�n log n � nd���� d � 	

� no result O�n log� n�
� no result O�n� log� n�


 no result O�n� log� n�

� O�n log� n���	� O�n log� n�

�
no results� discrete
no results� continuous

O�n log� n�
O��n � k�� log� n � n log n�

�� no result O�n log� n�� L�� k � 	
�� O�n log n � kn��
�� O�n � �n� k��n�

�	
Preprocess� O�n log n�
Query� O�log n� ����

O�n � �n� k� log n�
O�log �n� k��

�� O�n log n � kn� ���� O�n log n � �n� k�n�

�� O�n log n � k logk logn
log logn � �expected� ���� O�n � k log n�

�
 O�n log n � k� ���� O�n log n � k�

��
no results� constrained
no results� non constrained

O�n�n � k� log �n� k�
O�n�n � k�� log n�

	� no results O�n� � nk�n� k���

Table ���� Summary of best previous results and our results�
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Piercing Problems

All the problems in this section are de�ned as follows� �Given a set R of
n objects in metric space and some positive integer p� �nd whether there
exists a set of p points that intersects each member of R� Each member of
the set of p points is called a piercing point� Determining whether a set of
some n objects is ��pierceable means that we look for a set with one point p
contained in each member of R� This problem is equivalent to determining
whether this set has a non�empty intersection� More speci�cally� we consider
the following problems mentioned in Introduction�

p�� Given a collection of axis�parallel rectangles in the plane� determine
whether there exists a set of p � �� 	� 
� �� � points whose union inter�
sects all the given of p points as above� for values of p� We also consider
this problem in higher dimensional space�

p�� Given a set S of n points in d�dimensional space� d � 	� �nd two axis�
parallel boxes that together cover the set S and minimize the maximum
of measures of boxes� where the measure is a monotone function of the
box�

p�� p
� p�� Given a set S of n points in the plane� we seek two squares
whose center points belong to S� their union contains S� and the area
of the larger square is minimal� We consider three variants of this
problem� In the �rst �p�� the squares are axis parallel� in the second
�p
� they are free to rotate but must remain parallel to each other� and
in the third �p�� they are free to rotate independently�

��� Rectilinear piercing �p�	

In this section we consider the rectilinear piercing problems� In the following
subsections we present e�cient algorithms for determining whether s set of
n rectangles in the plane is p�pierceable� for a small values of p and also solve
the d�dimensional case�

��
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Figure 	��� �a� There are 
 rectangles� and q is a query point� All intervals
containing q are in the shaded regions� Intervals appearing in the shaded
regions of both �b� and �c� correspond to rectangles that contain P �

����� Rectilinear ��piercing

We are given a set R of n axis�parallel rectangles in the plane The goal is
to decide whether their intersection is empty or not� We assume that there
is no axis�parallel line that traverses R� The case of the existence of such a
line was considered in ����� They show that this case can be easily solved in
linear time for any �xed p�

We begin with an observation due to Samet ��	�� If a shape M is described
by k parameters� then this set of parameter values de�nes a point in a k�
dimensional space assigned to the class of shapes� Such a point is termed a
representative point� Note� that a representative point and the class to which
it belongs completely de�ne all of the topological and geometric properties
of the corresponding shape�

The class of two�dimensional axis�parallel rectangles in the plane is de�
scribed by a representative point in four dimensional space� One choice for
the parameters is the x and y coordinates of the centroid of the rectangle�
denoted by cx� cy� together with its horizontal and vertical extents �i�e� the
horizontal and vertical distances from the centroid to the relevant sides��
denoted by dx� dy� In this case a rectangle is represented by the four�tuple
�cx� dx� cy� dy� interpreted as the Cartesian product of a horizontal and a ver�
tical one�dimensional interval � �cx� dx� and �cy� dy�� respectively�

Let P be the set of � dimensional points representing the parameters of
R� Let Px � fpx�� � � � � pxng be the projections of the x�intervals of R into the
plane �cx� dx�� and let Py � fpy�� � � � � pyng be the projections of the y�intervals
of R into the plane �cy� dy�� A query that asks which rectangles contain a
given point is easy to implement �see Figure 	����

A query point q is represented by a four�tuple �qx� �� qy� ��� We transform
the rectangles �A�B�C� in Figure 	���a� into the points in two 	�dimensional
spaces ��cx� dx� and �cy� dy�� �Figure 	���b� and 	���c��� There are two points
representing q in these 	�dimensional spaces� �qx� �� in �cx� dx��space� and
�qy� �� in �cy� dy��space� It is easy to see that all the rectangles that con�
tain Q must be transformed into two cones in these spaces respectively �the
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shaded cones in Figure 	���� These cones have apexes on �qx� �� and �qy� ��
respectively and are of slopes ��� and �
��� In Figure 	��� A and B are in
both cones and thus q is in these rectangles�

In order to �nd whether the set R is ��pierceable� we check whether there
exist two cones C� and C�� C� apex is in the plane �cx� dx� and C� apex is in
the plane �cy� dy�� each cone is of slope ��� and �
��� such that C� and C�

cover all the points in each one of the planes� Formally� we �nd in each plane
the rightmost intersection point Rx �Ry� of the ��� lines through the points
of Px �Py� with the cx �cy� axis� The point Rx de�nes the right boundary of
C�� while the point Ry de�nes the right boundary of C�� Then we �nd the
leftmost intersection point �Lx and Ly respectively� of the �
�� lines with
through Px �Py� with the cx �cy� axis� These latter points de�ne the left
boundaries of the cones C� and C�� respectively�

The existence of C� and C� is equivalent to the existence �not emptiness�
of non�empty intervals �Rx� Lx� and �Ry� Ly�� If the above is true� then any
point Q whose x and y projections are in these intervals� respectively� is a
piercing point�

Thus� we can conclude by the following theorem�

Theorem �
�
� We can �nd whether a set of n axis�parallel rectangles is
��pierceable in O�n� time� and compute a piercing point� if it exists� in the
same runtime�

����� Rectilinear �� and ��piercing

We begin with the 	�piercing problem� Similarly to the previous section� we
have to �nd whether there exist four cones C�� C� � �cx� dx� and C�� C� �
�cy� dy� such that�

�� C� � C� covers Px�

	� C� � C� covers Py�


� Denote by �Ci� the set of the points from Px �or Py� that are covered
by Ci� At least one of the following two conditions is true�

�i� ��C�� 
 �C��� � ��C�� 
 �C��� contains all the points of P � This
will imply that the apexes of C�� C� de�ne one piercing point and
apexes of C�� C� de�ne the other piercing point�

�ii� ��C�� 
 �C��� � ��C�� 
 �C��� contains all the points of P � This
will imply that the apexes of C�� C� de�ne one piercing point and
apexes of C�� C� de�ne the other piercing point�

We can constrain the locations of the cones C�� C�� C�� C�� They are de�
�ned by minimal and maximal points of intersection of the ��� and �
�� lines
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with the horizontal axes in the two planes �cx� dx� and �cy� dy� respectively� It
is easy to see that in order for the rectangles to be 	�pierceable� we put� with�
out loss of generality� the apex of C� on Rx� C� on Lx� C� on Ry and C� on
Ly� Clearly� if these cones cover all the points then the set R is 	�pierceable�

In the case of 
�piercing� we have to �nd six cones� Ci� � � i � �� which
will de�ne three piercing points with the following properties�

�� C� � C� � C� covers Px�

	� C� � C	 � C� covers Py�


� For i� k� z � f�� 	� 
g� pairwise disjoint and j� l� h � f�� �� �g� pairwise
disjoint

j��Ci� 
 �Cj�� � ��Ck� 
 �Cl�� � ��Cz� 
 �Ch��j � n

for at least one combination of i� k� z �there are at most � combinations��
where the union is taken without repetitions�

Without loss of generality� we can �nd the constrained cones C�� C�� C�� C�

as in the algorithm for 	�piercing� Namely� the left boundary of C� �C�� is
constrained by the leftmost �
�� line through the points of Px �Py�� and the
right boundary of C� �C�� is constrained by the rightmost ��� line through
the points of Px �Py��

To ful�ll condition �
� we look at each combination� �C��
 �C�� or �C�� 

�C�� or �C�� 
 �C�� or �C�� 
 �C�� and for these four possibilities we check� in
linear time� whether the rest of the points is 	�pierceable� Thus we conclude�

Theorem �
�
� We can check in linear time whether a set of n axis�parallel
rectangles is 	� or 
�pierceable and �nd a solution� if exists� in the same
running time�

Our method is� in a sense� dual to that of Sharir and Welzl paper �����
as we will show below� Sharir and Welzl de�ne �L to be the vertical line
containing the leftmost right edge of a rectangle in R� �R is the vertical
line containing the rightmost left edge of a rectangle in R� let �T is the
horizontal line containing the highest bottom edge of a rectangle in R� and
let �B s the horizontal line containing the lowest top edge of a rectangle
in R� They further consider the closed left halfplane HL bounded by �L�
the closed right halfplane HR bounded by �R� the closed top halfplane HT

bounded by �T � and the closed bottom halfplane HB bounded by �B� Let
$HX denote the closure of the complement of HX � for X � L�R� T�B� They
note that if no axis�parallel line traverses R� then HL is disjoint from HR�
and HT is disjoint from HB� and thus R� ��

T
X�fL�R�T�Bg $HX is nonempty

�with nonempty interior�� R� is called the location domain for R�

Sharir and Welzl show that for 	 or 
�pierceability of R the piercing points
should be located at the vertices of the location domain� In our setting the
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piercing points correspond to the apexes of cones� More precisely� two paired
constrained cones �in two di�erent planes� correspond to a vertex in the
location domain�

����� Rectilinear ��piercing

Now we have to �nd eight cones Ci� � � i � � with the following properties�

�� C� � C� � C� � C� covers Px�

	� C	 � C� � C� � C
 covers Py�


� For some pair of cones Ci� Cj� i � f�� 	� 
� �g� j � f�� �� 
� �g the set of
all rectangles without those covered by �Ci� 
 �Cj� is 
�pierceable�

As before� assume without loss of generality that C�� C�� C	� C
 are con�
strained� so condition �
� when we choose i � f�� �g and j � f�� �g is easily
checked in linear time� because we can �nd the location of C�� C�� C	� C


in linear time and then answer the 
�piercing problem in linear time� If
i � f	� 
g and j � f�� 
g then there exist i� � f�� �g and j � � f�� �g such
that if the set of rectangles is ��pierceable then one piercing point must be
determined by the cones Ci� and Cj�� Thus� this case is also computed in
O�n� time� The more interesting and di�cult case is when each constrained
cone in one plane corresponds to a non�constrained cone in the other plane�
There is a constant number of such pairs� namely eight� Without loss of
generality� let C� be an unconstrained cone in �cx� dx� and C	 a constrained
cone in �cy� dy�� The analysis for all other such pairs is almost identical�

We sort all the ��� ��
��� lines determined by Px in the �cx� dx� plane
from left to right� and do the same to the lines determined by Py in the
�cy� dy� plane� Clearly� the apex of C� is between the apexes of C� and C��
So� we �x the apex of C� to coincide with the apex of C� and begin to move
it �to the right� towards C��

The main idea in ���� is similar � they take a point at some vertex of the
location domain and begin to move it along the edge of the location domain�
at each step maintaining the set of rectangles that is pierced by this point and
checking whether the rest of rectangles is 
�pierceable� The checking phase
was done using 
�level structure for p � �� Actually� using this structure
leads to additional time in total running time of their algorithm� In contrast�
in our algorithm� we consider so called combinations of cones de�ned below
and use simple data structures� like balanced binary trees� It seems that the
same thing can not be done in the original paper of Sharir and Welzl ����
because it becomes quite complex to explain the behavior of piercing points
that move on the edges of the location domain�

We de�ne an event when a point of Px is inserted or deleted from C��
Initially� we compute the set of points A � P covered by �C�� 
 �C	� �when
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Figure 	�	� Moving the apex of C� from the apex of C� towards the apex of
C��

the apex of C� is determined by the leftmost �
�� line through the points of
Px� and apply the 
�piercing algorithm for the rest of the points S � P nA�
allowing� only this time� C� to move freely� If we have a positive answer� we
are done otherwise we continue�

We next move C� to the right� till the next event occurs� and change S
accordingly �as in Figure 	�	�� The �rst encountered event as C� moves from
its initial position is when the leftmost point of Px is deleted from C�� We
run again the 
�piercing algorithm for S� Here� too� if S is 
�pierceable then
we are done� Clearly� from now on the location of the apexes of C�� C� and
C
 will not change during the rest of the algorithm because these cones are
de�ned by the extreme points of Px and Py that will never appear in both C�

and C	� Let C� be the leftmost cone covering S in �cy� dy�� The location of
C� will change since C� will move towards C
 and back to cover points� But
once C� moves back from C
 it will never move towards C
 again� This is
because C	 is constrained and C�� the second cone from the left� moves back
to cover points that were removed from A� Since the leftmost point has to be
covered in order to have ��piercing� once C� got back to its leftmost position�
it will never move to the right again� Thus� the number of changes that we
perform on C� is O�n�� Our goal is to determine the location of the cones
C� in �cx� dx� and C� in �cy� dy�� We will check the possible combinations of
pairing the cones to create piercing points� Assuming the cones C� and C	

describe a piercing point� we have the following combinations for the rest of
the piercing points�

�a� �C�� C��� �C�� C��� �C�� C
�� �b� �C�� C��� �C�� C
�� �C�� C���
�c� �C�� C
�� �C�� C��� �C�� C��� �d� �C�� C
�� �C�� C��� �C�� C���
�e� �C�� C��� �C�� C��� �C�� C
�� �f� �C�� C
�� �C�� C��� �C�� C���

Observation �
�
� Every solution to the problem belongs to one of the com�
binations� that is� the combinations of the cones at each step of the ��piercing
algorithm are independent� meaning that we check 
�pierceability for each
�xed combination of the cones throughout all the steps of the ��piercing al�
gorithm� If we get a negative answer for a combination� we check the other
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combinations� If there is a solution it will be found by the 
�piercing algorithm
for one of the combinations�

This observation �which has no analogue in ����� allows us to design an
e�cient algorithm for our problem� The independency and the �nite number
of combinations allow to perform the ��piercing algorithm for each of the
combinations separately� For each combination the ��piercing algorithm is
slightly di�erent� Denote by Cij � �Ci� 
 �Cj� 
 S� Recall that S � P nA� A
being the set of points covered by �C�� C	�� For every combination of cones
the following events happen during the algorithm�

The ��piercing algorithm exempli�ed by �C�� C	�

�� Initially the left boundary point q of C� is getting out of C�� If q was
in A then we re�run the 
�piercing algorithm� Otherwise no update is
needed� since q did not belong to A and in the current situation nothing
was changed�

	� If� when we move the apex of C� towards C�� a point q� is inserted to
C�� we �rst check if the corresponding point in �cy� dy� is covered by
C	� If it is not covered� then we continue moving C� to the next event 
otherwise we have the following cases�

	�� If in a previous stage of the algorithm q� de�ned the left boundary
of the middle cone C� in �cx� dx�� or q� de�ned the left boundary
of the left cone C�� or q� de�ned the left boundary of the mid�
dle cone C� in �cy� dy� for the combinations �a���d� �similarly� the
right boundary for the combinations �e���f��� then� for the given
combination we perform the following updating scheme� we �rst
check if q� de�nes the left boundary of C�� If yes then we have to
�nd� by binary search over S� the new left boundary for C� and�

i� For combination �a�� Find the new boundaries of the mid�
dle cones C� and C� in both planes and check whether they
cover the rest of the points by computing and examining the
set S��� � S n C�� n C�
� Note that the cones C� and C


are both constrained and do not move during the whole algo�
rithm� Technically� we compute C�
 at the beginning of the
��piercing algorithm� To determine whether C� and C� can
cover S��� we are only interested in the maxima and minima
of the ��� and �
�� lines through the points of S��� in both
planes respectively� Note that the total number of updates on
C�
 and on C� is at most O�n�� thus if we maintain the points
of the dynamically changing set S��� sorted according to the
��� and �
�� lines we can update S��� and �nd the maxima
and minima in both planes by a simple binary search� Conse�
quently� in O��� time we check whether there exist two cones
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C� and C� with boundaries on these maximal and minimal
lines that pass through these points that cover S����

ii� For combination �b� �similarly �e��� These combinations are
similar in the sense that C� �that has O�n� updates� is paired
with a constrained cone� either C� in �b� or C� in �e�� and
the non constrained cones C� and C� are each paired with a
constrained cone� By computing and examining the set C��

�C��� we found the new left boundaries of C� and C�� What is
remained is to check whether the pairs �C�� C
� and �C�� C��
��C�� C�� for combination �e�� cover the set of all points of
P which are not already covered by �C�� C	� or by �C�� C��
��C�� C�� for combination �e��� This can be done as follows�
For combination �b� �similarly �e�� compute the set C�
 �C�
�
at the beginning of the ��piercing algorithm� In each step
of the ��piercing algorithm compute the set S��� � C�
 n C��

�C�
 n C���� Observe the set of all points of P not pierced by
�C�� C	� and �C�� C�� ��C�� C���� They will have to be pierced
by �C�� C
� and �C�� C�� ��C�� C���� Now the points in S���

should be covered by either C� or C�� whereas the points of
C �
� � �C�� nS��� �C �

� � �C�� nS���� must be covered by C�� and
the points of C �


 � �C
�nS��� must be covered by C�� C� and C�

�C� and C�� determine the left �right� boundary of C� and C��
which are found by a binary search over the points of S nC��

�S n C���� As for combination �a� the number of updates on
C�
 �C�
�� and� C� is at most O�n�� The sets C �

� �C �
�� and C �




are maintained sorted according to the lines throughout the
whole algorithm� To check how S��� is pierced� we maintain
two balanced binary trees T�� T�� The leaves of T��T�� contain
the set S��� sorted according to the ��� ��
��� lines in the
plane �cx� dx�� Let T be T� or T�� Initially� the leaves of T
contain the sorted points of C�
 �C�
� in the plane �cx� dx��
After we compute C�� �C��� for the �rst time we empty the
leaves that contain the points that belong to C���C���� Now T
contains the sorted lines through the points of S���� Let p be
a point of S���� A leaf corresponding to p contains the x value
of the point of intersection of the ��� ��
��� line through p
with the cx axis in �cx� dx�� It will also contain the y value of
the point of intersection of a ��� ��
��� line through p with
the cy axis in �cy� dy�� An inner node v � T will contain the
maximum of the y values corresponding to �
�� lines of the
leaves of the subtree rooted at v� and the minimum of the ���

lines� During the algorithm we perform a sequence of updates�
namely insertions and deletions� in the tree T � When a point
q is add to S���� then we insert it into T in a sorted x�order
and update the minimum and maximumy values on the nodes
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of path from the leaf q to the root of T � If a point q is deleted
from T � then we �nd the leaf of q� delete it and update the y
values of the nodes on the path from the leaf to the root of T �
Each update of T takes O�log n� time� We can check� using
the tree T � whether C� together with C� cover all the points
in S����

iii� For combination �c� �similarly �f��� At the beginning of the
��piercing algorithm we compute C�
� The cones C� and C


are constrained and do not move during the whole algorithm�
At each step of the ��piercing algorithm we work with the set
S��� � S n �C�
 � C��� and �nd the leftmost and rightmost
points in this set that should be covered in both planes by
C� and C� respectively� We maintain S��� by incremental
updates according to the motion of C�� Note that the number
of updates on C� in the whole algorithm is O�n�� This is
because the left boundary of C� is de�ned by the leftmost
point �of S� in �cx� dx� not covered by C�
 and thus C� moves
towards and back from C�� but when it moves back it will
never move �to the right� again�

iv� For combination �d�� We perform a scheme almost identical
to that of �c�� but with the di�erence that at each step of the ��
piercing algorithm we work with the set S��� � S n �C�
�C���
and �nd the leftmost and rightmost points that should be
covered in both planes by C� and C�� Again� we update S���

at each motion of C� in logarithmic time� We �nd the new
boundaries of C� and C� and check whether C� and C� cover
the leftmost and rightmost points in both plane that we just
found�

	�	 If q� does not de�ne a left boundary of a cones as above� then
for each combination we perform an identical updating scheme as
in 	�� but without computing a new left boundary of the middle
cones C� and C��


� If� when we move apex of C�� a point q�� is deleted from C�� then


�� If q�� �� C	 we proceed to the next event�


�	 If in a previous stage of the algorithm q�� de�ned the left boundary
of the cone C� in �cx� dx�� or q�� de�ned the left boundary of the
left cone C�� or q�� de�ned the left boundary of the middle cone C�

in �cy� dy� for the combinations �a���d� �similarly� right boundary
for the combinations �e���f��� then� for the given combination we
perform the following updating scheme� If q�� de�nes a new left
boundary C�� then we compute a new location of C� and�

i� For combination �a�� �nd the new boundaries of the middle
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cones C� and C� in both planes and compute the rightmost
and leftmost points of the set S��� in both planes�

ii� For combination �b�� by examining the set C��� �nd the new
left boundaries of C� and C�� compute the sets S���� C �

� and
C �

 and update T� and T��

iii� For combination �c�� �nd the new boundaries of C� and C��
By examining the set S��� �nd the leftmost and rightmost
points of this set in both planes�

iv� For combination �d�� �nd the new boundaries of C� and C��
By examining the set S��� we �nd the leftmost and rightmost
points of this set in both planes�


�
 If q� does not de�ne a left boundary of a cones as above� then
for each combination we perform an identical updating scheme as
in 
�	 but without computing a new left boundary of the middle
cones C� and C�� Notice that in this case �when q�� is deleted from
C�� the ��piercing of P is not possible� because it wasn�t possible
in previous step of the algorithm�

Thus�

Theorem �
�
� We can determine whether a set of n axis�parallel rectangles
is ��pierceable or not in O�n log n� time� and give a solution �if it exists
 in
the same running time�

Comparing our algorithm to that in ����� Our main observation is the
�independency� of the cone combinations which has no analogue in ����� In
addition� our data structure is a balanced binary tree as opposed to the

�level structure of ����� Actually� each level of the 
�level structure adds
additional log n factor to the running time of the algorithm in �����

����� Rectilinear ��piercing

Now we have to �nd ten cones Ci� � � i � �� with the following properties�

�� C� � C� � C� � C� � C	 covers Px�

	� C� � C� � C
 � C� � C�� covers Py�


� For some pair of cones Ci� Cj� i � f�� 	� 
� �� �g� j � f�� 
� �� �� ��g the
set of all rectangles without those covered by �Ci�
 �Cj� is ��pierceable�

Due to the duality relation between our analysis and that in ���� we follow the
case analysis in ����� Assume� without loss of generality� that C�� C	� C�� C��

are constrained and the order of the cones is from left to right� We may also
assume that one of the following situations occurs�
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�a� There is one pair of constrained cones Ci� Cj� i � f�� �g and j � f�� ��g�
We try all of these possibilities� �nd the set of rectangles not covered
by the given pair of cones� and test whether this set is ��pierceable�
using the preceding algorithm� This takes O�n log n� time�

�b� Every constrained cone is paired with a non�constrained cone� Since
there are four constrained cones there are two pairs with the same
constrained cone� We proceed as follows� First� we guess a unique
constrained cone� say C�� which is paired with a non�constrained� say
C�� Then we proceed as in the ��piercing algorithm� i�e� slide C� from
left to right� starting at the apex of C� and stopping when we reach the
apex of C��� In each move� we check whether the set of the rest of the
rectangles is ��pierceable using the following observation by Sharir and
Welzl ����� They observe that the ��piercing problem has always a pair
of two constrained cones in its solution� In our case they are either
C� and C�� or C� and C�� �C� becomes constrained after computing
S n C���� We process with each of these cases separately� Assume�
without loss of generality� that we process C� and C�� Then at each
move of C� we update C�� and check whether the rest of rectangles is 
�
pierceable as in the update step in the ��piercing algorithm� Omitting
some details� we obtain a procedure that runs in O�n log n� time�

�c� There a pair of two unconstrained cones� Assume� without loss of gen�
erality� the cones are C� and C
� We also assume without loss of gen�
erality� that we have paired C� and C�� C�� and C�� C� and C�� C	 and
C� �a constrained cone with an unconstrained cone�� Then� as was ob�
served in ����� either at least one of the cx�coordinates of the apexes of
C� and C� is smaller then the the cx�coordinate of the apex of C�� or at
least one of the cx�coordinates of the apexes of C� and C� is larger than
the cx�coordinate of the apex of C�� Suppose one of them is smaller
than C�� Then we slide C� �that is paired with C�� from left to right�
starting at the apex of C� and stopping when we reach the apex of
C��� At each event� we check whether a set of the rest of rectangles is
��pierceable� As was claimed in ���� at each move of C�� the cone C� is
paired either with C� or with C��� Thus we have a situation identical
to case �b�� This can be computed as in case �b� above� implying that
case �c� can also be computed in O�n log n� time� Hence we obtain�

Theorem �
�
� We can determine whether a set of n axis�parallel
rectangles is ��pierceable or not in O�n log n� time� and give a solution
�if it exists
 in the same running time�

The result for ��piercing can be applied to �nd a better solution for the
rectilinear ��center problem with O�n log� n� running time compared to one
in �����
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����� Extending to high dimensional space and to p � �

Our technique immediately implies a linear time algorithm for 	�pierceability
of a set of axis�parallel rectangles for arbitrary ��xed� dimension d� d � 	
�there are only constrained cones� and an O�n log n� time algorithm for 
�
pierceability of a set of axis�parallel rectangles for dimension d� 
 � d � �
�the same result was obtained by ���� independently�� In the latter problem
there is always a combination where d � � cones are constrained and �at
most� one is a non�constrained cone� At each step of the algorithm there is
a �nite number of the d�coupling combinations of the cones�

Returning to the planar p�piercing problem we apply an algorithm sim�
ilar to the ��piercing algorithm� Using our approach we obtain an e�cient
algorithm for general �but �xed� p � � improving ����� The general obser�
vation is that a constrained cone is always paired with a constrained or an
unconstrained cone� Thus for solving a �p � ���piercing problem we have
to consider the two cases� In the �rst case there are two constrained cones
paired together� we can determine the rest of the �uncovered� boxes in linear
time and apply the p�piercing algorithm for the rest of the boxes� In the
second case� a constrained cone is paired with a non�constrained one� We
move the apex of the non�constrained cone between the apexes of the con�
strained cones in its plane� Thus we have O�n� steps �when a point is either
inserted or deleted from the non�constrained cone�� In each step we run the
�p� ���piercing algorithm for the rest of the points� Thus our algorithm for
general� but �xed p � � in the plane runs in time O�np�� log n�� while the
algorithm in ���� in time O�np�� log	 n��

Conclusions

There is some duality between the analysis of ���� and ours� A pair of con�
strained cone with nonconstrained cone in our algorithms corresponds to
an edge on the boundary of the location domain in ����� and two paired
constrained cones in our algorithms correspond to a corner in the location
domain of ����� We are looking into applying a similar technique for sets
of triangles� rhombi� etc� Recently� Nussbaum ���� and Makris and Tsaka�
lidis �
�� present a algorithm with a similar runtimes for a various piercing
problems� Still� the most intriguing question is whether we can improve the
running time of algorithm for p�piercing problems where p � �� We hope
that our approach can help in obtaining a better solution to these problems�
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��� Two�Covering �p�	

Given a set S of n points in d�dimensional space� d � 	� �nd two axis�parallel
boxes b� and b� that together cover the set S and minimize the maximum
of measures 	�b�� and 	�b��� where 	 is a monotone function of the box� i�e�
b� � b� implies 	�b�� � 	�b��� Examples of the box measure 	 are the volume
of the box� the perimeter of the box �in higher dimensions it can be de�ned
as the sum of ��dimensional edges or as the area of the boundary of the box��
the length of the diagonal etc� We assume that the dimension d is �xed and
the measure of the box can be computed in O��� time� For simplicity we
consider the general case of the distinct coordinates� i�e� the projection of S
onto any coordinate axis is a set of n distinct points� Initially we sort all the
points of S according to each of the coordinates�

Given a set of points S� the bounding box of S� denoted by bb�S�� is
the smallest axis�parallel box that contains S� The bounding box of S is
determined by 	d points� two from each axis i� i � �� � � � � d� the leftmost
point li�S� of S� and the rightmost point ri�S�� We call these points the
determinators of S� For a box b � �l�� r��� � � �� �ld� rd�� the points li and ri
are also called the determinators of b� For a point p� let x�p� and y�p� denote
the coordinates of p in the �rst and the second axes� respectively�

����� The algorithm for the plane

Glozman et al� ��
� consider three di�erent ways to partition the determina�
tors between two subsets of S

�� One of the subsets gets three determinators and the other gets one
determinator�

	� Each subset gets two determinators lying on opposite sides of bb�S��


� Each subset gets two determinators lying on adjacent sides of bb�S��

We distinguish only 	 cases�

�� One subset gets two determinators lying on adjacent sides of bb�S��

	� Each subset gets two determinators lying on opposite sides of bb�S��

The algorithm �nds the solutions for both cases and then returns the
pair with minimum measure 	� The algorithm for the �rst case is essentially
the same as the algorithm for the problem Measure� which is described in
Section 	�	�	 �in the problem Measure� one subset gets the determinators
of S from two di�erent axes�� Thus� it is su�cient to explain the algorithm
for the second case�
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Consider the box� say b�� that contains the uppermost and bottommost
points of S� The second box b� contains the set S� of the points outside of b��
We can assume that b� is the bounding box of these points� i�e� b� � bb�Snb���
In other words� two determinators �left and right� of the box b� de�ne both
boxes� Let l and r be the left and right determinators of the box b�� They can
be selected among the x�coordinates of the points of S� The naive approach is
to compute the measures of the boxes b� and b� for each pair of x�coordinates�
It takes %�n�� time in the worst case� We can reduce the number of pairs l
and r that are candidates for the solution� Let L � �p�� � � � � pn� be the list of
points S sorted by their x�coordinate� For each left determinator l� � x�pi�
of b�� the algorithm computes only two candidates for the right determinator
of b� � c� and c�� The value c� is the largest x�coordinate such that the box b�
with the right determinator r � c� has the measure not greater than the box
b�� The value c� is the smallest x�coordinate �if any� such that the box b�
with the right determinator r � c� has the measure greater than the box b��
Clearly� c� � c� and c� is the next element of L list after c� if it exists� If we
will think about c� and c� as functions that depend on the choice of l�� we can
see that c� and c� are both monotonic� i�e� c��b� � c��a� and c��b� � c��a��
if b � a�

The monotonicity of c� and c� allows us to �nd them using at most
�n � 	 computations of the measure 	� To �nd c� and c� for l� � x�pi�
the algorithm starts with the value r� � c��x�pi���� that plays role of the
right determinator of b�� If the box b� with the determinators l� and r� has a
measure greater than the measure of the corresponding box b�� then c� and
c� coincide with the previous values� Otherwise� we do the following� Let A
be a matrix with n rows and n columns� Its element A�i� j� is equal to � if
the algorithm computes the measure of the box b� with the determinators pi
and pj  otherwise A�i� j� � �� The unit elements of A correspond to the path
from ��� �� to �n�� n� where pn � c��x�pn��� or n � n� �if c��x�pn��� does not
exist�� The value of r� is changed accordingly to the unit elements in A� On
each step we move in left to right or top to down direction on the matrix
A� The algorithm visits at most 	n � � cells� At each cell it computes the
measures of the boxes b� and b�� Thus� it computes at most �n � 	 boxes�
Below we give the formal description of the algorithm�

It remains to show how to compute the bounding box of S�� The set
S� undergoes both insertions and deletions of the points throughout the al�
gorithm� but each point can be deleted from and inserted to S� only once�
Initially S� � S� We partition S� into two subsets S�� and S��� as de�ned
below�

� S �� contains the points that were not deleted from S�

� S ��� � S� n S ���
Actually S�� �S ��� � has the points to the right �resp� left� of the box con�

taining points of S� but the de�nition above can also be used for higher
dimensions� The set S�� is updated only by deletions of points� The set
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S ��� is updated only by insertions of points� The box bb�S��� � can be easily
maintained during the algorithm� Moreover� using a presorting step we can
maintain the box bb�S��� in O��� time� The box bb�S�� can be computed in
O��� time using the computed boxes bb�S��� and bb�S��� ��

Algorithm TwoBoxes �� Given points p�� � � � � pn sorted by x�coordinate�
Find the minimum of maximum measure of two boxes covering points such that
one box gets the uppermost ymax and bottommost ymin determinators ��
j �� �
S� �� S
solution�� 	� �� 	�bb�S���
for i �� � to n do

	� � 	��pi� pj�� �ymin� ymax��
if solution� min�	�� 	�� then solution�� min�	�� 	��
while 	� � 	� do
if j � n
then return solution
S� �� S� n fpjg
	� �� 	�bb�S���
j �� j � �
	� � 	��pi� pj�� �ymin� ymax��
if solution� min�	�� 	�� then solution�� min�	�� 	��

S� �� S� � fpjg
	� �� 	�bb�S���

return solution

Clearly� the algorithm described above takes only linear time� We con�
clude by theorem�

Theorem �
�
� The min�max two box problem for n presorted points in the
plane can be solved in O�n� time and O�n� space�

����� The algorithm in higher dimensions

The main idea of the algorithm is the reduction of the dimension� We assume
that the dimension d is greater than two and reduce it to two� Let the boxes
b� and b� be the solution of the min�max two box problem� Then there is
a box which has at least d determinators coinciding with the corresponding
determinators of S� Assume� without loss of generality� that b� is such a box�
The box b� de�nes the smallest box bb�S n b�� containing all points outside
b�� For simplicity we assume that the box b� is equal to bb�S nb�� throughout
this Section� The boxes b� and b� are the solution of the following problem�

Problem Measure�
 Given a set S of n points and d determinators of
the box b�� �nd the remaining d determinators of b� such that the expression
max�	�b��� 	�b��� is minimized� where b� is equal to bb�S n b���
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For a set S� there are
�
�d
d

�
ways to �x d determinators� So� we have

�
�d
d

�
problems Measure�� We solve all these problems� The solution of the min�
max two box problem can be chosen from the

�
�d
d

�
pairs of boxes b� and b��

�Of course we do not need to store all these pairs��

Now we show how to solve the problemMeasure�� The box b� has d �xed
determinators and d free determinators� Since the dimension d is greater than
	� there are two free determinators on the di�erent axes� Assume� without
loss of generality� that they are right determinators on x and y axes� i�e�
r��b�� and r��b��� We want to �nd these determinators and the remaining
d � 	 free determinators� At �rst step the algorithm de�nes the remaining
determinators� They can be determined by the points of S �for example� the
i�th left determinator li�b�� is determined by the point q � �q�� � � � � qd� � S
if li�b�� � qi�� Let us consider all the �d � 	��tuples of the points of S�
The algorithm goes through all these tuples and �nds the combination that
attains the required minimum�

It is clear that the number of tuples is nd��� Note that some tuples cannot
give the solution since the determinators of b� have to satisfy the inequality
li � ri� i � �� � � � � d�

The 	�dimensional problem can be now formulated as

ProblemMeasure�
 Given a set S of n points and 	d�	 determinators
l�� � � � � ld� r�� � � � � rd of the box b�� Find two determinators r� and r� of the
box b� in order to minimize the expression max�	�b��� 	�bb�S n b�����

We show that the problem Measure� can be solved in O�n� time� The
determinators r� and r� can be chosen from the sets fx�p��� � � � � x�pn�g and
fy�p��� � � � � y�pn�g respectively� Let b�x� y� denote the box �l�� x� � �l�� y� �
�l�� r���� � ���ld� rd�� where x � fx�p��� � � � � x�pn�g and y � fy�p��� � � � � y�pn�g�
Let S� denote the set of points of S in the box b�x� y� and S� � SnS�� For each
x � fx�p��� � � � � x�pn�g� our algorithm �nds the largest y � fy�p��� � � � � y�pn�g
such that 	�b�x� y�� � 	�bb�S n b�x� y���� Denote it by Y��x�� We observe
that Y��x� is monotone�

Observation �
�
� Y��x� is non�increasing function�

Proof� Consider two x�coordinates x� � x��� It is clear that the box B �
b�x��� Y��x���� contains the box C � b�x�� Y��x����� Therefore the box B� �
bb�S nB� is contained in the box C � � bb�S nC�� This implies 	�B� � 	�C�
and 	�B �� � 	�C ��� 	�B� � 	�B�� by the de�nition Y�� Hence 	�C� �
	�B� � 	�B �� � 	�C ��� It means that Y��x��� � Y��x���

For each x � fx�p��� � � � � x�pn�g our algorithm �for the problem Mea�

sure�� �nds the smallest y � fy�p��� � � � � y�pn���g such that 	�b�x� y�� �
	�bb�S n b�x� y��� �if it exists�� Denote it by Y��x��

Observation �
�
� There exists a solution of problem Measure� such that
r� � Y��r�� or r� � Y��r���
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Proof� Let the boxes b� � b�r�� r�� and b� � bb�S n b�� be the solution of the
problem Measure�� If 	�b�� � 	�b�� then r� � Y��r��� Using arguments
like one of Observation 	�	�	 we can show

	�b�� � 	�b�r�� Y��r���� � 	�bb�S n b�r�� Y��r����� � 	�b���

We can enlarge the box b� to the box b�r�� Y��r���� This gives a solution with
r� � Y��r���

In the case 	�b�� � 	�b�� we can take r� � Y��r���

For each x � fx�p��� � � � � x�pn�g and y � fY��x�� Y��x�g� we compute
max�	�b�x� y��� 	�bb�S n b�x� y����� Then we compute the minimum value of
these numbers� It gives the solution of the problem Measure��

Now we explain how to achieve O�n� running time� Let b��� b
�
� be the pair

of boxes that are candidates for the solution� Let us consider the moment
when we have computed Y��x� and Y��x� for some x� Using the fact that the
points of S are sorted separately in each of the coordinate axes� we get the
next value x� � x in this order� For the point p of S with x�coordinate x��
we perform the following operations�

First we check whether p can lie in b�� If p cannot lie in b� �the i�
th coordinate of p is less than li for some i� or the i�th coordinate of p
is greater than ri� for some i � 	� then p remains in S� and we pass it�
Otherwise we compare y�p� and Y��x�� If y�p� � Y��x� then p remains in S�
�by monotonicity of Y�� and we pass it� Else we delete p from S� and insert it
into S�� For the determinators r� � x� and r� � Y��x� of the box b�� compute
	� � 	�b�� and 	� � 	�bb�S���� If max�	�b��� 	�b��� � max�	�b���� 	�b�����
then set b�� � b� and b�� � b�� There are two possible cases�

Case �� 	� � 	�� In this case Y��x�� � Y��x� and Y��x�� � Y��x� by
monotonicity of Y�� It should be noted that we do not need to compute the
rectangular measure 	 for the pair x� and Y��x� since it is greater than or
equal to the measure of the boxes b� and b� determined by the pair x and
Y��x�� We only have to compute the rectangular measure max�	�� 	�� for the
pair x� and Y��x� and update the current solution if its measure is greater
than max�	�� 	���

Case �� 	� � 	�� In this case Y��x�� � Y��x� and Y��x�� � Y��x�� We remove
a few points from the box b� in decreasing order of y�coordinate to achieve
	� � 	�� Let y � Y��x�� In order to �nd Y��x�� and Y��x�� we perform the
following operations as long as 	� � 	��

� For each point p � S� with y�p� � y� move the point p from S� to S��

� Using the sorted order of S according to the y�coordinate we decrease
y to the next point whose y�coordinate is less than current y�

� Compute 	� � 	�b�x�� y�� and 	� � 	�bb�S���� If max�	�b��� 	�b��� �
max�	�b���� 	�b����� then set b�� � b� and b�� � b��
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After these operations we have Y��x�� � y and Y��x�� is the previous value
of y� Now the processing of x� is �nished�

We start the algorithm at the point x that is less than the x�coordinate
of all the points of S� for example x � minfx�p��� � � � � x�pn�g � �� We set
Y��x� � minfy�p��� � � � � y�pn�g� Initially we have S� � 
� 	� � �� S� � S
and 	� � 	�bb�S��� Y� can have any value because it is used only after S�
becomes non�empty�

Ignoring the time spent on computing 	� and 	� the algorithm takes O�n�
time� It remains to show how to compute 	�� Recall 	� � 	�bb�S���� The
maintenance of the bounding box of S� is described in Section 	�	���

We summarize by the following theorem�

Theorem �
�
� The min�max two box problem in d�dimensional space� d �

� can be solved in time O�n log n � nd��� using O�n� space�

Proof� We spend O�n log n� time in sorting S according to all its coordinates�

As it was pointed above� we solve
�
�d
d

�
problemsMeasure� in order to obtain

a solution for the min�max two box problem� Each problem Measure� is
solved by considering all the �d� 	��tuples of points S� There are nd�� such
tuples� For each such a tuple related to the problem Measure� we spend
O�n� time�

Conclusions

We present an e�cient algorithm for solving min�max two box problem� The
e�ciency of the algorithm is based on the monotonicity of the evaluated func�
tion in the problem� It would be interesting to �nd some connection between
this problem and the problems considered by Jaromczyk and Kowaluk ����
and Segal ����� It is still an open question to prove some nontrivial lower
bounds for the problems appeared in ���� ��� and this section�
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��� Center Problems

In order to solve Problems p�� p
� p� we employ a variety of techniques to
solve these optimization problems� The decision algorithm of Problem p�

searches for the centers of a solution pair �of squares� in an implicit special
matrix� using a technique that has recently been used in �
�� �
�� To �nd an
optimal solution� a search in a collection of sorted matrices ���� is performed�

For the second algorithm for Problem p� we present an implicit use of
Frederickson and Johnson technique of sorted matrices ���� i�e� we embed this
technique into the decision algorithm in order to speed up the running time�
This is crucial for the dynamic version of our algorithm� because standard
use of this technique may lead to additional factors of O�n�� in the case
of squares� and O�n��� in the case of rectangles� to the running time� We
obtain an O�max�n log n� m log n�log n � logm��� runtime algorithm for the
squares case and an O�mn logm log n� runtime algorithm for the rectangle
case� As for the dynamic versions the runtimes for update operations for
both algorithms are polylogarithmic in n for any values of m�

The decision algorithm of Problem p
 involves maintenance of dynami�
cally changing convex hulls� and maintenance of an orthogonal range search
tree that must adapt to a rotating axes system� For the optimization� we ap�
ply Megiddo�s �
�� parametric search� However� since our decision algorithm
is not parallelizable� we had to �nd an algorithm that solves a completely dif�
ferent problem� but is both parallelizable and enables to generate the optimal
square size when the parametric search technique is applied to it�

In Problem p� we describe the sizes of candidate solution squares as
a collection of curves� For a dynamically changing set of such curves� we
transform the problem of determining whether their upper envelope has a
point below some horizontal line� into the problem of stabbing a dynamically
changing set of segments� The latter problem is solved using a �dynamic�
segment tree�

����� Two constrained axis�parallel squares �p�	

The 
rst algorithm

We are given a set S of n points in the plane� and wish to �nd two axis�
parallel squares� centered at points of S� whose union covers �contains� S�
such that the area of the larger square is minimal� We �rst transform the
corresponding decision problem into a constrained 	�piercing problem� which
we solve in O�n log n� time� We then apply the algorithm of Frederickson
and Johnson ���� to �nd an optimal solution�
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The decision algorithm

The decision problem is stated as follows� Given a set S of n points� are
there two constrained axis�parallel squares� each of a given area A� whose
union covers S� We present an O�n log n� algorithm for solving the decision
problem�

We adopt the notation of ���� �see also �
�� ��� and section 	���� Denote
by R the set of axis�parallel squares of area A centered at the points of S�
Recall that R is p�pierceable if there exists a set X of p points which intersects
each of the squares in R� The set X is called a piercing set for R� Notice
that X is a piercing set for R if and only if the union of the axis�parallel
squares of area A centered at the points of X covers S� R is p�constrained
pierceable if there exists a piercing set of p points which is contained in S�
Thus� solving the decision problem is equivalent to determining whether R
is 	�constrained pierceable�

We �rst compute the rectangle R � 
R� If R is not empty then R
is ��pierceable� and we check whether it is also ��constrained pierceable by
checking whether S has a point in R� If R is ��constrained pierceable then we
are done� so assume that it is not� If R was not found to be ��pierceable� then
we apply the linear time algorithm from section 	���	 �see also ���� 

�� to
check whether R is 	�pierceable� If R is neither ��pierceable nor 	�pierceable�
then obviously R is not 	�constrained pierceable and we are done� Assume
therefore that R is 	�pierceable �or ��pierceable��

Assume R is 	�constrained pierceable� and let p�� p� � S be a pair of
piercing points for R� We assume that p� lies to the left of and below p��
�The case where p� lies to the left of and above p� is treated analogously��
We next show that R can be divided into two subsets R��R�� such that �i�
p� � 
R�� p� � 
R�� and �ii� R� �alternatively R�� can be represented in a
way that will assist us in the search for p� and p��

Denote by XR the centers of the squares in R �the points in P � sorted
by their x�coordinate �left to right�� and by YR the centers of the squares in
R sorted by their y�coordinate �low to high�� We now claim�

Claim �
�
� If p� and p� are as above� then R can be divided into two
subsets R� and R�� p� � 
R�� p� � 
R�� such that R� can be represented
as the union of two subsets Rx

� and Ry
� �not necessarily disjoint� and one of

them might be empty
� where the centers of squares of Rx
� form a consecutive

subsequence of the list XR� starting from its beginning� and the centers of
squares of Ry

� form a consecutive subsequence of YR� starting from the list
s
beginning�

Proof� We prove by constructing the sets Rx
� and Ry

�� and then putting
R� � Rx

� �Ry
� and R� � R�R�� We next show that indeed p� � 
R� and

p� � 
R��
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We consider the centers in YR� one by one� in increasing order� until a
center is encountered whose corresponding square A is not pierced by p�� Ry

�

consists of all squares in YR below A �i�e�� preceding A in YR�� A might be
the �rst square in YR� in which case Ry

� is empty� We now �nd the location
of the x�coordinate of the center of A in XR� and start moving from this
point leftwards� i�e�� in decreasing order� Thus moving� we either encounter
a square� call it B� that is higher than A and is not pierced by p�� or we do
not�

If we do not encounter such a square B �which is clearly the case if the
bottom edge of A lies above p��� then put Rx

� � 
� otherwise Rx
� consists of

all squares in XR to the left of B including B�

It remains to show that p� � 
R� and that p� � 
R�� We assume that
the square B exists� which is the slightly more di�cult case� We �rst show
the former assertion� i�e�� p� � 
R�� The fact that p� is not in B implies
that p� lies to the right of the right edge of B� because B cannot lie below
p� since it is higher than A which is already pierced by p�� Therefore none
of the squares in Rx

� is pierced by p� thus p� � 
Rx
�� By our construction�

p� � 
Ry
�� so together we have p� � 
R�� Now consider a square C � R��

C �� A� C is higher than A� because it is not in Ry
�� Therefore if C is not

pierced by p�� then C must lie to the left of A� But if so� it is in Rx
� and thus

not in R��

The claim above reveals a monotonicity property that allows us to design
an e�cient algorithm for the decision problem� We employ a technique� due
to Sharir ��
�� that resembles searching in monotone matrices for a recent
application and re�nement of this technique� see �
��� Let M be an n � n
matrix whose rows correspond to XR and whose columns correspond to YR�
An entry Mxy in the matrix is de�ned as follows� Let Dx be the set of squares
in R such that the x�coordinate of their centers is smaller or equal to x� and
let Dy be the set of squares in R such that the y�coordinate of their centers
is smaller or equal to y� Let Dl

xy � Dx �Dy and Dr
xy � �R�Dl

xy��

Mxy �

�����
����

&Y Y � if both Dr
xy and Dl

xy are ��constrained pierceable
&Y N � if Dr

xy is ��constrained pierceable but Dl
xy is not

&NY � if Dr
xy is not ��constrained pierceable but Dl

xy is
&NN � if neither Dr

xy nor Dl
xy is ��constrained pierceable

Sharir�s technique enables us to determine whether M contains an entry
of the form &YY� without having to construct the entire matrix� In order to
apply his technique the lines and columns of M� must be non�decreasing �as�
suming &Y� � &N��� and the lines and columns of M� must be non�increasing�
where M i is the matrix obtained from M by picking from each entry only
the i�th letter� i � �� 	� In our case this property clearly holds� since� for ex�
ample� if for some x� and y�� M�

x��y�
�&Y�� then for any x� � x� and y� � y��

M�
x��y��&Y�� Thus we can determine whether M contains an entry &YY� by
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inspecting only O�n� entries in M � advancing along a connected path within
M �
��� For each entry along this path� we need to determine whether Dz

xy is
��constrained pierceable� z � fl� rg� This can be done easily in O�log n� time
by maintaining dynamically the intersection 
Dz

xy� and utilizing a standard
orthogonal range searching data structure of size O�n log n� �	��� Thus in
O�n log n� time we can determine whether M contains a &YY� entry�

Theorem �
�
� Given a set S of n input points and area A� one can �nd
two constrained axis�parallel squares of area A each that cover S in time
O�n log n� using O�n log n� space�

We have just found whether a set of equal�sized squares is 	�pierceable by
two of their centers� For the optimization� we shrink these squares as much
as possible� so that they remain 	�constrained pierceable�

Optimization

For solving the optimization problem we observe that each L� distance �mul�
tiplied by 	 and squared� can be a potential area solution� We can represent
all L� distances as in ��
� by sorted matrices� We sort all the points of
P in x and y directions� Entry �i� j� in the matrix M� stores the value
��xj � xi��� where xi� xj are the x�coordinates of the points with indices i� j
in the sorted x�order� and� similarly� entry �i� j� in the matrix M� stores the
value ��yj � yi��� where yi� yj are the y�coordinates of the points with indices
i� j in the sorted y�order� We then apply the Frederickson and Johnson al�
gorithm ���� to M� and M� and obtain the smallest value in the matrices
for which the decision algorithm answers �Yes� and thus obtain the optimal
solution� We have shown�

Theorem �
�
� Given a set S of n input points� one can �nd two con�
strained axis�parallel squares that cover all the input points such that the size
of the larger square is minimized in O�n log� n� time using O�n log n� space�

The second algorithm

We solve here a more general problem which is de�ned as follows� Given a set
S of n demand points and a set C of m center points� �nd two axis�parallel
squares �or rectangles� that cover all the points of S and centered at the
points of C such that that size of largest square �rectangle� is minimized�

Recall the notations from the algorithm for Problem p� from section
	�	� Given a set of points S� the bounding box of S� denoted by B�S�� is
the smallest axis�parallel rectangle that contains S� The bounding box of
S is determined by the four points� two from each axis � leftmost �smallest
coordinate� and rightmost �largest coordinate� points in each of the axes�
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which we denote by lx� ly� rx� ry� We call these points the determinators of
B�S�� Denote by XS �YS� the sorted list of the points in S according to x
�y� axis�

The decision algorithm

Let s� be a square of area A� In the decision algorithm we go over all the
points of C as a center of s�� At each step check whether we can cover the
rest of the points of S �which are not covered by s�� by a second constrained
square s� of size A� Denote by K the set of points which is not covered by
s�� Denote by sv� and sv� two vertical lines that go through the left and
right side of s�� respectively� Similarly� sh� and sh� are two horizontal lines
that go through the bottom and the top sides of s�� respectively� For sv��sv��
we compute �by a binary search� the nearest point p �q� in XS from the left
�right� of sv��sv��� For sh��sh�� we compute the nearest point p� �q�� in YS
that is below �above� of sh��sh���

Let Sl
i �Sr

j � be the set that contains all the points of S with the x�
coordinate that less or equal �equal or larger� to the x�coordinate of ith
point �jth point� in the list XS� Similarly� let Sb

k �St
m� be the set that con�

tains all the points of S with the y�coordinate that less or equal �equal or
larger� to the y�coordinate of kth point �mth point� in the list YS �

Observation �
�
� The determinators of B�K� are de�ned by the determi�
nators of B�Sl

i�� B�Sr
j �� B�Sb

k�� B�St
m�� More precisely� the determinators

of B�K� are the leftmost� rightmost� lowest bottom and highest top points of
the set Sl

i � Sr
j � Sb

k � St
m�

This observation provides a way to solve the decision problem� For each
point in C as the center for the �rst square s� we do the following�

�� Find B�K�� If B�K� has a side of length greater than
pA� then the

answer to the decision problem is �no��

	� Otherwise de�ne the search region R� which is the locus of all points of

L� distance at most
p
A
� from all four sides of B�K� and search for a

point of C in R�� As was pointed above R� is an axis�parallel rectangle�

As before we perform orthogonal range searching �	�� to determine whether
there is a point of C in R�� If there is at least one point the answer is �yes� 
otherwise it is �no�� It remains to explain how we compute e�ciently the de�
terminators of B�Sl

i�� B�Sr
j �� B�Sb

k�� B�St
m�� A bounding box might be empty

or degenerate� in which case we compute the rest of determinators for this
bounding box� We explain the algorithm for B�Sl

i��

The rightmost point p of Sl
i has been computed� The leftmost point of

Sl
i is the leftmost point of S� Thus� it remains to �nd the lowest and highest
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points of the set Sl
i� These values can be precomputed for i � �� � � � � n� For

the dynamic version of the problem computing these values will be too costly�
Therefore we maintain a balanced binary search tree T as follows� The nodes
of T contain the x�coordinates of the points of S� As we create the tree we
maintain at each inner node the maximum of the y�coordinates of the points
in the subtree rooted at this node� Thus� given the point p� the highest and
lowest points of B�Sl

i� can be found in O�log n� time� Similarly we do for
B�Sr

j �� B�Sb
k�� B�St

m��

Considering the time complexity of the whole algorithm� We spend
O�n log n� to sort all the points of S and build T � For each point in C as
a center for s� we compute the determinators of B�Sl

i�� B�Sr
j �� B�Sb

k�� B�St
m�

in total O�log n� time� Checking the search region R� for a point of C takes
O�logm� time using a standard orthogonal range tree with fractional cascad�
ing �	��� We have shown�

Theorem �
�
� Given a set S of n demand points and a set C of m center
points in the plane� one can �nd whether there exist two axis�parallel squares
of area A� centered at points of C� that cover all the points of S in time
O�max�n log n�m�log n � logm��� using O�n � m logm� space�

Optimization

If we generalize the observation from previous section �see also ������ we
obtain that each rectilinear �x or y� distance between the points of C and
the points of S �multiplied by 	 and squared� can be a potential area solution�
Thus there are O�mn� potential areas� One possibility for the optimization
step is to apply the Frederickson and Johnson algorithm for sorted matrices
����� For example all the potential size solutions de�ned by x distances can
by represented as shown below� De�ne a matrix M as following � consider XS

the sorted x order of points of S and also XC the sorted x order of points of C�
Entry �i� j�� � � i � m� � � j � n in the matrix M stores the value xSi � xCj
where xSi is the x coordinate of the point with index i in XS and xCj is the x
coordinate of the point with index j in XC � The matrixM is sorted� but some
of the potential area values appear in matrix with negative sign� To overcome
this di�culty� we split M into two matrices M� and M�� The positive entries
of M� are equal to M except that the negative entries are switched to be �� In
M� the negative entries of M become positive and the positive entries of M
are switched to �� Clearly� M� and M� are sorted matrices and they represent
the set of all possible areas according to x�coordinates� Similar procedure
works for the y�coordinates� and thus� we obtain four sorted matrices that
represent all the possible solutions� This technique works �ne in our case�
but still has two disadvantages� First disadvantage is that it leads to some
additive factor to the runtime of the optimization scheme �O�m log�	n�m���
and second is that we need to maintain these matrices under deletions and
insertions for the dynamic version of our problem�
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Denote by Td the runtime of the decision algorithm after the preprocessing
step �which is O�n log n�m logm��� Instead of representing all the distances
by sorted matrices� we perform a search of the square size for each point
c � C as a center for s�� The search is for each axis and in each direction
�left� right� up� down�� Below we describe the algorithm for axis x� center c
of s� and the right direction� The size of s� �and also s�� is de�ned as follows�

�� Let the number of points of S that lie to the right of c be � � k � n� We
denote the x�sorted set of these points by Sr

n�k
� � fpn�k
�� � � � � png�
	� Perform a binary search on the size of s�� This size is de�ned by c and

some of Sr
n�k
�� Namely we perform the following actions�

�i� Find a median point pn� k
�
�

in the set Sr
n�k
��

�ii� Compute the x�distance between c and pn� k
�
�

�

�iii� This distance multiplied by 	 and squared de�nes the size A�

�iv� Run the decision algorithm for A� If the answer to the decision
problem is �yes�� then set k � k

� and return to step �ii�� If the
answer to the decision problem is �no�� then set k � k � k

�
and

return to step �ii��


� Repeat the above procedure for the remaining directions�

The smallest size for which the decision algorithm answers �yes�� after run�
ning it for each axis and in each direction� is the solution to the optimization
problem� Clearly� the described algorithm takes O�n log n � Td log n� time�
Thus� we have

Theorem �
�

 Given a set S of n demand points and a set C of m center
points in the plane� one can �nd a solution in time O�max�n log n� m log n�log n�
logm��� using O�n � m logm� space�

A related lower bound� We prove a lower bound to the following �closely
related to our� problem� Given an integer A and a set S of n demand points
and a set C of m center points on the line� �nd two segments of length A
centered at points of C that cover the largest possible number of points of S�
An %�n log n� lower bound under the linear decision tree model is achieved
by a reduction from the set element uniqueness problem as in ��
�� We set
C � S and asking the question for a limit A � �� The answer is 	 if and
only if the elements of the set are disjoint�

The dynamic version

In the dynamic version of problem p� points may be inserted to or deleted
from S� Our algorithm for the static version can be extended to support



CHAPTER �� PIERCING PROBLEMS �


updates and queries in which we ask what are the two smallest enclosing
constrained squares that contain the current set S�

The sorted order of the points of S according to x and y coordinates is
maintained in the tree T as following� When we delete from or insert to T
some point we should update all the maximum y�values stored at the inner
nodes on the updating path from the corresponding leaf to the root� In
addition� for each node v in T we store the information about the number
of nodes that are in the left and right subtrees of the tree rooted at v� This
information is useful to compute the median for optimization step �	�i� and
to �nd the set Sr

n�k
� by a binary search in T in O�log n� time� Storing
this information does not a�ect the running time of the insertion or deletion�
since we can update while walking on the same updating path� The update
of the tree T takes O�log n� time �
��� When we have a query� we can run
our decision algorithm together with the embeded optimization scheme using
T in order to get the answer� Using our previous result we can conclude by
theorem�

Theorem �
�
� Given a set S of n demand points and a set C of m center
points in the plane� where the points of S are allowed to be inserted or deleted�
we can answer the query in O�m log n�log n�logm�� time� The update time is
O�log n� for the points of S� The preprocessing time is O�n log n�m logm��

As one can see the running time of the query is similar the running time of
the algorithm for the static version� However� in the dynamic version of the
problem� the query runs without precomputing all the data structures that
have been used in the algorithm for a static version� Thus� if m � o�n�� we
have a polylogarithmic running time query�

Higher dimensions

Our algorithm can be generalized to work in any ��xed� d�dimensional space�
d � 
� The changes we need to perform in order to allow this are following�

�� For the points of C we use d�dimensional orthogonal range tree �	��
with a query time O�logd��m� for the static version�

	� We maintain d balanced binary search trees Ti� i � �� � � � � d for the
points of S� one for each axis� But now each node contains the d � �
maximal and minimal values of the other coordinates� The update
scheme of Ti is done in time O�d log n��

The rest follows immediately�

Theorem �
�
� Given a set S of n demand points and a set C of m cen�
ter points in the d�dimensional space� d � 
� one can �nd a solution �d�
dimensional
 in

O�max�n log n�m log n�log n � logd��m���
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time�

Theorem �
�
	 Given a set S of n demand points and a set C of m center
points in the d�dimensional space� d � 
� where the points of S are allowed to
be inserted or deleted� we can answer the query in O�m log n�log n�logd��m��
time� The update time is O�log n� for the points of S� The preprocessing time
is O�n log n � m logd��m��

Rectangles

We consider �rst the planar version� Given a set S of n demand points and
set C of m center points in d�dimensional space �d � 	�� �nd two axis�
parallel rectangles that cover all the points of S and are centered at the
points of C and size of the larger rectangle is minimized� Let us call the
solution of this problem minimal rectangular cover� Here we consider the
size as a perimeter but it could be the area� diagonal length or some other
rectangular measure� Hershberger and Suri ����� Glozman et al� ��
� and also
this thesis �section 	�	� consider a similar two�covering problem �Problem
p��� but without constraining the centers of the rectangles to be in C� They
present an algorithm which runs in time O�n log n�� Our algorithm runs in
time O�mn logm log n��

The decision algorithm

Assume we are given a rectangle perimeter A� The general idea is very
similar to the one used for the squares� we go over all the points in C as
a center for the �rst constrained rectangle r�� and at each step we check
whether the rest of the points can be covered by a second discrete rectangle
r�� The di�erence is that we do not know the form of r� and r�� In order to
solve this problem our decision algorithm tries all possible placements of r�
on points of C and checks whether the set of points not covered by r� can
be covered by a constrained rectangle r�� We demonstrate our algorithm for
a point c � C� Four lines l�� l�� l�� l� with slopes ��� ����� � in quadrants in
clockwise direction� starting with a positive x and y quadrant� respectively�
de�ne the locus of all rectangles with a given perimeter A� centered at O�
The lines have to construct a ��� tilted square Q� Assume for a moment
that c � O� Consider the S� � S that contains all the points of S which
are inside of intersection Q of the halfplanes de�ned by lines l�� l�� l�� l� and
containing c� Each point s � S� de�nes two rectangles with center c and
the given perimeter� where s either determines the width of the rectangle�
or its height� For the time being we look at the rectangle whose width is
determined by s� Let s be the point that determines the widest rectangle r�
and assume w�l�o�g� that s is to the left of c�

We shrink the width of the rectangle� keeping its corners on the corre�
sponding lines until an event happens� An event is when a point of S is added
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to or deleted from the rectangle during the width shrinking� We check if the
rest of points of S is covered by r�� If it does then we are done otherwise we
continue to shrink the rectangle until the next event� We perform the same
actions for the height as well�

In order to speed up this algorithm we de�ne four dynamic subsets U �
D� R� L of S � corresponding to the halfplanes that bound r�� R is the set
of all the points of S� that contained in the halfplane to the right of the left
side of r�� Similarly� L �U�D� is the set of points of S� that contained in
the halfplane to the left �up� down� of the right �upper� lower� side of the
rectangle r�� We de�ne pr�pl� to be the point x�closest to r� in R �L� and
pu�pd� to be the point y�closest to r� in U �D�� Assume that we are shrinking
r� in x direction until the next event� Assume that the x�closest neighbor
of pr�pl� in R�L� is phr �p

h
l � and the y�closest neighbor of pu�pd� in U�D� is

pvu�pvd�� Thus� our event is when one of phr � p
h
l or pvu� p

v
d enters or leaves the

rectangle r�� If the next event is a point from R or L� then the number of
points uncovered by r� increases by �� otherwise decreases by �� We update
pr� pl� pu� pd �and also the subsets U � D� R� L�� We check whether r� can cover
the rest of points K � S that are uncovered by r� by following algorithm�

We �rst �nd the determinators of the bounding box B�K�� For the static
version of this problem� we can precompute for each set Sl

i� S
r
j � S

b
k� S

t
m the

minimal and maximal values� If the length of some side of B�K� is larger
than A then the answer to the decision problem is �no�� Otherwise we �nd
a search region R� for the center of r�� It can be done as following� We make
a rectangle r� with a perimeter A and a minimal height such that r� covers
B�K� and its left lower corner of r� coincides with the left lower corner of
B�K�� We slide r� up keeping in touch the left sides of r� and B�K� till
the left upper corners of r� and B�K� coincide� Then we continue sliding
r� to the right keeping in touch the upper sides of r� and B�K�� then up
while touching right sides and �nally to the left while touching down sides
till we reach the initial position of r�� We look onto segments on which the
center of the r� lies during the sliding motion of the square� This de�nes a
rectangular search region R� where can be found the center of the r� that
covers B�K�� but only for this form of r�� Generally� r� can have an in�nite
number of forms� But� as was observed in ����� all the rectangles r�� with the
same perimeter and the same lower left corner� have their upper right corner
on particular curve '� In this case of perimeter ' is a segment with slope ���
Thus we should compute R� as before for all the forms of r� and then take
their union� thus obtaining the �nal search region R��� The region R�� has a
form of axis�parallel rectangle rotated to ���� In order to �nd whether R��

contains any point of C we perform a standard orthogonal range searching
algorithm but only for coordinate axes rotated to ����

After preprocessing in O�n log n� time� the algorithm above runs inO�n log m�
time for one point ci � C if the values of B�Sl

i�� B�Sr
j �� B�Sb

k�� B�St
m� are pre�

computed before� This is because we can carry each step of the algorithm
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in constant time �except of orthogonal range searching� after computing the
�rst time boundaries of the rectangle r��

Thus� we have

Theorem �
�
�� Given a set S of n demand points and a set C of m center
points in the plane� one can �nd whether exist two axis�parallel rectangles of
perimeter A centered at the points of C that cover all the points of S in
O�max�n log n�mn logm�� time�

Optimization

As in the case of squares we embed the optimization step into the decision
algorithm� Similar to the squares algorithm� the explicit use of sorted ma�
trix may lead to the additional additive factor O�n�� to the runtime for the
optimization algorithm� We would like to avoid the explicit use of sorted
matrices for the dynamic version of this problem by embedding the search
into the decision algorithm� In our case we obtain that each pair containing
one rectilinear x�distance and one y�distance between the points of S and
the same point in C �multiplied by � and summarized� can be a potential
perimeter solution� The optimization scheme is very similar to previous one�
but instead of performing a binary search for each one of the directions� we
de�ne a sorted matrix M whose rows contain the sorted x�distances from
ci � C to the points of S and whose columns contain the sorted y�distances
from ci � C to the points of S� Note that the number of elements in M is n��
Denote by T i

d the running time of the rectangles decision algorithm for point
ci as a center of r�� �Thus the total number of potential perimeter solution
is mn��� Then we can perform a binary search on the elements of the matrix
M � making only a constant number of calls to the decision algorithm for
point ci per iteration� As was shown in ���� the overall runtime consumed by
the algorithm is O��m

i��T
i
d log n � n�� We obtain

Theorem �
�
�� Given a set S of n demand points and a set C of m
center points in the plane� one can �nd a minimal rectangular cover in
O�mn logm log n� time�

The dynamic version

For dynamization of the decision algorithm for rectangles we use the same
updating scheme as for the decision algorithm for squares� The update and
query operations the points of S remain the same� We use the same data
structures as in the dynamic version of the algorithm for squares� For the
optimization step we also have to take care of maintaining the sorted matrix
for every point of C� It can be easily done while maintaining dynamically
the sorted order of the points of S according to their x and y�coordinates�
The di�erence form the static version is using a balanced binary search trees
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in the decision algorithm� but in optimization step we �rst perform inorder
traversal� obtain a sorted list of points and then apply our optimization
scheme� As before� the query time remains the same as for the static version�
but we need not to recompute again all the data structures that we have
used before� Thus� we have

Theorem �
�
�� Given a set S of n demand points and a set C of m cen�
ter points in the plane� where the points of S are allowed to be inserted or
deleted� we can answer the query �What is the minimal rectangular cover��
in O�mn log n logm� time� The update time is O�log n� for the points of S�
The preprocessing time is O�n log n � m logm��

Higher Dimensions

Similarly to the case of squares� our algorithm can be generalized to work
in any ��xed� d�dimensional space� d � 
� The changes are exactly as in
the d�dimensional algorithm for the squares� which include maintaining d�
dimensional orthogonal range tree for the points of C� d balanced binary
search trees� d sorted orders of points� In addition� we perform the d�
dimensional decision algorithm by �xing one dimension and applying recur�
sively d � ��dimensional decision algorithm� For the optimization step the
number of potential perimeters is mnd� We can represent them as m sorted
matrices� each one of the dimension d� Each sorted matrix is obtained by
cartesian product of d ��dimensional arrays� identically to the plane case�
If we denote by T d running time of the optimization algorithm �static or
dynamic� in d�dimensional space� d � 
� then we can be easily verify that
T d � O�nT d����

Theorem �
�
�� Given a set S of n demand points and a set C of m center
points in the d�dimensional space� d � 
� one can �nd a minimal rectangular
cover in O�mnd�� logd��m log n� time�

Theorem �
�
�� Given a set S of n demand points and a set C of m center
points in the d�dimensional space� d � 
� where the points of S are allowed to
be inserted or deleted� we can answer the query �What is the minimal rectan�
gular cover�� in O�mnd�� log n logd��m� time� The update time is O�log n�
for the points of S� The preprocessing time is O�n log n � m logd��m��

����� Two constrained parallel squares �p�	

Our problem is� Given a set S of n points in the plane� �nd a pair of parallel
constrained squares whose union contains S� so as to minimize the area
�equivalently� the side length� of the larger square� The problem where the
squares are not constrained was recently solved by Jaromczyk and Kowaluk
���� in O�n�� time using O�n�� space�
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We �rst solve the decision problem for squares with a given area A in time
O�n� log� n� and O�n�� space� For the optimization� we present a parallel
version of another algorithm �solving a di�erent problem�� to which we apply
Megiddo�s parametric search �
�� to obtain an O�n� log� n� time and O�n��
space optimization algorithm�

The decision algorithm

For each of the input points� pi � S� draw an axis�aligned square Qi of area
A� centered at pi� For each pi denote by Ui the set of points in S that are not
covered by Qi� If� for some i� there is a constrained axis�aligned square of
area A which covers Ui� then we are done� Otherwise� we rotate the squares
fQi j i � �� � � � � ng simultaneously about their centers� stopping at certain
rotation events to check if any of the corresponding Ui�s can be covered by a
parallel square of area A� and halting when the answer is �yes��

A rotation event occurs whenever a point of S enters or leaves a square
Qi� i � � � � � n� When a square Qi rotates by �

� from its initial axis�aligned
position� every point of S enters and leaves Qi at most once� Thus� the
number of rotation events for Qi is O�n�� For all the points in P we can
precompute all the O�n�� rotation events in O�n�� time with O�n�� space�
We sort the rotation events according to their corresponding angles�

We compute the initial convex hulls for each Ui� i � �� � � � � n �i�e�� at
orientation � � ��� and start rotating the squares till we get to the next
rotation event� Assume that at the current rotation event a point pj enters
Qi� �The case where a point pj leaves Qi is treated similarly�� The set Ui

and its convex hull are updated as pj leaves Ui� and we check whether there
exists a constrained cover of S involving Qi and another constrained square
�that covers Ui��

We explain how this is done for one square Qi at orientation � � �� First
we �nd the tangents of the convex hull of Ui that are parallel to the sides
of Qi� They de�ne a rectangle R which is the bounding box of Ui� If R has
a side of length greater than

pA� then none of the other n � � constrained
squares covers Ui� Otherwise we de�ne a search region R� which is the locus

of all points of L� distance at most
pA
� from all four sides of R� and search

for a point of S in R�� �Clearly C is a rectangle whose sides are parallel to the
sides of Qi�� We perform orthogonal range searching to determine whether
there is a point of S in R�� If there exists such a point then the answer to
the decision problem is �yes��

Assume we have computed all the rotation events and have O�n�� rectan�
gular search regions associated with them� �Assume the coordinate system
rotates together with the rotating squares fQig� thus� at any rotation event�
the corresponding rectangular search region is parallel to the current axes��
In order to perform orthogonal range search on the rectangular regions we use
a dynamic orthogonal range search tree which is updated at certain rotation
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events as follows�

Denote by L the list of all O�n�� lines passing through pairs of points in
S� Let P consist of all the slopes of lines in L that lie in the range ��� ��	��
and of all the slopes in the range ��� ��	� of lines that are perpendicular to
the lines in L� We sort P � obtaining the sorted sequence f
�� 
�� � � �g� We
rotate the axes so that the x�axis has slope 
�� and compute an orthogonal
range search tree for S with respect to the rotated axes� storing just the
labels of the points of S in the tree� For each search region whose side slope
is between 
� and 
� we perform a usual range search with this tree� Before
considering the next search regions� we rotate the axes some more until the
x�axis has slope 
�� Notice that just one pair of points in S has swapped in x
or y order in this angle range� We update the range search tree accordingly�
Assuming the leaves of the main structure in the range tree are sorted by x�
coordinate� and the leaves in the secondary trees are sorted by y�coordinate�
If� when moving from 
� to 
�� the swap occurred in the x�order of the pair
of points� then we swap the �labeling of the� points in the main structure and
in the secondary structures a�ected by that swap if the swap occurred in
the y�order� then we swap the labeling in the a�ected secondary structures�
Now we can proceed with the search ranges whose sides have slopes between

� and 
�� And so on�

We analyze the time and space required for the decision algorithm� The
total number of rotation events is O�n��� They can be precomputed and
sorted in O�n� log n� time with O�n�� space� Similarly P can be obtained
and sorted within the same bounds� Merging the two sets of slopes �rotation
events and P � is done in time O�n��� Initially computing the convex hulls
for all sets Ui takes O�n� log n� time with O�n�� space� Applying the data
structure and algorithm of Overmars and van Leeuwen ����� each update of
a convex hull takes O�log� n� time� totaling in O�n� log� n� time and O�n��
space for all rotation events� Our range searching algorithm takes O�log� n�
time per query and per update� after spending O�n log n� preprocessing time
and using O�n log n� space �notice that this is the total space requirement
for the range searching�� and we perform O�n�� queries and updates� Thus
we have shown�

Theorem �
�
�� Given a set S of n points and an area A� one can decide
whether S can be covered by two constrained parallel squares� each of area A�
in O�n� log� n� time and O�n�� space�

Optimization

Having provided a solution to the decision problem� we now return to the
minimization problem� The number of candidate square sizes is O�n�� �see
below and Figure 	�
�� The candidate sizes are determined by either

� A point of S as a center of a square �see Figure 	�
�i���iv�� and either
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�iii� �iv��ii��i� �v�

Figure 	�
� Critical events that determine candidate square sizes� Cases �i�
� �iv� involve a single square� and case �v� two squares�

�i� another point of S on a corner of this square� or �ii� two points of
S on parallel sides of the square� or �iii� two points of S on one side of
the square� or �iv� two points of S on adjacent sides of the square� or

� Two points of S as centers of two squares and another point of S on
the boundary of each of the squares �Figure 	�
�v���

In order to apply the Megiddo optimization scheme we have to parallelize our
decision algorithm� However� the range searching part of the decision algo�
rithm is not parallelizable� so� as in �
�� we come up with an auxiliary problem
whose parallel version will generate the optimal solution to our problem�

The auxiliary problem is described as follows� Assume we have a set S
of n � 	 points and a �xed size d� Assume we have produced the set of
strips such that each strip is of width d and contains at least one point of S
on each of its boundaries� In this situation a point on one boundary might
stand for the square center and the point on the other boundary is the one
on the side of the square� Maintain the set of strips by storing their slopes
and the corresponding pairs of points that de�ne them in P � Let (P be the
set of slopes obtained by the slopes of P by adding ��	 �mod ��� With each
slope in (P we store the pair of points associated with the corresponding slope
in P �

A slope (s � (P stands for a pair of square sides perpendicular to the ones
de�ned by its corresponding slope s � P � So that if two perpendicular slopes�
s� and s� �in P � de�ne a square �as in Figure 	�
 �i���iv� and �v��� then s� and
(s� are equal� The set of squares thus de�ned is a superset of the candidate
solution squares as de�ned above� Let P � P � (P be a set of slopes with
their associated point pairs� The auxiliary problem is to sort the slopes in
P�

Clearly not all pairs of points in S de�ne strips� and thus slopes� in P�
A pair of points in S whose distance is smaller than d will not generate the
required width strip� For every pair of points in S whose distance from each
other is larger than d� there are exactly two slopes for which the width of the
strip� with a point of this pair on each of its boundaries� is d� We add these
slopes �and their (P corresponding slopes� to P� Reporting the sorted order
of P can be done in O�n� log n� time� and a parallel algorithm with O�n��
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processors will sort the list in O�log n� time �

��

We now want to �generically� apply this parallel sort algorithm for �nding
the optimal square size d�� For this we �rst augment our algorithm� as in
�
�� and get an initial interval where d� resides� We perform a preliminary
stage that disposes of the cases in which the width of the strip is exactly
the distance between two points of S� and those in which the width is the
distance between two points multiplied by

p
	�	� We call these distances

special distances� We can a�ord to list all these O�n�� strip widths� sort
them� and perform a binary search for d� over them� applying our decision
algorithm of the previous subsection at each of the comparisons� This results
in an initial closed interval of real numbers� I�� that contains the optimal
square size d�� and none of the just computed special sizes is contained in its
interior�

Consider now a single step in the parallel sort �the auxiliary problem��
In this step we perform O�n�� slope comparisons� each comparison involving
two pairs of points� There are two cases� �a� the two compared slopes are
from P �or both are in (P �� and �b� one slope is in P and the other in (P � Let
one such comparison involve the pairs �p�� p�� and �p�� p��� In order to resolve
this comparison� we must compute for the point pair �p�� p�� the slopes of the
two strips of width d� that have p� on one boundary of the strip and p� on the
other� Similarly� we compute the slopes of the two strips of width d� through
�p�� p��� Then we sort the four strips by their slopes� Of course� we do not
know d�� so we compute the �at most two� critical values d where the sorted
order of the four strips changes� namely� for case �a� above� where the two
strips are parallel� and for case �b�� when the two strips are perpendicular
to each other� We do this for all O�n�� critical value comparisons� Now we
apply the decision algorithm of the subsection above to perform a binary
search over the O�n�� critical values that were computed� Thus we �nd an
interval I � I� where d� resides� resolve all the comparisons of this parallel
stage� and proceed to the next parallel stage�

What does resolving mean here! See Figure 	�� which depicts case �a��
If the comparison was made for two pairs of points �p�� p�� and �p�� p�� then�
if the distance between a pair of points� d� � �p�� p�� or d� � �p�� p��� is
smaller than the smaller endpoint of the current interval I then this pair will
not have a strip of width d� and it is omitted from the rest of the sort� If
the distance is larger than the smaller endpoint of I then the slope ordering
of the four strips at d� is uniquely determined as follows� In Figure 	�� �a�
the strips s� and s� are parallel at some width d�� and in Figure 	�� �b� we
plot the strips of width d� for the two pairs of points� In Figure 	�� �c� we
graph d as a function of � � ��� �� for the two pairs of points� The graph of
d � d� cos������ achieves its maximum at ���� d��� and similarly the graph of
d � d� cos������ achieves its maximum at ���� d��� where �� ���� is the angle
that the line perpendicular to the line through �p�� p�� ��p�� p��� makes with
the positive x�axis� It is easy to see that for every d each pair of points has
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Figure 	��� Slope ordering for the comparison of �p�� p�� and �p�� p��� �a�
strips s� and s� are parallel for some d� �b� the ordering of the slopes at d��
�c� d as a function of �
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two strips and that the two functions intersect at two points� We split the
domain of de�nition of each function to two parts� one in which the function
strictly increases and one in which it strictly decreases� In Figure 	�� �a� and
	�b� the strip s� corresponds to the decreasing half of the function in Figure
	�� �c� and s� to the increasing half� Similarly with the strips of �p�� p��� s�
corresponds to the increasing half and s� to the decreasing half� Thus the
order of the strips at d� is the order in which the line d � d� intersects their
functions� and the width values at the intersection points of the two functions
consist of the critical values for these two pairs of points�

For case �b� assume the pair �p�� p�� belongs to a strip of (P � We sim�
ply cyclically shift the function of �p�� p�� �of P � by ��	� The intersection
points of the functions are now at two values of d� where the two strips are
perpendicular to each other� and all the rest of the argument is analogous�

Note� We have to be a little more careful here about the notion of the
domain of de�nition of the functions� and we might want to break the domain
of de�nition of the functions also at � � �� This is a slight formality that we
neglect since it does not change anything in the analysis�

The closed interval I is always guaranteed to contain d� but we need to
show that a comparison is made where d � d��

Claim �
�
�
 If d� is not one of the special distances then the slope order of
the strips changes as d changes from values slightly smaller than d� to values
slightly larger than d��

Proof� Observe again Figure 	�
� Clearly if d� is not one of the special
distances then it involves two pairs of points� In Figure 	�
 �ii�� �iii�� �iv��
the pairs are the center point of the square paired with each of the two points
on the boundary of this square� and in Figure 	�
 �v� the pairs are the center
point of each square paired with the point on the side of its square� None of
these cases represents a special distance� and hence the slopes of the strips are
monotone functions of their widths� These two monotone functions intersect
at d� thus in a small neighborhood of d� one function is above the other for
d � d� and below for d � d� �

Note that at some stage the optimal solution will appear on the boundary
of the interval I computed at that stage �it could even appear on the bound�
ary of I��� However� once it appears� it will remain one of the endpoints of all
subsequently computed intervals� At the end� we run the decision algorithm
for the left endpoint of the �nal interval� If the answer is positive� then this
endpoint is d�� otherwise d� is the right endpoint of the �nal interval�

Theorem �
�
�� Let S be a set of n points� we can �nd a pair of parallel
constrained squares whose union covers S and such that the area of the larger
square is minimized in O�n� log� n� time and O�n�� space�
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����� Two constrained general squares �p�	

Now the squares may rotate independently� We �rst state a subproblem
whose solution is used as a subroutine in the full solution� Then we present
an algorithm for solving the decision problem� This algorithm is used to
perform a binary search over the sorted set of potential solutions� producing
the solution to the optimization problem�
The subproblem� Given a set S of n points in the plane and a point q�
�nd the minimum area square that is centered at q and that covers S� The
square may rotate�

The algorithm for solving the subproblem is as follows� Assume q is the
origin� Let � be an angle in ��� �� �� Consider the projections� xi��� and yi����
of a point pi � S on the x�axis and y�axis� after rotating the axes by �� If
the distance between pi and q is di� and the angle between the vector pi and
the x�axis at its initial position is �i� then we have

xi��� � di cos��i � �� and yi��� � di sin��i � �� �

A square centered at q rotated by angle � that has pi on its boundary
is of side length 	 � maxfjxi���j� jyi���jg� Note that it is enough to rotate
the axes by angle �� � � � � �

�
� in order to get all possible sizes of squares

centered at q having pi on their boundary�

Observe the plane ��� z�� on which we graph both z�i����� � 	jxi���j and
z�i��� � 	jyi���j� i � �� � � � n� We call the set of these 	n functions Eq� and
depict them in Figure 	��� It is easy to see that every pair of functions zj
and zk intersects at most twice� The upper envelope of the functions in Eq

denotes� for each �� the size z��� of the smallest square �centered at q and
rotated by �� that covers S� and the point �or two points� of S corresponding
to the function �or two functions� that attains �attain� the maximum at this
� is the point �are the two points� of S on the boundary of the square� The
lowest point on this envelope gives the angle� the size� and the point�s� that
determine the minimal square� The upper envelope� and the lowest point on
it� can be computed in O�n log n� time ����� and this is the runtime of the
solution of the subproblem above�

For the two squares decision problem we repeat some notations and ideas
from the previous section� Let Qi be a square of the given area A centered
at pi � S� We de�ne rotation events for Qi as the angles at which points of
S enter or leave Qi� Denote by Ui the set of points not covered by Qi at the
current rotation angle� Using the subproblem described above� we �nd the
smallest constrained square that covers Ui� by computing n sets Ej� where
Ej is the set of 	jUij functions associated with the center point pj �

We describe our algorithm for determining whether one of the constrained
centers is some �xed point pi � S� Then we apply this algorithm for each of
the points in S� Initially� at � � �� we construct all the sets Ej� so that each
set contains only the functions that correspond to the points in the initial Ui�
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Figure 	��� The functions zi and the lowest point ���� z�� on their upper
envelope

The rotation events for this phase are those caused by a point of S entering
or leaving Qi� At each rotation event we update Ui and all the sets Ej� We
then check whether there is a point on the upper envelope of one of the Ej�s
which is below the line z �

pA� If there exists a point ���� z��� z� �
pA on

the upper envelope of some Ej � then the square Qi at its current position�
and the square Qj at angle �� are the solution to the decision problem�

Updating the upper envelopes corresponding to the sets Ej turns out
to be time consuming� therefore we transform the problem of determining
whether one of the upper envelopes has a low enough point to a segment
stabbing problem as follows� Observe one set Ej� If we draw a horizontal
line at z �

pA� then each function curve in Ej is cut into at most three
continuous subcurves� of which at most two lie below the line� We project
all the subcurves of Ej that are below the line on the ��axis� obtaining a set
of segments� Assume the number of points in Ui is k� then if �and only if�
there is a point �� on the ��axis that is covered by 	k segments then there is
a square of the required size� of orientation ��� centered at pj which covers
the points of Ui�

We construct a segment tree Tj ��
� with O�n� leaves �for the segments
obtained from all potential curves in Ej�� Each node in the tree contains�
besides the standard segment information� the maximum cover of the node
�namely� the largest number of segments that can be stabbed in the range of
the node� for details see ��
��� The root of the tree contains the maximum
cover of the whole range � � � � �

�
� The size of one tree is O�n� and each
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update is performed in timeO�log n�� Initially� at � � �� we insert into Tj the
segments corresponding to the curves of the points in Ui� and check whether
the maximum cover equals twice the cardinality of Ui� One update to Ui

involves at most four segment updates in Tj�

We consider the time and space complexity of the algorithm� For one
point pi as a candidate center� the initial trees Tj are constructed in time
O�n� log n�� occupying O�n�� space� There are O�n� rotation events for Qi�
and an update to one Tj is performed in O�log n� time� totaling O�n� log n�
time for all rotation events and all Tj�s� The space requirement is O�n���
Applying the algorithm sequentially for all i in f�� � � � � ng gives O�n� log n�
runtime� while the space remains O�n���

To �nd an optimal solution� we perform for each i as above the following�
Assume pi � S is one of the two centers in the solution� The corresponding
square is de�ned either by another point of S in its corner� or by two points
of S on its boundary� So we compute the O�n�� potential area sizes with pi as
the center� We sort the area sizes and apply binary search to �nd the smallest
area squares that cover S with pi as one of the centers in the solution� At
each of the O�log n� search steps� we apply the decision algorithm above �just
with pi as one of the centers�� We perform this search for all i � f�� � � � � ng�
We have shown�

Theorem �
�
�� Given a set S of n input points we can �nd a pair of
general constrained squares whose union covers S and such that the area of
the larger square is minimized in O�n� log� n� time and O�n�� space�

Conclusions

We have considered several instances of the center problems� namely� when
the centers of the objects are constrained to lie on the input points� Find�
ing nontrivial lower bounds and improving the running time of the above
algorithms can be the challenging questions in the near future�
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Facility Location

In this chapter we consider the problems of the following type� �Given a set
S of n sites �points� in metric space� position position a point �facility�� or a
number of facilities� in the plane such that a distance between the facility and
given n points is minimized or maximized�� In particular� we are interested
in the following problems�

p�� Let S be a set of n points in the plane� enclosed in a rectangular region
R� Let each point p of S have two positive weights w��p� and w��p��
Find a point c � R which maximizes

min
p�S

fmaxfw��p� 	 dx�c� p�� w��p� 	 dy�c� p�gg�

where dx�c� p� de�nes the distance between the x coordinates of c and
p� and dy�c� p� de�nes the distance between the y coordinates of c and
p�

p	� Given a set S of n points and a number � � k � n � � �nd a point
p such that sum of the L��L�� distances from p to all the subsets of
S of size k is minimized� For this problem we consider two cases� the
discrete case � where p � S� and the continuous case where p is any
point in the plane�

p��� Let S be a set of n points in the plane �called demand points�� and let
R be a set of m� m � n� regions in the plane �called neighborhoods��
Let k be a positive integer �k is the number of facilities� e�g�� garbage
dumps� to be placed�� Find k sites c�� � � � � ck for the k facilities� such
that �i� C � fc�� � � � � ckg is a piercing set for R� that is� each of the
neighborhoods in R is served by at least one facility that is located in
the neighborhood� �ii� The minimal distance between a demand point
in S and a site in C is maximized�

For these problems we developed a new data structure which allow us to
obtain very e�cient algorithms�

�
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��� Undesirable Facility Location �p
	

In this section we �rst present a sequential algorithm that answers a decision
query of the form� given d � �� determine whether there exists a location
c � R whose x�distance from each point pi � S �the distance between the x
coordinates of c and pi� is � d 	 w��pi�� and whose y�distance to the points
of S is � d 	 w��pi�� We will use this sequential algorithm in order to obtain
two di�erent algorithms for solving our problem�

The �rst is based on the parametric search optimization scheme ��
� and�
thus� we provide a parallel version of the decision algorithm in order to use
it�

The second uses another optimization approach� proposed in ��	�� The
main idea is to represent a set of potential solutions in a compact� e�cient
way� use a parallel sorting scheme and then look for our solution by some
kind of a binary search� The running time of the algorithm is O�Ts log n��
where Ts stands for the running time of the sequential decision algorithm�

����� The sequential algorithm

The formulation of the decision problem above implies that each point pi � S
de�nes a forbidden rectangular region

Ri � fr � R�jdx�r� pi� � d 	 w��pi�� dy�r� pi� � d 	 w��pi�g

where c cannot reside� Denote by UR the union of all the Ri� An admissible
location for c exists if and only if R 
 UR �� 
� In other words� we are given
a set of n rectangles Ri and want to �nd whether UR covers R� When each
point has the same weight in both axes then the combinatorial complexity
of the boundary of UR is linear in the number of points� In our case the
boundary of UR has "�n�� vertices in the worst case�

The problem of �nding whether a set of n rectangles covers a rectangular
region R has been solved in O�n log n� time using the segment tree T ��
��
We outline this well known sequential algorithm for the sake of clarity of our
parallel algorithm�

Denote by L � fx�� � � � � x�ng the x coordinates of the endpoints of the
horizontal sides of the rectangles� We call the elements of L the instances
of T � Similarly� let M � fy�� � � � y�ng be the list of y coordinates of the
endpoints of the vertical sides of the rectangles� Assume each list is sorted
in ascending order� The leaves of the segment tree T contain elementary
segments �yi� yi
��� i � �� � � � � 	n � �� in their range �eld� The range at each
inner node in T contains the union of the ranges in the nodes of its children�

A vertical line is swept over the plane from left to right stopping at the
instances of T � At each instance x� either a rectangle is added to the union
or it is deleted from it� The vertical side v of this rectangle is inserted to �or
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deleted from� T �v is stored in O�log n� nodes and is equal to the disjoint
union of the ranges of these nodes�� The update of T at instance x involves
maintaining a cover number in the nodes� The cover number at a node counts
how many vertical rectangle sides cover the range of this node and do not
cover the range of its parent� If at deleting a rectangle the height of R is
not wholly covered by all the vertical segments that are currently in T � then
the answer to the decision problem is �yes�� Namely� we found a point in R
which is not in UR� and we are done� If the answer is �no� then we update
T and proceed to the next instance� Thus

Lemma �
�
� Given a �xed d � � we can check in O�n log n� time� using
O�n� space� whether there exists a point c � R� such that for every point
pi � S the following holds� dx�c� pi� 	w��pi� � d and dy�c� pi� 	 w��pi� � d�

����� The parallel version and the optimization

In order to produce an e�cient parallel algorithm for the decision problem
we add some information into the nodes of T � This information encaptures
the cover information at each node� as will be seen below�

Let L � fx�� x�� � � � � x�ng be the list of instances as above� Let the pro�
jection of a rectangle Rj on the x axis be �xi� xk�� We associate with Rj a
life�span integer interval lj � �i� k�� Let vj be the projection of Rj on the y
axis� The integer interval lj de�nes the instances at which the segment vj
is stored in T during the sequential algorithm� We augment T by storing
the life�span of each vertical segment vj in the O�log n� nodes of T that vj
updates� We further process each node in T so that it contains a list of
cover two life�ranges� This is a list of intervals consisting of the pairwise
intersections of the life�spans in the node� For example� assume that a node
s contains the life�spans ��� 
�� �
� �� and ��� ��� The list of cover two at s is
�
� �� and ��� ��� If a vertical segment is to be deleted from s at instances x��
x� or x�� then s will be exposed after the deletion� But if the deletion occurs
at instance x�� x�� x	 or x� then� since the cover of s is 	 at this instance� s
will not be exposed by deleting vj�

Our parallel algorithm has two phases� phase I constructs the augmented
tree T and phase II checks whether R gets exposed at any of the deletion
instances�

Phase I The segment tree T can be easily built in parallel in time O�log n�
using O�n log n� processors ����� Unlike in Lemma 
���� above� where we
store in each node just the cover number� here we store for each segment
its life�span in O�log n� nodes� Thus T occupies now O�n log n� space ��
��
Adding the cover two life�span intervals is performed as follows�

We sort the list of life�spans at each node according to the �rst integer
in the interval that describes a life�span� We merge the list of life�spans at
each node as follows� If two consecutive life�spans are disjoint we do not do
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anything� Assume the two consecutive life�spans �k�k�� and �g�� g�� overlap�
We produce two new life�ranges�

�a� the life�range of cover at least one � �k��max�k�� g��� and

�b� the life�range of cover at least two � �g��min�k�� g����

We continue to merge the current life�range of cover at least one from item �a�
above with the next life�span in the list till the list of life�spans is exhausted�
We next merge the cover two life�ranges into a list of disjoint intervals by
taking the unions of overlapping intervals� At this stage each node has two
lists of life�ranges� But this does not su�ce for phase II� For each node
we have to accumulate the cover information of its descendants� Starting
at the leaves we recursively process the two lists of life�ranges at the nodes
of T separately� We describe dealing with the list of cover one� Assume
the two children nodes of a node s contain intersecting life�ranges� then this
intersection interval is an interval of instances where all the range of s is
covered� We copy the intersection interval into the node s� When we are done
copying we merge the copied list with the node�s life�span list as described
above� and then merge the list of cover two with the copied list of cover two�
by unioning overlapping intervals�

Phase II
 Our goal in this phase is to check in parallel whether� upon a
deletion instance� the height of R is still fully covered or a point on it is
exposed� We do it as follows� Assume that the vertical segment v is deleted
from T at the jth instance� We go down the tree T in the nodes that store v
and check whether the life�span lists at all these nodes contain the instance
j in their list of cover two� If they do then �the height of� R is not exposed
by deleting v�

Complexity of the algorithm


It is easy to show that the life�range lists do not add to the amount of
required storage� The number of initial life�span intervals is O�n log n�� The
number of initial life�ranges of cover two cannot be greater than that� It has
been shown �
�� that copying the lists in the nodes in the segment tree to their
respective ancestors does not increase the asymptotic space requirement� The
augmentation of T is performed in parallel time O�log n� with O�n log n�
processors as follows� We allocate a total of O�n log n� processors to merge
the life�span ranges in the nodes of T � putting at each node a number of
processors which is equal to the number of life�span ranges in the node�
Thus the sorting and merging of the life�span ranges is performed in parallel
in time O�log n��

The checking phase is performed in parallel by assigning O�log n� proces�
sors to each deletion instance� For the deletion of a vertical segment v� one
processor is assigned to each node that stores v� These processors perform
in parallel a binary search on the cover two life�ranges of these nodes� Thus
the checking phase is performed in time O�log n��
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Summing up the steps of the parallel algorithm� we get a total of O�log n�
parallel runtime with O�n log n� processors and O�n log n� space� Plugging
this algorithm to the parametric search paradigm �
�� we get

Theorem �
�
� Given a set S of n points in the plane� enclosed in a rect�
angular region R� and two positive weights w��p� and w��p� for each point
p � S� we can �nd� in O�n log� n� time� a point c � R which maximizes

min
p�S

fmaxfw��p� 	 dx�c� p�� w��p� 	 dy�c� p�gg�

����� Another approach

By carefully looking at the respective Voronoi diagram we have the following
crucial observation�

Observation �
�
� Assume that the optimal solution is not attained on the
boundary of the rectangle� Then� without loss of generality� there is an opti�
mal point c� and two points p and q such that either

w��p�dx�c� p� � w��q�dx�c� q� � optimal value�

or
w��p�dy�c� p� � w��q�dy�c� q� � optimal value�

The above observation with a given assumption implies that the optimal
value is an element in one of the following four sets�
S� � f�px � qx�����w��p� � ��w��q�� � p� q � Sg�
S� � f�px � qx�����w��p�� ��w��q�� � p� q � Sg�
S� � f�py � qy�����w��p� � ��w��q�� � p� q � Sg�
S� � f�py � py�����w��p� � ��w��q�� � p� q � Sg�

Megiddo and Tamir ��	� describe how to search for the optimal value r�

within a set of the form� S � � f�ai � bj���ci � dj� � � � i� j � ng� Thus there
will be given �n numbers ai� bj� ci� dj�� � i� j � n�� and we will have to �nd
two elements s� t � S� such that s � r� � t and no element of S� is strictly
between s and t�

Set S� consists of the points of intersection of straight lines y � �cix �
ai� � �djx� bj� with the x�axis� The search will be conducted in two stages�
During the �rst stage we will identify an interval �s�� t�� such that s� � r� � t�
and such that the linear order induced on f�� � � � � ng by the numbers cix�ai
is independent of x provided x � �s�� t��� The rest of the work is done in
Stage 	�

Stage �� We search for r� among the points of intersections of lines y �
cix � ai with each other� The method is based on parallel sorting scheme�
Imagine that we sort the set f�� � � � � ng by the �cix � ai��s� where x is not
known yet� Whenever a processor has to compare some cix�ai with cjx�aj�
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we will in our algorithm compute the critical value xij � �ai � aj���ci � cj��
We use Preparata�s ���� parallel sorting scheme with n log n processors and
O�log n� steps� Thus� a single step in Preparata�s scheme gives rise to the
production of n log n points of intersection of lines y � cix � ai with each
other� Given these n log n points and an interval �s�� t�� which contains r�� we
can in O�n log n� time narrow down the interval so that it will still contain r�

but no intersection point in its interior� This requires the �nding of medians
in sets of cardinalities n log n� �

�
n log n� �

�
n log n� � � � plus O�log n� evaluations

of the sequential algorithm for the decision problem� Since the outcomes of
the comparisons so far are independent of x in the updated interval� we can
proceed with the sorting even though x is not speci�ed� The e�ort per step
is hence O�n log n� and the entire Stage � takes O�n log� n� time�

Stage �� When the second stage starts we can assume without loss of
generality that for x � �s�� t�� cx � ai � ci
� � ai
�� i � �� � � � � n � �� Let
j�� � j � n� be �xed and consider the set Sj of n lines Sj � fy � cix �
ai � djx � bj� i � �� � � � � ng� Since Sj is �sorted� over �s�� t��� we can �nd in
O�log n� evaluations of the sequential algorithm for the decision problem a
subinterval �sj�� t

j
�� such that sj� � r� � tj�� and that no member of Sj intersects

the x�axis in the interior of this interval� We work on the Sj �s in parallel�
Speci�cally� there will be O�log n� steps� During a typical step� the median
of the remainder of every Sj is selected �in O��� time� and its intersection
point with the x�axis is computed� The set of these n points is then searched
for r� and the interval is updated accordingly� This enablesus to discard a
half from each Sj� Clearly a single step lasts O�n log n� time and the entire
stage is carried out in O�n log� n� time�

At the end of second stage we have the values fsj�g and ftj�g� j � �� � � � � n�
De�ning s � max��j�nfsj�g and t � min��j�nftj�g we obtain s � r� � t� and
no element of S � is strictly between s and t�

The case with the optimal solution attained on the boundary of the rect�
angle can be treated as subcase of a previous case� Thus we conclude by a
theorem�

Theorem �
�
� Given a set S of n points in the plane� enclosed in a rect�
angular region R� and two positive weights w��p� and w��p� for each point
p � S� we can �nd� in O�n log� n� time� a point c � R which maximizes

min
p�S

fmaxfw��p� 	 dx�c� p�� w��p� 	 dy�c� p�gg�

��� Desirable Facility Location Problem �p�	

� discrete case

The discrete min�sum problem is de�ned as follows� Given a set S of n
points in the plane and a number k� Find a point in S such that the sum of
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distances from it to its k nearest neighbors in S is minimized� Our algorithms
compute� for each point of S� the sum of distances from it to its k nearest
neighbors in S� and output a point which minimizes the sum� First we deal
with the special case of the discrete min�sum problem when k � n� ��

����� The discrete min�sum problem for k � n� �

This min�sum problem appears in ��
� with an O�n�� trivial solution� Be�
low we present an algorithm that solves this problem for the L� metric in
O�n log n� time�

The L� metric is separable� in the sense that the distance between two
points is the sum of their x and y�distances� Therefore we can solve the
problem for the x and y�coordinates separately� We regard the x coordinates
part� We sort the points according to their x�coordinates� Let fp�� � � � � png be
the sorted points� For each pi � S we compute the sum �xi of the x�distances
from pi to the rest of the points in S� This is performed e�ciently as follows�
For the point p� we compute �x� by computing and summing up each of the
n � � distances� For � � i � n we de�ne �xi recursively� assume the x�
distance between pi�� and pi is �� then �xi � �xi�� � � 	 �i� ��� � 	 �n� i� ���
Clearly the sums �xi �for i � �� � � � n� can be computed in linear time when
the points are sorted� We compute �yi analogously� Assume the point p � S
is ith in the x order and jth in the y order� The sum of distances from p to
the points in S is �ij � �xi � �yj � The point which minimizes this sum is the
sought solution�

Theorem �
�
� Given a set S of n points in the plane sorted in x direction
and in y directions� we can �nd in linear time a point p � S which minimizes
the sum of the L� distances to the points in S�

We can extend this theorem to the case where the distance to be mini�
mized is the sum of squared L� distances from a point to the rest of the points
of S� since the separability property holds for this case as well� Assume we
have computed f�x� � � � � � �xng above and let �xi �

Pn
j���xj � xi��� The recur�

sion formula for computing all the squared x�distances is easily computed to
be

�xi � �xi�� � 	��xi�� � n��

where the x�distance between pi�� and pi is ��

Corollary �
�
� Given a set S of n points in the plane� sorted in x direction
and in y direction� we can �nd in linear time a point p of S which minimizes
the sum of squared L� distances to the points in S�
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����� The general case

We turn to the discrete min�sum problem for � � k � n��� We describe the
algorithm for the L� metric� It has two phases� In the �rst phase we �nd�
for each point pi � S� the smallest square Ri centered at pi which contains
at least k � � points of S� We also get the square size �i which is de�ned
as half the side length of Ri� In the second phase we compute for each pi�
i � �� � � � � n� the sum of the distances from it to the points of S in Ri and
pick i for which this sum is minimized�

For the �rst phase we apply a simple version of parametric searching�
Assume q � �qx� qy� � S is the query point for which we want to �nd the
smallest square R which contains at least k � � points of S� For a parameter
�� denote by R��� a square of size � centered at q� We test whether R���
contains at least k � � points of S by applying Chazelle�s �	�� 	�� orthog�
onal range counting� Namely� given a set of n points in the plane and an
orthogonal range� �nd the number of points contained in the range� Chazelle
proposes a data structure that can be constructed in time O�n log n� and
occupies O�n� space� such that a range�counting answer for a query region
can be answered in time O�log n��

Clearly the minimum value of � is the distance from the query point
to its kth nearest neighbor� Thus candidate values for � are jqx � pxj and
jqy � pyj for all p � �px� py� � S� By performing a binary search in the sets
fpx j p � S� px � qxg� fpx j p � S� px � qxg� fpy j p � S� py � qyg and
fpy j p � S� py � qyg� we �nd the smallest � such that R��� contains at least
k � � points of S�

Lemma �
�
� Given a set S of n points and a positive integer k � n� We
can �nd for each point pi � S the smallest square centered at pi that contains
at least k � � points of S in total time O�n log� n��

In the second phase we compute� for each point pi � S� the sum of
distances from pi to its k nearest neighbors� namely� the points of S which
are contained in Ri� In order to compute e�ciently the sums of distances
in all the squares Ri� we apply the orthogonal range searching algorithm
for weighted points of Willard and Lueker ���	� which is de�ned as follows�
Given n weighted points in d�space and a query d�rectangle Q� compute the
accumulated weight of the points in Q� The data structure in ���	� is of
size O�n logd�� n�� it can be constructed in time O�n logd�� n�� and a range
query can be answered in time O�logd n�� We show how to apply their data
structure and algorithm to our problem�

Let q � S be the point for which we want to compute the sum of distances
from it to its k nearest neighbors� Let R be the smallest square found for
q in the �rst phase� Clearly R can be decomposed into four triangles by
its diagonals such that the L� distance between all points of S within one
triangle is� wlog� the sum of x coordinates of the points of S in this triangle
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Figure 
��� �a� The regions Qi and �b� Qi�q�

minus the x coordinate of q times the number of points of S in this triangle�
More precisely� let )u be the closed triangle whose base is the upper side of
R and whose apex is q� Denote by �u the sum of the L� distances between
the points in )u and q� and by Nu the number of points of Su � fS�qg
)u�
then

�u �
X
pj�Su

pyj � qy 	Nu�

Our goal in what follows is to prepare six data structures for orthogonal range
search for weighted points� as in ���	�� three with the weights being the x
coordinates of the points of S and three with the y coordinates as weights�
and then to de�ne orthogonal ranges� corresponding to the triangles in R for
which the sums of x �y� coordinates will be computed�

We proceed with computing �u� Let l� be the x axis� l� be a line whose
slope is ��� passing through the origin� l� be the y axis and l� a line whose
slope is �
�� passing through the origin� These lines de�ne wedges �see Figure

�� �a��� ��� Q��the wedge of points between l� and l� whose x coordinates
are larger than their y coordinates� �	� Q��the wedge of points between l�
and l� whose y coordinates are larger than their x coordinates� and �
� Q��
the wedge of points between l� and l� whose y coordinates are larger than
their x coordinates�

Each of these wedges de�nes a data structure� as in ���	�� Observe� e�g��
the wedge Q�� We transform l� and l� into corresponding axes of an orthog�
onal coordinate system� and apply the same transformation on all the points
pi � S� We construct the orthogonal range search data structure for the
transformed points with the original y coordinates as weights� �Similarly we
construct data structures for the points of S transformed according to Q�

and Q�� respectively� for the y sums� and another set of three data structures
for the x sums��

We denote by Qi�q� the wedge Qi translated by q� Denote by Yi�q� the
sum of the y coordinates of the points of S in Qi�q�� i � �� 	� 
� Then

X
pj�Su

pyj � �Y��q� � Y��q��� �Y��q�� � Y��q���� Y��q�� � Y��q���
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where q� � �qx� �� qy � �� and q� � �qx � �� qy � �� �see Figure ��b��� If the
segment �q�� q�� contains points of S we de�ne q� and q� as q� � �qx � � �

� qy ��� 
� and q� � �qx��� 
� qy ��� 
� for some su�ciently small 
 � ��

To compute Nu we can use the same wedge range search scheme� but with
unit weights on the data points �instead of coordinates�� In a similar way we
compute the sum �d for the lower triangle in R ��l and �r for the left and
right triangles in R respectively� and the corresponding number of points Nd

�Nl and Nr��

It is possible that R contains more than k�� points � this happens when
more than one point of S is on the boundary of R� Our formula for the sum
of the L� distances should be

D � �u � �d � �l � �d � � 	 �Nu � Nd � Nl � Nr � k � ���

Hence� the second phase of the algorithm� requires O�n log n� prepro�
cessing time and space� and then O�log� n� query time per point pi � S to
determine the sum of distances to its k nearest points� Thus� for both phases�
we conclude

Theorem �
�
� The discrete min�sum problem in the plane for � � k �
n � � and under L��metric� can be solved in time O�n log� n� occupying
O�n log n� space�

��� Desirable Facility Location Problem �p�	

� continuous case

The continuous desirable facility location problem is de�ned as follows� Given
a set S of n points and a parameter � � k � n � �� Find a point c in the
plane such that the sum of distances from c to its k nearest points from S
is minimized� We consider the problem where the distances are measured by
the L� metric�

We create a grid M by drawing a horizontal and a vertical line through
each point of S� Assume the points of S are sorted according to their x
coordinates and according to their y coordinates� Denote by M�i� j� the
grid point that was generated by the ith horizontal line and the jth vertical
line in the y and x orders of S respectively� Bajaj ��
� observed that the
solution to the continuous min�sum problem with k � n� � should be a grid
point� As a matter of fact it has been shown that for this problem the point
M�bn�	c� bn�	c� is the required point� �Where for an even n the solution is
not unique and there is a whole grid rectangle whose points can be chosen
as the solution��

For k � n��� we can pick the solution from O��n�k��� grid points� since
the smallest x�coordinate that c might have is xbk��c� and the largest xn�dk��e
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�similarly for y�� This is true since in the extreme case where all the k points
are the lowest leftmost points then according to Bajaj the solution to this k
points problem is at M�bk�	c� bk�	c�� Similarly if the k points are located
at any other corner of M � Thus we remain with �n � k � ��� grid points
which are candidates for the solution c� Applying the discrete algorithm of
Section 
�	�	� with the query points being the candidate solutions� we obtain
the following theorem�

Theorem �
�
� The continuous min�sum problem can be solved in �n log n�
�n� k�� log� n� time for any positive k � n� ��
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��� Facilities in Regions �p��	

