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Abstract—In this paper we consider a set of n mobile wireless nodes, which have no
information about each other. The only information a single node holds is its current
location and future mobility plan. We develop a two-phase distributed self-stabilizing
scheme for producing a bounded hop-diameter communication graph.

The first phase is dedicated to the construction of an underlying topology for
the dissemination of data needed for the second phase. In the second phase the
required topology is constructed by means of an asymmetric power assignment
under two modes — static and dynamic. The former aims to provide a steady
topology for some time interval, while the latter uses the constant node locations
changes to produce a constantly changing topology, which succeeds to preserve
the required property of the bounded hop-diameter.

We provide an O(λ,λ2)-bicriteria approximation (in terms of total energy con-
sumption and network lifetime, respectively) algorithm in the static mode: for an
input parameter λ we construct a static h-bounded hop communication graph, where
h = n/λ+ logλ. In the dynamic mode, given a parameter h we construct an optimal
(in terms of network lifetime) h-bounded hop communication graph when every node
moves with constant speed in a single direction along a straight line during each time
interval. Our results are validated through extensive simulations.

1 INTRODUCTION AND RELATED WORK

Consider the following scenario, a swarm of mobile scientific
sensors are deployed in a backcountry area to perform a series
of geological tests. The sensors sample the soil and change their
position based on the readings. As the sensors work collectively,
they require a wireless backbone to exchange their readings. The
backbone has to be able to provide the required connectivity over
some period of time despite the movements; desirably it will also
have a low hop-diameter so that the routing complexity and delay
are reduced. We propose schemes for the construction of such
dynamic communication backbones in the presence of moving
participants.

Typically, the transmission range rv of a node v is determined
by the power p(v) which is assigned to v. It is customary to
assume that the minimal transmission power required to transmit
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to distance d is dα, where the distance-power gradient α is
usually between 2 and 4, [40]. Thus, node v receives transmissions
from node u iff p(u) ≥ d(u,v)α, where d(u,v) is the Euclidean
distance between u and v (e.g. in Fig. 1 node v can receive
transmissions from u, while w cannot). The majority of routing
(and other) network protocols were traditionally developed for
undirected graphs with symmetric (bidirectional) communication
links. However, in wireless ad hoc networks it is not uncommon
to have asymmetric (unidirectional) links due to non-uniform
background noise, non-uniform external interference and energy
efficiency considerations. Some recent research addressed this
phenomenon by providing several approaches for various network
tasks (e.g. [4], [27], [37], [43], [48]). We choose not to enforce
symmetry over communication links, thus allowing unidirectional
links to exist, which addresses a more general and realistic model
of wireless ad hoc networks.
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Fig. 1. The power assignment and transmission range model

By varying the power assignment of the nodes one can obtain
different network topologies as suggested by Chen and Huang
[11]. As the signal strength attenuates with the distance, two
major factors determine the topology of a wireless ad hoc network
at any given moment – the current locations of the wireless nodes
and their transmission ranges. If the wireless nodes have fixed
positions, the topology will remain unchanged as long as the
transmission ranges remain the same. Mobility, however, makes
topology control much more challenging.

As nodes are allowed to change their positions, the topology
will change with respect to the node movement. It makes sense
then to indicate the time interval, for which the induced topology
is valid. In this paper we describe range assignments that induce
a topology which is valid for some time interval [t s, t f ], where
ts and t f are the start and finish times, respectively; we consider
two possible modes for the topology construction – static and
dynamic.



The static mode, preserves all the relevant communication
links (those that are used for inducing the required topology)
for the whole time interval [ts, t f ]. Note that some other links
might appear and disappear during the time interval, however
the important links, which define the required topology remain
unchanged. In other words, the communication graph, which is
variant in time, always includes a subgraph which is unchanged
for the whole time interval. The dynamic mode is different in
that there is no constant subgraph which holds the topology prop-
erty. However, as communication links are added and removed,
depending on the movement of the nodes, the topology property
requirement (e.g. connected dominating set) is satisfied during
the entire period [ts, t f ]. For example, in Fig. 2, there are 4 nodes;
x,y,z are stationary, while u moves along the dotted arrow. The
topology requirement is to induce a connected dominating set.
In Figure 2(a) we show the static mode. The power assignment
p(u) = 0, p(x) = p(z) = 1, and p(y) = 4 ensures that the follow-
ing edges are always present: (x,y),(y,x),(y,z),(z,y),(y,u). The
dynamic mode (Figure 2(b)) is different. The power assignment
p(u) = 0, p(x) = p(y) = p(z) = 1 ensures the existence of the
following edges: (x,y),(y,x),(y,z),(z,y). However, there is always
an edge to u from one of the nodes, x, y or z, therefore the
connected dominating set property is always maintained.
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(a) Static mode: p(x) = p(z)= 1,
p(y) = 4; u is always reachable
by y

u
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(b) Dynamic mode: p(x) =
p(y) = p(z) = 1; u is always
reachable by some node

Fig. 2. Power assignment modes in mobile settings. Nodes x,y,z
are stationary, while u moves along the dotted arrow and p(u) = 0.
The topology requirement is connected dominating set.

