

Covering Point Sets and Accompanying Problems

PhD Thesis

Michael Segal

Department of Mathematics and Computer Science

Ben-Gurion University

Beer-Sheva 84105, Israel

segal@cs.bgu.ac.il

1999

i

Acknowledgements

This thesis would not have been the same without the help of several peo�
ples whose support I gratefully acknowledge� First of all� I would like to
thank my advisor Klara Kedem for her patience� guidance� teaching and en�
couragement throughout my term at Ben�Gurion University� Her advice and
constant suggestions� on and o� the �eld of research made it all possible�
Special thanks go to Matya Katz with whom I had so many helpful discus�
sions� For his support and motivation� and for the fun and excitement of
doing research together I shall be grateful�
Among those to whom I am deeply indebted are Yuri Rabinovich� for being
my roomate� good friend and teaching me to reason about algorithms� Avra�
ham Melkman� who has awakened my interest for partially ordered sets� Dani
Berend� for widening my horizons� for insights that led to sharper arguments
and better exposition� Shlomi Dolev� for helpfull discussions at several times
when I found myself stuck�
Cooperation with Sergei Bespamyatnikh� Frank Nielsen� both via email and
in real life has been a pleasure for me�
My cordial thanks go out to Micha Sharir� G�unter Rote� J�org Sack� Arie
Tamir for their comments and suggestions�
I would especially like to thank the members of the Mathematics and Com�
puter Science Department who have initiated me into the computer world�
and the administrative sta� who supported my administrative tasks�
My parents and grandparents have encouraged and supported me during
writing this thesis� Thanks for the numerous opportunities that they gave
me� their love� support and a lot more�
Above all� I thank Alla� my best discovery in my research� Thanks for mak�
ing our life even more exciting than the research hours� I would never have
managed to �nish this work without your care and support�

Contents

� Introduction �

��� The methodology of the research � � � � � � � � � � � � � � � � 	

��	 The parametric search technique � � � � � � � � � � � � � � � � �

��
 Selection and optimization via sorted matrices� � � � � � � � � � �

��� Problems solved in this thesis and their background � � � � � � �

����� Piercing Problems �

�������� Euclidean p�center � � � � � � � � � � � � � � � � � �

������	� Rectilinear p�center � � � � � � � � � � � � � � � �

������
� Euclidean p�line�center � � � � � � � � � � � � � � � �

�������� Two�covering �

�������� Center problems � � � � � � � � � � � � � � � � � � ��

����	 Facility Location Problems � � � � � � � � � � � � � � � � ��

����	��� Undesirable location � � � � � � � � � � � � � � � � ��

����	�	� Desirable location � � � � � � � � � � � � � � � � � ��

����	�
� Facilities in region � � � � � � � � � � � � � � � � � �	

����
 k�point Problems �	

����
��� k�point rectangle � � � � � � � � � � � � � � � � � � �	

����
�	� k�point circle �

����
�
� Selecting distances � � � � � � � � � � � � � � � � � �

����
��� Circle �tting ��

� Piercing Problems ��

	�� Rectilinear piercing �p	� ��

	���� Rectilinear ��piercing ��

	���	 Rectilinear 	� and
�piercing � � � � � � � � � � � � � � � 	�

	���
 Rectilinear ��piercing � � � � � � � � � � � � � � � � � � � 		

	���� Rectilinear ��piercing � � � � � � � � � � � � � � � � � � � 	

	���� Extending to high dimensional space and to p � � � � � 	�

	�	 Two�Covering �p��
�

ii

CONTENTS iii

	�	�� The algorithm for the plane � � � � � � � � � � � � � � �
�

	�	�	 The algorithm in higher dimensions � � � � � � � � � � �
	

	�
 Center Problems �
�

	�
�� Two constrained axis�parallel squares �p�� � � � � � � �
�

	�
�	 Two constrained parallel squares �p�� � � � � � � � � � � �

	�
�
 Two constrained general squares �p� � � � � � � � � � � ��

� Facility Location ��

�� Undesirable Facility Location �p�� � � � � � � � � � � � � � � � � ��

���� The sequential algorithm � � � � � � � � � � � � � � � � � ��

���	 The parallel version and the optimization � � � � � � � � ��

���
 Another approach ��

�	 Desirable Facility Location Problem �p�� � discrete case � � � � �	

�	�� The discrete min�sum problem for k � n � � � � � � � � �

�	�	 The general case ��

�
 Desirable Facility Location Problem �p�� � continuous case � � ��

�� Facilities in Regions �p��� ��

���� The Reception Problem � � � � � � � � � � � � � � � � � �

���	 Obnoxious Facilities � � � � � � � � � � � � � � � � � � �

� k�point Problems �	

��� Rectangle with k points inside �p��� � � � � � � � � � � � � � � ��

����� The Algorithm ��

����	 Slight improvements of other algorithms � � � � � � � � ��

��	 Rectilinear nearest neighbors �p��� � � � � � � � � � � � � � � � ��

��
 Enumerating rectilinear distances �p��� � � � � � � � � � � � � � �

��� Reporting � distances �p�� ��

��� Rectangular rings �p��� �	

����� Constrained rectangular ring � � � � � � � � � � � � � � � �	

����	 Non�constrained rectangular ring � � � � � � � � � � � � �

��� Constrained circular ring �p�� and p	�� � � � � � � � � � � � � � ��

�� Query rectangle �p�	� ��

References 	�

List of Figures

	�� �a� There are
 rectangles� and q is a query point� All intervals
containing q are in the shaded regions� Intervals appearing in
the shaded regions of both �b� and �c� correspond to rectangles
that contain P ��

	�	 Moving the apex of C� from the apex of C� towards the apex
of C�� 	

	�
 Critical events that determine candidate square sizes� Cases
�i� � �iv� involve a single square� and case �v� two squares� � � ��

	�� Slope ordering for the comparison of �p�� p�� and �p�� p��� �a�
strips s� and s� are parallel for some d� �b� the ordering of the
slopes at d�� �c� d as a function of � � � � � � � � � � � � � � � � �	

	�� The functions zi and the lowest point ���� z�� on their upper
envelope ��

�� �a� The regions Qi and �b� Qi�q� � � � � � � � � � � � � � � � � ��

�	 Claim 	�
�� is false for k �
 � � � � � � � � � � � � � � � � � � �

��� A poset ��

��	 An infeasible rectangle ��

��
 Poset for n� k � � largest and n� k � � smallest values� � � � ��

��� Hyperbolas de�ne the locus of rectangles with given area � � � ��

��� The strips enclose a query rectangle R� � � � � � � � � � � � � � �

iv

List of Tables

��� Summary of best previous results and our results� � � � � � � � �

v

Chapter �

Introduction

The objective of computational geometry is to design e�cient algorithms for
problems de�ned on sets of geometric data� The e�ciency of the algorithm
is measured in terms of its time and space complexity� One of the interesting
and extensively researched subjects in computational geometry is geometric
optimization� which has applications in transportation� station placement�
facility location� statistics and other areas� During the years many opti�
mization techniques have been developed such as� parametric searching by
Megiddo ���� matrix searching by Frederickson and Johnson ����� expander
graphs by Katz and Sharir �	�� randomized optimization technique by Chan
�	�� and others�

Covering problems fall into the area of geometric optimization� Given a
set S of n points in a metric space� and given an object Q� a covering problem
is de�ned as ��nd the smallest object�s� congruent to Q whose union contains
a subset of S with given properties�� Although the common theme of most
of the geometric optimization problems� particularly for covering problems�
is that they can be solved using parametric searching� matrix searching� or
related optimization techniques� each of them requires a problem�speci�c�
and often fairly sophisticated� approach� The goal of this research is to �nd
e�cient algorithms for solving various covering problems and other problems
related to them� For achieving our goal we use a battery of techniques� some
of which are standard and will be reviewed below� We develop a new frame�
work and a new dynamic optimization technique� that will be described in
Chapters 	 and �� respectively�

The problems that we deal with in this thesis can be divided into the
following three groups�

The �rst group� G�� is related to piercing problems which are� e�g�� �Given
a set R of n objects in metric space and some positive integer p� �nd whether
there exists a set P of p points such that each member of R is intersected by
at least one point of P � The members of P are called piercing points�

We present several algorithms for �xed values of p and rectangles or

�

CHAPTER �� INTRODUCTION 	

squares serving as objects� Actually� the problems in G� group are dual
to the following kind of problems� �Given a set S of n points in metric space�
an object Q of some �xed size r and some integer p� �nd p objects congruent
to Q whose union contains S��

The second group� G�� belongs to the class of the classical facility location
problems and can be described as follows� �Given a set S of n sites �points�
in a region contained in a metric space �L�� L� or L� metric�� position a
point �facility�� or a number of facilities� in the region such that the distance
between the facility and the sites is minimized or maximized�� This type of
problems arises when we are asked� eg�� to position supermarkets� garbage
dumps� postal agences and so on for a bunch of consumers� There is a
strong connection between this group of problems and the group G�� This
connection together with a new data structure enable us to provide e�cient
algorithms for solving several facility location problems�

The third group� G�� is related to the following kind of problems� �Given
a set S of n points in metric space and some positive integer k �which is
usually between � and n� �nd some property of the set S that depends
on k�� For example� �nd the smallest axis�parallel rectangle that contains
exactly k points of S� �nd the k farthest neighbours for each point of S�
enumerate the k smallest or largest distances de�ned by points of S and so
on� We call these problems k�point problems� For this kind of problems we
have developed a new framework that helps in �nding e�cient algorithms for
L� and L� metrics�

The signi�cance of this thesis is developing a new approach for tack�
ling variants of these problems by connecting the three groups of problems
and thus getting e�cient algorithms� meanwhile coming up with and apply�
ing new frameworks and data structures� discovering a new combinatorial
structure of the problems and a new variant on sorted matrix optimization
technique�

��� The methodology of the research

Most of the algorithms that solve covering problems e�ciently follow a gen�
eral pattern� They solve a �xed size decision problem in which� given a value
d of the size of the geometric object concerned� they determine whether S�
or a subset of S� can be covered by objects of this size� The answer to the
decision problem is Y es or No� An analysis of the optimal con�guration
generally leads to a set � of candidate values among which the optimal size
is found� The set � is called the feasible solution space� The �nal stage con�
sists of �nding the optimal size d�� At this stage a search over the set � is
accomplished by applying a decision algorithm which yields the solution to
the whole problem� Unfortunately� it turns out that in most of the covering

CHAPTER �� INTRODUCTION

problems the size of � is too large to allow constructing it explicitly without
loss of e�ciency of the algorithm� Therefore one has to apply an implicit
search technique for locating the optimal solution� Below we review some
previous techniques that allow us to solve e�ciently numerous optimization
problems that appear in the groups G� and G�� As was mentioned above�
we were able to �nd a new framework� based on posets� that helps in �nding
e�cient algorithms the group G� problems� This technique will be explained
in Chapter ��

��� The parametric search technique

The parametric search technique has been proposed by Megiddo ��� for solv�
ing e�ciently a variety of optimization problems� The technique has recently
been successfully applied to a number of geometric selection and optimization
problems� e�g�� ��� �� ���
��
�� ���� We want to emphasize that�

� Parametric search usually adds a factor of log� n to the complexity of
the decision algorithm�

� Parametric searching requires parallelization of the decision algorithm
which in some cases is not easy to implement�

The basic idea behind this method is as follows� Suppose we have a deci�
sion problem P�n� d� that receives as input n data items and a real parameter
d� we need to �nd the minimal value d� of the parameter d such that P�n� d�
satis�es certain properties� Furthermore� assume that these properties de�
pend on d monotonically� that is� for every real d if P�n� d� � Y es� then
P�n� d�� � Y es for d� � d �and� if P�n� d� � No then P�n� d�� � No for
d� � d�� In particular� there exists a real number d� such that

P�n� d� �
�
Y es if d � d�

No if d � d�

Assume we have e�cient sequential and parallel algorithms As and Ap�
respectively� for solving P�n� d� for any given d� As a result� As and Ap can
also determine whether the given d is equal to� smaller than� or larger than
d�� Assume that the �ow of execution of Ap depends on comparisons� each of
which involves testing the sign of a low�degree polynomial in d and in the in�
put items� Megiddo�s technique runs the algorithm Ap �generically�� without
specifying the value of the parameter d� with the intention of simulating its
execution at the unknown d�� If Ap uses P processors and runs in Tp parallel
steps� then each such step involves at most P independent comparisons� that
is� each can be carried out without having to know the outcome of the others�
One can compute the roots fd�� d�� ��� dO�P �g of the P polynomials associated
with these comparisons� and run an implicit binary search sequentially to

CHAPTER �� INTRODUCTION �

�nd among them the interval which contains d� using the serial algorithm
As as an oracle� Once the location of d� among the roots fd�� d�� ��� dO�P �g
is known� we can resolve all the P comparisons at d� and thus resume one
parallel step of the algorithm Ap� Each such step constrains the range where
d� can lie� and we thus obtain a nested sequence of progressively smaller
intervals� each known to contain d�� until we either hit d� as one of the roots
being tested� or terminate with a �nal interval I� Then� by construction� the
outcome of Ap will be the same for any d � I� Since we seek the smallest
d that satis�es certain properties of the problem P�n� d�� it follows that d�

must be the left endpoint of I� Assume that the runtime of the algorithm As

is Ts� Then the parametric search requires O�P � Ts logP � time per parallel
step of the algorithm Ap� for a total of O�PTp�TsTp logP � time� Notice that�
since Ap is simulated sequentially� we can assume the weak parallel model of
computation of Valiant ������

Parametric search is a very general technique� and the cost of this general�
ity is the requirement of an e�cient parallelization of the decision algorithm�

��� Selection and optimization via sorted ma�

trices�

Another approach to parametric search has been proposed by Frederickson
and Johnson ����� It is based on constructing and searching in monotone
matrices� We give a brief explanation of this approach� Consider a set S of
arbitrary elements� Selection in the set S determines� for a given rank k� an
element that is kth in some total ordering of S� The complexity of selection
in S has been shown to be proportional to the cardinality of the set �	���
Fredrickson and Johnson ���� considered selection in a set of sorted matrices�
An n � m matrix M is a sorted matrix if each row and each colum of M
is in nondecreasing order� Fredrickson and Johnson have demonstrated that
selection in a set of sorted matrices� that together represent the set S� can
be done in time sublinear in the size of S� They have also observed that�
given certain constraints on the set S� one can construct implicitly the set
of sorted matrices representing S� For instance� the sums of the pairs in a
Cartesian product of two input sets� denoted by X�Y � can be represented by
means of the sorted vectors X and Y � In ���� ��� ���� a number of selection
and optimization problems on trees were considered� For example� in ����
an O�n log n� time algorithm for selecting the kth longest path in a tree has
been presented�

We illustrate Frederickson and Johnson optimization technique on an
example of a single sorted matrix� The main ideas of this technique can be
easily extended to a collection of sorted matrices�

Theorem �
�
� ���� Let M be a sorted matrix of dimension n �m� where

CHAPTER �� INTRODUCTION �

n � m� Let Td be the runtime of a decision algorithm which� given a value
d� answers 	yes
 or 	no
� Assume that the answers are monotone with respect
to d� Then the total time needed to �nd the least element in M � for which
the answer is 	yes
� is O�Td log n � n��

The algorithm performs a sequence of iterations which includes matrices of
smaller size in each iteration� The matrices in any iteration are divided into
submatrices called cells� In each iteration� two representative elements are
chosen from each cell� the smallest value and the largest value� These repre�
sentative elements are used to discard certain cells from further consideration�
For ease of exposition it is assumed that M is a square matrix� whose dimen�
sion is a power of 	 �if not� we can extend the size of matrix�� Hence every
cell will be of size which is a power of �� After a number of iterations all cells
consist of single elements� Continue the iterations as before� except without
cell division� until a single element remains�

The structure of the matrix induces a partition of the set of remaining
cells into subsets called chains� Two cells belong to the same chain if and
only if they are in the same diagonal of the cells obtained from the original
matrix M by partitioning it into submatrices of the same dimensions as the
cells� Let bi be the ratio of the dimension of matrix M to the current cell
dimension at the end of the ith iteration� Clearly� bi � 	i� The maximum
possible number of chains after splitting cells on the ith iteration is 	bi � ��
Interesting that the number of cells does not increase too quickly as the
iterations progress�

Lemma �
�
� ���� Let Bi � �bi��� For all iterations in which the cells are
divided� the number of remaining cells after the ith iteration is not greater
than Bi�

From the preceding lemma� the number of cells remaining at the end of
iteration i�� is no more than Bi��� Hence no more than O�Bi� work is done
in dividing and selecting among cells on the ith iteration� Thus the total work
for dividing and selecting cells is O��i�Bi�� � O��i�bi�� � O�n�� Iterations
with no cell division will begin when there are O�n� elements� The number
of remaining elements will decrease by a factor of 	 each time� yielding O�n�
time for the iterations� ultimately giving a least feasible element � the entry
in matrix with the positive answer� For feasibility testing� O�log n� iterations
with cell division are performed� and O�log n� iterations without cell division
�cells with one element� are performed� Hence all feasibility testing requires
O�Td log n� time� yielding the total O�Td log n�n� runtime of the algorithm�

CHAPTER �� INTRODUCTION �

��� Problems solved in this thesis and their

background

In covering problems� one looks for an optimal covering of a given set S of n
points in the plane by a number of congruent geometric objects � e�g�� by a
disk� by a strip� by two strips� by two disks� by two squares� etc�� or in d�space
by d�dimensional congruent objects� The optimality is measured with respect
to some size feature of the geometric object� for example� the radius of the
covering disk� the width of the strip or the size of the square� We classi�ed
the covering problems we deal with in this thesis into one of the following�
piercing problems� facility location problems and k�point problems� In this
thesis we enumerate twenty covering problems and denote them by p��p���
For many of these problems we present our algorithms and improvements�

����� Piercing Problems

In the following we will mention some previous work related to piercing prob�
lems and will present our results�

Euclidean p�center

p�� Given a set S of n demand points in d�dimensional space� �nd a set
P of p supply points so that the maximum Euclidean distance between a
demand point and its nearest supply point in P is minimized� It can be
solved e�ciently� when p is small� using the parametric search technique� The
decision problem in this case is to determine� for a given radius r� whether S
can be covered by the union of p balls of radius r� In some applications� P
is required to be a subset of S� in which case the problem is refered to as the
discrete �or constrained� p�center problem� Note that Problem p� belongs to
G� while its decision variant belongs to G��

For the planar case Hwang et al� ��	� gave an O�nO�
p
p�� algorithm for the

p�center problem� Drezner ��	� presented some heuristics for this problem�
An algorithm with the same runtime was presented in Hwang et al� ��
� for
the discrete p�center problem�

Euclidean ��center

The ��center problem is to �nd the smallest ball enclosing S� The decision
procedure for the ��center problem is thus to determine whether S can be
covered by a ball of radius r� In other words� we ask whether the set of n
balls of radius r centered at the points of S has a non�empty intersection� i�e�
is ��pierceable� For d � 	� the decision problem can be solved in O�log n�
parallel steps using O�n� processors� e�g�� by testing whether the intersection
of the disks of radius r centered at the points of S is nonempty� This yields

CHAPTER �� INTRODUCTION

an O�n log� n��time algorithm for the planar Euclidean ��center problem�
Using the prune�and�search paradigm� one can solve the ��center problem in
linear time ����� and this approach extends to higher dimensions� where� for
any �xed d� the running time is O�dO�d�n� ����� Chan �	�� solved the three
dimensional Euclidean discrete ��center problem in O�n log n� expected time
using a randomized optimization technique�

Euclidean ��center

In this problem we want to cover a set S of n points in d�dimensional space
by two balls of smallest possible common radius� Agarwal and Sharir �� gave
an O�n� log n��time algorithm for determining whether S can be covered by
two balls of radius r� Plugging this algorithm into the parametric search
machinery� one obtains an O�n� log� n��time algorithm for the Euclidean 	�
center problem� The runtime of the decision algorithm was improved by
Hershberger ���� to O�n��� It has been used in the algorithm of by Jaromczyk
and Kowaluk ����� which runs in O�n� log n� time�

A major progress in this problem was recently made by Sharir ���� who
gave an O�n log� n��time algorithm� by combining the parametric search tech�
nique with several additional techniques� including a variant of the matrix
search algorithm of Frederickson and Johnson ����� Eppstein ���� has sim�
pli�ed Sharir�s algorithm� using randomization and di�erent data structures�
and obtained an improved solution� whose expected runtime is O�n log� n��

Recently Agarwal et al� ��	� have developed an O�n
�
� log	 n��time algo�

rithm for the discrete 	�center problem�

Rectilinear p�center

In this problem the metric is L�� The decision problem in this case is as
follows�
p�� Let R be a set of compact convex regions �rectangles� with nonempty
interior� in the plane� where every region r � R is assigned a scaling point cr
in its interior� We call set R p�pierceable if there exist a set of p points that
intersects each member of R� Our problem� thus� is to determine whether R
is p�pierceable� and� if so� to produce a set of p piercing points� For r � R
and a real number � � �� let r��� be the homothetic copy of r obtained by
scaling r by the factor � about cr �i�e�� r��� � fcr���a�cr�ja � rg�� Finally�
R��� � f r���j r � Rg� The p�center problem for R looks for

�R � minf �jR��� is p�pierceable g�
If R is a set of translates of a square and the scaling points are the respective
centers� then we talk about the rectilinear p�center problem� If the squares
are still axis�parallel but of possible di�erent sizes� then we have the weighted
rectilinear p�center problem� and if R is a set of arbitrary axis�parallel rect�
angles �and the scaling points are also arbitrary�� then we face the general

CHAPTER �� INTRODUCTION �

rectilinear p�center problem� In other words� in the p�center problem we are
given a set S of n points in the plane� some compact convex set C� and a
positive integer p� The goal is to �nd p isothetic copies of C of smallest possi�
ble scaling factor� whose union covers S� The paper of Sharir and Welzl ����
explains a reduction from the p�center problem to the p�piercing problem�

The rectilinear ��center problem is trivially solved in linear time� and a
polynomial time algorithm for the rectilinear 	�center problem is given in �����
A linear time algorithm for the planar rectilinear 	�center problem is given
by Drezner ��
�� There are several papers in which the p�piercing problem
for axis�parallel rectangles is investigated we mention only the very recent
papers� The ��piercing problem was solved in linear time using the observa�
tion that ��piercing problem for rectangles is equivalent to �nding whether
the intersection of rectangles is empty or not� In Sharir and Welzl ���� 	� and

�piercing problems in the plane are solved in linear time� while they achieve
an O�n log� n� bound for the ��piercing problem and O�n log� n� bound for
the ��piercing problem� Katz and Nielsen ��� present a linear time algorithm
for d�dimensional boxes �d � 	� for 	�piercing problem� Sharir and Welzl ����
have developed a linear expected time algorithm for the rectilinear
�center
problem� by showing that it is an LP�type problem� They have also ob�
tained an O�n log n��time algorithm for computing a rectilinear ��center and
an O�n log	 n��time algorithm for computing a rectilinear ��center� The algo�
rithms for the ��center and ��center employ the Frederickson�Johnson matrix
searching technique� Recently� Chan �	�� has developed O�n log� n� expected
time algorithm for rectilinear ��center problem� In Chapter 	 we present e��
cient algorithms for �nding a piercing set �i�e�� a set of p points as above� for
values of p � �� 	�
� �� � �Problem p��� Our algorithms for � and ��piercing
improve the existing result of O�n log� n� and O�n log� n� to O�n log n� time�
The result for ��piercing can be applied as an O�n log� n� time algorithm
for the planar version of Problem p�� L� metric and p � �� Applying the
technique of Chan �	�� immediately leads to the O�n log n� expected time
algorithm for this problem� We improve the existing O�np�� log	 n� time al�
gorithm ���� for a general �but �xed� p to O�np�� log n� running time� and
we also extend our algorithms to higher dimensional space� Recently� Nuss�
baum ���� and Makris and Tsakalidis ��� presented algorithms with similar
runtimes for various piercing problems�

Euclidean p�line�center

p�� Let S be a set of n points in d�dimensional space and � be the Euclidean
distance function� We wish to compute the smallest real value w� so that
S can be covered by a union of p strips of width w�� Problem p� does not
belong �directly� to any of the groups G�� G�� G�� but satis�es the de�nition
of covering problem�

The ��line center is the classical width problem� For d � 	� an O�n log n��

CHAPTER �� INTRODUCTION �

time algorithm was given by Houle and Toussaint ����� For the 	�line center
problem in the plane� Agarwal and Sharir �� present an O�n� log	 n��time
algorithm� using parametric search� This algorithm is very similar to their
	�center algorithm� i�e�� the decision algorithm �nds all subsets of S that
can be covered by a strip of width w and for each such subset S�� it de�
termines whether S � S� can be covered by another strip of width w� The
runtime for the optimization problem was improved to O�n� log� n� by Katz
and Sharir �	� who use expander graphs� and by Glozman et al� ��� who
apply Frederickson�Johnson matrix search technique� The best known algo�
rithm� by Jaromczyk and Kowaluk ����� runs in O�n� log� n� time and does
not use any of the mentioned above optimization techniques� It is an open
problem whether a near�linear �or just subquadratic� time algorithm exists
for computing a 	�line center problem�

Two�covering

p�� Given a set S of n points in d�dimensional space� d � 	� �nd two
axis�parallel boxes b� and b� that together cover the set S and minimize the
maximum of measures 	�b�� and 	�b��� where 	 is a monotone function of the
box� i�e� b� � b� implies 	�b�� � 	�b��� Examples of the box measure 	 are
the volume of the box� the perimeter of the box� the length of the diagonal
etc� The min�max two box problem is a classical �covering problem�� On
the other hand it belongs to �partition problems� where we are interested in
partitioning a set of points into two subsets �not necessarily disjoint� in order
to optimize some given function of the �sizes� of two subsets ��
� ��� ��� ����

This problem is closely related to the rectilinear p�center problem �and in
particular to the 	�center problem� � p� for L�� In a very recent paper Sharir
and Welzl ���� using LP�type framework and Helly�type results obtained an
O�n� expected time algorithm for the general rectilinear 	�center problem
in the plane� Hershberger and Suri ���� solve the following problem� Given
a planar set of points S� a rectangular measure 	 acting on S and a pair
of values 	� and 	�� does there exist a bipartition S � S� � S� satisfying
	�Si� � 	i for i � ��� 	�! They present an algorithm which solves this
problem in O�n log n� time� Based on this algorithm and using the sorted
matrix technique of Frederickson and Johnson ����� Glozman et al� ���
obtained an O�n log n� time algorithm that solves min�max box problem in
the plane�

In Chapter 	 we present an e�cient algorithm for solving the min�max
two box �problem p�� for �xed arbitrary dimension d � 	� The runtime of
the algorithm is O�n log n�nd���� Our algorithm is simpler than that in ���
for the planar case�

CHAPTER �� INTRODUCTION ��

Center problems

We consider yet another version of rectilinear p�center problem� We are given
a set S of n demand points and a set C of m supply points in the plane� Call
a square �rectangle� discrete or constrained if its center lies on some point of
C� One can de�ne the following problems�
p�� Find two constrained axis�parallel squares whose union covers S� so as
to minimize the size of the larger square�
p� Find two constrained parallel squares whose union covers S� so as to
minimize the size of the larger square� The squares are allowed to rotate but
must remain parallel to each other�
p�� Find two constrained squares whose union covers S� so as to minimize the
size of the larger square� where each square is allowed to rotate independently�

The three problems above continue a list of optimization problems that
deal with covering a set of points in the plane by two geometric objects
of the same shape� We mention some of them� The two center problem�
solved in time O�n log� n� by Sharir ����� and recently in time O�n log� n�
by Eppstein ���� �by a randomized algorithm� the constrained two center

problem� solved in time O�n
�
� log	 n� by Agarwal et al� ��	� the two line�

center problem� solved in time O�n� log� n� by Jaromczyk and Kowaluk ����
�see also ��� 	�� the two square�center problem� where the squares are with
mutually parallel sides �the unconstrained version of Problem p�� solved in
timeO�n�� by Jaromczyk and Kowaluk ����� The algorithm in ���� is based on
a new data structure called
�silhouettewhich allows e�cient maintenance
of the point dominances�

In Chapter 	 we describe an O�n log� n��time and O�n log n� space algo�
rithm for Problem p� when C � S� O�max�n log n� m log n�log n� logm����
time algorithm for general C and O�mn logm log n��time algorithm for the
case of rectangles and general C� We also consider the dynamic versions of
this problem where the points of S are allowed to be inserted or deleted�

For Problem p �C � S� our algorithm runs in O�n� log� n� time and uses
O�n�� space� Finally� we solve Problem p� �C � S� by an O�n� log� n��time
and O�n���space algorithm�

����� Facility Location Problems

There is a very strong relationship between the problems that belong to
groups G� and G�� In some sense the decision version of a problem that
belongs to G� group usually belongs to G� as well� The facility location is a
classical problem of operations research that has also been examined in the
computational geometry community� The task is to position a point in the
plane �a facility� such that a distance between the facility and given points
�sites� is minimized or maximized� Most of the problems described in the
facility location literature are concerned with �nding a �desirable� facility

CHAPTER �� INTRODUCTION ��

location� the goal is to minimize a distance function between the facility
�e�g�� a service� and the sites �e�g�� the customers�� Just as important is the
case of locating an �undesirable� or obnoxious facility� In this case instead
of minimizing the largest distance between the facility and the destinations�
we maximize the smallest distance� Applications for the latter version are�
e�g�� locating garbage dumps� dangerous chemical factories or nuclear power
plants� The latter problem is unconstrained if the domain of possible loca�
tions for the facility is the entire plane� Practically the location of the facility
should be in a bounded region R� whose boundary may or may not have a
constant complexity description�

Undesirable location

p�� Let S be a set of n points in the plane� enclosed in a rectangular region
R� Let each point p of S have two positive weights w��p� and w��p�� Find a
point c � R which maximizes

min
p�S

fmaxfw��p� 	 dx�c� p�� w��p� 	 dy�c� p�gg�

where dx�c� p� de�nes the distance between the x coordinates of c and p� and
dy�c� p� de�nes the distance between the y coordinates of c and p�

Problem p� is concerned with locating an obnoxious facility in a rect�
angular region R under the weighted L� metric� where each site has two
weights� one for each of the axes� An application for two�weighted distance
is� e�g�� an air pollutant which is carried further by south�north winds than by
east�west winds� For the unweighted case of this problem� where R is a simple
polygon with up to n vertices and under the Euclidean metric� Bhattacharya
and Elgindy �	
� present an O�n log n� time algorithm� For weighted sites
one can construct the Voronoi diagram and look for the optimal location
either on a vertex of this diagram or on the boundary of the region R� For
weighted sites� the Voronoi diagram is known to have quadratic complexity
in the worst case� and it can be constructed in optimal "�n�� time ����� Thus�
the optimal location� using the Voronoi diagram� can be found in O�n�� time
����� The �rst subquadratic algorithm for the weighted problem under L�
metric and a rectangular region R was presented by Follert et al� ��	�� Their
algorithm runs in O�n log� n� time�

Desirable location

p	� Given a set S of n points and a number � � k � n � �� �nd a point p
such that the sum of the L��L�� distances from p to its k nearest neighbors
in S is minimized�

Problem p	 deals with locating a desirable facility under the min�sum
criterion� Some applications for this problem are locating a component in a
VLSI chip or locating a welding robot in an automobile manufacturing plant�

CHAPTER �� INTRODUCTION �	

Elgindy and Keil ��� consider a slight variation of the problem under the L�

metric� Given a positive constant D� locate a facility c that maximizes the
number of sites whose sum of distances from c is not greater than D� They
consider the discrete and continuous cases� The runtimes of their algorithms
are O�n log� n� for the discrete case and O�n� log n� for the continuous case�
respectively�

Facilities in region

Another variant of the facility location problem is to place k obnoxious fa�
cilities� with respect to n given demand sites and m given regions� where the
goal is to maximize the minimal distance between the demand sites and the
facility under the constraint that each of the regions must contain at least
one facility� More speci�cally�
p��� Let S be a set of n points in the plane �called demand points�� and
let R be a set of m� m � n� regions in the plane �called neighborhoods��
Let k be a positive integer �k is the number of facilities� e�g�� garbage
dumps� to be placed�� Find k sites c�� � � � � ck for the k facilities� such that �i�
C � fc�� � � � � ckg is a piercing set for R� that is� each of the neighborhoods
in R is served by at least one facility that is located in the neighborhood�
�ii� The minimal distance between a demand point in S and a site in C is
maximized� Brimberg and Mehrez �	�� solve the following problem� Find k
locations in the rectangle R �for k facilities�� such that �i� the distance be�
tween any two locations is at least some given value d� and �ii� the minimal
distance between a demand point and a facility is at least some given value
r� The running time of their algorithms is O�n�k��

We solve problems p�� p	� p�� in Chapter
� For Problem p� we
present O�n log� n� runtime algorithm� Our algorithm for Problem p	 runs
in time O�n log� n� for the discrete case� and for the continuous case in
O��n � k�� log� n � n log n� time� We also solve several variants of prob�
lem p��� For example� for L� metric and for k � 	� Problem p�� can be
solved in O�n log� n� time�

����� k�point Problems

Below we list several problems that belong to G�� Some of them appear
as natural extensions of problems from G� and G�� By applying our posets
framework� we were able to obtain e�cient algorithms for this set of problems�

k�point rectangle

A closely related problem to the rectilinear ��center problem is the following�
p��� Given a set S of n points in the plane and an integer k� �nd the smallest
axis�parallel rectangle �smallest in terms of perimeter or area� that encloses

CHAPTER �� INTRODUCTION �

exactly k points of S� One can also think about the query version of the
problem above�
p��� Given a number k decide whether a query rectangle contains k points
or less�

Problem p�� has been investigated by many researchers� some of whose
results we cite below� Aggarwal et al� �
� present an algorithm which runs
in time O�k�n log n� and uses O�kn� space� Eppstein et al� ���� and Datta
et al� �
�� show that this problem can be solved in O�n log n � k�n� time
the algorithm in ���� uses O�kn� space� while the algorithm in �
�� uses O�n�
space� These algorithms are e�cient for small k values� but become ine�cient
for large k values� The paper of Chan �	�� presents an O�n log n� expected
time algorithm for �nding the minimum L��diameter k�point subset of a
planar n�point set� i�e� for �nding the smallest square that encloses exactly
k points�

For Problem p�� we present an e�cient algorithm ���� for k values in the
range n

� � k � n� It is based on posets ��� and runs in time O�n� k�n� k���
and O�n� space�

Problem p�� is a variant of orthogonal range searching where we are
given a set S of n points and want to �nd how many points are enclosed
in the query rectangle� This problem was e�ciently solved by Bentley ����
in O�log n� query time� using the range search tree and with preprocessing
time and space O�n log n�� For this problem we obtain an algorithm with
O�n � �n� k� log n� preprocessing time and space and O�log �n � k�� query
time �for k � n

�
�� We also show how to extend the algorithms of both p��

and p�� for higher dimensional space�

k�point circle

A problem related to the ones we tackle in this thesis is� p��� Given a set
S of n points in the plane and an integer k� �nd a disk of the smallest ra�
dius that contains k of the n input points� The best known deterministic
algorithm runs in time O�n log n� nk log k� using O�n� k� log k� space �����
Matou#sek ��� also showed that the smallest disk covering all but k points
can be computed in time O�n log n � k�n�� for any � � ��

Selecting distances

p��� Let S be a set of n points in the plane� and let � � k � n�n���
� � We

wish to compute the k�th smallest distance between a pair of points of S�
The solution can be obtained using a parametric searching� The decision
problem is to compute� for a given real r� the sum �p�SjDr�p�
 �S � fpg�j�
where Dr�p� is the closed disk of radius r centered at p� Agarwal et al�

��� gave an O�n
�
� log

�
� n� expected�time randomized algorithm for the deci�

CHAPTER �� INTRODUCTION ��

sion problem� which yields an O�n
�
� log

�
� n� expected�time algorithm for the

distance�selection problem� Goodrich ���� derandomized this algorithm� at
a cost of an additional polylogarithmic factor in the runtime� Katz and
Sharir �	� obtained an expander�based O�n��� log�
� n��time deterministic
algorithm for this problem� By applying a randomized approach Chan �	�
was able to obtain an O�n log n � n���k��� log	�� n� expected time algorithm
for this problem�

The problem of selecting distances is closely related to the problem of
�nding the nearest �farthest� neighbors� The problem is de�ned as follows�
p��� Find the k nearest �farthest� neighbors for each point of S� Dickerson et
al� �
�� present an algorithm for this problem which runs in time O�n log n�
nk log k�� and works for any convex distance function� Eppstein and Erickson
���� solve the problem on a random access machine model in time O�n log n�
kn� and O�n log n� space� In the algebraic desicion tree model their time
bound increases by a factor of O�log log n�� Flatland and Stewart ���� present
an algorithm which runs in time O�n log n � kn� in the algebraic decision
tree model� Finally� a recent paper of Dickerson and Eppstein ���� describes
an O�n log n � kn� time and O�n� space algorithm for this problem� This
algorithm works for any metric and is extendable to higher dimensions� Our
algorithm ��
� for L� metric runs in time O��n � k�n� �assuming k � n

�
��

uses linear space and has the same runtime for any �xed� high dimension�

The following enumeration problems is tightly connected to the previous
problem�
p�� Enumerate the k largest �smallest� rectilinear distances in decreasing
�increasing� order and�
p��� given a distance � � �� �nd all the pairs of points of S which are of
rectilinear distance � or less �more�� For our best knowledge only two pa�
pers� one by Dickerson and Shugart ���� and one by Katoh and Iwano ���
present an algorithm for the second problem �for the largest k distances��
The algorithm in ���� works for any metric� and requires O�n � k� space
with expected runtime of O�n log n � k logk logn

log logn �� The paper of Katoh and

Iwano ��� presents an algorithm for the second problem for the L� met�
ric with running time O�min�n�� n log n � k��� log n��log k������ and space
O�n � k�����log k���� � k log n�� Their algorithm is based on the k nearest
neighbor Voronoi diagrams� Dickerson et al� �
�� present an algorithm for
the problem� enumerate all the k smallest distances in S in increasing or�
der� Their algorithm works in time O�n log n � k log k� and uses O�n � k�
space� Lenhof et al� ���� Salowe ����� Dickerson and Eppstein ���� solve this
problem too but they just report the k closest pairs of points without sorting
the distances� spending O�n log n � k� time and O�n � k� space� An algo�
rithm for solving the enumerating problem �for the smallest k distances� is
also presented in ����� spending O�n log n� k log k� time and using O�n� k�
space� Chan �	� present O�n log n � k� expected time simlple algorithm for
reporting the k closest pairs of points that is based on the Lenhof et al� ���

CHAPTER �� INTRODUCTION ��

algorithm� He also proposed an O�npolylog n � k� expected time algorithm
for enumeration the k farthest pairs� Dickerson and Eppstein ���� considered
the following problem� �nd all pairs of points of S separated by distance � or
less� They give an O�n log n� k� time and O�n� space algorithm� where k is
the number of distances not exceeding �� For the enumeration Problem p�

we present two algorithms� one for enumerating the largest and the other
for the smallest distances� The �rst runs in time O�k log n � n�� and uses
O�n� space� The second runs in time O�n log n � k log n�� and uses O�n�
space� These algorithms can be easily extended to high dimensional space
without a�ecting the runtime and space requirements� For Problem p�� we
give algorithms with the similar running times as in ���� for the rectilinear
distances�

Circle �tting

p��� Given a set S of n points in the plane� �t a circleC through S so that the
maximum distance between the points of S and the circle C is minimized�
This is equivalent to �nding an annulus of minimum width containing S�
Ebara et al� ���� observed that the center of a minimum�width annulus is
either a vertex of the closest�point Voronoi diagram of S� or a vertex of the
farthest�point Voronoi diagram� or an intersection point of a pair of edges of
the two diagrams� Based on this observation� they obtained a quadratic time
algorithm� Using parametric search� Agarwal et al� ���� have shown that the
center of the minimum�width annulus can be found without checking all of
the O�n�� candidate intersection points explicitly their algorithm runs in

O�n
�
�
�� time� Using randomization and an improved analysis� the expected

runtime has been improved to O�n
�
�
�� by Agarwal and Sharir ���� Finding

an annulus of minimum area that contains S is a simpler problem� since it
can be formulated as an instance of linear programming in ��dimensional
space� and can thus be solved in O�n� time�

Some variations of Problem p�� have been considered in previous papers�
Efrat et al����� consider the problem from the group G� of enclosing k points
within a minimal area circle and pose an open problem of covering k points
by a ring� They gave two solutions for the smallest k�enclosing circle� When
using O�nk� storage� the problem can be solved in time O�nk log� n�� When
only O�n log n� storage is allowed� the running time is O�nk log� n log n

k
�� The

problem of computing the roundness of a set of points� which is de�ned as
the minimum width concentric annulus that contains all points of the set
was solved in ���
� ����� The best known running time is O�n

�
�
��� given

in ���� where � � is an arbitrary small constant� The paper of Barequet
et al� ���� presents algorithms for several variants of the polygon annulus
placement problem� given an input polygon P and a set S of points� �nd
an optimal placement of P that maximizes the number of points in S that
fall in a certain annulus region de�ned by P and some o�set distance � � ��

CHAPTER �� INTRODUCTION ��

Other variants on the problem of circle �tting are �
p�	� �nd the smallest ring that contains k �k � n

�
� points of S�

p��� �nd the smallest area sector in a constrained circular ring that covers
k � n

�
points� We can consider Problem p�	 for circular or rectangular ring

and for both constrained and unconstrained case �recall that by constrained
we mean that the center of the ring is one of the points of S�� A rectan�
gular ring consists of two concentric rectangles� the internal rectangle fully
contained in the external one� As a measure we take the maximum width
or area of the ring� We solve Problem p�	 in O�n�n � k� log �n� k�� time
and O�n� space for rectangular ring� constrained case� while for the non con�
strained case we present an algorithm with runtime O�n�n � k�� log n� and
O�n� space� For a circular ring that covers k �k � n

�
� points �Problem p�	�

we present an algorithm that runs in O�n� � n�n � k� log n� time and uses
O�n� space� and we �nd a sector of a constrained circular ring �Problem p���
that covers k points �k � n

�
� in O�n��nk�n�k��� time and O�n�� space� We

also show how to extend all of the above algorithms to higher dimensional
space�

A possible motivation for this kind of problems �group G�� is to cover all
but a small number of points by one or more objects comes from statistics�
In the analysis of statistical data one would like to get rid of outliers in the
data� Assuming n � k data points are outlyers� one way to �nd the �good�
k data points is to enclose them in a small given shape �or shapes�� Chapter
� is dedicated to these problems�

On the next page we present a table in which we summarize our and
previous results for the problems described above�

CHAPTER �� INTRODUCTION �

Pbm Previous results Our results

	
p � �� O�n log� n�����
p � �� O�n log� n�����

O�n log n�

� O�n log n�� d � 	���� O�n log n � nd���� d � 	

� no result O�n log� n�
� no result O�n� log� n�

 no result O�n� log� n�

� O�n log� n���	� O�n log� n�

�
no results� discrete
no results� continuous

O�n log� n�
O��n � k�� log� n � n log n�

�� no result O�n log� n�� L�� k � 	
�� O�n log n � kn��
�� O�n � �n� k��n�

�	
Preprocess� O�n log n�
Query� O�log n� ����

O�n � �n� k� log n�
O�log �n� k��

�� O�n log n � kn� ���� O�n log n � �n� k�n�

�� O�n log n � k logk logn
log logn � �expected� ���� O�n � k log n�

� O�n log n � k� ���� O�n log n � k�

��
no results� constrained
no results� non constrained

O�n�n � k� log �n� k�
O�n�n � k�� log n�

	� no results O�n� � nk�n� k���

Table ���� Summary of best previous results and our results�

Chapter �

Piercing Problems

All the problems in this section are de�ned as follows� �Given a set R of
n objects in metric space and some positive integer p� �nd whether there
exists a set of p points that intersects each member of R� Each member of
the set of p points is called a piercing point� Determining whether a set of
some n objects is ��pierceable means that we look for a set with one point p
contained in each member of R� This problem is equivalent to determining
whether this set has a non�empty intersection� More speci�cally� we consider
the following problems mentioned in Introduction�

p�� Given a collection of axis�parallel rectangles in the plane� determine
whether there exists a set of p � �� 	�
� �� � points whose union inter�
sects all the given of p points as above� for values of p� We also consider
this problem in higher dimensional space�

p�� Given a set S of n points in d�dimensional space� d � 	� �nd two axis�
parallel boxes that together cover the set S and minimize the maximum
of measures of boxes� where the measure is a monotone function of the
box�

p�� p� p�� Given a set S of n points in the plane� we seek two squares
whose center points belong to S� their union contains S� and the area
of the larger square is minimal� We consider three variants of this
problem� In the �rst �p�� the squares are axis parallel� in the second
�p� they are free to rotate but must remain parallel to each other� and
in the third �p�� they are free to rotate independently�

��� Rectilinear piercing �p�	

In this section we consider the rectilinear piercing problems� In the following
subsections we present e�cient algorithms for determining whether s set of
n rectangles in the plane is p�pierceable� for a small values of p and also solve
the d�dimensional case�

��

CHAPTER �� PIERCING PROBLEMS ��

O

Y

X

10

40

20

10 20 30 40

A

B q

30

C

O 10 20 30 40

10

30

20

C
A

B

D

C

X

X

q

45
o

45
o

40

O 10 20 30 40

10

30
40

20

A
BC

q

D

C

Y

Y

(a) (b) (c)

Figure 	��� �a� There are
 rectangles� and q is a query point� All intervals
containing q are in the shaded regions� Intervals appearing in the shaded
regions of both �b� and �c� correspond to rectangles that contain P �

����� Rectilinear ��piercing

We are given a set R of n axis�parallel rectangles in the plane The goal is
to decide whether their intersection is empty or not� We assume that there
is no axis�parallel line that traverses R� The case of the existence of such a
line was considered in ����� They show that this case can be easily solved in
linear time for any �xed p�

We begin with an observation due to Samet ��	�� If a shape M is described
by k parameters� then this set of parameter values de�nes a point in a k�
dimensional space assigned to the class of shapes� Such a point is termed a
representative point� Note� that a representative point and the class to which
it belongs completely de�ne all of the topological and geometric properties
of the corresponding shape�

The class of two�dimensional axis�parallel rectangles in the plane is de�
scribed by a representative point in four dimensional space� One choice for
the parameters is the x and y coordinates of the centroid of the rectangle�
denoted by cx� cy� together with its horizontal and vertical extents �i�e� the
horizontal and vertical distances from the centroid to the relevant sides��
denoted by dx� dy� In this case a rectangle is represented by the four�tuple
�cx� dx� cy� dy� interpreted as the Cartesian product of a horizontal and a ver�
tical one�dimensional interval � �cx� dx� and �cy� dy�� respectively�

Let P be the set of � dimensional points representing the parameters of
R� Let Px � fpx�� � � � � pxng be the projections of the x�intervals of R into the
plane �cx� dx�� and let Py � fpy�� � � � � pyng be the projections of the y�intervals
of R into the plane �cy� dy�� A query that asks which rectangles contain a
given point is easy to implement �see Figure 	����

A query point q is represented by a four�tuple �qx� �� qy� ��� We transform
the rectangles �A�B�C� in Figure 	���a� into the points in two 	�dimensional
spaces ��cx� dx� and �cy� dy�� �Figure 	���b� and 	���c��� There are two points
representing q in these 	�dimensional spaces� �qx� �� in �cx� dx��space� and
�qy� �� in �cy� dy��space� It is easy to see that all the rectangles that con�
tain Q must be transformed into two cones in these spaces respectively �the

CHAPTER �� PIERCING PROBLEMS 	�

shaded cones in Figure 	���� These cones have apexes on �qx� �� and �qy� ��
respectively and are of slopes ��� and �
��� In Figure 	��� A and B are in
both cones and thus q is in these rectangles�

In order to �nd whether the set R is ��pierceable� we check whether there
exist two cones C� and C�� C� apex is in the plane �cx� dx� and C� apex is in
the plane �cy� dy�� each cone is of slope ��� and �
��� such that C� and C�

cover all the points in each one of the planes� Formally� we �nd in each plane
the rightmost intersection point Rx �Ry� of the ��� lines through the points
of Px �Py� with the cx �cy� axis� The point Rx de�nes the right boundary of
C�� while the point Ry de�nes the right boundary of C�� Then we �nd the
leftmost intersection point �Lx and Ly respectively� of the �
�� lines with
through Px �Py� with the cx �cy� axis� These latter points de�ne the left
boundaries of the cones C� and C�� respectively�

The existence of C� and C� is equivalent to the existence �not emptiness�
of non�empty intervals �Rx� Lx� and �Ry� Ly�� If the above is true� then any
point Q whose x and y projections are in these intervals� respectively� is a
piercing point�

Thus� we can conclude by the following theorem�

Theorem �
�
� We can �nd whether a set of n axis�parallel rectangles is
��pierceable in O�n� time� and compute a piercing point� if it exists� in the
same runtime�

����� Rectilinear �� and ��piercing

We begin with the 	�piercing problem� Similarly to the previous section� we
have to �nd whether there exist four cones C�� C� � �cx� dx� and C�� C� �
�cy� dy� such that�

�� C� � C� covers Px�

	� C� � C� covers Py�

� Denote by �Ci� the set of the points from Px �or Py� that are covered
by Ci� At least one of the following two conditions is true�

�i� ��C��
 �C��� � ��C��
 �C��� contains all the points of P � This
will imply that the apexes of C�� C� de�ne one piercing point and
apexes of C�� C� de�ne the other piercing point�

�ii� ��C��
 �C��� � ��C��
 �C��� contains all the points of P � This
will imply that the apexes of C�� C� de�ne one piercing point and
apexes of C�� C� de�ne the other piercing point�

We can constrain the locations of the cones C�� C�� C�� C�� They are de�
�ned by minimal and maximal points of intersection of the ��� and �
�� lines

CHAPTER �� PIERCING PROBLEMS 	�

with the horizontal axes in the two planes �cx� dx� and �cy� dy� respectively� It
is easy to see that in order for the rectangles to be 	�pierceable� we put� with�
out loss of generality� the apex of C� on Rx� C� on Lx� C� on Ry and C� on
Ly� Clearly� if these cones cover all the points then the set R is 	�pierceable�

In the case of
�piercing� we have to �nd six cones� Ci� � � i � �� which
will de�ne three piercing points with the following properties�

�� C� � C� � C� covers Px�

	� C� � C	 � C� covers Py�

� For i� k� z � f�� 	�
g� pairwise disjoint and j� l� h � f�� �� �g� pairwise
disjoint

j��Ci�
 �Cj�� � ��Ck�
 �Cl�� � ��Cz�
 �Ch��j � n

for at least one combination of i� k� z �there are at most � combinations��
where the union is taken without repetitions�

Without loss of generality� we can �nd the constrained cones C�� C�� C�� C�

as in the algorithm for 	�piercing� Namely� the left boundary of C� �C�� is
constrained by the leftmost �
�� line through the points of Px �Py�� and the
right boundary of C� �C�� is constrained by the rightmost ��� line through
the points of Px �Py��

To ful�ll condition �
� we look at each combination� �C��
 �C�� or �C��

�C�� or �C��
 �C�� or �C��
 �C�� and for these four possibilities we check� in
linear time� whether the rest of the points is 	�pierceable� Thus we conclude�

Theorem �
�
� We can check in linear time whether a set of n axis�parallel
rectangles is 	� or
�pierceable and �nd a solution� if exists� in the same
running time�

Our method is� in a sense� dual to that of Sharir and Welzl paper �����
as we will show below� Sharir and Welzl de�ne �L to be the vertical line
containing the leftmost right edge of a rectangle in R� �R is the vertical
line containing the rightmost left edge of a rectangle in R� let �T is the
horizontal line containing the highest bottom edge of a rectangle in R� and
let �B s the horizontal line containing the lowest top edge of a rectangle
in R� They further consider the closed left halfplane HL bounded by �L�
the closed right halfplane HR bounded by �R� the closed top halfplane HT

bounded by �T � and the closed bottom halfplane HB bounded by �B� Let
$HX denote the closure of the complement of HX � for X � L�R� T�B� They
note that if no axis�parallel line traverses R� then HL is disjoint from HR�
and HT is disjoint from HB� and thus R� ��

T
X�fL�R�T�Bg $HX is nonempty

�with nonempty interior�� R� is called the location domain for R�

Sharir and Welzl show that for 	 or
�pierceability of R the piercing points
should be located at the vertices of the location domain� In our setting the

CHAPTER �� PIERCING PROBLEMS 		

piercing points correspond to the apexes of cones� More precisely� two paired
constrained cones �in two di�erent planes� correspond to a vertex in the
location domain�

����� Rectilinear ��piercing

Now we have to �nd eight cones Ci� � � i � � with the following properties�

�� C� � C� � C� � C� covers Px�

	� C	 � C� � C� � C covers Py�

� For some pair of cones Ci� Cj� i � f�� 	�
� �g� j � f�� �� � �g the set of
all rectangles without those covered by �Ci�
 �Cj� is
�pierceable�

As before� assume without loss of generality that C�� C�� C	� C are con�
strained� so condition �
� when we choose i � f�� �g and j � f�� �g is easily
checked in linear time� because we can �nd the location of C�� C�� C	� C

in linear time and then answer the
�piercing problem in linear time� If
i � f	�
g and j � f�� g then there exist i� � f�� �g and j � � f�� �g such
that if the set of rectangles is ��pierceable then one piercing point must be
determined by the cones Ci� and Cj�� Thus� this case is also computed in
O�n� time� The more interesting and di�cult case is when each constrained
cone in one plane corresponds to a non�constrained cone in the other plane�
There is a constant number of such pairs� namely eight� Without loss of
generality� let C� be an unconstrained cone in �cx� dx� and C	 a constrained
cone in �cy� dy�� The analysis for all other such pairs is almost identical�

We sort all the ��� ��
��� lines determined by Px in the �cx� dx� plane
from left to right� and do the same to the lines determined by Py in the
�cy� dy� plane� Clearly� the apex of C� is between the apexes of C� and C��
So� we �x the apex of C� to coincide with the apex of C� and begin to move
it �to the right� towards C��

The main idea in ���� is similar � they take a point at some vertex of the
location domain and begin to move it along the edge of the location domain�
at each step maintaining the set of rectangles that is pierced by this point and
checking whether the rest of rectangles is
�pierceable� The checking phase
was done using
�level structure for p � �� Actually� using this structure
leads to additional time in total running time of their algorithm� In contrast�
in our algorithm� we consider so called combinations of cones de�ned below
and use simple data structures� like balanced binary trees� It seems that the
same thing can not be done in the original paper of Sharir and Welzl ����
because it becomes quite complex to explain the behavior of piercing points
that move on the edges of the location domain�

We de�ne an event when a point of Px is inserted or deleted from C��
Initially� we compute the set of points A � P covered by �C��
 �C	� �when

CHAPTER �� PIERCING PROBLEMS 	

C3

C3

OCX

DX

O

C C1 C

CY

DY

CC CC5 7
2

4 6
8

(before)

(after)

Figure 	�	� Moving the apex of C� from the apex of C� towards the apex of
C��

the apex of C� is determined by the leftmost �
�� line through the points of
Px� and apply the
�piercing algorithm for the rest of the points S � P nA�
allowing� only this time� C� to move freely� If we have a positive answer� we
are done otherwise we continue�

We next move C� to the right� till the next event occurs� and change S
accordingly �as in Figure 	�	�� The �rst encountered event as C� moves from
its initial position is when the leftmost point of Px is deleted from C�� We
run again the
�piercing algorithm for S� Here� too� if S is
�pierceable then
we are done� Clearly� from now on the location of the apexes of C�� C� and
C will not change during the rest of the algorithm because these cones are
de�ned by the extreme points of Px and Py that will never appear in both C�

and C	� Let C� be the leftmost cone covering S in �cy� dy�� The location of
C� will change since C� will move towards C and back to cover points� But
once C� moves back from C it will never move towards C again� This is
because C	 is constrained and C�� the second cone from the left� moves back
to cover points that were removed from A� Since the leftmost point has to be
covered in order to have ��piercing� once C� got back to its leftmost position�
it will never move to the right again� Thus� the number of changes that we
perform on C� is O�n�� Our goal is to determine the location of the cones
C� in �cx� dx� and C� in �cy� dy�� We will check the possible combinations of
pairing the cones to create piercing points� Assuming the cones C� and C	

describe a piercing point� we have the following combinations for the rest of
the piercing points�

�a� �C�� C��� �C�� C��� �C�� C�� �b� �C�� C��� �C�� C�� �C�� C���
�c� �C�� C�� �C�� C��� �C�� C��� �d� �C�� C�� �C�� C��� �C�� C���
�e� �C�� C��� �C�� C��� �C�� C�� �f� �C�� C�� �C�� C��� �C�� C���

Observation �
�
� Every solution to the problem belongs to one of the com�
binations� that is� the combinations of the cones at each step of the ��piercing
algorithm are independent� meaning that we check
�pierceability for each
�xed combination of the cones throughout all the steps of the ��piercing al�
gorithm� If we get a negative answer for a combination� we check the other

CHAPTER �� PIERCING PROBLEMS 	�

combinations� If there is a solution it will be found by the
�piercing algorithm
for one of the combinations�

This observation �which has no analogue in ����� allows us to design an
e�cient algorithm for our problem� The independency and the �nite number
of combinations allow to perform the ��piercing algorithm for each of the
combinations separately� For each combination the ��piercing algorithm is
slightly di�erent� Denote by Cij � �Ci�
 �Cj�
 S� Recall that S � P nA� A
being the set of points covered by �C�� C	�� For every combination of cones
the following events happen during the algorithm�

The ��piercing algorithm exempli�ed by �C�� C	�

�� Initially the left boundary point q of C� is getting out of C�� If q was
in A then we re�run the
�piercing algorithm� Otherwise no update is
needed� since q did not belong to A and in the current situation nothing
was changed�

	� If� when we move the apex of C� towards C�� a point q� is inserted to
C�� we �rst check if the corresponding point in �cy� dy� is covered by
C	� If it is not covered� then we continue moving C� to the next event
otherwise we have the following cases�

	�� If in a previous stage of the algorithm q� de�ned the left boundary
of the middle cone C� in �cx� dx�� or q� de�ned the left boundary
of the left cone C�� or q� de�ned the left boundary of the mid�
dle cone C� in �cy� dy� for the combinations �a���d� �similarly� the
right boundary for the combinations �e���f��� then� for the given
combination we perform the following updating scheme� we �rst
check if q� de�nes the left boundary of C�� If yes then we have to
�nd� by binary search over S� the new left boundary for C� and�

i� For combination �a�� Find the new boundaries of the mid�
dle cones C� and C� in both planes and check whether they
cover the rest of the points by computing and examining the
set S��� � S n C�� n C�� Note that the cones C� and C

are both constrained and do not move during the whole algo�
rithm� Technically� we compute C� at the beginning of the
��piercing algorithm� To determine whether C� and C� can
cover S��� we are only interested in the maxima and minima
of the ��� and �
�� lines through the points of S��� in both
planes respectively� Note that the total number of updates on
C� and on C� is at most O�n�� thus if we maintain the points
of the dynamically changing set S��� sorted according to the
��� and �
�� lines we can update S��� and �nd the maxima
and minima in both planes by a simple binary search� Conse�
quently� in O��� time we check whether there exist two cones

CHAPTER �� PIERCING PROBLEMS 	�

C� and C� with boundaries on these maximal and minimal
lines that pass through these points that cover S����

ii� For combination �b� �similarly �e��� These combinations are
similar in the sense that C� �that has O�n� updates� is paired
with a constrained cone� either C� in �b� or C� in �e�� and
the non constrained cones C� and C� are each paired with a
constrained cone� By computing and examining the set C��

�C��� we found the new left boundaries of C� and C�� What is
remained is to check whether the pairs �C�� C� and �C�� C��
��C�� C�� for combination �e�� cover the set of all points of
P which are not already covered by �C�� C	� or by �C�� C��
��C�� C�� for combination �e��� This can be done as follows�
For combination �b� �similarly �e�� compute the set C� �C��
at the beginning of the ��piercing algorithm� In each step
of the ��piercing algorithm compute the set S��� � C� n C��

�C� n C���� Observe the set of all points of P not pierced by
�C�� C	� and �C�� C�� ��C�� C���� They will have to be pierced
by �C�� C� and �C�� C�� ��C�� C���� Now the points in S���

should be covered by either C� or C�� whereas the points of
C �
� � �C�� nS��� �C �

� � �C�� nS���� must be covered by C�� and
the points of C �

 � �C�nS��� must be covered by C�� C� and C�

�C� and C�� determine the left �right� boundary of C� and C��
which are found by a binary search over the points of S nC��

�S n C���� As for combination �a� the number of updates on
C� �C��� and� C� is at most O�n�� The sets C �

� �C �
�� and C �

are maintained sorted according to the lines throughout the
whole algorithm� To check how S��� is pierced� we maintain
two balanced binary trees T�� T�� The leaves of T��T�� contain
the set S��� sorted according to the ��� ��
��� lines in the
plane �cx� dx�� Let T be T� or T�� Initially� the leaves of T
contain the sorted points of C� �C�� in the plane �cx� dx��
After we compute C�� �C��� for the �rst time we empty the
leaves that contain the points that belong to C���C���� Now T
contains the sorted lines through the points of S���� Let p be
a point of S���� A leaf corresponding to p contains the x value
of the point of intersection of the ��� ��
��� line through p
with the cx axis in �cx� dx�� It will also contain the y value of
the point of intersection of a ��� ��
��� line through p with
the cy axis in �cy� dy�� An inner node v � T will contain the
maximum of the y values corresponding to �
�� lines of the
leaves of the subtree rooted at v� and the minimum of the ���

lines� During the algorithm we perform a sequence of updates�
namely insertions and deletions� in the tree T � When a point
q is add to S���� then we insert it into T in a sorted x�order
and update the minimum and maximumy values on the nodes

CHAPTER �� PIERCING PROBLEMS 	�

of path from the leaf q to the root of T � If a point q is deleted
from T � then we �nd the leaf of q� delete it and update the y
values of the nodes on the path from the leaf to the root of T �
Each update of T takes O�log n� time� We can check� using
the tree T � whether C� together with C� cover all the points
in S����

iii� For combination �c� �similarly �f��� At the beginning of the
��piercing algorithm we compute C�� The cones C� and C

are constrained and do not move during the whole algorithm�
At each step of the ��piercing algorithm we work with the set
S��� � S n �C� � C��� and �nd the leftmost and rightmost
points in this set that should be covered in both planes by
C� and C� respectively� We maintain S��� by incremental
updates according to the motion of C�� Note that the number
of updates on C� in the whole algorithm is O�n�� This is
because the left boundary of C� is de�ned by the leftmost
point �of S� in �cx� dx� not covered by C� and thus C� moves
towards and back from C�� but when it moves back it will
never move �to the right� again�

iv� For combination �d�� We perform a scheme almost identical
to that of �c�� but with the di�erence that at each step of the ��
piercing algorithm we work with the set S��� � S n �C��C���
and �nd the leftmost and rightmost points that should be
covered in both planes by C� and C�� Again� we update S���

at each motion of C� in logarithmic time� We �nd the new
boundaries of C� and C� and check whether C� and C� cover
the leftmost and rightmost points in both plane that we just
found�

	�	 If q� does not de�ne a left boundary of a cones as above� then
for each combination we perform an identical updating scheme as
in 	�� but without computing a new left boundary of the middle
cones C� and C��

� If� when we move apex of C�� a point q�� is deleted from C�� then

�� If q�� �� C	 we proceed to the next event�

�	 If in a previous stage of the algorithm q�� de�ned the left boundary
of the cone C� in �cx� dx�� or q�� de�ned the left boundary of the
left cone C�� or q�� de�ned the left boundary of the middle cone C�

in �cy� dy� for the combinations �a���d� �similarly� right boundary
for the combinations �e���f��� then� for the given combination we
perform the following updating scheme� If q�� de�nes a new left
boundary C�� then we compute a new location of C� and�

i� For combination �a�� �nd the new boundaries of the middle

CHAPTER �� PIERCING PROBLEMS 	

cones C� and C� in both planes and compute the rightmost
and leftmost points of the set S��� in both planes�

ii� For combination �b�� by examining the set C��� �nd the new
left boundaries of C� and C�� compute the sets S���� C �

� and
C �
 and update T� and T��

iii� For combination �c�� �nd the new boundaries of C� and C��
By examining the set S��� �nd the leftmost and rightmost
points of this set in both planes�

iv� For combination �d�� �nd the new boundaries of C� and C��
By examining the set S��� we �nd the leftmost and rightmost
points of this set in both planes�

�
 If q� does not de�ne a left boundary of a cones as above� then
for each combination we perform an identical updating scheme as
in
�	 but without computing a new left boundary of the middle
cones C� and C�� Notice that in this case �when q�� is deleted from
C�� the ��piercing of P is not possible� because it wasn�t possible
in previous step of the algorithm�

Thus�

Theorem �
�
� We can determine whether a set of n axis�parallel rectangles
is ��pierceable or not in O�n log n� time� and give a solution �if it exists in
the same running time�

Comparing our algorithm to that in ����� Our main observation is the
�independency� of the cone combinations which has no analogue in ����� In
addition� our data structure is a balanced binary tree as opposed to the

�level structure of ����� Actually� each level of the
�level structure adds
additional log n factor to the running time of the algorithm in �����

����� Rectilinear ��piercing

Now we have to �nd ten cones Ci� � � i � �� with the following properties�

�� C� � C� � C� � C� � C	 covers Px�

	� C� � C� � C � C� � C�� covers Py�

� For some pair of cones Ci� Cj� i � f�� 	�
� �� �g� j � f�� � �� �� ��g the
set of all rectangles without those covered by �Ci�
 �Cj� is ��pierceable�

Due to the duality relation between our analysis and that in ���� we follow the
case analysis in ����� Assume� without loss of generality� that C�� C	� C�� C��

are constrained and the order of the cones is from left to right� We may also
assume that one of the following situations occurs�

CHAPTER �� PIERCING PROBLEMS 	�

�a� There is one pair of constrained cones Ci� Cj� i � f�� �g and j � f�� ��g�
We try all of these possibilities� �nd the set of rectangles not covered
by the given pair of cones� and test whether this set is ��pierceable�
using the preceding algorithm� This takes O�n log n� time�

�b� Every constrained cone is paired with a non�constrained cone� Since
there are four constrained cones there are two pairs with the same
constrained cone� We proceed as follows� First� we guess a unique
constrained cone� say C�� which is paired with a non�constrained� say
C�� Then we proceed as in the ��piercing algorithm� i�e� slide C� from
left to right� starting at the apex of C� and stopping when we reach the
apex of C��� In each move� we check whether the set of the rest of the
rectangles is ��pierceable using the following observation by Sharir and
Welzl ����� They observe that the ��piercing problem has always a pair
of two constrained cones in its solution� In our case they are either
C� and C�� or C� and C�� �C� becomes constrained after computing
S n C���� We process with each of these cases separately� Assume�
without loss of generality� that we process C� and C�� Then at each
move of C� we update C�� and check whether the rest of rectangles is
�
pierceable as in the update step in the ��piercing algorithm� Omitting
some details� we obtain a procedure that runs in O�n log n� time�

�c� There a pair of two unconstrained cones� Assume� without loss of gen�
erality� the cones are C� and C� We also assume without loss of gen�
erality� that we have paired C� and C�� C�� and C�� C� and C�� C	 and
C� �a constrained cone with an unconstrained cone�� Then� as was ob�
served in ����� either at least one of the cx�coordinates of the apexes of
C� and C� is smaller then the the cx�coordinate of the apex of C�� or at
least one of the cx�coordinates of the apexes of C� and C� is larger than
the cx�coordinate of the apex of C�� Suppose one of them is smaller
than C�� Then we slide C� �that is paired with C�� from left to right�
starting at the apex of C� and stopping when we reach the apex of
C��� At each event� we check whether a set of the rest of rectangles is
��pierceable� As was claimed in ���� at each move of C�� the cone C� is
paired either with C� or with C��� Thus we have a situation identical
to case �b�� This can be computed as in case �b� above� implying that
case �c� can also be computed in O�n log n� time� Hence we obtain�

Theorem �
�
� We can determine whether a set of n axis�parallel
rectangles is ��pierceable or not in O�n log n� time� and give a solution
�if it exists in the same running time�

The result for ��piercing can be applied to �nd a better solution for the
rectilinear ��center problem with O�n log� n� running time compared to one
in �����

CHAPTER �� PIERCING PROBLEMS 	�

����� Extending to high dimensional space and to p � �

Our technique immediately implies a linear time algorithm for 	�pierceability
of a set of axis�parallel rectangles for arbitrary ��xed� dimension d� d � 	
�there are only constrained cones� and an O�n log n� time algorithm for
�
pierceability of a set of axis�parallel rectangles for dimension d�
 � d � �
�the same result was obtained by ���� independently�� In the latter problem
there is always a combination where d � � cones are constrained and �at
most� one is a non�constrained cone� At each step of the algorithm there is
a �nite number of the d�coupling combinations of the cones�

Returning to the planar p�piercing problem we apply an algorithm sim�
ilar to the ��piercing algorithm� Using our approach we obtain an e�cient
algorithm for general �but �xed� p � � improving ����� The general obser�
vation is that a constrained cone is always paired with a constrained or an
unconstrained cone� Thus for solving a �p � ���piercing problem we have
to consider the two cases� In the �rst case there are two constrained cones
paired together� we can determine the rest of the �uncovered� boxes in linear
time and apply the p�piercing algorithm for the rest of the boxes� In the
second case� a constrained cone is paired with a non�constrained one� We
move the apex of the non�constrained cone between the apexes of the con�
strained cones in its plane� Thus we have O�n� steps �when a point is either
inserted or deleted from the non�constrained cone�� In each step we run the
�p� ���piercing algorithm for the rest of the points� Thus our algorithm for
general� but �xed p � � in the plane runs in time O�np�� log n�� while the
algorithm in ���� in time O�np�� log	 n��

Conclusions

There is some duality between the analysis of ���� and ours� A pair of con�
strained cone with nonconstrained cone in our algorithms corresponds to
an edge on the boundary of the location domain in ����� and two paired
constrained cones in our algorithms correspond to a corner in the location
domain of ����� We are looking into applying a similar technique for sets
of triangles� rhombi� etc� Recently� Nussbaum ���� and Makris and Tsaka�
lidis ��� present a algorithm with a similar runtimes for a various piercing
problems� Still� the most intriguing question is whether we can improve the
running time of algorithm for p�piercing problems where p � �� We hope
that our approach can help in obtaining a better solution to these problems�

CHAPTER �� PIERCING PROBLEMS
�

��� Two�Covering �p�	

Given a set S of n points in d�dimensional space� d � 	� �nd two axis�parallel
boxes b� and b� that together cover the set S and minimize the maximum
of measures 	�b�� and 	�b��� where 	 is a monotone function of the box� i�e�
b� � b� implies 	�b�� � 	�b��� Examples of the box measure 	 are the volume
of the box� the perimeter of the box �in higher dimensions it can be de�ned
as the sum of ��dimensional edges or as the area of the boundary of the box��
the length of the diagonal etc� We assume that the dimension d is �xed and
the measure of the box can be computed in O��� time� For simplicity we
consider the general case of the distinct coordinates� i�e� the projection of S
onto any coordinate axis is a set of n distinct points� Initially we sort all the
points of S according to each of the coordinates�

Given a set of points S� the bounding box of S� denoted by bb�S�� is
the smallest axis�parallel box that contains S� The bounding box of S is
determined by 	d points� two from each axis i� i � �� � � � � d� the leftmost
point li�S� of S� and the rightmost point ri�S�� We call these points the
determinators of S� For a box b � �l�� r��� � � �� �ld� rd�� the points li and ri
are also called the determinators of b� For a point p� let x�p� and y�p� denote
the coordinates of p in the �rst and the second axes� respectively�

����� The algorithm for the plane

Glozman et al� ��� consider three di�erent ways to partition the determina�
tors between two subsets of S

�� One of the subsets gets three determinators and the other gets one
determinator�

	� Each subset gets two determinators lying on opposite sides of bb�S��

� Each subset gets two determinators lying on adjacent sides of bb�S��

We distinguish only 	 cases�

�� One subset gets two determinators lying on adjacent sides of bb�S��

	� Each subset gets two determinators lying on opposite sides of bb�S��

The algorithm �nds the solutions for both cases and then returns the
pair with minimum measure 	� The algorithm for the �rst case is essentially
the same as the algorithm for the problem Measure� which is described in
Section 	�	�	 �in the problem Measure� one subset gets the determinators
of S from two di�erent axes�� Thus� it is su�cient to explain the algorithm
for the second case�

CHAPTER �� PIERCING PROBLEMS
�

Consider the box� say b�� that contains the uppermost and bottommost
points of S� The second box b� contains the set S� of the points outside of b��
We can assume that b� is the bounding box of these points� i�e� b� � bb�Snb���
In other words� two determinators �left and right� of the box b� de�ne both
boxes� Let l and r be the left and right determinators of the box b�� They can
be selected among the x�coordinates of the points of S� The naive approach is
to compute the measures of the boxes b� and b� for each pair of x�coordinates�
It takes %�n�� time in the worst case� We can reduce the number of pairs l
and r that are candidates for the solution� Let L � �p�� � � � � pn� be the list of
points S sorted by their x�coordinate� For each left determinator l� � x�pi�
of b�� the algorithm computes only two candidates for the right determinator
of b� � c� and c�� The value c� is the largest x�coordinate such that the box b�
with the right determinator r � c� has the measure not greater than the box
b�� The value c� is the smallest x�coordinate �if any� such that the box b�
with the right determinator r � c� has the measure greater than the box b��
Clearly� c� � c� and c� is the next element of L list after c� if it exists� If we
will think about c� and c� as functions that depend on the choice of l�� we can
see that c� and c� are both monotonic� i�e� c��b� � c��a� and c��b� � c��a��
if b � a�

The monotonicity of c� and c� allows us to �nd them using at most
�n � 	 computations of the measure 	� To �nd c� and c� for l� � x�pi�
the algorithm starts with the value r� � c��x�pi���� that plays role of the
right determinator of b�� If the box b� with the determinators l� and r� has a
measure greater than the measure of the corresponding box b�� then c� and
c� coincide with the previous values� Otherwise� we do the following� Let A
be a matrix with n rows and n columns� Its element A�i� j� is equal to � if
the algorithm computes the measure of the box b� with the determinators pi
and pj otherwise A�i� j� � �� The unit elements of A correspond to the path
from ��� �� to �n�� n� where pn � c��x�pn��� or n � n� �if c��x�pn��� does not
exist�� The value of r� is changed accordingly to the unit elements in A� On
each step we move in left to right or top to down direction on the matrix
A� The algorithm visits at most 	n � � cells� At each cell it computes the
measures of the boxes b� and b�� Thus� it computes at most �n � 	 boxes�
Below we give the formal description of the algorithm�

It remains to show how to compute the bounding box of S�� The set
S� undergoes both insertions and deletions of the points throughout the al�
gorithm� but each point can be deleted from and inserted to S� only once�
Initially S� � S� We partition S� into two subsets S�� and S��� as de�ned
below�

� S �� contains the points that were not deleted from S�

� S ��� � S� n S ���
Actually S�� �S ��� � has the points to the right �resp� left� of the box con�

taining points of S� but the de�nition above can also be used for higher
dimensions� The set S�� is updated only by deletions of points� The set

CHAPTER �� PIERCING PROBLEMS
	

S ��� is updated only by insertions of points� The box bb�S��� � can be easily
maintained during the algorithm� Moreover� using a presorting step we can
maintain the box bb�S��� in O��� time� The box bb�S�� can be computed in
O��� time using the computed boxes bb�S��� and bb�S��� ��

Algorithm TwoBoxes �� Given points p�� � � � � pn sorted by x�coordinate�
Find the minimum of maximum measure of two boxes covering points such that
one box gets the uppermost ymax and bottommost ymin determinators ��
j �� �
S� �� S
solution�� 	� �� 	�bb�S���
for i �� � to n do

	� � 	��pi� pj�� �ymin� ymax��
if solution� min�	�� 	�� then solution�� min�	�� 	��
while 	� � 	� do
if j � n
then return solution
S� �� S� n fpjg
	� �� 	�bb�S���
j �� j � �
	� � 	��pi� pj�� �ymin� ymax��
if solution� min�	�� 	�� then solution�� min�	�� 	��

S� �� S� � fpjg
	� �� 	�bb�S���

return solution

Clearly� the algorithm described above takes only linear time� We con�
clude by theorem�

Theorem �
�
� The min�max two box problem for n presorted points in the
plane can be solved in O�n� time and O�n� space�

����� The algorithm in higher dimensions

The main idea of the algorithm is the reduction of the dimension� We assume
that the dimension d is greater than two and reduce it to two� Let the boxes
b� and b� be the solution of the min�max two box problem� Then there is
a box which has at least d determinators coinciding with the corresponding
determinators of S� Assume� without loss of generality� that b� is such a box�
The box b� de�nes the smallest box bb�S n b�� containing all points outside
b�� For simplicity we assume that the box b� is equal to bb�S nb�� throughout
this Section� The boxes b� and b� are the solution of the following problem�

Problem Measure�
 Given a set S of n points and d determinators of
the box b�� �nd the remaining d determinators of b� such that the expression
max�	�b��� 	�b��� is minimized� where b� is equal to bb�S n b���

CHAPTER �� PIERCING PROBLEMS

For a set S� there are
�
�d
d

�
ways to �x d determinators� So� we have

�
�d
d

�
problems Measure�� We solve all these problems� The solution of the min�
max two box problem can be chosen from the

�
�d
d

�
pairs of boxes b� and b��

�Of course we do not need to store all these pairs��

Now we show how to solve the problemMeasure�� The box b� has d �xed
determinators and d free determinators� Since the dimension d is greater than
	� there are two free determinators on the di�erent axes� Assume� without
loss of generality� that they are right determinators on x and y axes� i�e�
r��b�� and r��b��� We want to �nd these determinators and the remaining
d � 	 free determinators� At �rst step the algorithm de�nes the remaining
determinators� They can be determined by the points of S �for example� the
i�th left determinator li�b�� is determined by the point q � �q�� � � � � qd� � S
if li�b�� � qi�� Let us consider all the �d � 	��tuples of the points of S�
The algorithm goes through all these tuples and �nds the combination that
attains the required minimum�

It is clear that the number of tuples is nd��� Note that some tuples cannot
give the solution since the determinators of b� have to satisfy the inequality
li � ri� i � �� � � � � d�

The 	�dimensional problem can be now formulated as

ProblemMeasure�
 Given a set S of n points and 	d�	 determinators
l�� � � � � ld� r�� � � � � rd of the box b�� Find two determinators r� and r� of the
box b� in order to minimize the expression max�	�b��� 	�bb�S n b�����

We show that the problem Measure� can be solved in O�n� time� The
determinators r� and r� can be chosen from the sets fx�p��� � � � � x�pn�g and
fy�p��� � � � � y�pn�g respectively� Let b�x� y� denote the box �l�� x� � �l�� y� �
�l�� r���� � ���ld� rd�� where x � fx�p��� � � � � x�pn�g and y � fy�p��� � � � � y�pn�g�
Let S� denote the set of points of S in the box b�x� y� and S� � SnS�� For each
x � fx�p��� � � � � x�pn�g� our algorithm �nds the largest y � fy�p��� � � � � y�pn�g
such that 	�b�x� y�� � 	�bb�S n b�x� y���� Denote it by Y��x�� We observe
that Y��x� is monotone�

Observation �
�
� Y��x� is non�increasing function�

Proof� Consider two x�coordinates x� � x��� It is clear that the box B �
b�x��� Y��x���� contains the box C � b�x�� Y��x����� Therefore the box B� �
bb�S nB� is contained in the box C � � bb�S nC�� This implies 	�B� � 	�C�
and 	�B �� � 	�C ��� 	�B� � 	�B�� by the de�nition Y�� Hence 	�C� �
	�B� � 	�B �� � 	�C ��� It means that Y��x��� � Y��x���

For each x � fx�p��� � � � � x�pn�g our algorithm �for the problem Mea�

sure�� �nds the smallest y � fy�p��� � � � � y�pn���g such that 	�b�x� y�� �
	�bb�S n b�x� y��� �if it exists�� Denote it by Y��x��

Observation �
�
� There exists a solution of problem Measure� such that
r� � Y��r�� or r� � Y��r���

CHAPTER �� PIERCING PROBLEMS
�

Proof� Let the boxes b� � b�r�� r�� and b� � bb�S n b�� be the solution of the
problem Measure�� If 	�b�� � 	�b�� then r� � Y��r��� Using arguments
like one of Observation 	�	�	 we can show

	�b�� � 	�b�r�� Y��r���� � 	�bb�S n b�r�� Y��r����� � 	�b���

We can enlarge the box b� to the box b�r�� Y��r���� This gives a solution with
r� � Y��r���

In the case 	�b�� � 	�b�� we can take r� � Y��r���

For each x � fx�p��� � � � � x�pn�g and y � fY��x�� Y��x�g� we compute
max�	�b�x� y��� 	�bb�S n b�x� y����� Then we compute the minimum value of
these numbers� It gives the solution of the problem Measure��

Now we explain how to achieve O�n� running time� Let b��� b
�
� be the pair

of boxes that are candidates for the solution� Let us consider the moment
when we have computed Y��x� and Y��x� for some x� Using the fact that the
points of S are sorted separately in each of the coordinate axes� we get the
next value x� � x in this order� For the point p of S with x�coordinate x��
we perform the following operations�

First we check whether p can lie in b�� If p cannot lie in b� �the i�
th coordinate of p is less than li for some i� or the i�th coordinate of p
is greater than ri� for some i � 	� then p remains in S� and we pass it�
Otherwise we compare y�p� and Y��x�� If y�p� � Y��x� then p remains in S�
�by monotonicity of Y�� and we pass it� Else we delete p from S� and insert it
into S�� For the determinators r� � x� and r� � Y��x� of the box b�� compute
	� � 	�b�� and 	� � 	�bb�S���� If max�	�b��� 	�b��� � max�	�b���� 	�b�����
then set b�� � b� and b�� � b�� There are two possible cases�

Case �� 	� � 	�� In this case Y��x�� � Y��x� and Y��x�� � Y��x� by
monotonicity of Y�� It should be noted that we do not need to compute the
rectangular measure 	 for the pair x� and Y��x� since it is greater than or
equal to the measure of the boxes b� and b� determined by the pair x and
Y��x�� We only have to compute the rectangular measure max�	�� 	�� for the
pair x� and Y��x� and update the current solution if its measure is greater
than max�	�� 	���

Case �� 	� � 	�� In this case Y��x�� � Y��x� and Y��x�� � Y��x�� We remove
a few points from the box b� in decreasing order of y�coordinate to achieve
	� � 	�� Let y � Y��x�� In order to �nd Y��x�� and Y��x�� we perform the
following operations as long as 	� � 	��

� For each point p � S� with y�p� � y� move the point p from S� to S��

� Using the sorted order of S according to the y�coordinate we decrease
y to the next point whose y�coordinate is less than current y�

� Compute 	� � 	�b�x�� y�� and 	� � 	�bb�S���� If max�	�b��� 	�b��� �
max�	�b���� 	�b����� then set b�� � b� and b�� � b��

CHAPTER �� PIERCING PROBLEMS
�

After these operations we have Y��x�� � y and Y��x�� is the previous value
of y� Now the processing of x� is �nished�

We start the algorithm at the point x that is less than the x�coordinate
of all the points of S� for example x � minfx�p��� � � � � x�pn�g � �� We set
Y��x� � minfy�p��� � � � � y�pn�g� Initially we have S� � � 	� � �� S� � S
and 	� � 	�bb�S��� Y� can have any value because it is used only after S�
becomes non�empty�

Ignoring the time spent on computing 	� and 	� the algorithm takes O�n�
time� It remains to show how to compute 	�� Recall 	� � 	�bb�S���� The
maintenance of the bounding box of S� is described in Section 	�	���

We summarize by the following theorem�

Theorem �
�
� The min�max two box problem in d�dimensional space� d �

� can be solved in time O�n log n � nd��� using O�n� space�

Proof� We spend O�n log n� time in sorting S according to all its coordinates�

As it was pointed above� we solve
�
�d
d

�
problemsMeasure� in order to obtain

a solution for the min�max two box problem� Each problem Measure� is
solved by considering all the �d� 	��tuples of points S� There are nd�� such
tuples� For each such a tuple related to the problem Measure� we spend
O�n� time�

Conclusions

We present an e�cient algorithm for solving min�max two box problem� The
e�ciency of the algorithm is based on the monotonicity of the evaluated func�
tion in the problem� It would be interesting to �nd some connection between
this problem and the problems considered by Jaromczyk and Kowaluk ����
and Segal ����� It is still an open question to prove some nontrivial lower
bounds for the problems appeared in ���� ��� and this section�

CHAPTER �� PIERCING PROBLEMS
�

��� Center Problems

In order to solve Problems p�� p� p� we employ a variety of techniques to
solve these optimization problems� The decision algorithm of Problem p�

searches for the centers of a solution pair �of squares� in an implicit special
matrix� using a technique that has recently been used in �
�� ��� To �nd an
optimal solution� a search in a collection of sorted matrices ���� is performed�

For the second algorithm for Problem p� we present an implicit use of
Frederickson and Johnson technique of sorted matrices ���� i�e� we embed this
technique into the decision algorithm in order to speed up the running time�
This is crucial for the dynamic version of our algorithm� because standard
use of this technique may lead to additional factors of O�n�� in the case
of squares� and O�n��� in the case of rectangles� to the running time� We
obtain an O�max�n log n� m log n�log n � logm��� runtime algorithm for the
squares case and an O�mn logm log n� runtime algorithm for the rectangle
case� As for the dynamic versions the runtimes for update operations for
both algorithms are polylogarithmic in n for any values of m�

The decision algorithm of Problem p involves maintenance of dynami�
cally changing convex hulls� and maintenance of an orthogonal range search
tree that must adapt to a rotating axes system� For the optimization� we ap�
ply Megiddo�s ��� parametric search� However� since our decision algorithm
is not parallelizable� we had to �nd an algorithm that solves a completely dif�
ferent problem� but is both parallelizable and enables to generate the optimal
square size when the parametric search technique is applied to it�

In Problem p� we describe the sizes of candidate solution squares as
a collection of curves� For a dynamically changing set of such curves� we
transform the problem of determining whether their upper envelope has a
point below some horizontal line� into the problem of stabbing a dynamically
changing set of segments� The latter problem is solved using a �dynamic�
segment tree�

����� Two constrained axis�parallel squares �p�	

The
rst algorithm

We are given a set S of n points in the plane� and wish to �nd two axis�
parallel squares� centered at points of S� whose union covers �contains� S�
such that the area of the larger square is minimal� We �rst transform the
corresponding decision problem into a constrained 	�piercing problem� which
we solve in O�n log n� time� We then apply the algorithm of Frederickson
and Johnson ���� to �nd an optimal solution�

CHAPTER �� PIERCING PROBLEMS

The decision algorithm

The decision problem is stated as follows� Given a set S of n points� are
there two constrained axis�parallel squares� each of a given area A� whose
union covers S� We present an O�n log n� algorithm for solving the decision
problem�

We adopt the notation of ���� �see also ��� ��� and section 	���� Denote
by R the set of axis�parallel squares of area A centered at the points of S�
Recall that R is p�pierceable if there exists a set X of p points which intersects
each of the squares in R� The set X is called a piercing set for R� Notice
that X is a piercing set for R if and only if the union of the axis�parallel
squares of area A centered at the points of X covers S� R is p�constrained
pierceable if there exists a piercing set of p points which is contained in S�
Thus� solving the decision problem is equivalent to determining whether R
is 	�constrained pierceable�

We �rst compute the rectangle R �
R� If R is not empty then R
is ��pierceable� and we check whether it is also ��constrained pierceable by
checking whether S has a point in R� If R is ��constrained pierceable then we
are done� so assume that it is not� If R was not found to be ��pierceable� then
we apply the linear time algorithm from section 	���	 �see also ����
�� to
check whether R is 	�pierceable� If R is neither ��pierceable nor 	�pierceable�
then obviously R is not 	�constrained pierceable and we are done� Assume
therefore that R is 	�pierceable �or ��pierceable��

Assume R is 	�constrained pierceable� and let p�� p� � S be a pair of
piercing points for R� We assume that p� lies to the left of and below p��
�The case where p� lies to the left of and above p� is treated analogously��
We next show that R can be divided into two subsets R��R�� such that �i�
p� �
R�� p� �
R�� and �ii� R� �alternatively R�� can be represented in a
way that will assist us in the search for p� and p��

Denote by XR the centers of the squares in R �the points in P � sorted
by their x�coordinate �left to right�� and by YR the centers of the squares in
R sorted by their y�coordinate �low to high�� We now claim�

Claim �
�
� If p� and p� are as above� then R can be divided into two
subsets R� and R�� p� �
R�� p� �
R�� such that R� can be represented
as the union of two subsets Rx

� and Ry
� �not necessarily disjoint� and one of

them might be empty� where the centers of squares of Rx
� form a consecutive

subsequence of the list XR� starting from its beginning� and the centers of
squares of Ry

� form a consecutive subsequence of YR� starting from the list
s
beginning�

Proof� We prove by constructing the sets Rx
� and Ry

�� and then putting
R� � Rx

� �Ry
� and R� � R�R�� We next show that indeed p� �
R� and

p� �
R��

CHAPTER �� PIERCING PROBLEMS
�

We consider the centers in YR� one by one� in increasing order� until a
center is encountered whose corresponding square A is not pierced by p�� Ry