We consider several instances of the following generally�stated problem� which
has several applications in� e�g�� urban� industrial and military task planning�
Placing Obnoxious Facilities� Let S be a set of n points in the plane
�called demand points�� and let R be a set of m� m � n� regions in the
plane �called neighborhoods�� Let k be a positive integer �k is the number of
facilities� e�g�� garbage dumps� to be placed�� Find k sites c�� � � � � ck for the k
facilities� such that �i� C � fc�� � � � � ckg is a piercing set for R� that is� each
of the neighborhoods in R is served by at least one facility that is located in
the neighborhood� �ii� The minimal distance between a demand point in S
and a site in C is maximized�

This problem belongs to a class of problems that deal with the location
of facilities� both desirable and undesirable� under various conditions� This
class of problems occupies researches in operations research� especially in the
�eld of location science� Some of the more geometric problems have also
been treated in the computational geometry literature� In a typical facility
location problem� we need to �nd a location for some facility� with respect to
a given set of demand sites� Both the demand sites and the facility are repre�
sented as points in the plane� The chosen location should satisfy a given set
of conditions� e�g�� minimize the maximal distance to a demand site �known
as the ��center problem�� Our problem is somewhat more complex �though
de�nitely realistic� than most of the related problems� There are several
facilities� and the desired locations must satisfy both a piercing condition
and a distance optimization condition� Notice that if the domain of possible
locations for the facility is the entire plane� then the problem becomes im�
practical and not interesting� Therefore� some constraints on the location of
the facility should be speci�ed� e�g� forcing it to lie in some bounded region
R�

We assume that the regions in R are unit axis�parallel squares �actually�
translated copies of some axis�parallel rectangle�� We consider both the L�
case and the L� case� In the L� case �resp� L� case�� we seek the maximal
value d� for which there exist k locations such that �i� none of the locations
lies in the interior of a square of edge length 	d� �resp� in a disk of radius
d�� centered at a demand point� and �ii� for each of the squares R � R� at
least one of the k locations lies in R �in other words� the k locations consist
of a k�piercing set for the set of squares R�� We present e�cient solutions
for k � �� 	� both under the L� metric and under the Euclidean metric�
Our solutions consist of solutions to the corresponding decision problems
to which we apply either the sorted matrices technique of Frederickson and
Johnson ���� or the parametric searching technique of Megiddo �
�� to obtain
the maximal value d�� For k � 
 we show two examples which in some sense
imply that there is not much hope for a subquadratic solution for k � 
 or for
any other value of k greater than 
� In addition� we also present a solution to
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the weighted version of the simplest problem �k � � under L��� and present
a lower bound for its corresponding decision problem �and for the decision
problem corresponding to the unweighted version��

Consider for example the decision version of the problem in which we
need to place two facilities� under the Euclidean metric� In this problem�
we need to consider all possible solutions to the 	�piercing problem for R�
For each such solution p�� p�� we must check whether both p� and p� are not
covered by the n disks of radius d centered at the points of S� By adapting
a lemma of Katz et al� ����� and employing� in a sophisticated way� a tech�
nique due to Sharir ��
� that resembles searching in monotone matrices� we
transform the problem into the following reception problem �with some ad�
ditional issues that require attention�� Given m transmitters� each of range
d �e�g�� the transmitters of some communication system�� construct a com�
pact data structure that supports coverage queries� i�e�� determine whether a
query rectangular region is fully covered by the transmitters� In other words�
preprocess a set of m congruent disks� so that� given a query rectangle R�
one can quickly determine whether R is fully contained in the union of the
disks� We present a simple� though non�trivial� solution to this problem� and
to the problem where the query regions are constant�size polygons instead of
rectangles� We are not aware of any previous solution to these problem� Our
solution uses the Voronoi diagram of the centers of the disks and data struc�
tures for orthogonal �alternatively� simplex� range searching� and vertical
�alternatively� general� ray�shooting among line segments� The construction
time is nearly linear for both rectangular queries and polygonal queries� the
space required is linear� and the query cost is O�log n� for rectangular queries
and roughly O�n���� for polygonal queries�

As was pointed in the previous section the problem in which the n demand
points lie in a simple polygon R with at most n vertices� and one needs to
place a single facility in R� such that the minimal Euclidean distance between
a demand point and the facility is maximized� was solved in O�n log n� time
by Bhattacharya and Elgindy �	
�� If the polygon R is a rectangle� and each
of the demand points pi is assigned a weight wi� so that the distance between
pi and a point q � R is wi times the L� distance between them� then one
can apply the O�n log� n� solution of Follert et al� ��	�� The latter bound
was improved recently to O�n log� n� runtime algorithm by us �	��� where
we actually consider a slightly more general problem� In our problem each
demand point pi is assigned two weights wx

i and wy
i � and the distance between

pi and q is wx
i jpxi � qxj � wy

i jpyi � qyj� The algorithm is described in section

��� Brimberg and Mehrez �	�� solve the following problem� Find k locations
in the rectangle R �for k facilities�� such that �i� the distance between any
two locations is at least some given value d� and �ii� the minimal distance
between a demand point and a facility is at least some given value r� Katz
et al� �
�� present improved solutions to this problem�
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����� The Reception Problem

We consider the following problem� Given n transmitters� each of range
r� construct a compact data structure that supports coverage queries� i�e��
determine whether a query �rectangular or polygonal� region is fully covered
by the transmitters� In other words� preprocess a set of n congruent disks for
coverage queries� i�e�� determine whether a query region R is fully contained
in the union of the disks�

We �rst present a solution for polygonal region queries� that is� we assume
the query regions are simple polygons with at most c vertices� for some
constant c� Then we show how the bounds for the preprocessing time and
query cost can be improved if the query regions are axis�parallel rectangles�

Polygonal region queries

In this subsection we deal with the following problem� Given a set D of n
unit disks in the plane� construct a compact data structure� so that� given a
query polygon Q� one can quickly determine whether Q is fully covered by
the disks in D� Let S denote the set consisting of the center points of the
disks in D� The main components of our data structure are �i� the Voronoi
diagram VD of S and a corresponding point location data structure� �ii� a
data structure for simplex range searching over a subset of the vertices of
VD� and �iii� a data structure for ray shooting over a set of portions of edges
of VD�

The preprocessing phase
 The preprocessing phase consists of the follow�
ing three steps�

�� Construct the Voronoi diagram VD of S� and the corresponding point
location data structure� both in O�n log n� time �	���

	� Compute the set V � of all vertices of VD that are not covered by disks in
D� by checking� for each vertex v of VD� whether the distance between
v and its corresponding Voronoi sites is greater or equal to �� Construct
in O�n�
�� time a linear�size data structure for simplex range searching
queries over V � �

��


� Compute the set E� of the portions of the edges of VD that are not
covered by disks in D� According to the claim below� the size of E� is
only O�n�� and it can be computed in O�n� time� Construct in O�n�
��
time a linear�size data structure for ray shooting over E� ����

Claim �
�
� The number of edge portions in E� is O�n�� and E� can be
computed from VD in O�n� time�

Proof� Let e be an edge of VD� and let p � S be one of the two corresponding
Voronoi sites� Notice that if a point on e is covered by one or more of the
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disks in D� then this point is necessarily covered by the disk centered at p�
Thus� in order to determine the portions of e that are not covered by D� it
is enough to consider the disk centered at p� ignoring all other disks� The
number of such portions is clearly at most two�

Answering queries
 A query with a polygon Q is treated as follows� We
�rst partition Q into a constant number of triangles� �Recall that Q has at
most c vertices� for some constant c�� For each of the triangles )� we perform
a range searching query using the simplex range searching data structure� If
the answer obtained to one �or more� of these queries is positive� i�e�� one
�or more� of these triangles contains points of V �� then we conclude that Q
is not fully covered by the disks in D� return �NO� and stop� Otherwise� we
proceed as follows� For each edge e � ab of Q�

� Find the cell Ca �resp� Cb� of VD containing the endpoint a �resp� b�
of e� using the point location data structure�

� Calculate the distance da �resp� db� between a �resp� b� and the point
of S de�ning Ca �resp� Cb�� If da � � �resp� db � ��� return �NO� and
stop�

� If a and b do not lie in the same cell of VD �i�e�� if Ca �� Cb�� then
perform a ray shooting query with the ray emanating from a and con�
taining e� using the ray shooting data structure� If the answer obtained
is positive and the hitting point is on e� return �NO� and stop�

If we have reached this point� we may conclude that Q is fully covered by
the disks in D and return �YES��

The algorithm for answering a query is quite simple� however� it is not
obvious that it is correct� In the following theorem we prove that it is indeed
correct� that is� it returns �YES� if the query polygon Q is fully covered by
the disks in D� and �NO� otherwise�

Theorem �
�
� The algorithm is correct� it returns �YES� if the query poly�
gon Q is fully covered by the disks in D and �NO� otherwise�

Proof� Consider a point � in Q� that lies in the Voronoi cell of p� � is
covered by D if and only if it is covered by the disk centered at p� Moreover�
the disk centered at p is �responsible� for covering the region Q
Cp� where
Cp is the Voronoi cell of p� It is therefore enough to verify that the point in
Q 
 Cp that is the furthest from p� is at distance less than � from p� This
point� however� is either a vertex of the boundary of Cp� or an intersection
point between an edge of the boundary of Cp and the boundary of Q� or a
vertex of Q� The range searching queries performed in the �rst part of the
algorithm take care of points of the �rst kind by the answers obtained� we
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immediately know whether there exist vertices of VD that lie in Q and are
not covered� The second part of the algorithm takes care of points of the two
other kinds� by checking whether the boundary of Q is fully covered by D�
Let e be an edge of the boundary of Q� We �rst verify that both its endpoints
are covered� If both endpoints lie in the same Voronoi cell and they are both
covered� then clearly the entire edge is covered� However� if the endpoints lie
in di�erent Voronoi cells� it is possible that portions of the interior of e are
not covered� However� this can happen if and only if e intersects a segment
of E�� and this will be detected by the ray shooting query performed for e�

Concerning the complexity of the above algorithm� the preprocessing time
is O�n�
��� which is the time required to construct the range searching and
ray shooting data structures ��� 

�� the space complexity is O�n�� and the
query cost� determined by the range searching and ray shooting queries� is
O�n

�
�
��� We thus obtain�

Theorem �
�
� Let D be a set of n unit disks in the plane� It is possible
to preprocess D in time O�n�
��� into a linear�size data structure� such that
determining whether a constant�size query polygon Q is fully covered by the
disks in D can be done in time O�n

�
�
���

Remark �
�
� As known� the n� factors in the theorem above can be re�
placed by slightly smaller factors� Also the standard storage�query tradeo�
can be applied to construct a data structure of size n � m � n� with query
time O�n�
��m����� In particular� if the query polygons are of linear size�
then we can construct a data structure of size and query cost roughly O�n�����

Rectangular region queries

In this subsection we consider the special case where the query regions are
axis�parallel rectangles� This is the case to which we refer in Section 
���	�
For this case� we can obtain better bounds for the preprocessing time and
query cost� by replacing the general range searching and ray shooting data
structures with standard specialized data structures� More precisely� we use
a data structure for orthogonal range searching over the set V � �	��� and a
data structure for horizontal*vertical ray shooting over the set E� �	��� We
thus obtain�

Theorem �
�
� Let D be a set of n unit disks in the plane� It is possible to
preprocess D in time O�n log n�� into a linear�size data structure� such that
determining whether a query rectangle Q is fully covered by the disks in D
can be done in time O�log n��

Remark �
�

 The bounds for the somewhat simpler problem� where D is
a set of unit axis�parallel squares instead of unit disks remain the same�
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����� Obnoxious Facilities

In this subsection we solve several instances of the following problem�
Placing Obnoxious Facilities� Let S be a set of n points in the plane
�called demand points�� and let R be a set of m� m � n� regions in the plane
�called neighborhoods�� Let k be a positive integer �k is the number of facil�
ities� e�g�� garbage dumps� to be placed�� Find k locations C � fc�� � � � � ckg
for the k facilities� such that �i� C is a piercing set for R� that is� each of the
neighborhoods in R is served by at least one facility that is located in the
neighborhood� �ii� The minimal distance between a demand point in S and
a location in C is maximized�

In all the problem instances that we consider� the set of regions R consists
of unit axis�parallel squares� We consider the two problems in which the
number of facilities k is one or two� respectively� under the L� metric as well
as under the Euclidean metric� For k � 
 we show two examples which in
some sense imply that there is not much hope for a subquadratic solution for
k � 
 or for any other value of k greater than 
� Obviously� if the set R is
not k�pierceable� then there is no solution� Therefore� we assume that R is
k�pierceable� We can check whether R is k�pierceable� � � k � 	� in O�m�
time �����

When solving a problem� we �rst present a solution to the corresponding
decision problem� and then apply the sorted matrices technique of Freder�
ickson and Johnson ���� or the parametric searching technique of Megiddo
�
�� to obtain a solution to the original problem� That is� we �rst solve a
problem of the form� Determine whether there exist k locations� such that�
for each of the m unit squares r � R� at least one of these locations is in r�
and the minimal distance between the n demand points and these locations
is at least d� where d is a parameter of the problem� We then apply one of
the above techniques to obtain the maximal value d� for which the decision
problem returns a positive answer�

The L
�
case

k � �

In this problem we wish to place only one facility� This problem is relatively
easy� and we present a solution to the weighted version of the problem as well�
In the weighted version of the problem� each point pi � S has two weights
associated with it� w��pi� and w��pi�� Solving the decision problem for d�
each point pi � S de�nes a forbidden region Fi� where the facility may not
reside� In the unweighted version Fi is a square of edge length 	d centered
at pi� and in the weighted version Fi is the rectangle

fq � R� j dx�q� pi� � d 	 w��pi� � dy�q� pi� � d 	 w��pi�g �
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Let U denote the union of the forbidden regions F�� � � � � Fn� Let R � 
R�
R is a non�empty rectangle �since� by assumption� R is ��pierceable�� An
allowed location for the facility exists if and only if U does not completely
cover R� Since it is possible to determine whether a set of n rectangles
covers another rectangle R� using a segment tree� in O�n log n� time� we
obtain an O�n log n� solution to the decision problem in both the unweighted
and weighted versions�

In the unweighted version� we can apply the sorted matrices technique
of Frederickson and Johnson ���� to obtain in O�n log� n� time the maximal
value d� for which the corresponding decision problem returns �YES�� This is
based on the observation that d� is either the x�distance �y�distance� between
two points in S� or the x�distance �resp� y�distance� between a point in S and
a vertical �resp� horizontal� edge of R� Notice that the number of distances
of the latter kind is only O�n�� so we can compute them explicitly� sort them�
and perform a binary search on the sorted list�

In the weighted version� we apply the parametric search paradigm of
Megiddo �
�� to obtain in O�n log� n� time the maximal value d� for which
the corresponding decision problem returns �YES�� �A parallel algorithm for
the decision problem is presented in �	�� it employs O�n log n� processors
and computes the answer in O�log n� time�� We thus obtain�

Theorem �
�
� Under the L� metric and for k � �� the problem can be
solved in O�n log� n� time� and the weighted version of the problem can solved
in O�n log� n� time� The corresponding decision problems can be solved in
O�n log n� time�

A lower bound
 We obtain a lower bound of %�n log n� for the decision
problem �in both versions�� by showing that even the one�dimensional version
of the problem �determine whether a set of n unit squares covers another
square� has a lower bound of %�n log n�� Consider the GAP�EXISTENCE
problem� Given a set A of n real numbers A � fa�� � � � � ang� determine
whether there exist two consecutive numbers in the sorted sequence obtained
from A� such that the di�erence between them is greater than �� Sharir and
Welzl ���� observed that this problem has a lower bound of %�n log n�� We
transform ai� i � �� � � � � n� to the one�dimensional rectangle �ai� ai � ��� thus
obtaining a set R of n rectangles� We de�ne R � �minai�A ai � maxai�A ai��
It is clear that R is not covered by the rectangles in R if and only if there
exist two consecutive numbers as above�

k � �

Assuming R is 	�pierceable �but not ��pierceable�� we need to determine
whether there exist two points p�� p�� such that fp�� p�g is a piercing pair for
R� and neither p� nor p� lie in the interior of U � where U is the union of the
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squares of edge length 	d centered at the points of S� Assume fp�� p�g is a
piercing pair for R� then we can divide the squares in R into two disjoint
subsets Rp� and Rp�� such that p� � R� � 
Rp� and p� � R� � Rp� � �If some
of the squares in R are pierced by both p� and p�� then there are many ways
to do this�� Therefore� we could search for a �good� piercing pair fp�� p�g
�i�e�� a piercing pair such that both points are not in the interior of U� by
considering all possible partitions of R into two subsets R��R� such that the
rectangles R� � 
R� and R� � 
R� are non�empty� For each such partition�
we would have to check for each of the corresponding two rectangles whether
it contains a point that is not covered by U � However� this method is very
ine�cient� Fortunately� we have a claim 	�
�� that allows us to restrict our
search to a quadratic number of partitions� Denote by XR the centers of
the squares in R� sorted by their x�coordinate �left to right�� and by YR
the centers of the squares in R� sorted by their y�coordinate �low to high��
The claim 	�
�� gives to us the e�cient way to �nd the piercing pair� More
precisely� if p� and p� are a piercing pair for R� then R can be divided into two
subsets R� and R�� p� � 
R�� p� � 
R�� such that R� can be represented
as the union of two subsets Rx

� and Ry
� �not necessarily disjoint� and one of

them might be empty�� where the centers of squares of Rx
� form a consecutive

subsequence of the list XR� starting from its beginning� and the centers of
squares of Ry

� form a consecutive subsequence of YR� starting from the list�s
beginning�

According to this it is enough to consider partitions in which one of the
subsets is obtained by taking the ix leftmost squares in R together with the
iy bottommost squares in R� � � ix� iy � n� �The claim 	�
�� is proven under
the assumption that the piercing points p� and p� are centers of squares in R�
However� it is easy to see that the claim is also true without this assumption��

We further restrict our search by employing a technique� due to Sharir
��
�� that resembles searching in monotone matrices for a recent re�nement
of this technique and applications see �
�� ��� and also section 	�
��� Let M
be an �m � �� � �m � �� matrix� whose rows �skipping row �� correspond
to XR and whose columns �skipping column �� correspond to YR� An entry
Mxy in the matrix is de�ned as follows� Let Dx be the set of squares in R
such that the x�coordinate of their centers is smaller or equal to x� and let
Dy be the set of squares in R such that the y�coordinate of their centers is
smaller or equal to y� Let Dl

xy � Dx � Dy and Dr
xy � �R � Dl

xy�� and let
Rl
xy � 
Dl

xy and Rr
xy � 
Dr

xy�

Mxy �

�����
����

&Y Y � if Rr
xy �� U and Rl

xy �� U
&Y N � if Rr

xy �� U but Rl
xy � U

&NY � if Rr
xy � U but Rl

xy �� U
&NN � if Rr

xy � U and Rl
xy � U

where we assume of course that the empty set is contained in U � It follows
that the answer to our decision problem is �YES� if and only if M contains
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a &YY� entry�

In order to apply Sharir�s technique the lines and columns of M� must be
non�decreasing �assuming &Y� � &N��� and the lines and columns of M� must
be non�increasing� where M i is the matrix obtained from M by picking from
each entry only the i�th letter� i � �� 	� In our case this property clearly holds�
since� for example� if for some x� and y�� M�

x��y�
�&Y�� then for any x� � x�

and y� � y�� M�
x��y��&Y�� Thus we can determine whether the implicit matrix

M contains an entry &YY� by inspecting only O�m� entries in M � advancing
along a connected path within M �
��� For each entry along this path� we
need to determine whether Rz

xy is fully covered by U � z � fl� rg� This can
be done in O�log n� time by dynamically maintaining the intersection 
Dz

xy�
and by utilizing the data structure of Section 
���� �see Remark 
���� there��
Thus in O�n log n� time we can determine whether M contains a &YY� entry�
Optimization
 We show how to �nd the smallest value d� for which the
matrix M above contains a &YY� entry� It is easy to verify that d� is either �i�
half the di�erence between the x�coordinates �alternatively� y�coordinates� of
a pair of points in S� or �ii� the horizontal �respectively� vertical� distance
between a vertical �respectively� horizontal� edge of a square in R and a point
in S� All these potential values can be represented by four �implicit� sorted
matrices two matrices for each axis�

We de�ne the two sorted matrices corresponding to the x�axis� Let Lx

be the sorted list consisting of the x�coordinates of the points in S and the
x�coordinates of the vertical edges of the squares in R� Entry �i� j� in matrix
M� stores the value �xj � xi��	� where xi� xj are the i�th and j�th elements
in Lx� and entry �i� j� in the matrix M� stores the value �xj � xi�� Clearly�
these matrices contain several values that do not belong to the set of potential
solutions� but this does not a�ect the running time� We de�ne the two sorted
matrices M� and M� corresponding to the y�axis analogously�

We now apply the Frederickson and Johnson technique ���� to each of the
four matrices in order to �nd the smallest value in these matrices for which
the decision algorithm returns �Yes�� We thus obtain�

Theorem �
�
� Under the L� metric and for k � 	� the problem can be
solved in O�n log� n� time� The corresponding decision problem can be solved
in O�n log n� time�

k � �

The largest integer l for which there exists a linear�time algorithm that de�
termines whether R is l�pierceable �and� if yes� computes an l�piercing set�
is 
 ���� ��� ���� This fact caused us to believe that claim 	�
�� is also true
for a piercing triplet� That is� if p�� p�� p� is a piercing triplet for R� then R
can be divided into three subsets� such that one of them can be represented
as the union of two subsets as in claim 	�
��� Unfortunately� we came up
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area for additional squares and piercing points
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Figure 
�	� Claim 	�
�� is false for k � 


with a counterexample that is depicted in Figure 
�	�a�� All piercing triplets
for the � squares of Figure 
�	�a� must consist of a point from each of the
three black rectangles� and it is easy to verify that we cannot divide the set
of squares as required�

Figure 
�	�a� is not� however� a counterexample for k � �� Since by
adding squares and increasing the number of piercing points� the desired
property might reappear� For completeness� we also provide a counterex�
ample for k � � depicted in Figure 
�	�b�� Assume that each of the four
pairs in the �gure lies near the corresponding corner of some huge square
region s� Then we can add any number of squares around the middle of s
and increase the number of piercing points accordingly� without ruining the
counterexample�

The above counterexamples provide� in some sense� evidence that it is
apparently impossible to obtain subquadratic solutions for k � 
�

The L� case

k
�

The corresponding decision problem is� Determine whether R � 
R is com�
pletely covered by the n disks of radius d centered at the points of S� �Recall
that� by assumption� R is ��pierceable� and therefore R �� 
�� We can do
this� using the result of Section 
����� in O�n log n� time�

We apply the parametric searching technique to obtain in O�npolylog n�
time the maximal value d� for which the decision problem returns �YES� we
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omit the details from this version� �The problematic set of potential values
is the one consisting of the radii of all circles that pass through three points
in S� This set is also one of the sets of potential values in the planar 	�center
problem� solved by Sharir ��
� with parametric searching in O�npolylog n�
time� Sharir�s solution has been improved by Eppstein to randomized ex�
pected time O�n log� n� ������ We thus obtain�

Theorem �
�
	 Under the L� metric and for k � �� the problem can be
solved in O�npolylog n� time� The corresponding decision problems can be
solved in O�n log n� time�

k
�

The decision algorithm is identical to the decision algorithm in the L� case
�Section 
���	�� except for the component that deals with queries of the form�
determine whether a query rectangle is fully contained in U � Now U is the
union of n disks� each of radius d� so we use our solution to the Reception
Problem with axis�parallel rectangular queries �Section 
������ We obtain an
O�n log n��time decision algorithm�

We apply the parametric searching technique in the same manner as
above� to obtain in O�npolylog n� time the maximal value d� for which the
decision problem returns �YES��

Theorem �
�
�� Under the L� metric and for k � 	� the problem can be
solved in O�npolylog n� time� The corresponding decision problems can be
solved in O�n log n� time�

Conclusion

The dual problem� where the facilities are �friendly� or desirable� is also
interesting� For k � 	 and under the L� �resp� L�� metric� this problem
�actually� its corresponding decision problem� becomes� Find a pair of points
which serves as a piercing pair for both the set R of unit squares and the
set of squares �resp� disks� of radius d centered at the demand points� In
the L� case� this can be done by simply �nding in O�n� time a piercing pair
for the union of the two sets of squares� In the Euclidean case� we would
like to employ claim 	�
�� in a sophisticated way� as we did in Section 
���	�
Here� we need to determine� for each pair of rectangles that is generated�
whether the set of disks can be pierced by choosing a point in each of the
two rectangles� This can be done apparently by adopting Sharir�s solution
to the �decision problem of the� planar 	�center problem ��
� �see also ������



Chapter �

k�point Problems

The problems considered in this chapter can be de�ned as follows� �Given
a set S of n points in metric space and some positive integer k �which is
usually between � and n� �nd some property of the set S that depends on
k�� We present a list of problems that we will deal with them and then
describe separately the corresponding algorithms� All the solution based on
the new framework based on posets ���� The problems we consider in this
chapter are� Given a set S of n points in the plane� and given an integer k�

p��� Find the smallest axis parallel rectangle �smallest perimeter or small�
est area� that encloses exactly k points of S�

p��� Find the the n�k�� farthest rectilinear neighbors �under L� metric�
to all points of S� where n

�
� k � n � �� Thus we implicitly �nd �but

do not report� the k nearest rectilinear neighbors to all points of S�

p�
� Enumerate the k largest �smallest� rectilinear distances in decreasing
�increasing� order�

p��� Given a distance � � �� report all the pairs of points of S which are
of rectilinear distance � or less �more��

p�	� Find the smallest �rectangular� axis�aligned �constrained or not con�
strained� ring that contains k �k � n

� � points of S� A rectangular ring
is two concentric rectangles� the inner rectangle fully contained in the
external one� As a measure we take the maximum width or area of the
ring� By constrained we mean that the center of the ring is one of the
points of S�

p�	 and p��� Find the smallest constrained circular ring �or a sector of a
constrained ring� that contains k �k � n

�
� points of S�

p��� Given a number k � n
� � decide whether a query rectangle contains k

points or less�


�
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��� Rectangle with k points inside �p��	

Given a set S of n points in the plane and an integer k� we want to �nd
the smallest axis�parallel rectangle �smallest in term of perimeter or area�
enclosing exactly k points of S� This problem has been investigated by
many researchers� some of whose results we cite below� They considered the
problem for any k � n� Aggarwal et al� �
� present an algorithm which
runs in time O�k�n log n� and uses O�kn� space� Eppstein et al� ���� and
Datta et al� �
�� show that this problem can be solved in O�n log n � k�n�
time the algorithm in ���� uses O�kn� space� while the algorithm in �
�� uses
O�n� space� These algorithms are e�cient for small k values� but become
ine�cient for large k�s� Notice that for k � n the smallest enclosing rectangle
is trivially found in O�n� time�

The algorithm we present below is more e�cient than those cited above
for k values in the range n

�
� k � n� It is based on posets �partially ordered

sets� ��� and runs in time O�n � k�n � k��� and O�n� space� When k � n
our algorithm runs in O�n� time� We also extend our algorithm to higher
dimensions and �nd the smallest axis�parallel box that contains k out of n
given points in d�space� d � 
� This algorithm runs in time O�n�k�n�k���
d�n�k���d���� and occupies O�dn� space� We assume that all the points of S
are in general position� i�e�� that no two points have the same coordinate in
any axis� Finally� we shortly discuss slight improvements of other algorithms�
when more e�ciency is obtained by taking into account the size of k relative
to n�

Remark �
�
� Another algorithm that runs e�ciently for large k values was
presented by Matou�sek ����� It �nds the smallest circle enclosing all but few
of the given n points in the plane� Given a large integer k � n� his algorithm
runs in time O�n log n � �n� k��n�� for some � � ��

����� The Algorithm

First we describe an algorithm which �nds the smallest enclosing rectangle
that contains k x�consecutive points of S� The techniques used in this algo�
rithm will be applied in our general algorithm� which is described afterwards�

Enclosing k x�consecutive points

Given S as above� we restrict the problem to �nding the smallest rectangle
that covers k points of S whose x coordinates are consecutive� The x co�
ordinate of an uncovered point of S is either among the n � k smallest x
coordinates or the n� k largest ones� We cannot a�ord to spend O�n log n�
time on sorting the points of S according to their x coordinates� and there�
fore apply a partial order selection method �see Aigner ����� A poset is a
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partially ordered set of elements� Figure ��� below illustrates a poset R�
where the largest n� k � � points of S are sorted according to the order and
the bottom k � � points are known to be smaller but are not sorted� The
construction of a poset R � S containing the n � k elements of S with the
largest x coordinates is easy� One way of doing this is to put n items into
a binary heap and perform n � k remove�max operations� In this way we
collect the n� k largest elements in S into an oredered set R in total time of
O�n � �n � k� log n�� We use this binary heap to �nd the point v � S with
the �n� k � ��st largest x value in S�

Let L � S � R clearly v is the point with the largest x coordinate in L
�denoted by maxLx �� Denote by x�v� �y�v�� the x� �y�� coordinate of v� We
construct three binary heaps for L� They have k nodes each� We put the
points of L into the heaps� The heap K� will be used to dynamically �nd the
point with the smallest y coordinate in L �denoted by minLy �� The heap K�

will be used to dynamically �nd the point with the largest y coordinate in L
�maxLy �� and D will help �nd the point with the smallest x coordinate in L

�minLx �� Finding the initial values above involves 
 � �k � �� comparisons in
the corresponding binary heaps�

points
k-1

points
n-k

largest

v

Figure ���� A poset

Finding the rectangle

We slide a sweepline from left to right� starting at the leftmost point r of
S� At this point we compute the perimeter �area� of the rectangle de�ned by
minLx � maxLx � minLy and maxLy � The next event is to slide the sweepline to the
next leftmost point of S� r is deleted from L� and v�� the smallest point of
R� is inserted into L� so that L always contains k points� The new maxLx is
x�v��� The next leftmost point in S is found using the binary heap D� This
is the new minLx � We update the binary heaps K� and K�� deleting r and
inserting v�� Thus we get the updated� possibly unchanged� minLy and maxLy �
Notice that we do not need to update D at all�

It is easily seen that each update takes O�log k� time� and the procedure
is repeated n� k times� Hence the total time involved in updates is O��n�



CHAPTER �� K�POINT PROBLEMS �	

k� log k�� The initial construction of K�� K� and D� is performed in total
time of O�n � �n � k� log n��

Summing up the runtimes of constructing the heap and all the updates�
we get

Theorem �
�
� The smallest rectangle that contains a given number k� n
� �

k � n� of x�consecutive points in a set of n points in the plane� can be found
in time O�n � �n � k� log n��

The smallest rectangle containing k arbitrary points

To avoid tedious notations we assume that the names of the points correspond
to their x�ordering� though this does not mean that the points are sorted�
In general the outline of our algorithm is as follows� initially we �x the
leftmost point of the rectangle to be the leftmost point of S� At the next
stage the leftmost point of the rectangle is �xed to be the second left point
of S� etc� Within one stage� of a �xed leftmost rectangle point� r� we pick
the rightmost point of the rectangle to be the q�th x�consecutive point of S�
for q � k � r � �� � � � � n� For �xed r and q the x boundaries of the rectangle
are �xed to be the x�coordinates of r and q respectively� and we go over a
small number of possibilities to choose the upper and lower boundaries of the
rectangle so that it will enclose k points�

In more detail� we initially produce the posets R� D� K� and K� as in
the former algorithm� We use them as before but with a slight modi�cation
to the maintenance of K� and K� as we describe below� We also use two
auxiliary sorted lists A� and A� that are initially set to be empty� They will
collect the information found throughout the algorithm� of the lowest points
�minLy � and highest points �maxLy �� respectively� The maximum size of A�

and A� is n � k each� Since the lists A� and A� are short we can a�ord
O�n � k� time update operation on them �search� insert� delete�� As before�
D and R are not updated throughout the algorithm�

For the initial rectangle �say r � � and q � k� we compute the perimeter
�area� of the rectangle by the initial minLx � maxLx � minLy and maxLy � The point

that attains minLy �maxLy � is stored as the �rst element in A� �A���

For the next step� r remains �xed and q � k��� the vertical slab between
r and q contains the �rst k � � x�consecutive points� Trivially there are two
rectangles R� and R� containing k of these points within this slab that are
de�ned by the x boundaries at r and at q� The y boundaries of R� are the
second smallest y in K� and the �rst largest in K�� and of R� the �rst smallest
y in K� and the second largest in K�� The second values found in K� and
K� are stored in A� and A� respectively� We compute the area �perimeter�
of these two rectangles and check for minimum�
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Letting q vary from k�� to n� for each q we �rst update the data structures
�see below� and then �nd the next smallest �largest� element in K� �K�� and
add it to the corresponding list A� �A��� If q � k � p then A� �A�� has p
entries� and we simply need to compute the areas of the rectangles bounded
by r as minLx � q as maxLx � and p minLy values from A� with their corresponding
p maxLy values from A��

Updating K� and A� upon varying q

�� If y�q� is greater than the maximum y value in A�� then no update of
K� is required� This is because y�q� will never get to act as minLy in
the slab de�ned by r and q� We �nd the point with the maximum y
value in A� by going over all its �� n� k� entries� We add q to A��

	� If y�q� � max�y� for the entries in A�� then we can delete the point
p which attains max�y� from K�� and insert the point q into K�� As
in the former case p will not participate as a lower y boundary of a
rectangle in this slab� We remove the point p from A��

We update K� and A� symmetrically� Each heap update takes O�log k� time�
and a list update takes O�n� k� time� The heaps K� and K� remain of size
k�

For each new stage �r� � r � �� we �nd the next smallest point �r�� in S
by removing the next minimal x point from the heap D� If r was in A� �A��
we delete it� The heaps K� and K� undergo too many changes in stage r to
be of any use at this stage� So we keep copies of the initial K� and K� from
the previous stage r� and we only update them by deleting r and inserting
q � r � k � � instead of r in the heaps� �These will serve as initial K� and
K� at the next stage�� We continue as in stage r � �� by incrementing q up
to n and checking all the rectangles that contain k points between r and q�
We �nish when r � n� k � � and q � n�

It is easy to see that we check all the rectangles that contain k points�
Not all the rectangle possibilities in the above algorithm yield feasible rect�
angles� See� e�g�� in Figure ��	� where the rectangle whose x boundaries are
determined by r and q� and the y boundaries are de�ned by the correspond�
ing pth points in A� and A�� Checking whether a rectangle is feasible or not
is immediate and does not change the complexity of the algorithm�

We sum up the runtimes of all the components of the algorithm�

� Computing R and initially constructing the heaps� O�n��n�k� log n�

� Copying the heaps K� and K� and initially updating them per each
stage is� O�k�� For all stages O�k�n � k���

� Total time for updating K�� K�� A� and A�� for all the steps in one stage�
O��n�k���n�k�� logk��� Summing up to O��n�k�� log k� �n�k���
for all the n� k stages�
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pth point � A�

pth point � A�

q

r

Figure ��	� An infeasible rectangle

� The number of possible rectangles at each stage is bounded by the
number of rectangles in the �rst stage� �n�k

j�� j � O��n� k���� Knowing
A� and A� we invest O��� time in computing the area �perimeter�
of each rectangle� The number of possible rectangles at all stages�
O��n � k����

Since k � n�	 some of the above summands can be neglected and we yield

Theorem �
�
� The smallest rectangle that contains a given number k� n
�
�

k � n� of points from a set of n points in the plane can be found in time
O�n � k�n� k��� and O�n� space�

The d�dimensional algorithm

We extend the planar algorithm to the smallest box containing k points in the
d�dimensional space� Assuming we have an algorithm Ad�� for solving the
�d����dimensional problem in time Td��� Then the d�dimensional algorithm
is as follows� We project S on all the �d � ���dimensional hyperplanes� call
these sets S�� � � � � Sd� We describe an algorithm for only one set� say Si� �The
whole process will be later repeated similarly for all Sj � � � j � d��

�� We use the algorithm Ad�� to �nd all the �d � ���dimensional boxes
that contain k to n points of Si�

	� For each box found in the former step we use the ith axis to bound
exactly k points of S in the d�dimensional box which is the cross of the
�d � ���dimensional box and a segment in the i axis �like we treated
the y axis in the 	�dimensional problem��

It can be easily veri�ed that the runtime of this algorithm is �n�k��Td���
Thus we conclude by theorem�



CHAPTER �� K�POINT PROBLEMS ��

Theorem �
�
� The smallest box that contains a given number k� n
�
� k �

n� of points from a set of n points in d�space �d � 

 can be found in time
O�n � dk�n� k���d���� and O�dn� space�

����� Slight improvements of other algorithms

We achieve improvements on runtimes of other problems that deal with some
k�set problems under the L� metric� For example� an algorithm for �nding
the minimum L� diameter of a k�point subset of a set of n points in the
plane is described in ����� It runs in time O�n log� n�� This algorithm can be
improved to run in O�n log n log �n� k�� time for k � n

�
� Eppstein and Erick�

son ���� use an O�n log n� time algorithm for placing a �xed�size axis�aligned
square and then apply the technique of sorted matrices for the optimization
step ����� Applying our techniques we can solve the problem by dealing only
with �n�k�� distances along each coordinate axis� instead of O�n�� distances
as ���� do� Searching over this matrix adds a factor of O�log �n � k�� instead
of O�log n��

Recently� Glozman et al� ��
� gave a simple algorithm for a problem
posed �and solved� by Salowe ����� Given a set S of n points in the plane�
they ��
� ��� determine� in time O�n log� n�� which pair of points of S de�nes
the kth distance �smallest or largest� under the L� metric� Both papers
have the same decision algorithm� but for the optimization step ���� apply
parametric search� while ��
� apply sorted matrices� For k � n

�
it is enough

to keep in the optimization matrix only O�k�� distances on each coordinate
axis instead of all the O�n��� Thus the optimization will add only a factor
of O�log k� instead of O�log n� as in ��
��

��� Rectilinear nearest neighbors �p�
	

The problem is� Find the the n � k � � farthest rectilinear neighbors to all
points of S� where n

� � k � n � �� Thus we implicitly �nd �but do not
report� the k nearest rectilinear neighbors to all points of S� We will use the
technique prom previous section and also described in �����

We de�ne the nearest x�neighbor of a point pi � S as point q � S� such
that jx�pi� � x�q�j � minfjx�pi� � x�p�j� p � S� p �� pig� where x�p� is the
x�coordinate of p� First we �nd the k nearest x�neighbors for each point of S�
To solve this subproblem we �nd the points with the n� k � � smallest and
the n� k� � largest x�coordinates by posets ���� Let A� �respectively A��� be
the set of the n� k� � points of S with the smallest �largest� x�coordinates�
Note that from the technique in ��� it follows that A� and A�� are sorted� Let
A be the set of points of S with x�coordinates between those of the points of
A� and A�� �A � S �A� �A��� �see Figure ��
��

The number of points in A is 	k � 	 � n� Since n
�
� k � n� for every
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Figure ��
� Poset for n� k � � largest and n� k � � smallest values�

point pi � S all the points of A are among the k nearest x�neighbors of pi�
and the n� k � � farthest x�neighbors of pi can be only in A� �A��� For the
same reason� for a point pi � A� we will look for the farthest x�neighbors in
A�� and among all the points in A� whose x�coordinate is smaller than x�pi��
Symmetrically� if pi � A�� we will look for the farthest x�neighbors in A� and
among all the points in A�� whose x�coordinate is greater than x�pi�� Assume
pi � A� Then by a simple merge of A� and A�� we can �nd the n � k � �
points farthest from pi� If pi � A��A��� then we perform a similar merge on
A���A�� and the set containing all the points in A��A��� whose x�coordinate is
smaller �greater� than x�pi��

Returning to the two�dimensional problem� we store all the points of S
in an array T � We create separate posets for the x and y axes� We call them
the x�poset and the y�poset� Entry i for point pi in T will contain 	 pointers�
one to the leaf in the x�poset containing pi� and one to the leaf in the y�poset�
Our goal is to �nd for every point pi � S all the n� k� � farthest rectilinear
neighbors�

We create a set L of candidate neighbors with their L� distances� For
each point pi � S it is enough to store the entry i� �i�� in A� �A��� where
the search for the n � k farthest x�neighbors halted� Symmetrically for the
y�neighbors� There is a possibility that the same point appears in both the
set of farthest x�neighbors and the farthest y�neighbors of pi� We go over
all the n � k � � farthest y�neighbors of pi and check if their corresponding
x�coordinate is in the range ��� i�� and �i�� n� in the x�poset� If the answer is
�YES� then the same point� say pj � appears as the farthest neighbor of pi in
both axes� we choose the maximum distance of the two distances� Assume�
that the maximum distance was obtained on the x�axis� Then we put into
the set L the point pj with a �ag noting it x and skip in the x�poset and
y�poset to the next farthest points� At the end of the process L has l points�
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where �n� k � �� � l � 	�n � k � ��� We �nd the �n� k � ��th point in L
using the linear time selection algorithm of �	�� and thus solve the problem�

Considering the time complexity� Creating the posets takes O�n��n
i�k log i�

� O�n � �n � k� log n� time� The merge step over A�� A�� and the selection
take O�n � k� time per point of S� The required storage� O�n�� is used for
storing the posets� the auxiliary array T � L� and the indices� We conclude
by the following theorem�

Theorem �
�
� Given a set S of n points in the plane� we can �nd the the
n�k�� rectilinear farthest neighbors of all the points in S �or� equivalently�
k nearest rectilinear neighbors
 in O�n��n�k� log n�n�n�k�� � O��n�k�n�
time� using linear space�

Remark �
�
� This problem can be easily extended to d�dimensional space�
d � 
� Perform� for each axis i� 
 � i � d the same algorithm as for the y axis
in the previous algorithm� The set L has �n�k��� � l � d�n�k��� points�
and the �n � k � ��th point in L is determined by the selection algorithm�
So the total runtime and space remain unchanged for a constant dimension d�

Remark �
�
� The algorithm described above still works when k � n
� � First

we sort all the points according to their x and y�coordinates� Then for each
point we �nd the n�k�� farthest neighbors in both axes by the same algorithm
as before� create L and use the selection algorithm� In this case we add factor
of O�n log n� to the runtime of the algorithm�

��� Enumerating rectilinear distances �p��	

The problem is� Given a set S of n distinct points in the plane� let D �
fd�� d�� � � � � dNg� where N � n�n���

� and d� � d� � d� � � � � � dN denote the
rectilinear distances determined by all the pairs of points in S� For a given
positive integer k � N � we want to enumerate all the k pairs of points which
realize the k largest distances in D� For some values of k we do not need to
know the total order of the points �in x or y axis�� For example� if k � �
then the maximum and minimum values of the x and y coordinates su�ce�

As in the previous section we �rst show an algorithm that enumerates all
the k pairs of points which realize the k largest distances on the x axis�

Assume that the points of S are sorted by their x�coordinate in increasing
order and name them by this order� namely points �� 	� � � � � n� For d� we
know that the points � and n �according to the sorting� realize this distance�
We denote this pair by ��� n�� One can also think about the interval ��� n�
containing the n x�consecutive points� We will use the notation �i� j� to
denote both the pair of points i and j and the interval �i� j�� The next
distance� d�� can be realized by one of the candidate pairs ��� n� �� or �	� n��
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Depending on the pair that realized d�� the distance d� has also two candidate
pairs� It is possible that the number of candidate pairs in step i will grow�
if� for example� the pair ��� n� �� realized d� and the pair �	� n� realized d��
then the candidates for realizing d� are the pairs ��� n� 	�� �	� n� ��� �
� n��
We denote the set of candidate pairs for distance i by Li� This is the set of
pairs of points that can potentially realize di� after the pair that realized di��
is known� An interval ��� �� is nested in ��� �� if ��� �� � ��� ��� Throughout
the algorithm we will make sure that Li does not contain nested intervals�

We say that the candidate pair �i� j�� where i � j � � blocks �i� �� j� and
�i� j� �� because the x�distance de�ned by points i and j is greater than the
distances de�ned by the pairs �i � �� j� and �i� j � ���

Claim �
�
� Li di�ers from Li��� i � 	 by at most three candidate pairs
� one that is deleted from Li�� and at most two new pairs that are inserted
into Li�

Proof� For L� we have only candidate pair ��� n�� L� consists of the pairs
�	� n� and ��� n � ��� If� wlog� the pair ��� n � �� in L� realizes d�� then L�

will consist of �	� n� and ��� n � 	�� This is because �	� n� blocks �
� n� and
�	� n � ��� If the distance de�ned by the pair �	� n� is always smaller than
the distances de�ned by the pairs ��� n � j� for � � j � n � 	� then Li is
di�erent from Li�� by deleting ��� n � j� and inserting ��� n � j � ��� If for
some j� � � j � n � 	� the distance realized by the pair �	� n� is greater
than the distance realized by the pair ��� n� j�� then the candidate pairs for
the next stage are changed by inserting two candidate pairs �
� n�� �	� n� ��
and deleting �	� n� and ��� n � j� remains as a candidate as well� Thus� we
conclude that if at some stage i there is only one pair ��� �� in Li� then at
the next stage this pair is deleted� and two new pairs �� � �� �� and ��� �� ��
�if they exist� are inserted into Li
� as candidate pairs� If� at some stage i
there are several candidate pairs and one of them� e�g� ��� �� realizes di� then
for the next stage this pair is deleted and �� � �� �� and ��� � � �� �if exist�
are inserted into Li
� unless there is exists candidate pair in Li �except for
��� ��� that blocks them� Thus� we delete one candidate pair and insert at
most two candidate pairs�

We de�ne left and right neighbors of a pair ��� �� as follows� a left neighbor
of ��� �� is every pair �	� ����� 	 � �� A right neighbor of ��� �� is every pair
�� � �� 	�� 	 � ��

Throughout the updates of Li we do not re�insert a pair that had been
used before to realize a distance dj� j � i� Moreover� we avoid storing nested
intervals in Li� As we reach stage i � � we �nd which pair of Li�� realizes
di��� Assume ��� �� realizes di��� We update Li�� to get Li� We delete ��� ��
from Li��� If Li�� contained a left �right� neighbor of ��� �� then we do not
add the pair ��� �� �� ��� � �� ��� to Li� Otherwise we add these pairs to Li�
This ensures that Li does not contain nested intervals�



CHAPTER �� K�POINT PROBLEMS ��

Claim �
�
� If a pair ��� �� realizes di� then it will not be added as a candi�
date pair in Lj� for j � i�

Proof� We prove by induction� L� consists of only one interval ��� n��
L� contains two candidate pairs ��� n � �� and �	� n� that de�ne intervals
that overlap but are not nested� The pair ��� n� will not be inserted to
Lj� j � �� since we always decrease the interval� Assume we are at stage i�
By the induction hypothesis Li does not contain nested intervals� Assume
that ��� �� � Li realizes di� ��� �� can donate two new overlapping intervals
to Li
�� namely� �� � �� �� and ��� � � ��� We look at the neighbors of ��� ��
in Li� If there exists a left neighbor of ��� ��� then we do not add ��� ���� to
Li
� in our algorithm �same for the right neighbor�� Clearly� ��� �� will not
re�appear in the next stages because we only decrease the range of intervals
and since there is no nesting there is no interval that contains ��� ���

Corollary �
�
� jLij � i� i � �� � � � � n��� and jLij � n��� i � n� � � � � n�n���� �

Following corollary ��
�
 we can easily solve problem p�
 for one axis� Since
the number of candidates for each stage does not exceed n � �� it su�ces
to �nd the updates to the candidate list Li at each stage i� and then �nd
which pair realizes di� Naively we can carry out one stage in O�n� time�
therefore the k largest distances are found in O�kn� time and linear space�
This runtime can be improved by using tournament trees ���� ���� with n��
leaves� each storing a candidate pair� Initially we store only one candidate
pair� namely ��� n�� and the other leaves are empty� As we proceed to Li we
make at most three updates to the tree� The pair that realizes di is the winner
of the tournament� The update of the tournament tree for Li
� proceeds as
follows� If we do not need to add anything we just empty the leaf occupied
by the winner for di and continue to �nd the second best �the pair for di
��
in the tournament tree� If we add one pair� we replace the contents of the
leaf that contained the winner with the new pair and update the path to the
root to �nd the pair realizing the next distance� If we add two pairs� than
we put one pair instead of the winner�s leaf� another pair into the current
available leaf �we always have one due to corollary ��
�
� and update two
paths to the root to �nd the next winner� We take care of not inserting a
nested interval by maintaining an array U whose i�th entry is either empty or
contains a pointer to the leaf containing the pair �i� j� in the tournament tree
for some j� �Notice that there can be only one leaf containing i as the �rst
point� since there is no nesting�� The leaves of the tournament tree point to
their corresponding entries in U � and each non empty entry in U points also
to the closest non empty pairs in U � backwards and forward respectively�

An update of the tree takes O�log n� time� so the runtime of this algorithm
is improved from O�kn� to O�n � k log n��

Returning to the L� metric� We perform the algorithm for the x axis
simultaneously with the algorithm for the y axis� We �rst compute the winner
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in both trees and compare the two distances� the largest current x�distance
and the largest current y�distance� We choose the largest between them� We
check whether these two distances are de�ned by the same pair of points� If
they are� then we choose the largest distance� report the pair and proceed
with both the algorithms to the next step �namely� updating the tournament
trees� and �nding the next winners�� If they are not� then we check whether
the larger of the distances has been reported before �in O��� time we compute
the distance in the other axis and compare it to the distance we have in that
axis at this stage of the algorithm�� If it has been reported� we move to the
next step in this axis� and if not we report this pair of points and proceed to
the next stage�

Theorem �
�
� Given a set S of n points in the plane and a number k we
can enumerate the k largest rectilinear distances in nonincreasing order in
O�n � k log n� time� using only O�n� space�

Remark �
�
� If U is implemented as a linked list� and the tournament tree
is implemented as a heap then the space is O�min �k� n���

The second case of problem p�
 is� enumerate the k smallest rectilinear
distances in increasing order� The idea is similar to the algorithm above�
We �rst show an algorithm that enumerates all the k pairs of points which
realize the k smallest distances on the x axis� We assume that the points
of S are sorted by their x�coordinate� in increasing order� A candidate pair
for realizing d� is either one of the neighboring pairs ��� � � ��� for � �
�� � � � � n��� We choose the pair that realizes the smallest distance by creating
a tournament tree of pairs� At the following step we perform similar updates
to the tournament tree� namely� delete the pair that realized d� and insert
at most two new candidate pairs� avoiding nested pairs� The algorithm that
we apply here is almost identical to the previous one� except that here the
distances increase� and we have to initially sort the coordinates of the points�

Theorem �
�

 Given a set S of n points in the plane and a number k we
can enumerate the k smallest rectilinear distances in nondecreasing order in
O�n log n � k log k� time� using only O�n� space�

Remark �
�
� These enumerating problems can be extended to arbitrary�
but constant� d�dimensional space� d � 
� Runtime and space are changed by
a multiplicative d factor �

��� Reporting � distances �p��	

In a recent paper Dickerson and Eppstein ���� considered the following prob�
lem�
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p��� Given a set S of n distinct points in d�dimensional space� d � 	� and a
distance �� For each point p in S report all pairs of points �p� q� with q in S
such that the distance from p to q is less than or equal to ��

This problem and the problem of enumerating the k smallest distances
in nondecreasing order are closely related� If � of this problem is the unique
kth largest distance of the enumerating problem� then the two solutions are
identical� The paper ���� solve Problem p�� in O�n log n�k� time and O�n�
space algorithm� where k is the number of distances not greater than �� and
the distances are not ordered� Our algorithm reports these distances sorted
in the same time and space complexity for L��

Another variant of this problem� that has not been considered before� is�
Find all pairs of points in S separated by a L� distance � or more�

For both variants of the above problem� if we want the distances sorted�
we can use our algorithms from the previous section to get O�n � k log n�
algorithm with linear space for the �rst vesrion� where k is the number of
distances not greater than �� and O�n log n � k log k� time algorithm with
linear space for the second version� The only change is that we compare
the output distances with �� Notice that if we use the algorithm of ���� for
sorting the distances then we would end up spending O�n � k� space�

We want to solve �rst the second version of the problem� The technique
is similar to the one we used in solving Problem p��� We �rst describe an
algorithm for the x axis�

Throughout the algorithm we will maintain a poset �which is initially
empty� that will contain the largest and the smallest x values of the points
that have been encountered in the algorithm �as will be seen below�� Pick an
arbitrary point p� � S� The farthest x�neighbor of p� can be the point with
the smallest �or largest� x coordinate� The smallest point is added to the set
sx and the largest to the set gx� After we �nd which point is the farthest
x�neighbor of p� �say it is pi and assume wlog pi � sx�� we check whether
jx�p�� � x�pi�j � �� If jx�p�� � x�pi�j � �� then we know that there is no
point q � S� such that jx�p�� � x�q�j � �� If jx�p��� x�pi�j � � we continue
to �nd the next farthest x�neighbor of p� and update sx and gx accordingly�
It can either be a point with x�coordinate adjacent to x�pi� in sx or the next
farthest point in gx� The algorithm for p� ends when on both ends of sx and
gx the distance is smaller than �� We end up with a poset Px� where sx and
gx are sorted in x order and the rest of the points in S � sx � gx are not
sorted� Similarly� we work on the y distance for p�� and create Py� sy and gy�

In order to �nd the � L� distances for p� we go over Px and Py � If the
same point� pj� appears either in x or in y sets� then we can output the pair
�p�� pj� and proceed to the next points till we got all the points whose distance
from p� is not smaller than �� We repeat the process with p� � S� As for
p� the x�farthest point is the point with the largest or smallest x�coordinate�
but this point is already in gx or sx� So we go over Px as was created for
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p�� We might add points to gx� sx� if all the distances jp�� qj � �� q � sx or
q � gx or not� Now we use the sets sx� gx� sy� gy computed before and report
the appropriate pairs that have the required distance �not smaller than ���
There are two possibilities� ��� no points are added to sx �or sy� gx� gy�� or �	�
some are added� The number of elements in sx�gx� sy� gy� does not decrease�

Considering the time complexity� The worst case is when we have to know
the total x�order and y�order of all the points in S� The worst case runtime
is O�n log n � k� and the space is O�n��

The algorithm for the �rst version of the problem is very similar to the
above algorithm� The main di�erence is that instead of starting at the far�
thest neighbors and constructing Px�Py� incrementally� we now sort the x�y�
coordinates of the points of S �so we do not need the posets�� For each point
pi we go over its x �and y� nearest neighbors in left �up� and right �down� di�
rections and report the distances �similar to algorithm for the second version�
as long as they are less than ��

Theorem �
�
� Given a set S of n points in the plane and a distance � � �
we can report all the pairs of points of S which are of rectilinear distance �
or more �less
 in O�n log n � k� time� using only O�n� space�

Note that in the theorem above k is the number of L� distances for the case
of �more than ��� and k is the number of distances measured along x and y
axes for the case of �less than ���

��
 Rectangular rings �p��	

The problem is� Given a set S of n points in the plane� �nd the smallest
rectangular axis�aligned ring �constrained or non�constrained� that contains
k� k � n

�
points of S� As a measure we take the width �for constrained ring�

or area �for non�constrained ring� of the ring�

����� Constrained rectangular ring

This problem can be translated to the following one�
For every point pi � S �nd the n � k nearest and n � k farthest rectilinear
�under L� metric� neighbors� We can use our algorithm for problem p��

from Section ��	 to �nd the n� k � � farthest rectilinear neighbors for each
point of S� and the algorithm of ���� to �nd the n� k� � nearest neighbors�
Given the set of the n � k � � nearest neighbors Ni of pi � S and the set
of the n� k � � farthest neighbors Fi� we sort Ni and Fi according to their
L� distance from pi� There are exactly n � k � � rings centered in pi and
containing k points� The rings j � �� � � � � n � k � � are determined by the
j�th points in the sorted Ni and Fi respectively� where the j�th point from
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Fi determines the outer rectangle and the j�th point from Ni determines the
inner rectangle�

The runtime of the algorithm in ����� as well as for our algorithm for
Problem p�� is O�n � k� for one point pi � S �after O�n log n� time for
preprocessing�� We spend O��n � k� log �n� k�� time for sorting Ni and
Fi for each point pi � S� and then go over the corresponding rectangles�
Therefore�

Theorem �
�
� Given a set S of n points in the plane� we can �nd the
smallest rectangular axis�aligned constrained ring that contains k� k � n

�

points of S in O�n log n � n�n� k� log �n� k�� time� using O�n� space�

Remark �
�
� This problem can be easily extended to arbitrary� but con�
stant� d�dimension space� d � 
� the runtime changes by multiplicative d
factor�

����� Non�constrained rectangular ring

We �nd the smallest rectangular ring that contains k� k � n
� of given n

points by �rst computing all the rectangles which contain k � p points �p �
�� � � � � n � k�� Each such rectangle de�nes a center c for which we �nd the
largest rectangle centered at c that contains p points� In ���� an algorithm
for �nding the smallest axis�aligned rectangle that contains k� k � n

� points
is presented� The outline of algorithm from ���� is as follows� initially �x the
leftmost point of the rectangle to be the leftmost point of S� At the next
stage the leftmost point of the rectangle is �xed to be the second left point
of S� etc� Within one stage� of a �xed leftmost rectangle point� r� we pick
the rightmost point of the rectangle to be the q�th x�consecutive point of S�
for q � k � r � �� � � � � n� For �xed r and q the x boundaries of the rectangle
are �xed� and we go over a small number of possibilities to choose the upper
and lower boundaries of the rectangle so that it will enclose k points� This
algorithm runs in time O�n � �n � k���� We use it for computing all the
rectangles which contain k � p points �p � �� � � � � n � k�� We denote the
external rectangle by R�

We modify the problem of �nding the smallest rectangle with a given
center� that contains p points� to �nd the largest rectangle with a given
center� that contains p points� Notice that the external rectangle R de�nes
the range of boundaries for the internal rectangle� Our algorithm goes over
all the possible rectangles with the given center that contain p points and
chooses the largest among them as follows� Let Q be an inner rectangle that
contains p points� We extend its boundaries until it almost meets� but does
not contain another point of S� within the boundaries of R�

The naive approach for �nding the largest rectangle with a given center
that contains p points is to go over all pairs of points that together with the
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c

Figure ���� Hyperbolas de�ne the locus of rectangles with given area

center c de�ne a rectangle� check whether this rectangle contains p points
and �nd the largest rectangle among those that do� The total running time
is O�n���

Another approach to this problem is to de�ne the following decision prob�
lem� For a given area A does there exist a rectangle centered at c that covers
exactly p points and whose area is A� For the decision algorithm we sort the
points of S according to their x and y coordinates respectively� Four hyper�
bolas de�ne the locus of all rectangles with a given area A� centered at c �see
Figure ����� Observe the halfspace de�ned by the hyperbola H that contains
the origin� We consider all the points of S which are inside the intersection
of the four halfspaces that correspond to the four hyperbolas� Denote this
set by S� � S� Each point s � S� de�nes two rectangles with center c and the
given area� where s either determines the width of the rectangle� or its height�
For the time being we look at the rectangle whose width is determined by s�
Let s be the point that determines the widest rectangle Q and assume that
s is to the left of c�

We shrink the width of the rectangle� keeping its corners in the corre�
sponding hyperbolas until an event happens� �The height of a rectangle grows
when the width shrinks� An event occurs when a point is added or deleted
from the rectangle during the width shrinking� We check if the newly ob�
tained rectangle contains p points� If the obtained rectangle does contain p
points� we are done otherwise we continue to shrink the rectangle until the
next event� We perform the same actions for the height as well�

For speeding up the running time of this algorithm we de�ne four subsets
U�D�R�L of S � corresponding to the halfplanes that bound Q� R is the set
of all the points of S � contained in the halfplane to the right of the left side of
Q and are within the interior of the hyperbolas� L �U�D� is the set of points
to the left �up� down� of the right �upper� lower� side of the rectangle Q� We
de�ne pr�pl� to be the point x�closest to Q in R�L� and pu�pd� to be the point
y�closest to Q in U�D�� Assume that the number of points contained in Q is
r and we are shrinking Q in x direction until the next event� Assume that the
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x�closest neighbor of pr�pl� in R�L� is phr �phl � and the y�closest neighbor of
pu�pd� in U�D� is pvu�pvd�� Thus� our event is when one of phr � p

h
l or pvu� p

v
d enters

or exists the rectangle Q� If Q contained r points and the next event is a
point from R or L� then the new rectangle will contain r�� points� otherwise
r � �� We update pr� pl� pu� pd �and also the subsets U�D�R�L�� When we
reach a rectangle with p points we �rst extend its boundaries with R until it
almost touches the p � ��th point and then we move to the next step �with
the same center�� During the process for this center we keep the largest area
inner rectangle encountered so far� The algorithm for solving the decision
problem works in time O�n� after preprocessing of O�n log n�� because we
can carry each step in constant time� except for the �rst step where we have
to compute the points that lie in the interior of the hyperbolas�

In order to solve the optimization problem� we apply the optimization
technique of Frederickson and Johnson ����� We de�ne the matrix of distances
as follows� one dimension of the matrix contains the sorted x�distances from
the center �multiplied by 	�� and the other dimension contains the sorted y�
distances from the center �multiplied by 	�� The matrix values are potential
area values of the rectangle� We perform a binary search on the matrix to
�nd the optimal area� Since the rows and columns of the matrix are sorted�
we can use the linear time selection algorithm of ���� to �nd the largest axis�
parallel rectangle centered at c and containing p points in O�n log n� time�

The analysis follows this of ����� There are O��n�k��� external rectangles�
and for each of them we apply an O�n log n� algorithm for �nding the largest
internal rectangle� So� the total runtime is O�n�n � k�� log n� with linear
space� We conclude by the following theorem�

Theorem �
�
� Given a set S of n points in the plane� we can �nd the
smallest area rectangular axis�aligned ring that contains k� k � n

� points of S
in O�n�n � k�� log n� time� using O�n� space�

Remark �
�
� This problem can be extended to 
�dimension space� Using
the algorithm of ���� and technique of ���� for 
�dimension space we obtain
algorithm with runtime O�n��n� k�� log n� time�

��� Constrained circular ring �p�� and p��	

The problem is� Given a set S of n points� �nd the smallest constrained
circular ring �or a sector of a constrained circular ring� that contains k points
�k � n

� � of S� We �rst describe an algorithm that �nds the smallest width
circular ring containing k points �k � n

� �� and centered at some point pi � S�
We need to know the sorted order of the n� k closest points to pi and n� k
farthest points from pi and then proceed as in the algorithm for �nding a
constrained rectangular ring� The time for computing the n� k closest and
n� k farthest points for pi is O�n� �n� k� log n�� Thus we can conclude by
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Theorem �


� Given a set S of n points in the plane� we can �nd the
smallest width constrained ring that contains k� k � n

�
points of S in O�n� �

n�n� k� log n�� time� using O�n� space�

Now we describe how to �nd minimal area sector of a constrained ring
that contains k� k � n

�
� points� We �rst describe an algorithm that �nds

the smallest area sector of a ring containing k points �k � n
�
� centered at

point O��� ��� We start with �nding for O��� �� the ordering of S points with
respect to the polar angle around the origin� We use the algorithm in ����
�and also section above� to solve our problem in the following way� apply the
algorithm in ���� for a smallest axis�aligned rectangle with k points using a
polar coordinate system ��� ��� This yields the smallest area sector of a ring
centered at the origin and containing k points of S� We proceed as in the
algorithm of ����� The running time of this algorithm is O�n�k�n�k���� We
can use this ring�algorithm as a subroutine to solve the following problem�
Find the smallest area sector of a constrained ring �centered on an input
point� containing k points� We can perform an angular sort of all the points
in O�n�� time and space �
�� and applying this algorithm to each point we
get O�n� � nk�n� k��� time�

Theorem �


� Given a set S of n points in the plane� we can �nd the
smallest area sector of a constrained ring that contains k points �k � n

� �
points of S in O�n� � nk�n� k��� time using O�n�� space�

��� Query rectangle �p��	

The problem is� Given a set S of n points in the plane and a number k
�n� � k � n� we want to preprocess the points in order to answer e�ciently
whether k or more points are enclosed by a query rectangle� The naive
approach to this problem is to build a range tree ���� on the set S� When
a query rectangle R is given� we can answer how many points are inside
of R in O�log n� time using the fractional cascading technique of �
	�� The
preprocessing time and space is O�n log n�� Notice that we did not use the
parameter k at all� In order to improve the preprocessing time and space
and also the query time we use the following observation�

Observation �
�
� In order for the query rectangle to contain at least k
points� the vertical strip de�ned by the vertical sides l�� l� of the query rectan�
gle R must be located between the n�k smallest and n�k largest x values of
the points of S and the horizontal strip de�ned by the horizontal sides l�� l�
of the query rectangle R must be located between the n�k smallest and n�k
largest y values of the points of S�

Using this observation we proceed as follows� First we evaluate the small�
est and the largest n� k x values of the points of S �denote by Sx� and the
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Figure ���� The strips enclose a query rectangle R�

smallest and the largest n � k y values of the points of S �denote by Sy��
Next� by a binary search� we �nd how many points are in the left halfplane
of l�� in the right halfplane of l�� in the upper halpfplane of l� and in the
lower halp�ane of l� �See Figure �����

Notice that we count twice the points in the regions Ri� � � i � � in Figure
���� We can compute how many points are in these regions by building� at
the beginning of the algorithm� a range search tree but only for the points
with either x�coordinate in Sx or y�coordinate in Sy� We have O�n� k� such
points� Thus the construction of the tree takes O��n � k� log �n� k�� time
with O��n � k� log �n� k�� space� Now we can compute how many points
are in the four query rectangles that correspond to the regions Ri� � � i � �
in the Figure ���� It follows that the query time for such a rectangle is
O�log �n� k��� Thus�

Theorem �
�
� Given a set S of n points in the plane and a number k
�n
� � k � n�� we can preprocess the points of S in O��n�k� log �n � k�� time

with O��n� k� log �n� k�� space to answer in O�log �n� k�� time whether k
or more points are enclosed by a query rectangle�
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