We focus on the construction of strongly connected dynamic
backbones (graphs) with a bounded-hop diameter. By definition,
a graph H = (V,EH) is h-bounded hop strongly connected (in
short, h-bounded), if for any pair of nodes u,v ∈ V , there exists
a path from u to v in H with at most h edges. The hop-diameter
of H, denoted Δ(H), is the minimum value of h for which H
is h-bounded. Minimizing the hop-diameter of a communication
backbone essentially minimizes the end-to-end delay according
to many routing schemes which use the hop-count metric [29].

There are several challenges a network designer faces when
developing a topology control algorithm in a mobile wireless
network, such as: How do the nodes discover each other? How
do the nodes share the current layout information? How do the
nodes share their mobility plans? How to discover new nodes?
How to discover a node failure? – All these questions must be
answered before the construction of the communication backbone
with the desirable property can begin. It seems reasonable to
divide the problem of topology control into two main phases:

discovery and construction [17]. In the first phase (described in
Section 2), the nodes execute a very basic distributed algorithm,
for the discovery of other nodes and disseminating the mobility
and current layout information. The general idea is to execute this
algorithm at constant time intervals. The second phase (described
in Section 3) takes place between two consecutive executions of
the first phase; let the time interval in between be [ts, t f ]. Having
acquired the mobility plans and current layout, each node now
has all the required information to carry out the topology control
algorithm and decide on its own power assignment. The topology
constructed in the second phase is valid for the time interval
[ts, t f ]. Note that at the beginning of the first phase, each node
is only aware of its current location and its own mobility plan.
By adopting this scheme we are able to handle node failures
and corruptions and thus to operate in an hostile environment.
We also react to changes in the initial network settings, such
as nodes arrival and departure. Some work was done on data
dissemination and topology discovery for mobile networks [10],
[44], and for stationary networks [18], [19], [23], [28], [30]. All
these papers assume some underlying infrastructure for message
passing, which is not the case we consider. Data dissemination
algorithms might be used in the first phase after some basic
underlying communication backbone is obtained.

Energy consumption is one of the most critical resources in
wireless ad hoc networks as wireless devices have no constant
power supply and have to rely on limited battery charges. Replac-
ing the batteries is typically impractical or even impossible. Thus
developing energy efficient communication backbone is of utmost
importance [38]. In this work we use two metric to measure the
energy efficiency of our power assignments: network lifetime (the
time until the first node runs out of its battery charge) and total
energy consumption. We note that a prolonged network lifetime,
in addition to the obvious benefits, has an implicit effect of
reducing the interference. As nodes communicate through radio
signals, interference is inevitable; simultaneous transmissions can
be heard by multiple nodes, which may lead to incorrect signal
receptions. A common model used by multiple researchers is
the protocol interference model ([8], [34], [39]), which measures
the number of affected nodes or edges1 in the communication
graph by activating a specific link. Under the protocol model,
a successful transmission occurs when a node falls inside the
transmission range of its intended transmitter and falls outside
the interference ranges of other non-intended transmitters. That
is, if a node falls in the interference range of a non-intended
transmitter, then this node is considered to be interfered and thus
cannot receive correctly from its intended transmitter; otherwise,
the interference is assumed to be negligible. As the network
lifetime is reversely proportional to the maximum transmission
power assigned ([21], [33], [45]) – higher network lifetime is
coupled with lower transmission ranges and consequently reduced
interference levels; this has a positive effect on the overall
network performance in terms of schedule length, number of
retransmissions, error rate, etc.