�

consists of all squares in YR below A �i�e�� preceding A in YR�� A might be
the �rst square in YR� in which case Ry

� is empty� We now �nd the location
of the x�coordinate of the center of A in XR� and start moving from this
point leftwards� i�e�� in decreasing order� Thus moving� we either encounter
a square� call it B� that is higher than A and is not pierced by p�� or we do
not�

If we do not encounter such a square B �which is clearly the case if the
bottom edge of A lies above p��� then put Rx

� � � otherwise Rx
� consists of

all squares in XR to the left of B including B�

It remains to show that p� �
R� and that p� �
R�� We assume that
the square B exists� which is the slightly more di�cult case� We �rst show
the former assertion� i�e�� p� �
R�� The fact that p� is not in B implies
that p� lies to the right of the right edge of B� because B cannot lie below
p� since it is higher than A which is already pierced by p�� Therefore none
of the squares in Rx

� is pierced by p� thus p� �
Rx
�� By our construction�

p� �
Ry
�� so together we have p� �
R�� Now consider a square C � R��

C �� A� C is higher than A� because it is not in Ry
�� Therefore if C is not

pierced by p�� then C must lie to the left of A� But if so� it is in Rx
� and thus

not in R��

The claim above reveals a monotonicity property that allows us to design
an e�cient algorithm for the decision problem� We employ a technique� due
to Sharir ���� that resembles searching in monotone matrices for a recent
application and re�nement of this technique� see �
��� Let M be an n � n
matrix whose rows correspond to XR and whose columns correspond to YR�
An entry Mxy in the matrix is de�ned as follows� Let Dx be the set of squares
in R such that the x�coordinate of their centers is smaller or equal to x� and
let Dy be the set of squares in R such that the y�coordinate of their centers
is smaller or equal to y� Let Dl

xy � Dx �Dy and Dr
xy � �R�Dl

xy��

Mxy �

�����
����

&Y Y � if both Dr
xy and Dl

xy are ��constrained pierceable
&Y N � if Dr

xy is ��constrained pierceable but Dl
xy is not

&NY � if Dr
xy is not ��constrained pierceable but Dl

xy is
&NN � if neither Dr

xy nor Dl
xy is ��constrained pierceable

Sharir�s technique enables us to determine whether M contains an entry
of the form &YY� without having to construct the entire matrix� In order to
apply his technique the lines and columns of M� must be non�decreasing �as�
suming &Y� � &N��� and the lines and columns of M� must be non�increasing�
where M i is the matrix obtained from M by picking from each entry only
the i�th letter� i � �� 	� In our case this property clearly holds� since� for ex�
ample� if for some x� and y�� M�

x��y�
�&Y�� then for any x� � x� and y� � y��

M�
x��y��&Y�� Thus we can determine whether M contains an entry &YY� by

CHAPTER �� PIERCING PROBLEMS
�

inspecting only O�n� entries in M � advancing along a connected path within
M �
��� For each entry along this path� we need to determine whether Dz

xy is
��constrained pierceable� z � fl� rg� This can be done easily in O�log n� time
by maintaining dynamically the intersection
Dz

xy� and utilizing a standard
orthogonal range searching data structure of size O�n log n� �	��� Thus in
O�n log n� time we can determine whether M contains a &YY� entry�

Theorem �
�
� Given a set S of n input points and area A� one can �nd
two constrained axis�parallel squares of area A each that cover S in time
O�n log n� using O�n log n� space�

We have just found whether a set of equal�sized squares is 	�pierceable by
two of their centers� For the optimization� we shrink these squares as much
as possible� so that they remain 	�constrained pierceable�

Optimization

For solving the optimization problem we observe that each L� distance �mul�
tiplied by 	 and squared� can be a potential area solution� We can represent
all L� distances as in ��� by sorted matrices� We sort all the points of
P in x and y directions� Entry �i� j� in the matrix M� stores the value
��xj � xi��� where xi� xj are the x�coordinates of the points with indices i� j
in the sorted x�order� and� similarly� entry �i� j� in the matrix M� stores the
value ��yj � yi��� where yi� yj are the y�coordinates of the points with indices
i� j in the sorted y�order� We then apply the Frederickson and Johnson al�
gorithm ���� to M� and M� and obtain the smallest value in the matrices
for which the decision algorithm answers �Yes� and thus obtain the optimal
solution� We have shown�

Theorem �
�
� Given a set S of n input points� one can �nd two con�
strained axis�parallel squares that cover all the input points such that the size
of the larger square is minimized in O�n log� n� time using O�n log n� space�

The second algorithm

We solve here a more general problem which is de�ned as follows� Given a set
S of n demand points and a set C of m center points� �nd two axis�parallel
squares �or rectangles� that cover all the points of S and centered at the
points of C such that that size of largest square �rectangle� is minimized�

Recall the notations from the algorithm for Problem p� from section
	�	� Given a set of points S� the bounding box of S� denoted by B�S�� is
the smallest axis�parallel rectangle that contains S� The bounding box of
S is determined by the four points� two from each axis � leftmost �smallest
coordinate� and rightmost �largest coordinate� points in each of the axes�

CHAPTER �� PIERCING PROBLEMS ��

which we denote by lx� ly� rx� ry� We call these points the determinators of
B�S�� Denote by XS �YS� the sorted list of the points in S according to x
�y� axis�

The decision algorithm

Let s� be a square of area A� In the decision algorithm we go over all the
points of C as a center of s�� At each step check whether we can cover the
rest of the points of S �which are not covered by s�� by a second constrained
square s� of size A� Denote by K the set of points which is not covered by
s�� Denote by sv� and sv� two vertical lines that go through the left and
right side of s�� respectively� Similarly� sh� and sh� are two horizontal lines
that go through the bottom and the top sides of s�� respectively� For sv��sv��
we compute �by a binary search� the nearest point p �q� in XS from the left
�right� of sv��sv��� For sh��sh�� we compute the nearest point p� �q�� in YS
that is below �above� of sh��sh���

Let Sl
i �Sr

j � be the set that contains all the points of S with the x�
coordinate that less or equal �equal or larger� to the x�coordinate of ith
point �jth point� in the list XS� Similarly� let Sb

k �St
m� be the set that con�

tains all the points of S with the y�coordinate that less or equal �equal or
larger� to the y�coordinate of kth point �mth point� in the list YS �

Observation �
�
� The determinators of B�K� are de�ned by the determi�
nators of B�Sl

i�� B�Sr
j �� B�Sb

k�� B�St
m�� More precisely� the determinators

of B�K� are the leftmost� rightmost� lowest bottom and highest top points of
the set Sl

i � Sr
j � Sb

k � St
m�

This observation provides a way to solve the decision problem� For each
point in C as the center for the �rst square s� we do the following�

�� Find B�K�� If B�K� has a side of length greater than
pA� then the

answer to the decision problem is �no��

	� Otherwise de�ne the search region R� which is the locus of all points of

L� distance at most
p
A
� from all four sides of B�K� and search for a

point of C in R�� As was pointed above R� is an axis�parallel rectangle�

As before we perform orthogonal range searching �	�� to determine whether
there is a point of C in R�� If there is at least one point the answer is �yes�
otherwise it is �no�� It remains to explain how we compute e�ciently the de�
terminators of B�Sl

i�� B�Sr
j �� B�Sb

k�� B�St
m�� A bounding box might be empty

or degenerate� in which case we compute the rest of determinators for this
bounding box� We explain the algorithm for B�Sl

i��

The rightmost point p of Sl
i has been computed� The leftmost point of

Sl
i is the leftmost point of S� Thus� it remains to �nd the lowest and highest

CHAPTER �� PIERCING PROBLEMS ��

points of the set Sl
i� These values can be precomputed for i � �� � � � � n� For

the dynamic version of the problem computing these values will be too costly�
Therefore we maintain a balanced binary search tree T as follows� The nodes
of T contain the x�coordinates of the points of S� As we create the tree we
maintain at each inner node the maximum of the y�coordinates of the points
in the subtree rooted at this node� Thus� given the point p� the highest and
lowest points of B�Sl

i� can be found in O�log n� time� Similarly we do for
B�Sr

j �� B�Sb
k�� B�St

m��

Considering the time complexity of the whole algorithm� We spend
O�n log n� to sort all the points of S and build T � For each point in C as
a center for s� we compute the determinators of B�Sl

i�� B�Sr
j �� B�Sb

k�� B�St
m�

in total O�log n� time� Checking the search region R� for a point of C takes
O�logm� time using a standard orthogonal range tree with fractional cascad�
ing �	��� We have shown�

Theorem �
�
� Given a set S of n demand points and a set C of m center
points in the plane� one can �nd whether there exist two axis�parallel squares
of area A� centered at points of C� that cover all the points of S in time
O�max�n log n�m�log n � logm��� using O�n � m logm� space�

Optimization

If we generalize the observation from previous section �see also ������ we
obtain that each rectilinear �x or y� distance between the points of C and
the points of S �multiplied by 	 and squared� can be a potential area solution�
Thus there are O�mn� potential areas� One possibility for the optimization
step is to apply the Frederickson and Johnson algorithm for sorted matrices
����� For example all the potential size solutions de�ned by x distances can
by represented as shown below� De�ne a matrix M as following � consider XS

the sorted x order of points of S and also XC the sorted x order of points of C�
Entry �i� j�� � � i � m� � � j � n in the matrix M stores the value xSi � xCj
where xSi is the x coordinate of the point with index i in XS and xCj is the x
coordinate of the point with index j in XC � The matrixM is sorted� but some
of the potential area values appear in matrix with negative sign� To overcome
this di�culty� we split M into two matrices M� and M�� The positive entries
of M� are equal to M except that the negative entries are switched to be �� In
M� the negative entries of M become positive and the positive entries of M
are switched to �� Clearly� M� and M� are sorted matrices and they represent
the set of all possible areas according to x�coordinates� Similar procedure
works for the y�coordinates� and thus� we obtain four sorted matrices that
represent all the possible solutions� This technique works �ne in our case�
but still has two disadvantages� First disadvantage is that it leads to some
additive factor to the runtime of the optimization scheme �O�m log�	n�m���
and second is that we need to maintain these matrices under deletions and
insertions for the dynamic version of our problem�

CHAPTER �� PIERCING PROBLEMS �	

Denote by Td the runtime of the decision algorithm after the preprocessing
step �which is O�n log n�m logm��� Instead of representing all the distances
by sorted matrices� we perform a search of the square size for each point
c � C as a center for s�� The search is for each axis and in each direction
�left� right� up� down�� Below we describe the algorithm for axis x� center c
of s� and the right direction� The size of s� �and also s�� is de�ned as follows�

�� Let the number of points of S that lie to the right of c be � � k � n� We
denote the x�sorted set of these points by Sr

n�k
� � fpn�k
�� � � � � png�
	� Perform a binary search on the size of s�� This size is de�ned by c and

some of Sr
n�k
�� Namely we perform the following actions�

�i� Find a median point pn� k
�
�

in the set Sr
n�k
��

�ii� Compute the x�distance between c and pn� k
�
�

�

�iii� This distance multiplied by 	 and squared de�nes the size A�

�iv� Run the decision algorithm for A� If the answer to the decision
problem is �yes�� then set k � k

� and return to step �ii�� If the
answer to the decision problem is �no�� then set k � k � k

�
and

return to step �ii��

� Repeat the above procedure for the remaining directions�

The smallest size for which the decision algorithm answers �yes�� after run�
ning it for each axis and in each direction� is the solution to the optimization
problem� Clearly� the described algorithm takes O�n log n � Td log n� time�
Thus� we have

Theorem �
�
 Given a set S of n demand points and a set C of m center
points in the plane� one can �nd a solution in time O�max�n log n� m log n�log n�
logm��� using O�n � m logm� space�

A related lower bound� We prove a lower bound to the following �closely
related to our� problem� Given an integer A and a set S of n demand points
and a set C of m center points on the line� �nd two segments of length A
centered at points of C that cover the largest possible number of points of S�
An %�n log n� lower bound under the linear decision tree model is achieved
by a reduction from the set element uniqueness problem as in ���� We set
C � S and asking the question for a limit A � �� The answer is 	 if and
only if the elements of the set are disjoint�

The dynamic version

In the dynamic version of problem p� points may be inserted to or deleted
from S� Our algorithm for the static version can be extended to support

CHAPTER �� PIERCING PROBLEMS �

updates and queries in which we ask what are the two smallest enclosing
constrained squares that contain the current set S�

The sorted order of the points of S according to x and y coordinates is
maintained in the tree T as following� When we delete from or insert to T
some point we should update all the maximum y�values stored at the inner
nodes on the updating path from the corresponding leaf to the root� In
addition� for each node v in T we store the information about the number
of nodes that are in the left and right subtrees of the tree rooted at v� This
information is useful to compute the median for optimization step �	�i� and
to �nd the set Sr

n�k
� by a binary search in T in O�log n� time� Storing
this information does not a�ect the running time of the insertion or deletion�
since we can update while walking on the same updating path� The update
of the tree T takes O�log n� time �
��� When we have a query� we can run
our decision algorithm together with the embeded optimization scheme using
T in order to get the answer� Using our previous result we can conclude by
theorem�

Theorem �
�
� Given a set S of n demand points and a set C of m center
points in the plane� where the points of S are allowed to be inserted or deleted�
we can answer the query in O�m log n�log n�logm�� time� The update time is
O�log n� for the points of S� The preprocessing time is O�n log n�m logm��

As one can see the running time of the query is similar the running time of
the algorithm for the static version� However� in the dynamic version of the
problem� the query runs without precomputing all the data structures that
have been used in the algorithm for a static version� Thus� if m � o�n�� we
have a polylogarithmic running time query�

Higher dimensions

Our algorithm can be generalized to work in any ��xed� d�dimensional space�
d �
� The changes we need to perform in order to allow this are following�

�� For the points of C we use d�dimensional orthogonal range tree �	��
with a query time O�logd��m� for the static version�

	� We maintain d balanced binary search trees Ti� i � �� � � � � d for the
points of S� one for each axis� But now each node contains the d � �
maximal and minimal values of the other coordinates� The update
scheme of Ti is done in time O�d log n��

The rest follows immediately�

Theorem �
�
� Given a set S of n demand points and a set C of m cen�
ter points in the d�dimensional space� d �
� one can �nd a solution �d�
dimensional in

O�max�n log n�m log n�log n � logd��m���

CHAPTER �� PIERCING PROBLEMS ��

time�

Theorem �
�
	 Given a set S of n demand points and a set C of m center
points in the d�dimensional space� d �
� where the points of S are allowed to
be inserted or deleted� we can answer the query in O�m log n�log n�logd��m��
time� The update time is O�log n� for the points of S� The preprocessing time
is O�n log n � m logd��m��

Rectangles

We consider �rst the planar version� Given a set S of n demand points and
set C of m center points in d�dimensional space �d � 	�� �nd two axis�
parallel rectangles that cover all the points of S and are centered at the
points of C and size of the larger rectangle is minimized� Let us call the
solution of this problem minimal rectangular cover� Here we consider the
size as a perimeter but it could be the area� diagonal length or some other
rectangular measure� Hershberger and Suri ����� Glozman et al� ��� and also
this thesis �section 	�	� consider a similar two�covering problem �Problem
p��� but without constraining the centers of the rectangles to be in C� They
present an algorithm which runs in time O�n log n�� Our algorithm runs in
time O�mn logm log n��

The decision algorithm

Assume we are given a rectangle perimeter A� The general idea is very
similar to the one used for the squares� we go over all the points in C as
a center for the �rst constrained rectangle r�� and at each step we check
whether the rest of the points can be covered by a second discrete rectangle
r�� The di�erence is that we do not know the form of r� and r�� In order to
solve this problem our decision algorithm tries all possible placements of r�
on points of C and checks whether the set of points not covered by r� can
be covered by a constrained rectangle r�� We demonstrate our algorithm for
a point c � C� Four lines l�� l�� l�� l� with slopes ��� ����� � in quadrants in
clockwise direction� starting with a positive x and y quadrant� respectively�
de�ne the locus of all rectangles with a given perimeter A� centered at O�
The lines have to construct a ��� tilted square Q� Assume for a moment
that c � O� Consider the S� � S that contains all the points of S which
are inside of intersection Q of the halfplanes de�ned by lines l�� l�� l�� l� and
containing c� Each point s � S� de�nes two rectangles with center c and
the given perimeter� where s either determines the width of the rectangle�
or its height� For the time being we look at the rectangle whose width is
determined by s� Let s be the point that determines the widest rectangle r�
and assume w�l�o�g� that s is to the left of c�

We shrink the width of the rectangle� keeping its corners on the corre�
sponding lines until an event happens� An event is when a point of S is added

CHAPTER �� PIERCING PROBLEMS ��

to or deleted from the rectangle during the width shrinking� We check if the
rest of points of S is covered by r�� If it does then we are done otherwise we
continue to shrink the rectangle until the next event� We perform the same
actions for the height as well�

In order to speed up this algorithm we de�ne four dynamic subsets U �
D� R� L of S � corresponding to the halfplanes that bound r�� R is the set
of all the points of S� that contained in the halfplane to the right of the left
side of r�� Similarly� L �U�D� is the set of points of S� that contained in
the halfplane to the left �up� down� of the right �upper� lower� side of the
rectangle r�� We de�ne pr�pl� to be the point x�closest to r� in R �L� and
pu�pd� to be the point y�closest to r� in U �D�� Assume that we are shrinking
r� in x direction until the next event� Assume that the x�closest neighbor
of pr�pl� in R�L� is phr �p

h
l � and the y�closest neighbor of pu�pd� in U�D� is

pvu�pvd�� Thus� our event is when one of phr � p
h
l or pvu� p

v
d enters or leaves the

rectangle r�� If the next event is a point from R or L� then the number of
points uncovered by r� increases by �� otherwise decreases by �� We update
pr� pl� pu� pd �and also the subsets U � D� R� L�� We check whether r� can cover
the rest of points K � S that are uncovered by r� by following algorithm�

We �rst �nd the determinators of the bounding box B�K�� For the static
version of this problem� we can precompute for each set Sl

i� S
r
j � S

b
k� S

t
m the

minimal and maximal values� If the length of some side of B�K� is larger
than A then the answer to the decision problem is �no�� Otherwise we �nd
a search region R� for the center of r�� It can be done as following� We make
a rectangle r� with a perimeter A and a minimal height such that r� covers
B�K� and its left lower corner of r� coincides with the left lower corner of
B�K�� We slide r� up keeping in touch the left sides of r� and B�K� till
the left upper corners of r� and B�K� coincide� Then we continue sliding
r� to the right keeping in touch the upper sides of r� and B�K�� then up
while touching right sides and �nally to the left while touching down sides
till we reach the initial position of r�� We look onto segments on which the
center of the r� lies during the sliding motion of the square� This de�nes a
rectangular search region R� where can be found the center of the r� that
covers B�K�� but only for this form of r�� Generally� r� can have an in�nite
number of forms� But� as was observed in ����� all the rectangles r�� with the
same perimeter and the same lower left corner� have their upper right corner
on particular curve '� In this case of perimeter ' is a segment with slope ���
Thus we should compute R� as before for all the forms of r� and then take
their union� thus obtaining the �nal search region R��� The region R�� has a
form of axis�parallel rectangle rotated to ���� In order to �nd whether R��

contains any point of C we perform a standard orthogonal range searching
algorithm but only for coordinate axes rotated to ����

After preprocessing in O�n log n� time� the algorithm above runs inO�n log m�
time for one point ci � C if the values of B�Sl

i�� B�Sr
j �� B�Sb

k�� B�St
m� are pre�

computed before� This is because we can carry each step of the algorithm

CHAPTER �� PIERCING PROBLEMS ��

in constant time �except of orthogonal range searching� after computing the
�rst time boundaries of the rectangle r��

Thus� we have

Theorem �
�
�� Given a set S of n demand points and a set C of m center
points in the plane� one can �nd whether exist two axis�parallel rectangles of
perimeter A centered at the points of C that cover all the points of S in
O�max�n log n�mn logm�� time�

Optimization

As in the case of squares we embed the optimization step into the decision
algorithm� Similar to the squares algorithm� the explicit use of sorted ma�
trix may lead to the additional additive factor O�n�� to the runtime for the
optimization algorithm� We would like to avoid the explicit use of sorted
matrices for the dynamic version of this problem by embedding the search
into the decision algorithm� In our case we obtain that each pair containing
one rectilinear x�distance and one y�distance between the points of S and
the same point in C �multiplied by � and summarized� can be a potential
perimeter solution� The optimization scheme is very similar to previous one�
but instead of performing a binary search for each one of the directions� we
de�ne a sorted matrix M whose rows contain the sorted x�distances from
ci � C to the points of S and whose columns contain the sorted y�distances
from ci � C to the points of S� Note that the number of elements in M is n��
Denote by T i

d the running time of the rectangles decision algorithm for point
ci as a center of r�� �Thus the total number of potential perimeter solution
is mn��� Then we can perform a binary search on the elements of the matrix
M � making only a constant number of calls to the decision algorithm for
point ci per iteration� As was shown in ���� the overall runtime consumed by
the algorithm is O��m

i��T
i
d log n � n�� We obtain

Theorem �
�
�� Given a set S of n demand points and a set C of m
center points in the plane� one can �nd a minimal rectangular cover in
O�mn logm log n� time�

The dynamic version

For dynamization of the decision algorithm for rectangles we use the same
updating scheme as for the decision algorithm for squares� The update and
query operations the points of S remain the same� We use the same data
structures as in the dynamic version of the algorithm for squares� For the
optimization step we also have to take care of maintaining the sorted matrix
for every point of C� It can be easily done while maintaining dynamically
the sorted order of the points of S according to their x and y�coordinates�
The di�erence form the static version is using a balanced binary search trees

CHAPTER �� PIERCING PROBLEMS �

in the decision algorithm� but in optimization step we �rst perform inorder
traversal� obtain a sorted list of points and then apply our optimization
scheme� As before� the query time remains the same as for the static version�
but we need not to recompute again all the data structures that we have
used before� Thus� we have

Theorem �
�
�� Given a set S of n demand points and a set C of m cen�
ter points in the plane� where the points of S are allowed to be inserted or
deleted� we can answer the query �What is the minimal rectangular cover��
in O�mn log n logm� time� The update time is O�log n� for the points of S�
The preprocessing time is O�n log n � m logm��

Higher Dimensions

Similarly to the case of squares� our algorithm can be generalized to work
in any ��xed� d�dimensional space� d �
� The changes are exactly as in
the d�dimensional algorithm for the squares� which include maintaining d�
dimensional orthogonal range tree for the points of C� d balanced binary
search trees� d sorted orders of points� In addition� we perform the d�
dimensional decision algorithm by �xing one dimension and applying recur�
sively d � ��dimensional decision algorithm� For the optimization step the
number of potential perimeters is mnd� We can represent them as m sorted
matrices� each one of the dimension d� Each sorted matrix is obtained by
cartesian product of d ��dimensional arrays� identically to the plane case�
If we denote by T d running time of the optimization algorithm �static or
dynamic� in d�dimensional space� d �
� then we can be easily verify that
T d � O�nT d����

Theorem �
�
�� Given a set S of n demand points and a set C of m center
points in the d�dimensional space� d �
� one can �nd a minimal rectangular
cover in O�mnd�� logd��m log n� time�

Theorem �
�
�� Given a set S of n demand points and a set C of m center
points in the d�dimensional space� d �
� where the points of S are allowed to
be inserted or deleted� we can answer the query �What is the minimal rectan�
gular cover�� in O�mnd�� log n logd��m� time� The update time is O�log n�
for the points of S� The preprocessing time is O�n log n � m logd��m��

����� Two constrained parallel squares �p�	

Our problem is� Given a set S of n points in the plane� �nd a pair of parallel
constrained squares whose union contains S� so as to minimize the area
�equivalently� the side length� of the larger square� The problem where the
squares are not constrained was recently solved by Jaromczyk and Kowaluk
���� in O�n�� time using O�n�� space�

CHAPTER �� PIERCING PROBLEMS ��

We �rst solve the decision problem for squares with a given area A in time
O�n� log� n� and O�n�� space� For the optimization� we present a parallel
version of another algorithm �solving a di�erent problem�� to which we apply
Megiddo�s parametric search ��� to obtain an O�n� log� n� time and O�n��
space optimization algorithm�

The decision algorithm

For each of the input points� pi � S� draw an axis�aligned square Qi of area
A� centered at pi� For each pi denote by Ui the set of points in S that are not
covered by Qi� If� for some i� there is a constrained axis�aligned square of
area A which covers Ui� then we are done� Otherwise� we rotate the squares
fQi j i � �� � � � � ng simultaneously about their centers� stopping at certain
rotation events to check if any of the corresponding Ui�s can be covered by a
parallel square of area A� and halting when the answer is �yes��

A rotation event occurs whenever a point of S enters or leaves a square
Qi� i � � � � � n� When a square Qi rotates by �

� from its initial axis�aligned
position� every point of S enters and leaves Qi at most once� Thus� the
number of rotation events for Qi is O�n�� For all the points in P we can
precompute all the O�n�� rotation events in O�n�� time with O�n�� space�
We sort the rotation events according to their corresponding angles�

We compute the initial convex hulls for each Ui� i � �� � � � � n �i�e�� at
orientation � � ��� and start rotating the squares till we get to the next
rotation event� Assume that at the current rotation event a point pj enters
Qi� �The case where a point pj leaves Qi is treated similarly�� The set Ui

and its convex hull are updated as pj leaves Ui� and we check whether there
exists a constrained cover of S involving Qi and another constrained square
�that covers Ui��

We explain how this is done for one square Qi at orientation � � �� First
we �nd the tangents of the convex hull of Ui that are parallel to the sides
of Qi� They de�ne a rectangle R which is the bounding box of Ui� If R has
a side of length greater than

pA� then none of the other n � � constrained
squares covers Ui� Otherwise we de�ne a search region R� which is the locus

of all points of L� distance at most
pA
� from all four sides of R� and search

for a point of S in R�� �Clearly C is a rectangle whose sides are parallel to the
sides of Qi�� We perform orthogonal range searching to determine whether
there is a point of S in R�� If there exists such a point then the answer to
the decision problem is �yes��

Assume we have computed all the rotation events and have O�n�� rectan�
gular search regions associated with them� �Assume the coordinate system
rotates together with the rotating squares fQig� thus� at any rotation event�
the corresponding rectangular search region is parallel to the current axes��
In order to perform orthogonal range search on the rectangular regions we use
a dynamic orthogonal range search tree which is updated at certain rotation

CHAPTER �� PIERCING PROBLEMS ��

events as follows�

Denote by L the list of all O�n�� lines passing through pairs of points in
S� Let P consist of all the slopes of lines in L that lie in the range ��� ��	��
and of all the slopes in the range ��� ��	� of lines that are perpendicular to
the lines in L� We sort P � obtaining the sorted sequence f
��
�� � � �g� We
rotate the axes so that the x�axis has slope
�� and compute an orthogonal
range search tree for S with respect to the rotated axes� storing just the
labels of the points of S in the tree� For each search region whose side slope
is between
� and
� we perform a usual range search with this tree� Before
considering the next search regions� we rotate the axes some more until the
x�axis has slope
�� Notice that just one pair of points in S has swapped in x
or y order in this angle range� We update the range search tree accordingly�
Assuming the leaves of the main structure in the range tree are sorted by x�
coordinate� and the leaves in the secondary trees are sorted by y�coordinate�
If� when moving from
� to
�� the swap occurred in the x�order of the pair
of points� then we swap the �labeling of the� points in the main structure and
in the secondary structures a�ected by that swap if the swap occurred in
the y�order� then we swap the labeling in the a�ected secondary structures�
Now we can proceed with the search ranges whose sides have slopes between

� and
�� And so on�

We analyze the time and space required for the decision algorithm� The
total number of rotation events is O�n��� They can be precomputed and
sorted in O�n� log n� time with O�n�� space� Similarly P can be obtained
and sorted within the same bounds� Merging the two sets of slopes �rotation
events and P � is done in time O�n��� Initially computing the convex hulls
for all sets Ui takes O�n� log n� time with O�n�� space� Applying the data
structure and algorithm of Overmars and van Leeuwen ����� each update of
a convex hull takes O�log� n� time� totaling in O�n� log� n� time and O�n��
space for all rotation events� Our range searching algorithm takes O�log� n�
time per query and per update� after spending O�n log n� preprocessing time
and using O�n log n� space �notice that this is the total space requirement
for the range searching�� and we perform O�n�� queries and updates� Thus
we have shown�

Theorem �
�
�� Given a set S of n points and an area A� one can decide
whether S can be covered by two constrained parallel squares� each of area A�
in O�n� log� n� time and O�n�� space�

Optimization

Having provided a solution to the decision problem� we now return to the
minimization problem� The number of candidate square sizes is O�n�� �see
below and Figure 	�
�� The candidate sizes are determined by either

� A point of S as a center of a square �see Figure 	�
�i���iv�� and either

CHAPTER �� PIERCING PROBLEMS ��

�iii� �iv��ii��i� �v�

Figure 	�
� Critical events that determine candidate square sizes� Cases �i�
� �iv� involve a single square� and case �v� two squares�

�i� another point of S on a corner of this square� or �ii� two points of
S on parallel sides of the square� or �iii� two points of S on one side of
the square� or �iv� two points of S on adjacent sides of the square� or

� Two points of S as centers of two squares and another point of S on
the boundary of each of the squares �Figure 	�
�v���

In order to apply the Megiddo optimization scheme we have to parallelize our
decision algorithm� However� the range searching part of the decision algo�
rithm is not parallelizable� so� as in ��� we come up with an auxiliary problem
whose parallel version will generate the optimal solution to our problem�

The auxiliary problem is described as follows� Assume we have a set S
of n � 	 points and a �xed size d� Assume we have produced the set of
strips such that each strip is of width d and contains at least one point of S
on each of its boundaries� In this situation a point on one boundary might
stand for the square center and the point on the other boundary is the one
on the side of the square� Maintain the set of strips by storing their slopes
and the corresponding pairs of points that de�ne them in P � Let (P be the
set of slopes obtained by the slopes of P by adding ��	 �mod ��� With each
slope in (P we store the pair of points associated with the corresponding slope
in P �

A slope (s � (P stands for a pair of square sides perpendicular to the ones
de�ned by its corresponding slope s � P � So that if two perpendicular slopes�
s� and s� �in P � de�ne a square �as in Figure 	�
 �i���iv� and �v��� then s� and
(s� are equal� The set of squares thus de�ned is a superset of the candidate
solution squares as de�ned above� Let P � P � (P be a set of slopes with
their associated point pairs� The auxiliary problem is to sort the slopes in
P�

Clearly not all pairs of points in S de�ne strips� and thus slopes� in P�
A pair of points in S whose distance is smaller than d will not generate the
required width strip� For every pair of points in S whose distance from each
other is larger than d� there are exactly two slopes for which the width of the
strip� with a point of this pair on each of its boundaries� is d� We add these
slopes �and their (P corresponding slopes� to P� Reporting the sorted order
of P can be done in O�n� log n� time� and a parallel algorithm with O�n��

CHAPTER �� PIERCING PROBLEMS ��

processors will sort the list in O�log n� time �

��

We now want to �generically� apply this parallel sort algorithm for �nding
the optimal square size d�� For this we �rst augment our algorithm� as in
��� and get an initial interval where d� resides� We perform a preliminary
stage that disposes of the cases in which the width of the strip is exactly
the distance between two points of S� and those in which the width is the
distance between two points multiplied by

p
	�	� We call these distances

special distances� We can a�ord to list all these O�n�� strip widths� sort
them� and perform a binary search for d� over them� applying our decision
algorithm of the previous subsection at each of the comparisons� This results
in an initial closed interval of real numbers� I�� that contains the optimal
square size d�� and none of the just computed special sizes is contained in its
interior�

Consider now a single step in the parallel sort �the auxiliary problem��
In this step we perform O�n�� slope comparisons� each comparison involving
two pairs of points� There are two cases� �a� the two compared slopes are
from P �or both are in (P �� and �b� one slope is in P and the other in (P � Let
one such comparison involve the pairs �p�� p�� and �p�� p��� In order to resolve
this comparison� we must compute for the point pair �p�� p�� the slopes of the
two strips of width d� that have p� on one boundary of the strip and p� on the
other� Similarly� we compute the slopes of the two strips of width d� through
�p�� p��� Then we sort the four strips by their slopes� Of course� we do not
know d�� so we compute the �at most two� critical values d where the sorted
order of the four strips changes� namely� for case �a� above� where the two
strips are parallel� and for case �b�� when the two strips are perpendicular
to each other� We do this for all O�n�� critical value comparisons� Now we
apply the decision algorithm of the subsection above to perform a binary
search over the O�n�� critical values that were computed� Thus we �nd an
interval I � I� where d� resides� resolve all the comparisons of this parallel
stage� and proceed to the next parallel stage�

What does resolving mean here! See Figure 	�� which depicts case �a��
If the comparison was made for two pairs of points �p�� p�� and �p�� p�� then�
if the distance between a pair of points� d� � �p�� p�� or d� � �p�� p��� is
smaller than the smaller endpoint of the current interval I then this pair will
not have a strip of width d� and it is omitted from the rest of the sort� If
the distance is larger than the smaller endpoint of I then the slope ordering
of the four strips at d� is uniquely determined as follows� In Figure 	�� �a�
the strips s� and s� are parallel at some width d�� and in Figure 	�� �b� we
plot the strips of width d� for the two pairs of points� In Figure 	�� �c� we
graph d as a function of � � ��� �� for the two pairs of points� The graph of
d � d� cos������ achieves its maximum at ���� d��� and similarly the graph of
d � d� cos������ achieves its maximum at ���� d��� where �� ���� is the angle
that the line perpendicular to the line through �p�� p�� ��p�� p��� makes with
the positive x�axis� It is easy to see that for every d each pair of points has

CHAPTER �� PIERCING PROBLEMS �	

p� p�

p�

p�

s� s�

s�

s�

�a�

�b�

s�

s�

s�

�

d�

d�

d

p�
p�

s�

� �� ���

s�s� s�

s�
s�s�

p�

p�

�c�

Figure 	��� Slope ordering for the comparison of �p�� p�� and �p�� p��� �a�
strips s� and s� are parallel for some d� �b� the ordering of the slopes at d��
�c� d as a function of �

CHAPTER �� PIERCING PROBLEMS �

two strips and that the two functions intersect at two points� We split the
domain of de�nition of each function to two parts� one in which the function
strictly increases and one in which it strictly decreases� In Figure 	�� �a� and
	�b� the strip s� corresponds to the decreasing half of the function in Figure
	�� �c� and s� to the increasing half� Similarly with the strips of �p�� p��� s�
corresponds to the increasing half and s� to the decreasing half� Thus the
order of the strips at d� is the order in which the line d � d� intersects their
functions� and the width values at the intersection points of the two functions
consist of the critical values for these two pairs of points�

For case �b� assume the pair �p�� p�� belongs to a strip of (P � We sim�
ply cyclically shift the function of �p�� p�� �of P � by ��	� The intersection
points of the functions are now at two values of d� where the two strips are
perpendicular to each other� and all the rest of the argument is analogous�

Note� We have to be a little more careful here about the notion of the
domain of de�nition of the functions� and we might want to break the domain
of de�nition of the functions also at � � �� This is a slight formality that we
neglect since it does not change anything in the analysis�

The closed interval I is always guaranteed to contain d� but we need to
show that a comparison is made where d � d��

Claim �
�
� If d� is not one of the special distances then the slope order of
the strips changes as d changes from values slightly smaller than d� to values
slightly larger than d��

Proof� Observe again Figure 	�
� Clearly if d� is not one of the special
distances then it involves two pairs of points� In Figure 	�
 �ii�� �iii�� �iv��
the pairs are the center point of the square paired with each of the two points
on the boundary of this square� and in Figure 	�
 �v� the pairs are the center
point of each square paired with the point on the side of its square� None of
these cases represents a special distance� and hence the slopes of the strips are
monotone functions of their widths� These two monotone functions intersect
at d� thus in a small neighborhood of d� one function is above the other for
d � d� and below for d � d� �

Note that at some stage the optimal solution will appear on the boundary
of the interval I computed at that stage �it could even appear on the bound�
ary of I��� However� once it appears� it will remain one of the endpoints of all
subsequently computed intervals� At the end� we run the decision algorithm
for the left endpoint of the �nal interval� If the answer is positive� then this
endpoint is d�� otherwise d� is the right endpoint of the �nal interval�

Theorem �
�
�� Let S be a set of n points� we can �nd a pair of parallel
constrained squares whose union covers S and such that the area of the larger
square is minimized in O�n� log� n� time and O�n�� space�

CHAPTER �� PIERCING PROBLEMS ��

����� Two constrained general squares �p�	

Now the squares may rotate independently� We �rst state a subproblem
whose solution is used as a subroutine in the full solution� Then we present
an algorithm for solving the decision problem� This algorithm is used to
perform a binary search over the sorted set of potential solutions� producing
the solution to the optimization problem�
The subproblem� Given a set S of n points in the plane and a point q�
�nd the minimum area square that is centered at q and that covers S� The
square may rotate�

The algorithm for solving the subproblem is as follows� Assume q is the
origin� Let � be an angle in ��� �� �� Consider the projections� xi��� and yi����
of a point pi � S on the x�axis and y�axis� after rotating the axes by �� If
the distance between pi and q is di� and the angle between the vector pi and
the x�axis at its initial position is �i� then we have

xi��� � di cos��i � �� and yi��� � di sin��i � �� �

A square centered at q rotated by angle � that has pi on its boundary
is of side length 	 � maxfjxi���j� jyi���jg� Note that it is enough to rotate
the axes by angle �� � � � � �

�
� in order to get all possible sizes of squares

centered at q having pi on their boundary�

Observe the plane ��� z�� on which we graph both z�i����� � 	jxi���j and
z�i��� � 	jyi���j� i � �� � � � n� We call the set of these 	n functions Eq� and
depict them in Figure 	��� It is easy to see that every pair of functions zj
and zk intersects at most twice� The upper envelope of the functions in Eq

denotes� for each �� the size z��� of the smallest square �centered at q and
rotated by �� that covers S� and the point �or two points� of S corresponding
to the function �or two functions� that attains �attain� the maximum at this
� is the point �are the two points� of S on the boundary of the square� The
lowest point on this envelope gives the angle� the size� and the point�s� that
determine the minimal square� The upper envelope� and the lowest point on
it� can be computed in O�n log n� time ����� and this is the runtime of the
solution of the subproblem above�

For the two squares decision problem we repeat some notations and ideas
from the previous section� Let Qi be a square of the given area A centered
at pi � S� We de�ne rotation events for Qi as the angles at which points of
S enter or leave Qi� Denote by Ui the set of points not covered by Qi at the
current rotation angle� Using the subproblem described above� we �nd the
smallest constrained square that covers Ui� by computing n sets Ej� where
Ej is the set of 	jUij functions associated with the center point pj �

We describe our algorithm for determining whether one of the constrained
centers is some �xed point pi � S� Then we apply this algorithm for each of
the points in S� Initially� at � � �� we construct all the sets Ej� so that each
set contains only the functions that correspond to the points in the initial Ui�

CHAPTER �� PIERCING PROBLEMS ��

�

z�

��

z���

Figure 	��� The functions zi and the lowest point ���� z�� on their upper
envelope

The rotation events for this phase are those caused by a point of S entering
or leaving Qi� At each rotation event we update Ui and all the sets Ej� We
then check whether there is a point on the upper envelope of one of the Ej�s
which is below the line z �

pA� If there exists a point ���� z��� z� �
pA on

the upper envelope of some Ej � then the square Qi at its current position�
and the square Qj at angle �� are the solution to the decision problem�

Updating the upper envelopes corresponding to the sets Ej turns out
to be time consuming� therefore we transform the problem of determining
whether one of the upper envelopes has a low enough point to a segment
stabbing problem as follows� Observe one set Ej� If we draw a horizontal
line at z �

pA� then each function curve in Ej is cut into at most three
continuous subcurves� of which at most two lie below the line� We project
all the subcurves of Ej that are below the line on the ��axis� obtaining a set
of segments� Assume the number of points in Ui is k� then if �and only if�
there is a point �� on the ��axis that is covered by 	k segments then there is
a square of the required size� of orientation ��� centered at pj which covers
the points of Ui�

We construct a segment tree Tj ��
� with O�n� leaves �for the segments
obtained from all potential curves in Ej�� Each node in the tree contains�
besides the standard segment information� the maximum cover of the node
�namely� the largest number of segments that can be stabbed in the range of
the node� for details see ��
��� The root of the tree contains the maximum
cover of the whole range � � � � �

�
� The size of one tree is O�n� and each

CHAPTER �� PIERCING PROBLEMS ��

update is performed in timeO�log n�� Initially� at � � �� we insert into Tj the
segments corresponding to the curves of the points in Ui� and check whether
the maximum cover equals twice the cardinality of Ui� One update to Ui

involves at most four segment updates in Tj�

We consider the time and space complexity of the algorithm� For one
point pi as a candidate center� the initial trees Tj are constructed in time
O�n� log n�� occupying O�n�� space� There are O�n� rotation events for Qi�
and an update to one Tj is performed in O�log n� time� totaling O�n� log n�
time for all rotation events and all Tj�s� The space requirement is O�n���
Applying the algorithm sequentially for all i in f�� � � � � ng gives O�n� log n�
runtime� while the space remains O�n���

To �nd an optimal solution� we perform for each i as above the following�
Assume pi � S is one of the two centers in the solution� The corresponding
square is de�ned either by another point of S in its corner� or by two points
of S on its boundary� So we compute the O�n�� potential area sizes with pi as
the center� We sort the area sizes and apply binary search to �nd the smallest
area squares that cover S with pi as one of the centers in the solution� At
each of the O�log n� search steps� we apply the decision algorithm above �just
with pi as one of the centers�� We perform this search for all i � f�� � � � � ng�
We have shown�

Theorem �
�
�� Given a set S of n input points we can �nd a pair of
general constrained squares whose union covers S and such that the area of
the larger square is minimized in O�n� log� n� time and O�n�� space�

Conclusions

We have considered several instances of the center problems� namely� when
the centers of the objects are constrained to lie on the input points� Find�
ing nontrivial lower bounds and improving the running time of the above
algorithms can be the challenging questions in the near future�

Chapter �

Facility Location

In this chapter we consider the problems of the following type� �Given a set
S of n sites �points� in metric space� position position a point �facility�� or a
number of facilities� in the plane such that a distance between the facility and
given n points is minimized or maximized�� In particular� we are interested
in the following problems�

p�� Let S be a set of n points in the plane� enclosed in a rectangular region
R� Let each point p of S have two positive weights w��p� and w��p��
Find a point c � R which maximizes

min
p�S

fmaxfw��p� 	 dx�c� p�� w��p� 	 dy�c� p�gg�

where dx�c� p� de�nes the distance between the x coordinates of c and
p� and dy�c� p� de�nes the distance between the y coordinates of c and
p�

p	� Given a set S of n points and a number � � k � n � � �nd a point
p such that sum of the L��L�� distances from p to all the subsets of
S of size k is minimized� For this problem we consider two cases� the
discrete case � where p � S� and the continuous case where p is any
point in the plane�

p��� Let S be a set of n points in the plane �called demand points�� and let
R be a set of m� m � n� regions in the plane �called neighborhoods��
Let k be a positive integer �k is the number of facilities� e�g�� garbage
dumps� to be placed�� Find k sites c�� � � � � ck for the k facilities� such
that �i� C � fc�� � � � � ckg is a piercing set for R� that is� each of the
neighborhoods in R is served by at least one facility that is located in
the neighborhood� �ii� The minimal distance between a demand point
in S and a site in C is maximized�

For these problems we developed a new data structure which allow us to
obtain very e�cient algorithms�

�

CHAPTER �� FACILITY LOCATION ��

��� Undesirable Facility Location �p
	

In this section we �rst present a sequential algorithm that answers a decision
query of the form� given d � �� determine whether there exists a location
c � R whose x�distance from each point pi � S �the distance between the x
coordinates of c and pi� is � d 	 w��pi�� and whose y�distance to the points
of S is � d 	 w��pi�� We will use this sequential algorithm in order to obtain
two di�erent algorithms for solving our problem�

The �rst is based on the parametric search optimization scheme ��
� and�
thus� we provide a parallel version of the decision algorithm in order to use
it�

The second uses another optimization approach� proposed in ��	�� The
main idea is to represent a set of potential solutions in a compact� e�cient
way� use a parallel sorting scheme and then look for our solution by some
kind of a binary search� The running time of the algorithm is O�Ts log n��
where Ts stands for the running time of the sequential decision algorithm�

����� The sequential algorithm

The formulation of the decision problem above implies that each point pi � S
de�nes a forbidden rectangular region

Ri � fr � R�jdx�r� pi� � d 	 w��pi�� dy�r� pi� � d 	 w��pi�g

where c cannot reside� Denote by UR the union of all the Ri� An admissible
location for c exists if and only if R
 UR �� � In other words� we are given
a set of n rectangles Ri and want to �nd whether UR covers R� When each
point has the same weight in both axes then the combinatorial complexity
of the boundary of UR is linear in the number of points� In our case the
boundary of UR has "�n�� vertices in the worst case�

The problem of �nding whether a set of n rectangles covers a rectangular
region R has been solved in O�n log n� time using the segment tree T ��
��
We outline this well known sequential algorithm for the sake of clarity of our
parallel algorithm�

Denote by L � fx�� � � � � x�ng the x coordinates of the endpoints of the
horizontal sides of the rectangles� We call the elements of L the instances
of T � Similarly� let M � fy�� � � � y�ng be the list of y coordinates of the
endpoints of the vertical sides of the rectangles� Assume each list is sorted
in ascending order� The leaves of the segment tree T contain elementary
segments �yi� yi
��� i � �� � � � � 	n � �� in their range �eld� The range at each
inner node in T contains the union of the ranges in the nodes of its children�

A vertical line is swept over the plane from left to right stopping at the
instances of T � At each instance x� either a rectangle is added to the union
or it is deleted from it� The vertical side v of this rectangle is inserted to �or

CHAPTER �� FACILITY LOCATION ��

deleted from� T �v is stored in O�log n� nodes and is equal to the disjoint
union of the ranges of these nodes�� The update of T at instance x involves
maintaining a cover number in the nodes� The cover number at a node counts
how many vertical rectangle sides cover the range of this node and do not
cover the range of its parent� If at deleting a rectangle the height of R is
not wholly covered by all the vertical segments that are currently in T � then
the answer to the decision problem is �yes�� Namely� we found a point in R
which is not in UR� and we are done� If the answer is �no� then we update
T and proceed to the next instance� Thus

Lemma �
�
� Given a �xed d � � we can check in O�n log n� time� using
O�n� space� whether there exists a point c � R� such that for every point
pi � S the following holds� dx�c� pi� 	w��pi� � d and dy�c� pi� 	 w��pi� � d�

����� The parallel version and the optimization

In order to produce an e�cient parallel algorithm for the decision problem
we add some information into the nodes of T � This information encaptures
the cover information at each node� as will be seen below�

Let L � fx�� x�� � � � � x�ng be the list of instances as above� Let the pro�
jection of a rectangle Rj on the x axis be �xi� xk�� We associate with Rj a
life�span integer interval lj � �i� k�� Let vj be the projection of Rj on the y
axis� The integer interval lj de�nes the instances at which the segment vj
is stored in T during the sequential algorithm� We augment T by storing
the life�span of each vertical segment vj in the O�log n� nodes of T that vj
updates� We further process each node in T so that it contains a list of
cover two life�ranges� This is a list of intervals consisting of the pairwise
intersections of the life�spans in the node� For example� assume that a node
s contains the life�spans ��� �� �
� �� and ��� ��� The list of cover two at s is
�
� �� and ��� ��� If a vertical segment is to be deleted from s at instances x��
x� or x�� then s will be exposed after the deletion� But if the deletion occurs
at instance x�� x�� x	 or x� then� since the cover of s is 	 at this instance� s
will not be exposed by deleting vj�

Our parallel algorithm has two phases� phase I constructs the augmented
tree T and phase II checks whether R gets exposed at any of the deletion
instances�

Phase I The segment tree T can be easily built in parallel in time O�log n�
using O�n log n� processors ����� Unlike in Lemma
���� above� where we
store in each node just the cover number� here we store for each segment
its life�span in O�log n� nodes� Thus T occupies now O�n log n� space ��
��
Adding the cover two life�span intervals is performed as follows�

We sort the list of life�spans at each node according to the �rst integer
in the interval that describes a life�span� We merge the list of life�spans at
each node as follows� If two consecutive life�spans are disjoint we do not do

CHAPTER �� FACILITY LOCATION ��

anything� Assume the two consecutive life�spans �k�k�� and �g�� g�� overlap�
We produce two new life�ranges�

�a� the life�range of cover at least one � �k��max�k�� g��� and

�b� the life�range of cover at least two � �g��min�k�� g����

We continue to merge the current life�range of cover at least one from item �a�
above with the next life�span in the list till the list of life�spans is exhausted�
We next merge the cover two life�ranges into a list of disjoint intervals by
taking the unions of overlapping intervals� At this stage each node has two
lists of life�ranges� But this does not su�ce for phase II� For each node
we have to accumulate the cover information of its descendants� Starting
at the leaves we recursively process the two lists of life�ranges at the nodes
of T separately� We describe dealing with the list of cover one� Assume
the two children nodes of a node s contain intersecting life�ranges� then this
intersection interval is an interval of instances where all the range of s is
covered� We copy the intersection interval into the node s� When we are done
copying we merge the copied list with the node�s life�span list as described
above� and then merge the list of cover two with the copied list of cover two�
by unioning overlapping intervals�

Phase II
 Our goal in this phase is to check in parallel whether� upon a
deletion instance� the height of R is still fully covered or a point on it is
exposed� We do it as follows� Assume that the vertical segment v is deleted
from T at the jth instance� We go down the tree T in the nodes that store v
and check whether the life�span lists at all these nodes contain the instance
j in their list of cover two� If they do then �the height of� R is not exposed
by deleting v�

Complexity of the algorithm

It is easy to show that the life�range lists do not add to the amount of
required storage� The number of initial life�span intervals is O�n log n�� The
number of initial life�ranges of cover two cannot be greater than that� It has
been shown �
�� that copying the lists in the nodes in the segment tree to their
respective ancestors does not increase the asymptotic space requirement� The
augmentation of T is performed in parallel time O�log n� with O�n log n�
processors as follows� We allocate a total of O�n log n� processors to merge
the life�span ranges in the nodes of T � putting at each node a number of
processors which is equal to the number of life�span ranges in the node�
Thus the sorting and merging of the life�span ranges is performed in parallel
in time O�log n��

The checking phase is performed in parallel by assigning O�log n� proces�
sors to each deletion instance� For the deletion of a vertical segment v� one
processor is assigned to each node that stores v� These processors perform
in parallel a binary search on the cover two life�ranges of these nodes� Thus
the checking phase is performed in time O�log n��

CHAPTER �� FACILITY LOCATION ��

Summing up the steps of the parallel algorithm� we get a total of O�log n�
parallel runtime with O�n log n� processors and O�n log n� space� Plugging
this algorithm to the parametric search paradigm ��� we get

Theorem �
�
� Given a set S of n points in the plane� enclosed in a rect�
angular region R� and two positive weights w��p� and w��p� for each point
p � S� we can �nd� in O�n log� n� time� a point c � R which maximizes

min
p�S

fmaxfw��p� 	 dx�c� p�� w��p� 	 dy�c� p�gg�

����� Another approach

By carefully looking at the respective Voronoi diagram we have the following
crucial observation�

Observation �
�
� Assume that the optimal solution is not attained on the
boundary of the rectangle� Then� without loss of generality� there is an opti�
mal point c� and two points p and q such that either

w��p�dx�c� p� � w��q�dx�c� q� � optimal value�

or
w��p�dy�c� p� � w��q�dy�c� q� � optimal value�

The above observation with a given assumption implies that the optimal
value is an element in one of the following four sets�
S� � f�px � qx�����w��p� � ��w��q�� � p� q � Sg�
S� � f�px � qx�����w��p�� ��w��q�� � p� q � Sg�
S� � f�py � qy�����w��p� � ��w��q�� � p� q � Sg�
S� � f�py � py�����w��p� � ��w��q�� � p� q � Sg�

Megiddo and Tamir ��	� describe how to search for the optimal value r�

within a set of the form� S � � f�ai � bj���ci � dj� � � � i� j � ng� Thus there
will be given �n numbers ai� bj� ci� dj�� � i� j � n�� and we will have to �nd
two elements s� t � S� such that s � r� � t and no element of S� is strictly
between s and t�

Set S� consists of the points of intersection of straight lines y � �cix �
ai� � �djx� bj� with the x�axis� The search will be conducted in two stages�
During the �rst stage we will identify an interval �s�� t�� such that s� � r� � t�
and such that the linear order induced on f�� � � � � ng by the numbers cix�ai
is independent of x provided x � �s�� t��� The rest of the work is done in
Stage 	�

Stage �� We search for r� among the points of intersections of lines y �
cix � ai with each other� The method is based on parallel sorting scheme�
Imagine that we sort the set f�� � � � � ng by the �cix � ai��s� where x is not
known yet� Whenever a processor has to compare some cix�ai with cjx�aj�

CHAPTER �� FACILITY LOCATION �	

we will in our algorithm compute the critical value xij � �ai � aj���ci � cj��
We use Preparata�s ���� parallel sorting scheme with n log n processors and
O�log n� steps� Thus� a single step in Preparata�s scheme gives rise to the
production of n log n points of intersection of lines y � cix � ai with each
other� Given these n log n points and an interval �s�� t�� which contains r�� we
can in O�n log n� time narrow down the interval so that it will still contain r�

but no intersection point in its interior� This requires the �nding of medians
in sets of cardinalities n log n� �

�
n log n� �

�
n log n� � � � plus O�log n� evaluations

of the sequential algorithm for the decision problem� Since the outcomes of
the comparisons so far are independent of x in the updated interval� we can
proceed with the sorting even though x is not speci�ed� The e�ort per step
is hence O�n log n� and the entire Stage � takes O�n log� n� time�

Stage �� When the second stage starts we can assume without loss of
generality that for x � �s�� t�� cx � ai � ci
� � ai
�� i � �� � � � � n � �� Let
j�� � j � n� be �xed and consider the set Sj of n lines Sj � fy � cix �
ai � djx � bj� i � �� � � � � ng� Since Sj is �sorted� over �s�� t��� we can �nd in
O�log n� evaluations of the sequential algorithm for the decision problem a
subinterval �sj�� t

j
�� such that sj� � r� � tj�� and that no member of Sj intersects

the x�axis in the interior of this interval� We work on the Sj �s in parallel�
Speci�cally� there will be O�log n� steps� During a typical step� the median
of the remainder of every Sj is selected �in O��� time� and its intersection
point with the x�axis is computed� The set of these n points is then searched
for r� and the interval is updated accordingly� This enablesus to discard a
half from each Sj� Clearly a single step lasts O�n log n� time and the entire
stage is carried out in O�n log� n� time�

At the end of second stage we have the values fsj�g and ftj�g� j � �� � � � � n�
De�ning s � max��j�nfsj�g and t � min��j�nftj�g we obtain s � r� � t� and
no element of S � is strictly between s and t�

The case with the optimal solution attained on the boundary of the rect�
angle can be treated as subcase of a previous case� Thus we conclude by a
theorem�

Theorem �
�
� Given a set S of n points in the plane� enclosed in a rect�
angular region R� and two positive weights w��p� and w��p� for each point
p � S� we can �nd� in O�n log� n� time� a point c � R which maximizes

min
p�S

fmaxfw��p� 	 dx�c� p�� w��p� 	 dy�c� p�gg�

��� Desirable Facility Location Problem �p�	

� discrete case

The discrete min�sum problem is de�ned as follows� Given a set S of n
points in the plane and a number k� Find a point in S such that the sum of

CHAPTER �� FACILITY LOCATION �

distances from it to its k nearest neighbors in S is minimized� Our algorithms
compute� for each point of S� the sum of distances from it to its k nearest
neighbors in S� and output a point which minimizes the sum� First we deal
with the special case of the discrete min�sum problem when k � n� ��

����� The discrete min�sum problem for k � n� �

This min�sum problem appears in ��� with an O�n�� trivial solution� Be�
low we present an algorithm that solves this problem for the L� metric in
O�n log n� time�

The L� metric is separable� in the sense that the distance between two
points is the sum of their x and y�distances� Therefore we can solve the
problem for the x and y�coordinates separately� We regard the x coordinates
part� We sort the points according to their x�coordinates� Let fp�� � � � � png be
the sorted points� For each pi � S we compute the sum �xi of the x�distances
from pi to the rest of the points in S� This is performed e�ciently as follows�
For the point p� we compute �x� by computing and summing up each of the
n � � distances� For � � i � n we de�ne �xi recursively� assume the x�
distance between pi�� and pi is �� then �xi � �xi�� � � 	 �i� ��� � 	 �n� i� ���
Clearly the sums �xi �for i � �� � � � n� can be computed in linear time when
the points are sorted� We compute �yi analogously� Assume the point p � S
is ith in the x order and jth in the y order� The sum of distances from p to
the points in S is �ij � �xi � �yj � The point which minimizes this sum is the
sought solution�

Theorem �
�
� Given a set S of n points in the plane sorted in x direction
and in y directions� we can �nd in linear time a point p � S which minimizes
the sum of the L� distances to the points in S�

We can extend this theorem to the case where the distance to be mini�
mized is the sum of squared L� distances from a point to the rest of the points
of S� since the separability property holds for this case as well� Assume we
have computed f�x� � � � � � �xng above and let �xi �

Pn
j���xj � xi��� The recur�

sion formula for computing all the squared x�distances is easily computed to
be

�xi � �xi�� � 	��xi�� � n��

where the x�distance between pi�� and pi is ��

Corollary �
�
� Given a set S of n points in the plane� sorted in x direction
and in y direction� we can �nd in linear time a point p of S which minimizes
the sum of squared L� distances to the points in S�

CHAPTER �� FACILITY LOCATION ��

����� The general case

We turn to the discrete min�sum problem for � � k � n��� We describe the
algorithm for the L� metric� It has two phases� In the �rst phase we �nd�
for each point pi � S� the smallest square Ri centered at pi which contains
at least k � � points of S� We also get the square size �i which is de�ned
as half the side length of Ri� In the second phase we compute for each pi�
i � �� � � � � n� the sum of the distances from it to the points of S in Ri and
pick i for which this sum is minimized�

For the �rst phase we apply a simple version of parametric searching�
Assume q � �qx� qy� � S is the query point for which we want to �nd the
smallest square R which contains at least k � � points of S� For a parameter
�� denote by R��� a square of size � centered at q� We test whether R���
contains at least k � � points of S by applying Chazelle�s �	�� 	�� orthog�
onal range counting� Namely� given a set of n points in the plane and an
orthogonal range� �nd the number of points contained in the range� Chazelle
proposes a data structure that can be constructed in time O�n log n� and
occupies O�n� space� such that a range�counting answer for a query region
can be answered in time O�log n��

Clearly the minimum value of � is the distance from the query point
to its kth nearest neighbor� Thus candidate values for � are jqx � pxj and
jqy � pyj for all p � �px� py� � S� By performing a binary search in the sets
fpx j p � S� px � qxg� fpx j p � S� px � qxg� fpy j p � S� py � qyg and
fpy j p � S� py � qyg� we �nd the smallest � such that R��� contains at least
k � � points of S�

Lemma �
�
� Given a set S of n points and a positive integer k � n� We
can �nd for each point pi � S the smallest square centered at pi that contains
at least k � � points of S in total time O�n log� n��

In the second phase we compute� for each point pi � S� the sum of
distances from pi to its k nearest neighbors� namely� the points of S which
are contained in Ri� In order to compute e�ciently the sums of distances
in all the squares Ri� we apply the orthogonal range searching algorithm
for weighted points of Willard and Lueker ���	� which is de�ned as follows�
Given n weighted points in d�space and a query d�rectangle Q� compute the
accumulated weight of the points in Q� The data structure in ���	� is of
size O�n logd�� n�� it can be constructed in time O�n logd�� n�� and a range
query can be answered in time O�logd n�� We show how to apply their data
structure and algorithm to our problem�

Let q � S be the point for which we want to compute the sum of distances
from it to its k nearest neighbors� Let R be the smallest square found for
q in the �rst phase� Clearly R can be decomposed into four triangles by
its diagonals such that the L� distance between all points of S within one
triangle is� wlog� the sum of x coordinates of the points of S in this triangle

CHAPTER �� FACILITY LOCATION ��

q

q�
Q��q	Q��q	

Q��q	

q�

�a� �b�

l�

l�
l�

l�

Q�

Q�Q�

Figure
��� �a� The regions Qi and �b� Qi�q�

minus the x coordinate of q times the number of points of S in this triangle�
More precisely� let)u be the closed triangle whose base is the upper side of
R and whose apex is q� Denote by �u the sum of the L� distances between
the points in)u and q� and by Nu the number of points of Su � fS�qg
)u�
then

�u �
X
pj�Su

pyj � qy 	Nu�

Our goal in what follows is to prepare six data structures for orthogonal range
search for weighted points� as in ���	�� three with the weights being the x
coordinates of the points of S and three with the y coordinates as weights�
and then to de�ne orthogonal ranges� corresponding to the triangles in R for
which the sums of x �y� coordinates will be computed�

We proceed with computing �u� Let l� be the x axis� l� be a line whose
slope is ��� passing through the origin� l� be the y axis and l� a line whose
slope is �
�� passing through the origin� These lines de�ne wedges �see Figure

�� �a��� ��� Q��the wedge of points between l� and l� whose x coordinates
are larger than their y coordinates� �	� Q��the wedge of points between l�
and l� whose y coordinates are larger than their x coordinates� and �
� Q��
the wedge of points between l� and l� whose y coordinates are larger than
their x coordinates�

Each of these wedges de�nes a data structure� as in ���	�� Observe� e�g��
the wedge Q�� We transform l� and l� into corresponding axes of an orthog�
onal coordinate system� and apply the same transformation on all the points
pi � S� We construct the orthogonal range search data structure for the
transformed points with the original y coordinates as weights� �Similarly we
construct data structures for the points of S transformed according to Q�

and Q�� respectively� for the y sums� and another set of three data structures
for the x sums��

We denote by Qi�q� the wedge Qi translated by q� Denote by Yi�q� the
sum of the y coordinates of the points of S in Qi�q�� i � �� 	�
� Then

X
pj�Su

pyj � �Y��q� � Y��q��� �Y��q�� � Y��q���� Y��q�� � Y��q���

CHAPTER �� FACILITY LOCATION ��

where q� � �qx� �� qy � �� and q� � �qx � �� qy � �� �see Figure ��b��� If the
segment �q�� q�� contains points of S we de�ne q� and q� as q� � �qx � � �
� qy ��� � and q� � �qx��� � qy ��� � for some su�ciently small � ��

To compute Nu we can use the same wedge range search scheme� but with
unit weights on the data points �instead of coordinates�� In a similar way we
compute the sum �d for the lower triangle in R ��l and �r for the left and
right triangles in R respectively� and the corresponding number of points Nd

�Nl and Nr��

It is possible that R contains more than k�� points � this happens when
more than one point of S is on the boundary of R� Our formula for the sum
of the L� distances should be

D � �u � �d � �l � �d � � 	 �Nu � Nd � Nl � Nr � k � ���

Hence� the second phase of the algorithm� requires O�n log n� prepro�
cessing time and space� and then O�log� n� query time per point pi � S to
determine the sum of distances to its k nearest points� Thus� for both phases�
we conclude

Theorem �
�
� The discrete min�sum problem in the plane for � � k �
n � � and under L��metric� can be solved in time O�n log� n� occupying
O�n log n� space�

��� Desirable Facility Location Problem �p�	

� continuous case

The continuous desirable facility location problem is de�ned as follows� Given
a set S of n points and a parameter � � k � n � �� Find a point c in the
plane such that the sum of distances from c to its k nearest points from S
is minimized� We consider the problem where the distances are measured by
the L� metric�

We create a grid M by drawing a horizontal and a vertical line through
each point of S� Assume the points of S are sorted according to their x
coordinates and according to their y coordinates� Denote by M�i� j� the
grid point that was generated by the ith horizontal line and the jth vertical
line in the y and x orders of S respectively� Bajaj ��� observed that the
solution to the continuous min�sum problem with k � n� � should be a grid
point� As a matter of fact it has been shown that for this problem the point
M�bn�	c� bn�	c� is the required point� �Where for an even n the solution is
not unique and there is a whole grid rectangle whose points can be chosen
as the solution��

For k � n��� we can pick the solution from O��n�k��� grid points� since
the smallest x�coordinate that c might have is xbk��c� and the largest xn�dk��e

CHAPTER �� FACILITY LOCATION �

�similarly for y�� This is true since in the extreme case where all the k points
are the lowest leftmost points then according to Bajaj the solution to this k
points problem is at M�bk�	c� bk�	c�� Similarly if the k points are located
at any other corner of M � Thus we remain with �n � k � ��� grid points
which are candidates for the solution c� Applying the discrete algorithm of
Section
�	�	� with the query points being the candidate solutions� we obtain
the following theorem�

Theorem �
�
� The continuous min�sum problem can be solved in �n log n�
�n� k�� log� n� time for any positive k � n� ��

CHAPTER �� FACILITY LOCATION ��

��� Facilities in Regions �p��	

We consider several instances of the following generally�stated problem� which
has several applications in� e�g�� urban� industrial and military task planning�
Placing Obnoxious Facilities� Let S be a set of n points in the plane
�called demand points�� and let R be a set of m� m � n� regions in the
plane �called neighborhoods�� Let k be a positive integer �k is the number of
facilities� e�g�� garbage dumps� to be placed�� Find k sites c�� � � � � ck for the k
facilities� such that �i� C � fc�� � � � � ckg is a piercing set for R� that is� each
of the neighborhoods in R is served by at least one facility that is located in
the neighborhood� �ii� The minimal distance between a demand point in S
and a site in C is maximized�

This problem belongs to a class of problems that deal with the location
of facilities� both desirable and undesirable� under various conditions� This
class of problems occupies researches in operations research� especially in the
�eld of location science� Some of the more geometric problems have also
been treated in the computational geometry literature� In a typical facility
location problem� we need to �nd a location for some facility� with respect to
a given set of demand sites� Both the demand sites and the facility are repre�
sented as points in the plane� The chosen location should satisfy a given set
of conditions� e�g�� minimize the maximal distance to a demand site �known
as the ��center problem�� Our problem is somewhat more complex �though
de�nitely realistic� than most of the related problems� There are several
facilities� and the desired locations must satisfy both a piercing condition
and a distance optimization condition� Notice that if the domain of possible
locations for the facility is the entire plane� then the problem becomes im�
practical and not interesting� Therefore� some constraints on the location of
the facility should be speci�ed� e�g� forcing it to lie in some bounded region
R�

We assume that the regions in R are unit axis�parallel squares �actually�
translated copies of some axis�parallel rectangle�� We consider both the L�
case and the L� case� In the L� case �resp� L� case�� we seek the maximal
value d� for which there exist k locations such that �i� none of the locations
lies in the interior of a square of edge length 	d� �resp� in a disk of radius
d�� centered at a demand point� and �ii� for each of the squares R � R� at
least one of the k locations lies in R �in other words� the k locations consist
of a k�piercing set for the set of squares R�� We present e�cient solutions
for k � �� 	� both under the L� metric and under the Euclidean metric�
Our solutions consist of solutions to the corresponding decision problems
to which we apply either the sorted matrices technique of Frederickson and
Johnson ���� or the parametric searching technique of Megiddo ��� to obtain
the maximal value d�� For k �
 we show two examples which in some sense
imply that there is not much hope for a subquadratic solution for k �
 or for
any other value of k greater than
� In addition� we also present a solution to

CHAPTER �� FACILITY LOCATION ��

the weighted version of the simplest problem �k � � under L��� and present
a lower bound for its corresponding decision problem �and for the decision
problem corresponding to the unweighted version��

Consider for example the decision version of the problem in which we
need to place two facilities� under the Euclidean metric� In this problem�
we need to consider all possible solutions to the 	�piercing problem for R�
For each such solution p�� p�� we must check whether both p� and p� are not
covered by the n disks of radius d centered at the points of S� By adapting
a lemma of Katz et al� ����� and employing� in a sophisticated way� a tech�
nique due to Sharir ��� that resembles searching in monotone matrices� we
transform the problem into the following reception problem �with some ad�
ditional issues that require attention�� Given m transmitters� each of range
d �e�g�� the transmitters of some communication system�� construct a com�
pact data structure that supports coverage queries� i�e�� determine whether a
query rectangular region is fully covered by the transmitters� In other words�
preprocess a set of m congruent disks� so that� given a query rectangle R�
one can quickly determine whether R is fully contained in the union of the
disks� We present a simple� though non�trivial� solution to this problem� and
to the problem where the query regions are constant�size polygons instead of
rectangles� We are not aware of any previous solution to these problem� Our
solution uses the Voronoi diagram of the centers of the disks and data struc�
tures for orthogonal �alternatively� simplex� range searching� and vertical
�alternatively� general� ray�shooting among line segments� The construction
time is nearly linear for both rectangular queries and polygonal queries� the
space required is linear� and the query cost is O�log n� for rectangular queries
and roughly O�n���� for polygonal queries�

As was pointed in the previous section the problem in which the n demand
points lie in a simple polygon R with at most n vertices� and one needs to
place a single facility in R� such that the minimal Euclidean distance between
a demand point and the facility is maximized� was solved in O�n log n� time
by Bhattacharya and Elgindy �	
�� If the polygon R is a rectangle� and each
of the demand points pi is assigned a weight wi� so that the distance between
pi and a point q � R is wi times the L� distance between them� then one
can apply the O�n log� n� solution of Follert et al� ��	�� The latter bound
was improved recently to O�n log� n� runtime algorithm by us �	��� where
we actually consider a slightly more general problem� In our problem each
demand point pi is assigned two weights wx

i and wy
i � and the distance between

pi and q is wx
i jpxi � qxj � wy

i jpyi � qyj� The algorithm is described in section

��� Brimberg and Mehrez �	�� solve the following problem� Find k locations
in the rectangle R �for k facilities�� such that �i� the distance between any
two locations is at least some given value d� and �ii� the minimal distance
between a demand point and a facility is at least some given value r� Katz
et al� ��� present improved solutions to this problem�

CHAPTER �� FACILITY LOCATION �

����� The Reception Problem

We consider the following problem� Given n transmitters� each of range
r� construct a compact data structure that supports coverage queries� i�e��
determine whether a query �rectangular or polygonal� region is fully covered
by the transmitters� In other words� preprocess a set of n congruent disks for
coverage queries� i�e�� determine whether a query region R is fully contained
in the union of the disks�

We �rst present a solution for polygonal region queries� that is� we assume
the query regions are simple polygons with at most c vertices� for some
constant c� Then we show how the bounds for the preprocessing time and
query cost can be improved if the query regions are axis�parallel rectangles�

Polygonal region queries

In this subsection we deal with the following problem� Given a set D of n
unit disks in the plane� construct a compact data structure� so that� given a
query polygon Q� one can quickly determine whether Q is fully covered by
the disks in D� Let S denote the set consisting of the center points of the
disks in D� The main components of our data structure are �i� the Voronoi
diagram VD of S and a corresponding point location data structure� �ii� a
data structure for simplex range searching over a subset of the vertices of
VD� and �iii� a data structure for ray shooting over a set of portions of edges
of VD�

The preprocessing phase
 The preprocessing phase consists of the follow�
ing three steps�

�� Construct the Voronoi diagram VD of S� and the corresponding point
location data structure� both in O�n log n� time �	���

	� Compute the set V � of all vertices of VD that are not covered by disks in
D� by checking� for each vertex v of VD� whether the distance between
v and its corresponding Voronoi sites is greater or equal to �� Construct
in O�n�
�� time a linear�size data structure for simplex range searching
queries over V � ���

� Compute the set E� of the portions of the edges of VD that are not
covered by disks in D� According to the claim below� the size of E� is
only O�n�� and it can be computed in O�n� time� Construct in O�n�
��
time a linear�size data structure for ray shooting over E� ����

Claim �
�
� The number of edge portions in E� is O�n�� and E� can be
computed from VD in O�n� time�

Proof� Let e be an edge of VD� and let p � S be one of the two corresponding
Voronoi sites� Notice that if a point on e is covered by one or more of the

CHAPTER �� FACILITY LOCATION �

disks in D� then this point is necessarily covered by the disk centered at p�
Thus� in order to determine the portions of e that are not covered by D� it
is enough to consider the disk centered at p� ignoring all other disks� The
number of such portions is clearly at most two�

Answering queries
 A query with a polygon Q is treated as follows� We
�rst partition Q into a constant number of triangles� �Recall that Q has at
most c vertices� for some constant c�� For each of the triangles)� we perform
a range searching query using the simplex range searching data structure� If
the answer obtained to one �or more� of these queries is positive� i�e�� one
�or more� of these triangles contains points of V �� then we conclude that Q
is not fully covered by the disks in D� return �NO� and stop� Otherwise� we
proceed as follows� For each edge e � ab of Q�

� Find the cell Ca �resp� Cb� of VD containing the endpoint a �resp� b�
of e� using the point location data structure�

� Calculate the distance da �resp� db� between a �resp� b� and the point
of S de�ning Ca �resp� Cb�� If da � � �resp� db � ��� return �NO� and
stop�

� If a and b do not lie in the same cell of VD �i�e�� if Ca �� Cb�� then
perform a ray shooting query with the ray emanating from a and con�
taining e� using the ray shooting data structure� If the answer obtained
is positive and the hitting point is on e� return �NO� and stop�

If we have reached this point� we may conclude that Q is fully covered by
the disks in D and return �YES��

The algorithm for answering a query is quite simple� however� it is not
obvious that it is correct� In the following theorem we prove that it is indeed
correct� that is� it returns �YES� if the query polygon Q is fully covered by
the disks in D� and �NO� otherwise�

Theorem �
�
� The algorithm is correct� it returns �YES� if the query poly�
gon Q is fully covered by the disks in D and �NO� otherwise�

Proof� Consider a point � in Q� that lies in the Voronoi cell of p� � is
covered by D if and only if it is covered by the disk centered at p� Moreover�
the disk centered at p is �responsible� for covering the region Q
Cp� where
Cp is the Voronoi cell of p� It is therefore enough to verify that the point in
Q
 Cp that is the furthest from p� is at distance less than � from p� This
point� however� is either a vertex of the boundary of Cp� or an intersection
point between an edge of the boundary of Cp and the boundary of Q� or a
vertex of Q� The range searching queries performed in the �rst part of the
algorithm take care of points of the �rst kind by the answers obtained� we

CHAPTER �� FACILITY LOCATION 	

immediately know whether there exist vertices of VD that lie in Q and are
not covered� The second part of the algorithm takes care of points of the two
other kinds� by checking whether the boundary of Q is fully covered by D�
Let e be an edge of the boundary of Q� We �rst verify that both its endpoints
are covered� If both endpoints lie in the same Voronoi cell and they are both
covered� then clearly the entire edge is covered� However� if the endpoints lie
in di�erent Voronoi cells� it is possible that portions of the interior of e are
not covered� However� this can happen if and only if e intersects a segment
of E�� and this will be detected by the ray shooting query performed for e�

Concerning the complexity of the above algorithm� the preprocessing time
is O�n�
��� which is the time required to construct the range searching and
ray shooting data structures ��� �� the space complexity is O�n�� and the
query cost� determined by the range searching and ray shooting queries� is
O�n

�
�
��� We thus obtain�

Theorem �
�
� Let D be a set of n unit disks in the plane� It is possible
to preprocess D in time O�n�
��� into a linear�size data structure� such that
determining whether a constant�size query polygon Q is fully covered by the
disks in D can be done in time O�n

�
�
���

Remark �
�
� As known� the n� factors in the theorem above can be re�
placed by slightly smaller factors� Also the standard storage�query tradeo�
can be applied to construct a data structure of size n � m � n� with query
time O�n�
��m����� In particular� if the query polygons are of linear size�
then we can construct a data structure of size and query cost roughly O�n�����

Rectangular region queries

In this subsection we consider the special case where the query regions are
axis�parallel rectangles� This is the case to which we refer in Section
���	�
For this case� we can obtain better bounds for the preprocessing time and
query cost� by replacing the general range searching and ray shooting data
structures with standard specialized data structures� More precisely� we use
a data structure for orthogonal range searching over the set V � �	��� and a
data structure for horizontal*vertical ray shooting over the set E� �	��� We
thus obtain�

Theorem �
�
� Let D be a set of n unit disks in the plane� It is possible to
preprocess D in time O�n log n�� into a linear�size data structure� such that
determining whether a query rectangle Q is fully covered by the disks in D
can be done in time O�log n��

Remark �
�
 The bounds for the somewhat simpler problem� where D is
a set of unit axis�parallel squares instead of unit disks remain the same�

CHAPTER �� FACILITY LOCATION

����� Obnoxious Facilities

In this subsection we solve several instances of the following problem�
Placing Obnoxious Facilities� Let S be a set of n points in the plane
�called demand points�� and let R be a set of m� m � n� regions in the plane
�called neighborhoods�� Let k be a positive integer �k is the number of facil�
ities� e�g�� garbage dumps� to be placed�� Find k locations C � fc�� � � � � ckg
for the k facilities� such that �i� C is a piercing set for R� that is� each of the
neighborhoods in R is served by at least one facility that is located in the
neighborhood� �ii� The minimal distance between a demand point in S and
a location in C is maximized�

In all the problem instances that we consider� the set of regions R consists
of unit axis�parallel squares� We consider the two problems in which the
number of facilities k is one or two� respectively� under the L� metric as well
as under the Euclidean metric� For k �
 we show two examples which in
some sense imply that there is not much hope for a subquadratic solution for
k �
 or for any other value of k greater than
� Obviously� if the set R is
not k�pierceable� then there is no solution� Therefore� we assume that R is
k�pierceable� We can check whether R is k�pierceable� � � k � 	� in O�m�
time �����

When solving a problem� we �rst present a solution to the corresponding
decision problem� and then apply the sorted matrices technique of Freder�
ickson and Johnson ���� or the parametric searching technique of Megiddo
��� to obtain a solution to the original problem� That is� we �rst solve a
problem of the form� Determine whether there exist k locations� such that�
for each of the m unit squares r � R� at least one of these locations is in r�
and the minimal distance between the n demand points and these locations
is at least d� where d is a parameter of the problem� We then apply one of
the above techniques to obtain the maximal value d� for which the decision
problem returns a positive answer�

The L
�
case

k � �

In this problem we wish to place only one facility� This problem is relatively
easy� and we present a solution to the weighted version of the problem as well�
In the weighted version of the problem� each point pi � S has two weights
associated with it� w��pi� and w��pi�� Solving the decision problem for d�
each point pi � S de�nes a forbidden region Fi� where the facility may not
reside� In the unweighted version Fi is a square of edge length 	d centered
at pi� and in the weighted version Fi is the rectangle

fq � R� j dx�q� pi� � d 	 w��pi� � dy�q� pi� � d 	 w��pi�g �

CHAPTER �� FACILITY LOCATION �

Let U denote the union of the forbidden regions F�� � � � � Fn� Let R �
R�
R is a non�empty rectangle �since� by assumption� R is ��pierceable�� An
allowed location for the facility exists if and only if U does not completely
cover R� Since it is possible to determine whether a set of n rectangles
covers another rectangle R� using a segment tree� in O�n log n� time� we
obtain an O�n log n� solution to the decision problem in both the unweighted
and weighted versions�

In the unweighted version� we can apply the sorted matrices technique
of Frederickson and Johnson ���� to obtain in O�n log� n� time the maximal
value d� for which the corresponding decision problem returns �YES�� This is
based on the observation that d� is either the x�distance �y�distance� between
two points in S� or the x�distance �resp� y�distance� between a point in S and
a vertical �resp� horizontal� edge of R� Notice that the number of distances
of the latter kind is only O�n�� so we can compute them explicitly� sort them�
and perform a binary search on the sorted list�

In the weighted version� we apply the parametric search paradigm of
Megiddo ��� to obtain in O�n log� n� time the maximal value d� for which
the corresponding decision problem returns �YES�� �A parallel algorithm for
the decision problem is presented in �	�� it employs O�n log n� processors
and computes the answer in O�log n� time�� We thus obtain�

Theorem �
�
� Under the L� metric and for k � �� the problem can be
solved in O�n log� n� time� and the weighted version of the problem can solved
in O�n log� n� time� The corresponding decision problems can be solved in
O�n log n� time�

A lower bound
 We obtain a lower bound of %�n log n� for the decision
problem �in both versions�� by showing that even the one�dimensional version
of the problem �determine whether a set of n unit squares covers another
square� has a lower bound of %�n log n�� Consider the GAP�EXISTENCE
problem� Given a set A of n real numbers A � fa�� � � � � ang� determine
whether there exist two consecutive numbers in the sorted sequence obtained
from A� such that the di�erence between them is greater than �� Sharir and
Welzl ���� observed that this problem has a lower bound of %�n log n�� We
transform ai� i � �� � � � � n� to the one�dimensional rectangle �ai� ai � ��� thus
obtaining a set R of n rectangles� We de�ne R � �minai�A ai � maxai�A ai��
It is clear that R is not covered by the rectangles in R if and only if there
exist two consecutive numbers as above�

k � �

Assuming R is 	�pierceable �but not ��pierceable�� we need to determine
whether there exist two points p�� p�� such that fp�� p�g is a piercing pair for
R� and neither p� nor p� lie in the interior of U � where U is the union of the

CHAPTER �� FACILITY LOCATION �

squares of edge length 	d centered at the points of S� Assume fp�� p�g is a
piercing pair for R� then we can divide the squares in R into two disjoint
subsets Rp� and Rp�� such that p� � R� �
Rp� and p� � R� � Rp� � �If some
of the squares in R are pierced by both p� and p�� then there are many ways
to do this�� Therefore� we could search for a �good� piercing pair fp�� p�g
�i�e�� a piercing pair such that both points are not in the interior of U� by
considering all possible partitions of R into two subsets R��R� such that the
rectangles R� �
R� and R� �
R� are non�empty� For each such partition�
we would have to check for each of the corresponding two rectangles whether
it contains a point that is not covered by U � However� this method is very
ine�cient� Fortunately� we have a claim 	�
�� that allows us to restrict our
search to a quadratic number of partitions� Denote by XR the centers of
the squares in R� sorted by their x�coordinate �left to right�� and by YR
the centers of the squares in R� sorted by their y�coordinate �low to high��
The claim 	�
�� gives to us the e�cient way to �nd the piercing pair� More
precisely� if p� and p� are a piercing pair for R� then R can be divided into two
subsets R� and R�� p� �
R�� p� �
R�� such that R� can be represented
as the union of two subsets Rx

� and Ry
� �not necessarily disjoint� and one of

them might be empty�� where the centers of squares of Rx
� form a consecutive

subsequence of the list XR� starting from its beginning� and the centers of
squares of Ry

� form a consecutive subsequence of YR� starting from the list�s
beginning�

According to this it is enough to consider partitions in which one of the
subsets is obtained by taking the ix leftmost squares in R together with the
iy bottommost squares in R� � � ix� iy � n� �The claim 	�
�� is proven under
the assumption that the piercing points p� and p� are centers of squares in R�
However� it is easy to see that the claim is also true without this assumption��

We further restrict our search by employing a technique� due to Sharir
���� that resembles searching in monotone matrices for a recent re�nement
of this technique and applications see �
�� ��� and also section 	�
��� Let M
be an �m � �� � �m � �� matrix� whose rows �skipping row �� correspond
to XR and whose columns �skipping column �� correspond to YR� An entry
Mxy in the matrix is de�ned as follows� Let Dx be the set of squares in R
such that the x�coordinate of their centers is smaller or equal to x� and let
Dy be the set of squares in R such that the y�coordinate of their centers is
smaller or equal to y� Let Dl

xy � Dx � Dy and Dr
xy � �R � Dl

xy�� and let
Rl
xy �
Dl

xy and Rr
xy �
Dr

xy�

Mxy �

�����
����

&Y Y � if Rr
xy �� U and Rl

xy �� U
&Y N � if Rr

xy �� U but Rl
xy � U

&NY � if Rr
xy � U but Rl

xy �� U
&NN � if Rr

xy � U and Rl
xy � U

where we assume of course that the empty set is contained in U � It follows
that the answer to our decision problem is �YES� if and only if M contains

CHAPTER �� FACILITY LOCATION �

a &YY� entry�

In order to apply Sharir�s technique the lines and columns of M� must be
non�decreasing �assuming &Y� � &N��� and the lines and columns of M� must
be non�increasing� where M i is the matrix obtained from M by picking from
each entry only the i�th letter� i � �� 	� In our case this property clearly holds�
since� for example� if for some x� and y�� M�

x��y�
�&Y�� then for any x� � x�

and y� � y�� M�
x��y��&Y�� Thus we can determine whether the implicit matrix

M contains an entry &YY� by inspecting only O�m� entries in M � advancing
along a connected path within M �
��� For each entry along this path� we
need to determine whether Rz

xy is fully covered by U � z � fl� rg� This can
be done in O�log n� time by dynamically maintaining the intersection
Dz

xy�
and by utilizing the data structure of Section
���� �see Remark
���� there��
Thus in O�n log n� time we can determine whether M contains a &YY� entry�
Optimization
 We show how to �nd the smallest value d� for which the
matrix M above contains a &YY� entry� It is easy to verify that d� is either �i�
half the di�erence between the x�coordinates �alternatively� y�coordinates� of
a pair of points in S� or �ii� the horizontal �respectively� vertical� distance
between a vertical �respectively� horizontal� edge of a square in R and a point
in S� All these potential values can be represented by four �implicit� sorted
matrices two matrices for each axis�

We de�ne the two sorted matrices corresponding to the x�axis� Let Lx

be the sorted list consisting of the x�coordinates of the points in S and the
x�coordinates of the vertical edges of the squares in R� Entry �i� j� in matrix
M� stores the value �xj � xi��	� where xi� xj are the i�th and j�th elements
in Lx� and entry �i� j� in the matrix M� stores the value �xj � xi�� Clearly�
these matrices contain several values that do not belong to the set of potential
solutions� but this does not a�ect the running time� We de�ne the two sorted
matrices M� and M� corresponding to the y�axis analogously�

We now apply the Frederickson and Johnson technique ���� to each of the
four matrices in order to �nd the smallest value in these matrices for which
the decision algorithm returns �Yes�� We thus obtain�

Theorem �
�
� Under the L� metric and for k � 	� the problem can be
solved in O�n log� n� time� The corresponding decision problem can be solved
in O�n log n� time�

k � �

The largest integer l for which there exists a linear�time algorithm that de�
termines whether R is l�pierceable �and� if yes� computes an l�piercing set�
is
 ���� ��� ���� This fact caused us to believe that claim 	�
�� is also true
for a piercing triplet� That is� if p�� p�� p� is a piercing triplet for R� then R
can be divided into three subsets� such that one of them can be represented
as the union of two subsets as in claim 	�
��� Unfortunately� we came up

CHAPTER �� FACILITY LOCATION

P�

P�

P�

�

�

�
� �

�

�

A

B

C

D

E

G
F

H

�a�

area for additional squares and piercing points

�b�

Figure
�	� Claim 	�
�� is false for k �

with a counterexample that is depicted in Figure
�	�a�� All piercing triplets
for the � squares of Figure
�	�a� must consist of a point from each of the
three black rectangles� and it is easy to verify that we cannot divide the set
of squares as required�

Figure
�	�a� is not� however� a counterexample for k � �� Since by
adding squares and increasing the number of piercing points� the desired
property might reappear� For completeness� we also provide a counterex�
ample for k � � depicted in Figure
�	�b�� Assume that each of the four
pairs in the �gure lies near the corresponding corner of some huge square
region s� Then we can add any number of squares around the middle of s
and increase the number of piercing points accordingly� without ruining the
counterexample�

The above counterexamples provide� in some sense� evidence that it is
apparently impossible to obtain subquadratic solutions for k �
�

The L� case

k�

The corresponding decision problem is� Determine whether R �
R is com�
pletely covered by the n disks of radius d centered at the points of S� �Recall
that� by assumption� R is ��pierceable� and therefore R �� �� We can do
this� using the result of Section
����� in O�n log n� time�

We apply the parametric searching technique to obtain in O�npolylog n�
time the maximal value d� for which the decision problem returns �YES� we

CHAPTER �� FACILITY LOCATION �

omit the details from this version� �The problematic set of potential values
is the one consisting of the radii of all circles that pass through three points
in S� This set is also one of the sets of potential values in the planar 	�center
problem� solved by Sharir ��� with parametric searching in O�npolylog n�
time� Sharir�s solution has been improved by Eppstein to randomized ex�
pected time O�n log� n� ������ We thus obtain�

Theorem �
�
	 Under the L� metric and for k � �� the problem can be
solved in O�npolylog n� time� The corresponding decision problems can be
solved in O�n log n� time�

k�

The decision algorithm is identical to the decision algorithm in the L� case
�Section
���	�� except for the component that deals with queries of the form�
determine whether a query rectangle is fully contained in U � Now U is the
union of n disks� each of radius d� so we use our solution to the Reception
Problem with axis�parallel rectangular queries �Section
������ We obtain an
O�n log n��time decision algorithm�

We apply the parametric searching technique in the same manner as
above� to obtain in O�npolylog n� time the maximal value d� for which the
decision problem returns �YES��

Theorem �
�
�� Under the L� metric and for k � 	� the problem can be
solved in O�npolylog n� time� The corresponding decision problems can be
solved in O�n log n� time�

Conclusion

The dual problem� where the facilities are �friendly� or desirable� is also
interesting� For k � 	 and under the L� �resp� L�� metric� this problem
�actually� its corresponding decision problem� becomes� Find a pair of points
which serves as a piercing pair for both the set R of unit squares and the
set of squares �resp� disks� of radius d centered at the demand points� In
the L� case� this can be done by simply �nding in O�n� time a piercing pair
for the union of the two sets of squares� In the Euclidean case� we would
like to employ claim 	�
�� in a sophisticated way� as we did in Section
���	�
Here� we need to determine� for each pair of rectangles that is generated�
whether the set of disks can be pierced by choosing a point in each of the
two rectangles� This can be done apparently by adopting Sharir�s solution
to the �decision problem of the� planar 	�center problem ��� �see also ������

Chapter �

k�point Problems

The problems considered in this chapter can be de�ned as follows� �Given
a set S of n points in metric space and some positive integer k �which is
usually between � and n� �nd some property of the set S that depends on
k�� We present a list of problems that we will deal with them and then
describe separately the corresponding algorithms� All the solution based on
the new framework based on posets ���� The problems we consider in this
chapter are� Given a set S of n points in the plane� and given an integer k�

p��� Find the smallest axis parallel rectangle �smallest perimeter or small�
est area� that encloses exactly k points of S�

p��� Find the the n�k�� farthest rectilinear neighbors �under L� metric�
to all points of S� where n

�
� k � n � �� Thus we implicitly �nd �but

do not report� the k nearest rectilinear neighbors to all points of S�

p�� Enumerate the k largest �smallest� rectilinear distances in decreasing
�increasing� order�

p��� Given a distance � � �� report all the pairs of points of S which are
of rectilinear distance � or less �more��

p�	� Find the smallest �rectangular� axis�aligned �constrained or not con�
strained� ring that contains k �k � n

� � points of S� A rectangular ring
is two concentric rectangles� the inner rectangle fully contained in the
external one� As a measure we take the maximum width or area of the
ring� By constrained we mean that the center of the ring is one of the
points of S�

p�	 and p��� Find the smallest constrained circular ring �or a sector of a
constrained ring� that contains k �k � n

�
� points of S�

p��� Given a number k � n
� � decide whether a query rectangle contains k

points or less�

�

CHAPTER �� K�POINT PROBLEMS ��

��� Rectangle with k points inside �p��	

Given a set S of n points in the plane and an integer k� we want to �nd
the smallest axis�parallel rectangle �smallest in term of perimeter or area�
enclosing exactly k points of S� This problem has been investigated by
many researchers� some of whose results we cite below� They considered the
problem for any k � n� Aggarwal et al� �
� present an algorithm which
runs in time O�k�n log n� and uses O�kn� space� Eppstein et al� ���� and
Datta et al� �
�� show that this problem can be solved in O�n log n � k�n�
time the algorithm in ���� uses O�kn� space� while the algorithm in �
�� uses
O�n� space� These algorithms are e�cient for small k values� but become
ine�cient for large k�s� Notice that for k � n the smallest enclosing rectangle
is trivially found in O�n� time�

The algorithm we present below is more e�cient than those cited above
for k values in the range n

�
� k � n� It is based on posets �partially ordered

sets� ��� and runs in time O�n � k�n � k��� and O�n� space� When k � n
our algorithm runs in O�n� time� We also extend our algorithm to higher
dimensions and �nd the smallest axis�parallel box that contains k out of n
given points in d�space� d �
� This algorithm runs in time O�n�k�n�k���
d�n�k���d���� and occupies O�dn� space� We assume that all the points of S
are in general position� i�e�� that no two points have the same coordinate in
any axis� Finally� we shortly discuss slight improvements of other algorithms�
when more e�ciency is obtained by taking into account the size of k relative
to n�

Remark �
�
� Another algorithm that runs e�ciently for large k values was
presented by Matou�sek ����� It �nds the smallest circle enclosing all but few
of the given n points in the plane� Given a large integer k � n� his algorithm
runs in time O�n log n � �n� k��n�� for some � � ��

����� The Algorithm

First we describe an algorithm which �nds the smallest enclosing rectangle
that contains k x�consecutive points of S� The techniques used in this algo�
rithm will be applied in our general algorithm� which is described afterwards�

Enclosing k x�consecutive points

Given S as above� we restrict the problem to �nding the smallest rectangle
that covers k points of S whose x coordinates are consecutive� The x co�
ordinate of an uncovered point of S is either among the n � k smallest x
coordinates or the n� k largest ones� We cannot a�ord to spend O�n log n�
time on sorting the points of S according to their x coordinates� and there�
fore apply a partial order selection method �see Aigner ����� A poset is a

CHAPTER �� K�POINT PROBLEMS ��

partially ordered set of elements� Figure ��� below illustrates a poset R�
where the largest n� k � � points of S are sorted according to the order and
the bottom k � � points are known to be smaller but are not sorted� The
construction of a poset R � S containing the n � k elements of S with the
largest x coordinates is easy� One way of doing this is to put n items into
a binary heap and perform n � k remove�max operations� In this way we
collect the n� k largest elements in S into an oredered set R in total time of
O�n � �n � k� log n�� We use this binary heap to �nd the point v � S with
the �n� k � ��st largest x value in S�

Let L � S � R clearly v is the point with the largest x coordinate in L
�denoted by maxLx �� Denote by x�v� �y�v�� the x� �y�� coordinate of v� We
construct three binary heaps for L� They have k nodes each� We put the
points of L into the heaps� The heap K� will be used to dynamically �nd the
point with the smallest y coordinate in L �denoted by minLy �� The heap K�

will be used to dynamically �nd the point with the largest y coordinate in L
�maxLy �� and D will help �nd the point with the smallest x coordinate in L

�minLx �� Finding the initial values above involves
 � �k � �� comparisons in
the corresponding binary heaps�

points
k-1

points
n-k

largest

v

Figure ���� A poset

Finding the rectangle

We slide a sweepline from left to right� starting at the leftmost point r of
S� At this point we compute the perimeter �area� of the rectangle de�ned by
minLx � maxLx � minLy and maxLy � The next event is to slide the sweepline to the
next leftmost point of S� r is deleted from L� and v�� the smallest point of
R� is inserted into L� so that L always contains k points� The new maxLx is
x�v��� The next leftmost point in S is found using the binary heap D� This
is the new minLx � We update the binary heaps K� and K�� deleting r and
inserting v�� Thus we get the updated� possibly unchanged� minLy and maxLy �
Notice that we do not need to update D at all�

It is easily seen that each update takes O�log k� time� and the procedure
is repeated n� k times� Hence the total time involved in updates is O��n�

CHAPTER �� K�POINT PROBLEMS �	

k� log k�� The initial construction of K�� K� and D� is performed in total
time of O�n � �n � k� log n��

Summing up the runtimes of constructing the heap and all the updates�
we get

Theorem �
�
� The smallest rectangle that contains a given number k� n
� �

k � n� of x�consecutive points in a set of n points in the plane� can be found
in time O�n � �n � k� log n��

The smallest rectangle containing k arbitrary points

To avoid tedious notations we assume that the names of the points correspond
to their x�ordering� though this does not mean that the points are sorted�
In general the outline of our algorithm is as follows� initially we �x the
leftmost point of the rectangle to be the leftmost point of S� At the next
stage the leftmost point of the rectangle is �xed to be the second left point
of S� etc� Within one stage� of a �xed leftmost rectangle point� r� we pick
the rightmost point of the rectangle to be the q�th x�consecutive point of S�
for q � k � r � �� � � � � n� For �xed r and q the x boundaries of the rectangle
are �xed to be the x�coordinates of r and q respectively� and we go over a
small number of possibilities to choose the upper and lower boundaries of the
rectangle so that it will enclose k points�

In more detail� we initially produce the posets R� D� K� and K� as in
the former algorithm� We use them as before but with a slight modi�cation
to the maintenance of K� and K� as we describe below� We also use two
auxiliary sorted lists A� and A� that are initially set to be empty� They will
collect the information found throughout the algorithm� of the lowest points
�minLy � and highest points �maxLy �� respectively� The maximum size of A�

and A� is n � k each� Since the lists A� and A� are short we can a�ord
O�n � k� time update operation on them �search� insert� delete�� As before�
D and R are not updated throughout the algorithm�

For the initial rectangle �say r � � and q � k� we compute the perimeter
�area� of the rectangle by the initial minLx � maxLx � minLy and maxLy � The point

that attains minLy �maxLy � is stored as the �rst element in A� �A���

For the next step� r remains �xed and q � k��� the vertical slab between
r and q contains the �rst k � � x�consecutive points� Trivially there are two
rectangles R� and R� containing k of these points within this slab that are
de�ned by the x boundaries at r and at q� The y boundaries of R� are the
second smallest y in K� and the �rst largest in K�� and of R� the �rst smallest
y in K� and the second largest in K�� The second values found in K� and
K� are stored in A� and A� respectively� We compute the area �perimeter�
of these two rectangles and check for minimum�

CHAPTER �� K�POINT PROBLEMS �

Letting q vary from k�� to n� for each q we �rst update the data structures
�see below� and then �nd the next smallest �largest� element in K� �K�� and
add it to the corresponding list A� �A��� If q � k � p then A� �A�� has p
entries� and we simply need to compute the areas of the rectangles bounded
by r as minLx � q as maxLx � and p minLy values from A� with their corresponding
p maxLy values from A��

Updating K� and A� upon varying q

�� If y�q� is greater than the maximum y value in A�� then no update of
K� is required� This is because y�q� will never get to act as minLy in
the slab de�ned by r and q� We �nd the point with the maximum y
value in A� by going over all its �� n� k� entries� We add q to A��

	� If y�q� � max�y� for the entries in A�� then we can delete the point
p which attains max�y� from K�� and insert the point q into K�� As
in the former case p will not participate as a lower y boundary of a
rectangle in this slab� We remove the point p from A��

We update K� and A� symmetrically� Each heap update takes O�log k� time�
and a list update takes O�n� k� time� The heaps K� and K� remain of size
k�

For each new stage �r� � r � �� we �nd the next smallest point �r�� in S
by removing the next minimal x point from the heap D� If r was in A� �A��
we delete it� The heaps K� and K� undergo too many changes in stage r to
be of any use at this stage� So we keep copies of the initial K� and K� from
the previous stage r� and we only update them by deleting r and inserting
q � r � k � � instead of r in the heaps� �These will serve as initial K� and
K� at the next stage�� We continue as in stage r � �� by incrementing q up
to n and checking all the rectangles that contain k points between r and q�
We �nish when r � n� k � � and q � n�

It is easy to see that we check all the rectangles that contain k points�
Not all the rectangle possibilities in the above algorithm yield feasible rect�
angles� See� e�g�� in Figure ��	� where the rectangle whose x boundaries are
determined by r and q� and the y boundaries are de�ned by the correspond�
ing pth points in A� and A�� Checking whether a rectangle is feasible or not
is immediate and does not change the complexity of the algorithm�

We sum up the runtimes of all the components of the algorithm�

� Computing R and initially constructing the heaps� O�n��n�k� log n�

� Copying the heaps K� and K� and initially updating them per each
stage is� O�k�� For all stages O�k�n � k���

� Total time for updating K�� K�� A� and A�� for all the steps in one stage�
O��n�k���n�k�� logk��� Summing up to O��n�k�� log k� �n�k���
for all the n� k stages�

CHAPTER �� K�POINT PROBLEMS ��

pth point � A�

pth point � A�

q

r

Figure ��	� An infeasible rectangle

� The number of possible rectangles at each stage is bounded by the
number of rectangles in the �rst stage� �n�k

j�� j � O��n� k���� Knowing
A� and A� we invest O��� time in computing the area �perimeter�
of each rectangle� The number of possible rectangles at all stages�
O��n � k����

Since k � n�	 some of the above summands can be neglected and we yield

Theorem �
�
� The smallest rectangle that contains a given number k� n
�
�

k � n� of points from a set of n points in the plane can be found in time
O�n � k�n� k��� and O�n� space�

The d�dimensional algorithm

We extend the planar algorithm to the smallest box containing k points in the
d�dimensional space� Assuming we have an algorithm Ad�� for solving the
�d����dimensional problem in time Td��� Then the d�dimensional algorithm
is as follows� We project S on all the �d � ���dimensional hyperplanes� call
these sets S�� � � � � Sd� We describe an algorithm for only one set� say Si� �The
whole process will be later repeated similarly for all Sj � � � j � d��

�� We use the algorithm Ad�� to �nd all the �d � ���dimensional boxes
that contain k to n points of Si�

	� For each box found in the former step we use the ith axis to bound
exactly k points of S in the d�dimensional box which is the cross of the
�d � ���dimensional box and a segment in the i axis �like we treated
the y axis in the 	�dimensional problem��

It can be easily veri�ed that the runtime of this algorithm is �n�k��Td���
Thus we conclude by theorem�

CHAPTER �� K�POINT PROBLEMS ��

Theorem �
�
� The smallest box that contains a given number k� n
�
� k �

n� of points from a set of n points in d�space �d �
 can be found in time
O�n � dk�n� k���d���� and O�dn� space�

����� Slight improvements of other algorithms

We achieve improvements on runtimes of other problems that deal with some
k�set problems under the L� metric� For example� an algorithm for �nding
the minimum L� diameter of a k�point subset of a set of n points in the
plane is described in ����� It runs in time O�n log� n�� This algorithm can be
improved to run in O�n log n log �n� k�� time for k � n

�
� Eppstein and Erick�

son ���� use an O�n log n� time algorithm for placing a �xed�size axis�aligned
square and then apply the technique of sorted matrices for the optimization
step ����� Applying our techniques we can solve the problem by dealing only
with �n�k�� distances along each coordinate axis� instead of O�n�� distances
as ���� do� Searching over this matrix adds a factor of O�log �n � k�� instead
of O�log n��

Recently� Glozman et al� ��� gave a simple algorithm for a problem
posed �and solved� by Salowe ����� Given a set S of n points in the plane�
they ��� ��� determine� in time O�n log� n�� which pair of points of S de�nes
the kth distance �smallest or largest� under the L� metric� Both papers
have the same decision algorithm� but for the optimization step ���� apply
parametric search� while ��� apply sorted matrices� For k � n

�
it is enough

to keep in the optimization matrix only O�k�� distances on each coordinate
axis instead of all the O�n��� Thus the optimization will add only a factor
of O�log k� instead of O�log n� as in ����

��� Rectilinear nearest neighbors �p�	

The problem is� Find the the n � k � � farthest rectilinear neighbors to all
points of S� where n

� � k � n � �� Thus we implicitly �nd �but do not
report� the k nearest rectilinear neighbors to all points of S� We will use the
technique prom previous section and also described in �����

We de�ne the nearest x�neighbor of a point pi � S as point q � S� such
that jx�pi� � x�q�j � minfjx�pi� � x�p�j� p � S� p �� pig� where x�p� is the
x�coordinate of p� First we �nd the k nearest x�neighbors for each point of S�
To solve this subproblem we �nd the points with the n� k � � smallest and
the n� k� � largest x�coordinates by posets ���� Let A� �respectively A��� be
the set of the n� k� � points of S with the smallest �largest� x�coordinates�
Note that from the technique in ��� it follows that A� and A�� are sorted� Let
A be the set of points of S with x�coordinates between those of the points of
A� and A�� �A � S �A� �A��� �see Figure ��
��

The number of points in A is 	k � 	 � n� Since n
�
� k � n� for every

CHAPTER �� K�POINT PROBLEMS ��

n�k��
largest

smallest
n�k�� A�

A�

x�

x�

v

A

v

�

�

�

�

Figure ��
� Poset for n� k � � largest and n� k � � smallest values�

point pi � S all the points of A are among the k nearest x�neighbors of pi�
and the n� k � � farthest x�neighbors of pi can be only in A� �A��� For the
same reason� for a point pi � A� we will look for the farthest x�neighbors in
A�� and among all the points in A� whose x�coordinate is smaller than x�pi��
Symmetrically� if pi � A�� we will look for the farthest x�neighbors in A� and
among all the points in A�� whose x�coordinate is greater than x�pi�� Assume
pi � A� Then by a simple merge of A� and A�� we can �nd the n � k � �
points farthest from pi� If pi � A��A��� then we perform a similar merge on
A���A�� and the set containing all the points in A��A��� whose x�coordinate is
smaller �greater� than x�pi��

Returning to the two�dimensional problem� we store all the points of S
in an array T � We create separate posets for the x and y axes� We call them
the x�poset and the y�poset� Entry i for point pi in T will contain 	 pointers�
one to the leaf in the x�poset containing pi� and one to the leaf in the y�poset�
Our goal is to �nd for every point pi � S all the n� k� � farthest rectilinear
neighbors�

We create a set L of candidate neighbors with their L� distances� For
each point pi � S it is enough to store the entry i� �i�� in A� �A��� where
the search for the n � k farthest x�neighbors halted� Symmetrically for the
y�neighbors� There is a possibility that the same point appears in both the
set of farthest x�neighbors and the farthest y�neighbors of pi� We go over
all the n � k � � farthest y�neighbors of pi and check if their corresponding
x�coordinate is in the range ��� i�� and �i�� n� in the x�poset� If the answer is
�YES� then the same point� say pj � appears as the farthest neighbor of pi in
both axes� we choose the maximum distance of the two distances� Assume�
that the maximum distance was obtained on the x�axis� Then we put into
the set L the point pj with a �ag noting it x and skip in the x�poset and
y�poset to the next farthest points� At the end of the process L has l points�

CHAPTER �� K�POINT PROBLEMS �

where �n� k � �� � l � 	�n � k � ��� We �nd the �n� k � ��th point in L
using the linear time selection algorithm of �	�� and thus solve the problem�

Considering the time complexity� Creating the posets takes O�n��n
i�k log i�

� O�n � �n � k� log n� time� The merge step over A�� A�� and the selection
take O�n � k� time per point of S� The required storage� O�n�� is used for
storing the posets� the auxiliary array T � L� and the indices� We conclude
by the following theorem�

Theorem �
�
� Given a set S of n points in the plane� we can �nd the the
n�k�� rectilinear farthest neighbors of all the points in S �or� equivalently�
k nearest rectilinear neighbors in O�n��n�k� log n�n�n�k�� � O��n�k�n�
time� using linear space�

Remark �
�
� This problem can be easily extended to d�dimensional space�
d �
� Perform� for each axis i�
 � i � d the same algorithm as for the y axis
in the previous algorithm� The set L has �n�k��� � l � d�n�k��� points�
and the �n � k � ��th point in L is determined by the selection algorithm�
So the total runtime and space remain unchanged for a constant dimension d�

Remark �
�
� The algorithm described above still works when k � n
� � First

we sort all the points according to their x and y�coordinates� Then for each
point we �nd the n�k�� farthest neighbors in both axes by the same algorithm
as before� create L and use the selection algorithm� In this case we add factor
of O�n log n� to the runtime of the algorithm�

��� Enumerating rectilinear distances �p��	

The problem is� Given a set S of n distinct points in the plane� let D �
fd�� d�� � � � � dNg� where N � n�n���

� and d� � d� � d� � � � � � dN denote the
rectilinear distances determined by all the pairs of points in S� For a given
positive integer k � N � we want to enumerate all the k pairs of points which
realize the k largest distances in D� For some values of k we do not need to
know the total order of the points �in x or y axis�� For example� if k � �
then the maximum and minimum values of the x and y coordinates su�ce�

As in the previous section we �rst show an algorithm that enumerates all
the k pairs of points which realize the k largest distances on the x axis�

Assume that the points of S are sorted by their x�coordinate in increasing
order and name them by this order� namely points �� 	� � � � � n� For d� we
know that the points � and n �according to the sorting� realize this distance�
We denote this pair by ��� n�� One can also think about the interval ��� n�
containing the n x�consecutive points� We will use the notation �i� j� to
denote both the pair of points i and j and the interval �i� j�� The next
distance� d�� can be realized by one of the candidate pairs ��� n� �� or �	� n��

CHAPTER �� K�POINT PROBLEMS ��

Depending on the pair that realized d�� the distance d� has also two candidate
pairs� It is possible that the number of candidate pairs in step i will grow�
if� for example� the pair ��� n� �� realized d� and the pair �	� n� realized d��
then the candidates for realizing d� are the pairs ��� n� 	�� �	� n� ��� �
� n��
We denote the set of candidate pairs for distance i by Li� This is the set of
pairs of points that can potentially realize di� after the pair that realized di��
is known� An interval ��� �� is nested in ��� �� if ��� �� � ��� ��� Throughout
the algorithm we will make sure that Li does not contain nested intervals�

We say that the candidate pair �i� j�� where i � j � � blocks �i� �� j� and
�i� j� �� because the x�distance de�ned by points i and j is greater than the
distances de�ned by the pairs �i � �� j� and �i� j � ���

Claim �
�
� Li di�ers from Li��� i � 	 by at most three candidate pairs
� one that is deleted from Li�� and at most two new pairs that are inserted
into Li�

Proof� For L� we have only candidate pair ��� n�� L� consists of the pairs
�	� n� and ��� n � ��� If� wlog� the pair ��� n � �� in L� realizes d�� then L�

will consist of �	� n� and ��� n � 	�� This is because �	� n� blocks �
� n� and
�	� n � ��� If the distance de�ned by the pair �	� n� is always smaller than
the distances de�ned by the pairs ��� n � j� for � � j � n � 	� then Li is
di�erent from Li�� by deleting ��� n � j� and inserting ��� n � j � ��� If for
some j� � � j � n � 	� the distance realized by the pair �	� n� is greater
than the distance realized by the pair ��� n� j�� then the candidate pairs for
the next stage are changed by inserting two candidate pairs �
� n�� �	� n� ��
and deleting �	� n� and ��� n � j� remains as a candidate as well� Thus� we
conclude that if at some stage i there is only one pair ��� �� in Li� then at
the next stage this pair is deleted� and two new pairs �� � �� �� and ��� �� ��
�if they exist� are inserted into Li
� as candidate pairs� If� at some stage i
there are several candidate pairs and one of them� e�g� ��� �� realizes di� then
for the next stage this pair is deleted and �� � �� �� and ��� � � �� �if exist�
are inserted into Li
� unless there is exists candidate pair in Li �except for
��� ��� that blocks them� Thus� we delete one candidate pair and insert at
most two candidate pairs�

We de�ne left and right neighbors of a pair ��� �� as follows� a left neighbor
of ��� �� is every pair �	� ����� 	 � �� A right neighbor of ��� �� is every pair
�� � �� 	�� 	 � ��

Throughout the updates of Li we do not re�insert a pair that had been
used before to realize a distance dj� j � i� Moreover� we avoid storing nested
intervals in Li� As we reach stage i � � we �nd which pair of Li�� realizes
di��� Assume ��� �� realizes di��� We update Li�� to get Li� We delete ��� ��
from Li��� If Li�� contained a left �right� neighbor of ��� �� then we do not
add the pair ��� �� �� ��� � �� ��� to Li� Otherwise we add these pairs to Li�
This ensures that Li does not contain nested intervals�

CHAPTER �� K�POINT PROBLEMS ��

Claim �
�
� If a pair ��� �� realizes di� then it will not be added as a candi�
date pair in Lj� for j � i�

Proof� We prove by induction� L� consists of only one interval ��� n��
L� contains two candidate pairs ��� n � �� and �	� n� that de�ne intervals
that overlap but are not nested� The pair ��� n� will not be inserted to
Lj� j � �� since we always decrease the interval� Assume we are at stage i�
By the induction hypothesis Li does not contain nested intervals� Assume
that ��� �� � Li realizes di� ��� �� can donate two new overlapping intervals
to Li
�� namely� �� � �� �� and ��� � � ��� We look at the neighbors of ��� ��
in Li� If there exists a left neighbor of ��� ��� then we do not add ��� ���� to
Li
� in our algorithm �same for the right neighbor�� Clearly� ��� �� will not
re�appear in the next stages because we only decrease the range of intervals
and since there is no nesting there is no interval that contains ��� ���

Corollary �
�
� jLij � i� i � �� � � � � n��� and jLij � n��� i � n� � � � � n�n���� �

Following corollary ��
�
 we can easily solve problem p� for one axis� Since
the number of candidates for each stage does not exceed n � �� it su�ces
to �nd the updates to the candidate list Li at each stage i� and then �nd
which pair realizes di� Naively we can carry out one stage in O�n� time�
therefore the k largest distances are found in O�kn� time and linear space�
This runtime can be improved by using tournament trees ���� ���� with n��
leaves� each storing a candidate pair� Initially we store only one candidate
pair� namely ��� n�� and the other leaves are empty� As we proceed to Li we
make at most three updates to the tree� The pair that realizes di is the winner
of the tournament� The update of the tournament tree for Li
� proceeds as
follows� If we do not need to add anything we just empty the leaf occupied
by the winner for di and continue to �nd the second best �the pair for di
��
in the tournament tree� If we add one pair� we replace the contents of the
leaf that contained the winner with the new pair and update the path to the
root to �nd the pair realizing the next distance� If we add two pairs� than
we put one pair instead of the winner�s leaf� another pair into the current
available leaf �we always have one due to corollary ��
�
� and update two
paths to the root to �nd the next winner� We take care of not inserting a
nested interval by maintaining an array U whose i�th entry is either empty or
contains a pointer to the leaf containing the pair �i� j� in the tournament tree
for some j� �Notice that there can be only one leaf containing i as the �rst
point� since there is no nesting�� The leaves of the tournament tree point to
their corresponding entries in U � and each non empty entry in U points also
to the closest non empty pairs in U � backwards and forward respectively�

An update of the tree takes O�log n� time� so the runtime of this algorithm
is improved from O�kn� to O�n � k log n��

Returning to the L� metric� We perform the algorithm for the x axis
simultaneously with the algorithm for the y axis� We �rst compute the winner

CHAPTER �� K�POINT PROBLEMS ��

in both trees and compare the two distances� the largest current x�distance
and the largest current y�distance� We choose the largest between them� We
check whether these two distances are de�ned by the same pair of points� If
they are� then we choose the largest distance� report the pair and proceed
with both the algorithms to the next step �namely� updating the tournament
trees� and �nding the next winners�� If they are not� then we check whether
the larger of the distances has been reported before �in O��� time we compute
the distance in the other axis and compare it to the distance we have in that
axis at this stage of the algorithm�� If it has been reported� we move to the
next step in this axis� and if not we report this pair of points and proceed to
the next stage�

Theorem �
�
� Given a set S of n points in the plane and a number k we
can enumerate the k largest rectilinear distances in nonincreasing order in
O�n � k log n� time� using only O�n� space�

Remark �
�
� If U is implemented as a linked list� and the tournament tree
is implemented as a heap then the space is O�min �k� n���

The second case of problem p� is� enumerate the k smallest rectilinear
distances in increasing order� The idea is similar to the algorithm above�
We �rst show an algorithm that enumerates all the k pairs of points which
realize the k smallest distances on the x axis� We assume that the points
of S are sorted by their x�coordinate� in increasing order� A candidate pair
for realizing d� is either one of the neighboring pairs ��� � � ��� for � �
�� � � � � n��� We choose the pair that realizes the smallest distance by creating
a tournament tree of pairs� At the following step we perform similar updates
to the tournament tree� namely� delete the pair that realized d� and insert
at most two new candidate pairs� avoiding nested pairs� The algorithm that
we apply here is almost identical to the previous one� except that here the
distances increase� and we have to initially sort the coordinates of the points�

Theorem �
�
 Given a set S of n points in the plane and a number k we
can enumerate the k smallest rectilinear distances in nondecreasing order in
O�n log n � k log k� time� using only O�n� space�

Remark �
�
� These enumerating problems can be extended to arbitrary�
but constant� d�dimensional space� d �
� Runtime and space are changed by
a multiplicative d factor �

��� Reporting � distances �p��	

In a recent paper Dickerson and Eppstein ���� considered the following prob�
lem�

CHAPTER �� K�POINT PROBLEMS ��

p��� Given a set S of n distinct points in d�dimensional space� d � 	� and a
distance �� For each point p in S report all pairs of points �p� q� with q in S
such that the distance from p to q is less than or equal to ��

This problem and the problem of enumerating the k smallest distances
in nondecreasing order are closely related� If � of this problem is the unique
kth largest distance of the enumerating problem� then the two solutions are
identical� The paper ���� solve Problem p�� in O�n log n�k� time and O�n�
space algorithm� where k is the number of distances not greater than �� and
the distances are not ordered� Our algorithm reports these distances sorted
in the same time and space complexity for L��

Another variant of this problem� that has not been considered before� is�
Find all pairs of points in S separated by a L� distance � or more�

For both variants of the above problem� if we want the distances sorted�
we can use our algorithms from the previous section to get O�n � k log n�
algorithm with linear space for the �rst vesrion� where k is the number of
distances not greater than �� and O�n log n � k log k� time algorithm with
linear space for the second version� The only change is that we compare
the output distances with �� Notice that if we use the algorithm of ���� for
sorting the distances then we would end up spending O�n � k� space�

We want to solve �rst the second version of the problem� The technique
is similar to the one we used in solving Problem p��� We �rst describe an
algorithm for the x axis�

Throughout the algorithm we will maintain a poset �which is initially
empty� that will contain the largest and the smallest x values of the points
that have been encountered in the algorithm �as will be seen below�� Pick an
arbitrary point p� � S� The farthest x�neighbor of p� can be the point with
the smallest �or largest� x coordinate� The smallest point is added to the set
sx and the largest to the set gx� After we �nd which point is the farthest
x�neighbor of p� �say it is pi and assume wlog pi � sx�� we check whether
jx�p�� � x�pi�j � �� If jx�p�� � x�pi�j � �� then we know that there is no
point q � S� such that jx�p�� � x�q�j � �� If jx�p��� x�pi�j � � we continue
to �nd the next farthest x�neighbor of p� and update sx and gx accordingly�
It can either be a point with x�coordinate adjacent to x�pi� in sx or the next
farthest point in gx� The algorithm for p� ends when on both ends of sx and
gx the distance is smaller than �� We end up with a poset Px� where sx and
gx are sorted in x order and the rest of the points in S � sx � gx are not
sorted� Similarly� we work on the y distance for p�� and create Py� sy and gy�

In order to �nd the � L� distances for p� we go over Px and Py � If the
same point� pj� appears either in x or in y sets� then we can output the pair
�p�� pj� and proceed to the next points till we got all the points whose distance
from p� is not smaller than �� We repeat the process with p� � S� As for
p� the x�farthest point is the point with the largest or smallest x�coordinate�
but this point is already in gx or sx� So we go over Px as was created for

CHAPTER �� K�POINT PROBLEMS �	

p�� We might add points to gx� sx� if all the distances jp�� qj � �� q � sx or
q � gx or not� Now we use the sets sx� gx� sy� gy computed before and report
the appropriate pairs that have the required distance �not smaller than ���
There are two possibilities� ��� no points are added to sx �or sy� gx� gy�� or �	�
some are added� The number of elements in sx�gx� sy� gy� does not decrease�

Considering the time complexity� The worst case is when we have to know
the total x�order and y�order of all the points in S� The worst case runtime
is O�n log n � k� and the space is O�n��

The algorithm for the �rst version of the problem is very similar to the
above algorithm� The main di�erence is that instead of starting at the far�
thest neighbors and constructing Px�Py� incrementally� we now sort the x�y�
coordinates of the points of S �so we do not need the posets�� For each point
pi we go over its x �and y� nearest neighbors in left �up� and right �down� di�
rections and report the distances �similar to algorithm for the second version�
as long as they are less than ��

Theorem �
�
� Given a set S of n points in the plane and a distance � � �
we can report all the pairs of points of S which are of rectilinear distance �
or more �less in O�n log n � k� time� using only O�n� space�

Note that in the theorem above k is the number of L� distances for the case
of �more than ��� and k is the number of distances measured along x and y
axes for the case of �less than ���

�� Rectangular rings �p��	

The problem is� Given a set S of n points in the plane� �nd the smallest
rectangular axis�aligned ring �constrained or non�constrained� that contains
k� k � n

�
points of S� As a measure we take the width �for constrained ring�

or area �for non�constrained ring� of the ring�

����� Constrained rectangular ring

This problem can be translated to the following one�
For every point pi � S �nd the n � k nearest and n � k farthest rectilinear
�under L� metric� neighbors� We can use our algorithm for problem p��

from Section ��	 to �nd the n� k � � farthest rectilinear neighbors for each
point of S� and the algorithm of ���� to �nd the n� k� � nearest neighbors�
Given the set of the n � k � � nearest neighbors Ni of pi � S and the set
of the n� k � � farthest neighbors Fi� we sort Ni and Fi according to their
L� distance from pi� There are exactly n � k � � rings centered in pi and
containing k points� The rings j � �� � � � � n � k � � are determined by the
j�th points in the sorted Ni and Fi respectively� where the j�th point from

CHAPTER �� K�POINT PROBLEMS �

Fi determines the outer rectangle and the j�th point from Ni determines the
inner rectangle�

The runtime of the algorithm in ����� as well as for our algorithm for
Problem p�� is O�n � k� for one point pi � S �after O�n log n� time for
preprocessing�� We spend O��n � k� log �n� k�� time for sorting Ni and
Fi for each point pi � S� and then go over the corresponding rectangles�
Therefore�

Theorem �
�
� Given a set S of n points in the plane� we can �nd the
smallest rectangular axis�aligned constrained ring that contains k� k � n

�

points of S in O�n log n � n�n� k� log �n� k�� time� using O�n� space�

Remark �
�
� This problem can be easily extended to arbitrary� but con�
stant� d�dimension space� d �
� the runtime changes by multiplicative d
factor�

����� Non�constrained rectangular ring

We �nd the smallest rectangular ring that contains k� k � n
� of given n

points by �rst computing all the rectangles which contain k � p points �p �
�� � � � � n � k�� Each such rectangle de�nes a center c for which we �nd the
largest rectangle centered at c that contains p points� In ���� an algorithm
for �nding the smallest axis�aligned rectangle that contains k� k � n

� points
is presented� The outline of algorithm from ���� is as follows� initially �x the
leftmost point of the rectangle to be the leftmost point of S� At the next
stage the leftmost point of the rectangle is �xed to be the second left point
of S� etc� Within one stage� of a �xed leftmost rectangle point� r� we pick
the rightmost point of the rectangle to be the q�th x�consecutive point of S�
for q � k � r � �� � � � � n� For �xed r and q the x boundaries of the rectangle
are �xed� and we go over a small number of possibilities to choose the upper
and lower boundaries of the rectangle so that it will enclose k points� This
algorithm runs in time O�n � �n � k���� We use it for computing all the
rectangles which contain k � p points �p � �� � � � � n � k�� We denote the
external rectangle by R�

We modify the problem of �nding the smallest rectangle with a given
center� that contains p points� to �nd the largest rectangle with a given
center� that contains p points� Notice that the external rectangle R de�nes
the range of boundaries for the internal rectangle� Our algorithm goes over
all the possible rectangles with the given center that contain p points and
chooses the largest among them as follows� Let Q be an inner rectangle that
contains p points� We extend its boundaries until it almost meets� but does
not contain another point of S� within the boundaries of R�

The naive approach for �nding the largest rectangle with a given center
that contains p points is to go over all pairs of points that together with the

CHAPTER �� K�POINT PROBLEMS ��

c

Figure ���� Hyperbolas de�ne the locus of rectangles with given area

center c de�ne a rectangle� check whether this rectangle contains p points
and �nd the largest rectangle among those that do� The total running time
is O�n���

Another approach to this problem is to de�ne the following decision prob�
lem� For a given area A does there exist a rectangle centered at c that covers
exactly p points and whose area is A� For the decision algorithm we sort the
points of S according to their x and y coordinates respectively� Four hyper�
bolas de�ne the locus of all rectangles with a given area A� centered at c �see
Figure ����� Observe the halfspace de�ned by the hyperbola H that contains
the origin� We consider all the points of S which are inside the intersection
of the four halfspaces that correspond to the four hyperbolas� Denote this
set by S� � S� Each point s � S� de�nes two rectangles with center c and the
given area� where s either determines the width of the rectangle� or its height�
For the time being we look at the rectangle whose width is determined by s�
Let s be the point that determines the widest rectangle Q and assume that
s is to the left of c�

We shrink the width of the rectangle� keeping its corners in the corre�
sponding hyperbolas until an event happens� �The height of a rectangle grows
when the width shrinks� An event occurs when a point is added or deleted
from the rectangle during the width shrinking� We check if the newly ob�
tained rectangle contains p points� If the obtained rectangle does contain p
points� we are done otherwise we continue to shrink the rectangle until the
next event� We perform the same actions for the height as well�

For speeding up the running time of this algorithm we de�ne four subsets
U�D�R�L of S � corresponding to the halfplanes that bound Q� R is the set
of all the points of S � contained in the halfplane to the right of the left side of
Q and are within the interior of the hyperbolas� L �U�D� is the set of points
to the left �up� down� of the right �upper� lower� side of the rectangle Q� We
de�ne pr�pl� to be the point x�closest to Q in R�L� and pu�pd� to be the point
y�closest to Q in U�D�� Assume that the number of points contained in Q is
r and we are shrinking Q in x direction until the next event� Assume that the

CHAPTER �� K�POINT PROBLEMS ��

x�closest neighbor of pr�pl� in R�L� is phr �phl � and the y�closest neighbor of
pu�pd� in U�D� is pvu�pvd�� Thus� our event is when one of phr � p

h
l or pvu� p

v
d enters

or exists the rectangle Q� If Q contained r points and the next event is a
point from R or L� then the new rectangle will contain r�� points� otherwise
r � �� We update pr� pl� pu� pd �and also the subsets U�D�R�L�� When we
reach a rectangle with p points we �rst extend its boundaries with R until it
almost touches the p � ��th point and then we move to the next step �with
the same center�� During the process for this center we keep the largest area
inner rectangle encountered so far� The algorithm for solving the decision
problem works in time O�n� after preprocessing of O�n log n�� because we
can carry each step in constant time� except for the �rst step where we have
to compute the points that lie in the interior of the hyperbolas�

In order to solve the optimization problem� we apply the optimization
technique of Frederickson and Johnson ����� We de�ne the matrix of distances
as follows� one dimension of the matrix contains the sorted x�distances from
the center �multiplied by 	�� and the other dimension contains the sorted y�
distances from the center �multiplied by 	�� The matrix values are potential
area values of the rectangle� We perform a binary search on the matrix to
�nd the optimal area� Since the rows and columns of the matrix are sorted�
we can use the linear time selection algorithm of ���� to �nd the largest axis�
parallel rectangle centered at c and containing p points in O�n log n� time�

The analysis follows this of ����� There are O��n�k��� external rectangles�
and for each of them we apply an O�n log n� algorithm for �nding the largest
internal rectangle� So� the total runtime is O�n�n � k�� log n� with linear
space� We conclude by the following theorem�

Theorem �
�
� Given a set S of n points in the plane� we can �nd the
smallest area rectangular axis�aligned ring that contains k� k � n

� points of S
in O�n�n � k�� log n� time� using O�n� space�

Remark �
�
� This problem can be extended to
�dimension space� Using
the algorithm of ���� and technique of ���� for
�dimension space we obtain
algorithm with runtime O�n��n� k�� log n� time�

��� Constrained circular ring �p�� and p��	

The problem is� Given a set S of n points� �nd the smallest constrained
circular ring �or a sector of a constrained circular ring� that contains k points
�k � n

� � of S� We �rst describe an algorithm that �nds the smallest width
circular ring containing k points �k � n

� �� and centered at some point pi � S�
We need to know the sorted order of the n� k closest points to pi and n� k
farthest points from pi and then proceed as in the algorithm for �nding a
constrained rectangular ring� The time for computing the n� k closest and
n� k farthest points for pi is O�n� �n� k� log n�� Thus we can conclude by

CHAPTER �� K�POINT PROBLEMS ��

Theorem �

� Given a set S of n points in the plane� we can �nd the
smallest width constrained ring that contains k� k � n

�
points of S in O�n� �

n�n� k� log n�� time� using O�n� space�

Now we describe how to �nd minimal area sector of a constrained ring
that contains k� k � n

�
� points� We �rst describe an algorithm that �nds

the smallest area sector of a ring containing k points �k � n
�
� centered at

point O��� ��� We start with �nding for O��� �� the ordering of S points with
respect to the polar angle around the origin� We use the algorithm in ����
�and also section above� to solve our problem in the following way� apply the
algorithm in ���� for a smallest axis�aligned rectangle with k points using a
polar coordinate system ��� ��� This yields the smallest area sector of a ring
centered at the origin and containing k points of S� We proceed as in the
algorithm of ����� The running time of this algorithm is O�n�k�n�k���� We
can use this ring�algorithm as a subroutine to solve the following problem�
Find the smallest area sector of a constrained ring �centered on an input
point� containing k points� We can perform an angular sort of all the points
in O�n�� time and space ��� and applying this algorithm to each point we
get O�n� � nk�n� k��� time�

Theorem �

� Given a set S of n points in the plane� we can �nd the
smallest area sector of a constrained ring that contains k points �k � n

� �
points of S in O�n� � nk�n� k��� time using O�n�� space�

��� Query rectangle �p��	

The problem is� Given a set S of n points in the plane and a number k
�n� � k � n� we want to preprocess the points in order to answer e�ciently
whether k or more points are enclosed by a query rectangle� The naive
approach to this problem is to build a range tree ���� on the set S� When
a query rectangle R is given� we can answer how many points are inside
of R in O�log n� time using the fractional cascading technique of �
	�� The
preprocessing time and space is O�n log n�� Notice that we did not use the
parameter k at all� In order to improve the preprocessing time and space
and also the query time we use the following observation�

Observation �
�
� In order for the query rectangle to contain at least k
points� the vertical strip de�ned by the vertical sides l�� l� of the query rectan�
gle R must be located between the n�k smallest and n�k largest x values of
the points of S and the horizontal strip de�ned by the horizontal sides l�� l�
of the query rectangle R must be located between the n�k smallest and n�k
largest y values of the points of S�

Using this observation we proceed as follows� First we evaluate the small�
est and the largest n� k x values of the points of S �denote by Sx� and the

CHAPTER �� K�POINT PROBLEMS �

R l l� R�

l

l
�

R�
vertical strip

R

horizontal

strip

R

�

�

�

�

Figure ���� The strips enclose a query rectangle R�

smallest and the largest n � k y values of the points of S �denote by Sy��
Next� by a binary search� we �nd how many points are in the left halfplane
of l�� in the right halfplane of l�� in the upper halpfplane of l� and in the
lower halp�ane of l� �See Figure �����

Notice that we count twice the points in the regions Ri� � � i � � in Figure
���� We can compute how many points are in these regions by building� at
the beginning of the algorithm� a range search tree but only for the points
with either x�coordinate in Sx or y�coordinate in Sy� We have O�n� k� such
points� Thus the construction of the tree takes O��n � k� log �n� k�� time
with O��n � k� log �n� k�� space� Now we can compute how many points
are in the four query rectangles that correspond to the regions Ri� � � i � �
in the Figure ���� It follows that the query time for such a rectangle is
O�log �n� k��� Thus�

Theorem �
�
� Given a set S of n points in the plane and a number k
�n
� � k � n�� we can preprocess the points of S in O��n�k� log �n � k�� time

with O��n� k� log �n� k�� space to answer in O�log �n� k�� time whether k
or more points are enclosed by a query rectangle�

Bibliography

��� M� Aigner� Combinatorial search� Wiley�Teubner Series in CS� John
Wiley and Sons� �����

�	� P� Agarwal and J� Erickson �Geometric range searching and its rela�
tives�� TR CS�������� Duke University� ���

�
� A� Aggarwal� H� Imai� N� Katoh� S� Suri� �Finding k points with min�
imum diameter and related problems�� Journal of Algorithms� �	� pp�

����� �����

��� P� K� Agarwal and J� Matou#sek �Ray shooting and parametric search�
SIAM J� Computing� 		� pp� ������� ���
�

��� P� K� Agarwal and M� Sharir �E�cient randomized algorithms for some
geometric optimization problems�� Discrete Comput� Geom�� ��� pp�

��

� �����

��� P� Agarwal� B� Aronov� M� Sharir� S� Suri� �Selecting distances in the
plane�� Algorithmica� �� pp� �������� ���
�

�� P� Agarwal and M� Sharir� �Planar geometric location problems�� Algo�
rithmica� ��� pp� �������� �����

��� P� K� Agarwal and M� Sharir� �Planar geometric location problem and
maintaining the width of a planar set�� Proc� �nd ACM�SIAM Symp�
on Discrete Algorithms� pp� �������� �����

��� P� K� Agarwal� B� Aronov� M� Sharir� Subhash Suri� �Selecting distances
in the plane�� Algorithmica� �� pp� �������� ���
�

���� P� Agarwal� M� Sharir� S� Toledo� �Applications of parametric searching
in geometric optimization�� J� Algorithms� �� pp� 	�	�
��� �����

���� P� Agarwal� M� Sharir� S� Toledo �An e�cient multi�dimensional search�
ing technique and its applications�� Tech� Report CS����
�	�� Dept�
Comp� Sci�� Duke University� ���
�

��	� P� Agarwal� M� Sharir� E� Welzl �The discrete 	�center problem�� Proc�
��th ACM Symp� on Computational Geometry� pp� ������� ����

��

BIBLIOGRAPHY ��

��
� T� Asano� B� Bhattacharya� J� M� Keil� F� Yao �Clustering algorithms
based on minimum and maximum spanning trees�� Proc� �th ACM
Symp� on Computational Geometry� pp� 	�	�	�� �����

���� E� Assa and M� Katz� �
�piercing of d�dimensional boxes and homothetic
triangles�� Int� J� Comp� Geom� and Appls� to appear�

���� M� Attalah� R� Cole� M� Goodrich� �Cascading divide and conquer� a
technique for designing parallel algorithms�� SIAM Journal on Comput�
ing� ���
�� pp� �����
	� �����

���� F� Aurenhammer and H� Edelsbrunner �An optimal algorithm for for
constructing the weighted Voronoi diagram in the plane�� Pattern Recog�
nition� ��	�� pp� 	���	�� �����

��� C� Bajaj� �Geometric optimization and computational complexity��
Ph�D� thesis� Tech� Report TR�����	�� Cornell University� �����

���� G� Barequet� A� Briggs� M� Dickerson� M� Goodrich �O�set�polygon
annulus placement problems�� Lecture Notes in Computer Science� �		�
pp�
��
��� ����

���� J� L� Bentley �Decomposable searching problems�� Info� Proc� Lett� ��
pp� 	���	��� ����

�	�� M� de Berg� M� van Kreveld� M� Overmars� O� Schwartzkopf Computa�
tional Geometry� Algorithms and Applications� Springer�Verlag� ����

�	�� S� Bespamyatnikh� K� Kedem� M� Segal �Optimal facility location un�
der various distance functions� Tech� Report ����� Dept� of Math and
Comp� Science� Ben�Gurion University�

�		� S� Bespamyatnikh and M� Segal �Covering the set of points by boxes��
Proc� �th Canadian Conference on Computational Geometry� pp�

�
��
����

�	
� B� Bhattacharya and H� Elgindy �An e�cient algorithm for an intersec�
tion problem and an application�� Tech� Report ���	�� Dept� of Comp�
and Inform� Sci�� University of Pennsylvania� �����

�	�� J� Brimberg and A� Mehrez �Multi�facility location using a maximin cri�
terion and rectangular distances�� Location Science 	� pp� ������ �����

�	�� M� Blum� R� Floyd� V� Pratt� R� Rivest� R� Tarjan �Time bounds for
selection�� Journal of Computer and System Sciences� ���� pp� ��������
��
�

�	�� T� Chan �Geometric Applications of a Randomized Optimization Tech�
nique�� In Proc� ��th Annu� ACM Sympos� Comput� Geom�� pp� 	���
	�� �����

BIBLIOGRAPHY ���

�	� T� Chan �On enumerating and selecting distances�� In Proc� ��th Annu�
ACM Sympos� Comput� Geom�� pp� 	��	��� �����

�	�� B� Chazelle� �Filtering search� A new approach to query�answering��
SIAM J� Comput�� ��� pp� �
�	�� �����

�	�� B� Chazelle� �A functional approach to data structures and its use in
multidimensional searching�� SIAM J� Comput�� �� pp� �	���	� �����

�
�� B� Chazelle� H� Edelsbrunner� L� Guibas� M� Sharir �Diameter� width�
closest line pair� and parametric searching�� Discrete Comput� Geom��
��� pp� ��
����� ���
�

�
�� B� Chazelle and H� Edelsbrunner and L� Guibas and M� Sharir �Algo�
rithms for bichromatic line segment problems and polyhedral terrains��
Algorithmica� ��� pp� �����
	� �����

�
	� B� Chazelle and L� Guibas �Fractional cascading� I� A data structuring
technique�� Algorithmica� �� pp� �

���	� �����

�

� R� Cole� �Parallel merge sort�� SIAM J� Computing� ����� pp� �����
�����

�
�� R� Cole� J� Salowe� W� Steiger� E� Szemer+edi� �An optimal�time algo�
rithm for slope selection�� SIAM J� Comput�� ��� pp� �	����� �����

�
�� T� Cormen� C� Leiserson and R� Rivest Introduction to algorithms� The
MIT Press� �����

�
�� A� Datta� H��P� Lenhof� C� Schwarz� M� Smid� �Static and dynamic
algorithms for k�point clustering problems�� J� Algorithms� ��� pp� ���
��
� �����

�
� L� Danzer and B� Gr�unbaum� �Intersection properties of boxes in Rd��
Combinatorica 	�
�� pp� 	
�	��� ���	�

�
�� O� Devillers and M� Katz� �Optimal line bipartitions of point sets�� Int�
J� Comput� Geom� and Appls� to appear�

�
�� M� Dickerson� R� L� Scot Drysdale� J�R� Sack �Simple algorithms for
enumerating interpoint distances and �nding k nearest neighbors�� Int�
J� Comput� Geom� and Appls�� 	�
�� pp� 		��	
�� ���	�

���� M� Dickerson and J� Shugart �A simple algorithm for enumerating
longest distances in the plane�� Inf� Process� Lett� ��� pp� 	���	�� ���
�

���� M� Dickerson and D� Eppstein �Algorithms for proximity problems in
higher dimensions�� Computational Geometry� Theory and Applications
�� pp� 	�	��� �����

BIBLIOGRAPHY ���

��	� Z� Drezner �The p�center problem� heuristic and optimal algorithms��
Journal of Operational Research Society�
�� pp� ������ �����

��
� Z� Drezner �On the rectangular p�center problem�� Naval Res� Logist�
Q��
�� pp� 		��	
�� ����

���� H� Ebara� N� Fukuyama� H� Nakano� Y� Nakanishi �Roundnes algo�
rithms using the Voronoi diagrams�� Abstracts �st Canad� Conf� Com�
put� Geom�� pp� ��� �����

���� A� Efrat and M� Sharir �A near�linear algorithm for the planar segment
center problem�� Discrete Comput� Geom�� ��� pp� 	
��	�� �����

���� A� Efrat� M� Sharir� A� Ziv �Computing the smallest k�enclosing circle
and related problems�� Computational Geometry� Theory and Applica�
tions �� pp� �����
�� �����

��� H� Elgindy and M� Keil �E�cient algorithms for the capacitated ��
median problem�� ORSA J� Comput� �� pp� �����	�� ���	

���� D� Eppstein �Faster construction of planar two�centers�� Proc� �th
ACM�SIAM Symp� on Discrete Algorithms� pp� �
���
�� ����

���� J� Erickson and D� Eppstein �Iterated nearest neighbors and �nding
minimal polytopes�� Discrete Comput� Geom� ��� pp�
	��
��� �����

���� R� Y� Flatland� C� H� Stewart �Extending range queries and nearest
neighbors�� Proc� �th Canad� Conf� Comput� Geom�� pp� 	��		� �����

���� F� Follert �Lageoptimierung nach dem Maximin�Kriterium�� Diploma
Thesis� Univ� d� Saarlandes� Saarbrucken� �����

��	� F� Follert� E� Sch�omer� J� Sellen� �Subquadratic algorithms for the
weighted maximin facility location problem�� Proc� �th Canad� Conf�
Comput� Geom�� pp� ���� �����

��
� G� Frederickson and D� Johnson �The complexity of selection and rank�
ing in X �Y and matrices with sorted columns�� J� Comput� Syst� Sci��
	�� pp� ���	��� ���	�

���� G� Frederickson and D� Johnson� �Generalized selection and ranking�
sorted matrices�� SIAM J� Comput� �
� pp� ���
�� �����

���� G� Frederickson� �Optimal algorithms for tree partitioning�� Proc� �nd
ACM�SIAM Symp� on Discrete Algorithms� pp� ������ �����

���� G� Frederickson and D� Johnson� �Finding kth paths and p�center by
generating and searching good data structures�� J� Algorithms� �� pp�
������ ���
�

BIBLIOGRAPHY ��	

��� A� Glozman� K� Kedem� G� Shpitalnik� �On some geometric selection
and optimization problems via sorted matrices�� Computational Geom�
etry � Theory and Applications� ��� pp� ��	�� �����

���� M� Goodrich� �Geometric partitioning made easier� even in parallel��
Proc� �th Annu� CM Sympos� Comput� Geom�� pp�
��	� ���
�

���� J� Hershberger� �A faster algorithm for the two�center decision problem��
Inf� Process� Lett�� �� pp� 	
�	�� ���
�

���� J� Hershberger and S� Suri �Finding tailored partitions�� J� Algorithms�
�	� pp� �
����
� �����

���� M� Houle and G� Toussaint� �Computing the width of a set�� IEEE
Trans� Pattern Anal� Mach� Intell�� PAMI���� pp� ������ �����

��	� R� Z� Hwang� R� C� T� Lee� R� C� Chang �The slab dividing approach to
solve the Euclidian p�center problem�� Algorithmica� �� pp� ��		� ���
�

��
� R� Z� Hwang� R� C� Chang� R� C� T� Lee �The generalized searching over
separators strategy to solve some NP�hard problems in subexponential
time�� Algorithmica� �� pp�
����	
� ���
�

���� J� Jaromczyk and M� Kowaluk� �An e�cient algorithm for the Euclidian
two�center problem�� Proc� ��th ACM Sympos� Comput� Geom�� pp�

�
�
��� �����

���� J� Jaromczyk and M� Kowaluk �Orientation independent covering of
point sets in R� with pairs of rectangles or optimal squares�� European
Workshop on Comp� Geometry� University of Muenster� pp� ������ �����

���� J� Jaromczyk and M� Kowaluk� �The two�line center problem fom a polar
view� A new algorithm and data structure�� Lecture Notes in Computer
Science� ���� pp� �
�	�� �����

��� N� Katoh� K� Iwano� �Finding k farthest pairs and k closest*farthest
bichromatic pairs for points in the plane�� Int� J� Comput� Geom� Appl�
�� pp�
��	� �����

���� F� Preparata �New parallel�sorting schemes�� IEEE Trans� Comput��
C�	� pp� �����
� ����

���� M� Katz� K� Kedem� M� Segal �Constrained Square�Center Problems��
Computational Geometry� Theory and Apllications� to appear�

��� M� Katz� K� Kedem� M� Segal �Improved algorithms for placing un�
desirable facilities� European Workshop on Comp� Geometry� Antibes�
�����

BIBLIOGRAPHY ��

��� M� Katz and F� Nielsen� �On piercing sets of objects�� In Proc� ��th
ACM Symp� on Computational Geometry� pp� ��
��	�� �����

�	� M� Katz and M� Sharir �An expander�based approach to geometric op�
timization�� SIAM J� Comput�� 	����� pp� �
�������� ����

�
� V� B� Le and D� T� Lee �Out�of�roundness problem revisited�� IEEE
trans� Pattern Anal� Mach� Intell PAMI��
� pp� 	��		
� �����

��� D� T� Lee and Y� T�Ching �The power of geometric duality revised��
Inf� Process� Lett� 	�� pp� ����		� �����

��� H�P� Lenhof and M�Smid �Sequential and parallel algorithms for the k
closest pairs problem�� Internat� J� Comput� Geom� Appls� �� pp� 	
�
	��� �����

��� C� Makris and A� Tsakalidis �Fast Piercing of Iso�Oriented Rectangles��
Proc� �th Canad� Conf� Comput� Geom�� pp� 	��			� ����

�� J� Matou#sek �E�cient partition trees� Discrete Comput� Geom� �� pp�

���

�� ���	�

��� J� Matou#sek �On geometric optimization with few violated constraints��
Discrete Comput� Geom�� ��� pp�
���
��� �����

��� N� Megiddo �Applying parallel computation algorithm in the design of
serial algorithms�� Journal of ACM�
�� pp� ��	����� ���
�

���� N� Megiddo �Linear time algorithms for linear programming in R� and
related problems�� SIAM J� Comput�� �	� pp� ����� ���
�

���� N� Megiddo� �On the complexity of some geometric problems in un�
bounded dimension�� J� Symbolic Comput�� �
� pp� ��	����� �����

��	� N� Megiddo and A� Tamir �New results on the complexity of p�center
problems�� SIAM J� Comput�� �	���� pp� ������ ���
�

��
� K� Mehlhorn� �Data Structures and Algorithms
� Multi�Dimensional
Searching and Computational Geometry�� Springer�Verlag� �����

���� J� Mitchell and E� Wynters �Finding Optimal Bipartitions of Points and
Polygons�� Lecture Notes in Computer Science� ���� pp� 	�	�	�
� �����

���� C� Monma and S� Suri �Partitioning points and graphs to minimize the
maximum or the sum of diameters�� Graph Theory� Combinatorics and
Applications� 	� pp� ������	� �����

���� D� Nussbaum �Rectilinear p�Piercing Problems�� Proc� Int� Symp� on
Symb� and Alg� Comput�� pp�
���
	
� ����

BIBLIOGRAPHY ���

��� M� Overmars and C� Yap� �New upper bounds in Klee�s measure prob�
lem�� SIAM J� Comput� 	�� pp� ��
������� �����

���� M� Overmars and J� van Leeuwen� �Maintenance of con�gurations in
the plane�� J� Comput� Syst� Sci�� 	
� pp� ����	��� �����

���� F� Preparata and M� Shamos �Computational Geometry� An Introduc�
tion�� Springer�Verlag� New York� NY� �����

���� J� Salowe �Enumerating interdistances in space�� Int� J� Comput� Geom�
Appls�� 	� pp� ������ ���	�

���� J� Salowe �L�in�nity interdistance selection by parametric search�� Inf�
Process� Lett��
�� pp� ����� �����

��	� H� Samet� �The design and analysis of spatial data structures�� Addison�
Wesley� ����

��
� M� Segal and K� Kedem �Geometric applications of posets�� Computa�
tional Geometry � Theory and Applications� ��� pp� ��
����� �����

���� M� Segal �On the piercing of axis�parallel rectangles and rings�� Inter�
J� Comp� Geom� Appls� to appear�

���� M� Segal� K� Kedem �Enclosing k points in the smallest axis parallel
rectangle�� Inf� Process� Lett�� ��� pp� ������ �����

���� M� Segal and S� Bespamyatnikh �Rectilinear static and dynamic center
problems�� manuscript�

��� M� Sharir� �A near�linear algorithm for the planar 	�center problem��
Discrete Comput� Geom�� ��� pp� �	���
�� ����

���� M� Sharir and P� Agarwal� Davenport�Shintzel sequences and their ap�
plications� Cambridge University Press� New�York� �����

���� M� Sharir and E� Welzl� �Rectilinear and polygonal p�piercing and p�
center problems�� Proc� ��th ACM Symp� on Computational Geometry�
pp� �		��
	� �����

����� M� Smid and R� Janardan �On the width and roundness of a set of
points in the plane�� Proc� �th Canad� Conf� Comput� Geom�� pp� ��
�
���� �����

����� L� Valiant� �Parallelism in comparison problems�� SIAM J� Computing�
�� pp�
���
��� ����

���	� D� Willard and G� Lueker� �Adding range restriction capability to dy�
namic data structures�� Journal of ACM�
	� pp� ������ �����

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002000d>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002000d>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002000d>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e000d>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