We assume the use of frame-based MAC protocols which di-
vide the time into frames, containing a fixed number of slots. The

1. These nodes and/or edges cannot be used simultaneously with the active
link.



main difference from the classic TDMA is that instead of having
one access point which controls transmission slot assignments,
there is a localized distributed protocol mimicking the behavior of
TDMA. The advantage of a frame-based (TDMA-like) approach
compared to the traditional IEEE 802.11 (CSMA/CA) protocol for
a Wireless LAN is that collisions do not occur, and that idle listen-
ing and overhearing can be drastically reduced. When scheduling
communication links, that is, specifying the sender-receiver pair
per slot, nodes only need to listen to those slots in which they
are the intended receiver – eliminating all overhearing. When
scheduling senders only, nodes must listen in to all occupied slots,
but can still avoid most overhearing by shutting down the radio
after the MAC (slot) header has been received. In both variants
(link and sender-based scheduling) idle listening can be reduced to
a simple check if the slot is used or not. Several MAC protocols
were developed to adapt classical TDMA solutions which use
access points to ad-hoc settings that have no infrastructure; these
protocols employ a distributed slot-selection mechanism that self-
organizes a multi-hop network into a conflict-free schedule (see
[41], [47]).

This paper is organized as follows. In the rest of this section, we
present our system settings, discuss previous work and state our
results. The first phase (layout and mobility plan dissemination)
is described in Section 2, followed by the second phase (topology
control) in Section 3. Some numerical results are shown in
Section 4. Finally, we conclude and discuss possible future
directions in Section 5.

1.1 System settings

The topology control phase takes place after successful propaga-
tion of the mobility plans, and each node is aware of its own and
other nodes mobility plans for some fixed time interval [t s, t f ],
where ts and t f are the start and finish times, respectively. By
t ∈ [ts, t f ] we indicate that ts ≤ t ≤ t f .

Let V be the set of n mobile wireless nodes. As the distance
between any two nodes u,v ∈ V may vary in time, we define
du,v(t) to be the Euclidean distance between u and v at time
t ∈ [ts, t f ]. A power assignment is a function p : V → R

+, which
assigns each node v ∈ V a transmission range rv =

α
√

p(v) (in
this work we assume α = 2 for simplicity, although our results
can be easily extended to any constant α). The transmission
possibilities resulting from a power assignment vary in time. Let
Hp(t) = (V,Ep(t)), with Ep(t) = {(u,v) : ru ≥ du,v(t)}, be the
induced directed communication graph at time t ∈ [t s, t f ]. The
cost of the power assignment is defined as c(p) = ∑v∈V p(v).

The lifetime of the network is defined as the time it takes the
first node to run out of its battery charge. Each node v ∈ V has
some initial battery charge bv, which is sufficient for some limited
time, depending on the power assignment p(v). It is common to
take the lifetime of v to be lv = bv/p(v), that is after a time
interval of length bv/p(v) the battery is completely depleted. The
lifetime of the whole network for a given power assignment p is
l(p) = minv∈V lv, see [33], [45], [21]. This paper assumes that all
the nodes have the same initial battery charge b.

Definition 1.1. A power assignment p induces a static h-bounded
communication graph if there exists an h-bounded graph H p, so

that Hp is a subgraph of Hp(t) for every t ∈ [ts, t f ].

Definition 1.2. A power assignment p induces a dynamic h-
bounded communication graph if for every t ∈ [t s, t f ], Hp(t) is
h-bounded.

In this paper we consider the problem of energy efficient power
assignment which induces a communication graph with a bounded
hop-diameter for the two modes, static and dynamic. In particular
we solve the following two problems.

Problem 1.3 (Static Bounded Hop (SBH)). Given the graph G =
(V,EV ), and a bound h for hop-diameter, find a power assignment
p which induces a static h-bounded communication graph so that
c(p) is minimized and l(p) is maximized.

Problem 1.4 (Dynamic Bounded Hop (DBH)). Given the graph
G = (V,EV ) and parameter h > 0, find a power assignment p
which induces a dynamic h-bounded communication graph so
that l(p) is maximized.

Note that the SBH problem aims to minimize the hop-diameter
as one of its optimization objectives. This is due to the natural
trade off between the cost of a power assignment and the hop-
diameter of the induced communication graph. In Section 3.1 we
propose an approximation algorithm which balances this trade
off – the shorter the paths, the greater the ranges assigned. The
definition of the DBH problem is somewhat simpler, as it is
lacking the cost optimization constraint, and the desired hop-
diameter is given as a parameter. As a result, in Section 3.2 we
are able to optimally solve the problem.

1.2 Previous work

First we overview topology control in mobile networks in general
and then discuss the bounded hop-diameter property.

1.2.1 Topology control in mobile networks

In theory it is impossible to devise a range assignment that
will satisfy the topology requirement for a given period of time
without being aware of the future location changes. Each node
has its own mobility plan, which is composed of direction vectors,
velocity, acceleration, and so on. Basch et al. [5], [6] proposed
an elegant method to handle topology updates for mobile nodes.
They proposed a framework to maintain an invariant of a set
of moving objects in a discrete manner, called the kinetic data
structure (KDS in short). They introduce the idea of keeping
certificates as triggers for updates. When an object moves and
a certificate fails, the consistency of the kinetic data structure
is invalidated and an update is mandatory. Each failure of a
certificate incurs a setup of up to a constant number of new
certificates. Hence we are allowed to monitor the dynamics of a
set of objects discretely and efficiently. The kinetic data structure
requires that we know the mobility plan (a specification of the
future motion) of all nodes, and that the trajectory of each disk
can be described by some low-degree algebraic curve. These
structures are extremely efficient for topology maintenance, but
do not address the issue of energy efficiency or the construction
of initial topology. The approach taken in this paper resembles the
spirit of KDS. Additional results for topology control in mobile



networks may be found in [25], [31], [32], [36]. However, none
of these works addresses the bounded-hop strong connectivity
property.

1.2.2 Bounded hop-diameter

The only results for h-bounded strong connectivity were obtained
for stationary networks. For the linear case of node disposi-
tion, Kirousis et al. [35] develop an optimal power assignment
algorithm in O(n4) time. In the Euclidean case, [15] obtains
constant ratio approximation algorithms for the bounded-hop
vertex connectivity for well spread instances. Beier et al. [7]
discuss the problem of finding a bounded-hop path between
pairs of nodes with minimized power consumption. They find
an optimal path in O(hn logn) time. In [9] the authors obtain
(O(logn),O(logn)) bicriteria approximation algorithms for the
bounded-hop broadcast, bounded-hop connectivity and bounded-
hop symmetric connectivity problems. In their output there are at
most h logn hops and the cost is at most logn times the optimal.
In [1] the authors present an exact algorithm for solving the 2-hop
broadcast problem with a running time of O(n7) as well as a PTAS
with a running time of O(nµ) where µ = O((h2/ε)2h

). Funke and
Laue [24] provide a PTAS for the h-broadcast algorithm in O(n)
time. Shpungin and Segal [46] give approximation algorithms
for k-fault resistant bounded-hop broadcast for the linear and
planar layout of nodes. They develop power assignments with
a total cost of O(k) and O(k2) times the optimum for the
linear and planar cases, respectively. More on bounded range
assignments can be found in [13], [16]. These results apply to
stationary networks only and do not address the network lifetime
optimization objective, with or without the total cost, like we do
in this paper.

1.3 Our contribution

In this paper we consider a set of n mobile wireless nodes,
which have no information in advance about each other. The only
information a single node holds is its current location and future
mobility plan. Each node is capable of adjusting its transmission
power to cover any range. We choose to divide the problem of
topology control in this type of network into two main phases:
(1) Dissemination of current layout and mobility plans; (2)
Topology construction. These phases are periodically executed,
which allows us to quickly react to outdated and corrupted data.
The above self-stabilizing scheme [20] allows us to operate even
in a hostile environment.

We design a simple, distributed algorithm for the first phase;
after which, each node holds the mobility plans and locations of
every node in the network. Then, for the second phase we:

• Propose an O(λ,λ2)-bicriteria approximation algorithm for
the SBH problem, so that given a parameter 1≤ λ ≤ n− 1,
we construct a power assignment which induces a static h-
bounded communication graph, h = n/λ+ logλ, with a cost
of at most λ times the optimum and network lifetime of at
least 1/λ2 times the optimum.

• Show an optimal polynomial time algorithm for the DBH
problem under the assumption that every node moves in a
single direction along a straight line with constant speed.

Given a parameter 1 ≤ h ≤ n− 1, we construct a power
assignment which induces a dynamic h-bounded communi-
cation graph with an optimal network lifetime.

• Develop a polynomial time approximation scheme (PTAS)
for the DBH problem with a substantially better running time
that in the optimal solution.

In addition, our algorithms are validated through extensive
simulations.

Note that the SBH problem is NP-Hard since the problem of
minimum power strong connectivity is NP-Hard even in stationary
networks without the hop-diameter limitation [14].

2 LAYOUT AND MOBILITY PLANS DISSEMINATION

One of the main challenges of every ad-hoc wireless network is
topology discovery. We propose a simple distributed algorithm to
form a temporary underlying topology, which can be used for the
dissemination of current location and mobility plans.

We assume that all participants have synchronized clocks (say
by a common input from a GPS, or by using a self-stabilizing
clock synchronization algorithm). Thus, they all repeatedly and
simultaneously start the two phase algorithm, which in turn
implies convergence and stabilization following the first restart.

Another assumption is that the first phase is happening very
fast, so the location of nodes remains unchanged during its
execution. To simplify things, we allow the nodes to transmit
at the maximum possible transmission range Rmax which can be
adjusted. Now, suppose the algorithm is executed at some time t ′
- so the underlying topology to be used for the data dissemination
is actually Hpmax(t

′), where pmax(u) = (Rmax)
2, for every u ∈ V .

Without loss of generality, let Hpmax(t
′) be strongly connected

(otherwise the algorithm is valid for every strongly connected
component).

CONSTRUCT UNDERLYING TOPOLOGY

// Neighbors Discovery
1 N(u)← /0
2 transmit hello〈u〉 in range Rmax
3 while not timeout do
4 if received hello〈v〉 then
5 add v to N(u)
// Construct network underlying topology

6 transmit neighbors〈u,N(u)〉 in range Rmax
7 initialize Gu to be an empty graph
8 add edges {(u,v) : v ∈ N(u)} to Gu (create new nodes if required)
9 Forwarded←{u}

10 Unknown← N(u)
11 while Unknown 
= /0 do
12 if received neighbors〈v,N(v)〉 then
13 if v /∈ Forwarded then
14 add edges {(v,w) : w ∈ N(v)} to Gu (create new nodes

if required)
15 foreach w ∈ N(v) do
16 if w /∈ Forwarded and w /∈Unknown then
17 add w to Unknown
18 remove v from Unknown
19 add v to Forwarded
20 transmit neighbors〈v,N(v)〉 in range Rmax

We present a distributed algorithm, CONSTRUCT UNDERLYING

TOPOLOGY, which enables the nodes to acquire the knowledge



about the topology of Hpmax(t
′). The algorithm is executed at

every node at time t ′ and can be roughly divided into two steps.
First (lines 1-5), the nodes discover their immediate neighbors in
Hpmax(t

′). Then (lines 6-20) this information is flooded so that
each node could locally construct H pmax(t

′), which can later be
used for layout and mobility plans dissemination.

The first step is carried out by each node transmitting its own
unique id at range Rmax (line 2). Since a node can receive a
message only if it is within the transmission range from the
sender, then node u can safely add every node v to its neighbor
list N(u) once it receives v’s hello message.

In the second step, each node obtains the knowledge of the un-
derlying topology Hpmax(t

′) through the flooding of the neighbor
lists. Every node u transmits its own neighbor list (line 6) and
then constructs the underlying graph G with the aid of two lists,
Forwarded and Unknown. If v ∈ Forwarded, then u has received
the neighbors〈v,N(v)〉 message and graph Gu contains all the
edges adjacent to v in Hpmax(t

′). If v ∈Unknown, then u has not
received the neighbors〈v,N(v)〉 message.

For every new neighbors〈v,N(v)〉 message received at u, the
edges from v to every w ∈ N(v) are added to Gu (line 13) (if
some edge contains an endpoint which does not appear in G u, it
is added to the graph). Then, each node w∈N(v), which is neither
in Forwarded nor in Unknown, is added to Unknown (line 17).
Finally, neighbors〈v,N(v)〉 is forwarded (line 20).

Note that during the second step nodes need not transmit at
Rmax as they only need to reach the farthest node in their neighbor
list. That is, node u can forward neighbors messages using
maxv∈N(u) du,v(t ′) as the transmission range. The next theorem
shows the correctness, time and message complexity of the
CONSTRUCT UNDERLYING TOPOLOGY algorithm.

Theorem 2.1. The message complexity of CONSTRUCT UN-
DERLYING TOPOLOGY is O(|Epmax(t

′)| · n), and after at most
Δ(Hpmax(t

′)) rounds, for every u ∈V, Gu = Hpmax(t
′).

Proof: Note that all the messages actually passed along
the edges of Hpmax(t

′) since all the nodes transmit at Rmax.
There are 2n distinct messages (hello and neighbors). Only
the neighbors messages are forwarded (once at each node).

Therefore there are at most O(|E pmax(t
′)| ·n) messages received.

Clearly, after Δ(Hpmax(t
′)) rounds, no messages are forwarded

and each node u has constructed some image of the underlying
topology Gu. We argue that Gu = Hpmax(t

′). Since the graph
Hpmax(t

′) is strongly connected, then G eventually receives all
the neighbors messages. So we only need to show that all
these messages will be eventually handled. In other words, if
Unknown = /0 then Forwarded = V . Suppose by contradiction
that at some point Unknown = /0 and Forwarded ⊂V .

Since Hpmax(t
′) is strongly connected, there exists (v,w) ∈

Epmax(t
′)so that v∈ Forwarded and w /∈ Forwarded. Therefore, w

was added to Unknown at some point, either line 10 or 17. Note
that a node is removed from Unknown (line 18) only if it is added
to Forwarded. Therefore w is never removed from Unknown, and
as a result Unknown 
= /0. A contradiction.
Remark 1. We notice that the lines 6-20 can be executed
without any assumption of synchronized clocks, since we can
use synchronizers [2]. However, this will affect running time

and/or message complexity of the algorithm.

Once every node holds an image of the underlying topology
it can disseminate its current location and mobility plan through
Hpmax(t

′) by using one of the existing algorithms [10], [44].

Remark 2. Using the standard gossiping mechanism [12],
dissemination of current layout and mobility plans as well as
topology construction can be performed without frame-based
MAC protocol in unknown ad hoc network [26]. In the gossiping
problem, each node v in the network initially holds a message
mv, and we want to distribute all messages mv to all nodes in the
network. However, in this case the complexity of the algorithm
(in terms of time and message complexities) is much higher and
also heavily depends on the size of the information we need to
transmit between nodes of the network.

The first phase described in this section is executed periodically
with an interval of t f − ts time units between two consecutive
executions; every time starting from scratch, where each node
is only aware of its own current location and future mobility
plan. Once the data is disseminated, each node has all the
required information to carry out the second phase, which is the
actual topology construction algorithm, and decide on its own
power assignment. Each nodes carries out the topology control
algorithm and decides on its own power assignment. The topology
constructed in the second phase is valid for the time interval
[ts, t f ].

3 BOUNDED HOP STRONG CONNECTIVITY

Once every node u ∈ V has acquired the mobility plans of
all the other nodes (as described in Section 2), it is able to
compute the value of du,v(t) for every v ∈ V and t ∈ [ts, t f ].
We assume that the computation time is negligible compared to
the message transmission time. After that each node executes
the algorithms proposed in this section, which in turn defines
its transmission power. In what follows we first propose an
approximation algorithm for Problem 1.3 (SBH), and then show
a polynomial time optimal solution for Problem 1.4 (DBH).

3.1 Static bounded hop communication graph

In this section we propose an approximation algorithm for the
SBH problem. We wish to find a power assignment p ′, which
induces a low cost static h-bounded communication graph, with
high network lifetime and low hop-diameter.

We need some definitions. Let GV = (V,EV ) be an undirected
complete graph. For any t ∈ [ts, t f ], let wt(u,v) = (du,v(t))2, for
every (u,v) ∈ EV , a weight function over the edge set EV . Note
that wt(u,v) matches the amount of energy required to transmit
from u to v, at time t. For any weight function w, defined on
a weight set EV , the weight of a graph H = (V,EH), EH ⊆ EV ,
is w(H) = ∑(u,v)∈EH

w(u,v). Let MST (w) be a minimum weight
spanning tree of GV based on a weight function w.

For any two nodes u,v ∈V , in order that an edge (u,v) would
exist in every Hp(t), t ∈ [ts, t f ], the power assigned to u should
be at least the square of the maximum distance between u and v



during [ts, t f ].We define a weight function w′ which reflects this
amount of energy for any pair of nodes,

w′(u,v) = max
t∈[ts,t f ]

(du,v(t))
2, for every u,v ∈V.

The following lemma shows that w′ satisfies the weak triangle
inequality.2

Lemma 3.1. For any u,v,z ∈V, it holds

w′(u,v)≤ 2(w′(u,z)+w′(z,v)).

Proof: Let t0 ∈ [ts, t f ] be the moment so that w′(u,v) =
(du,v(t0))2. Due to the triangle inequality in the Euclidean space,
for any u,v,z ∈V and t ∈ [ts, t f ], it holds du,v(t)≤ du,z(t)+dz,v(t).
Therefore,

w′(u,v) = (du,v(t0))
2 ≤ (du,z(t0)+ dz,v(t0))

2

≤ 2((du,z(t0))
2 +(dz,v(t0))

2)

≤ 2(w′(u,z)+w′(z,v)).

The last inequality follows from the definition of w ′.
In [22] the authors show that given a complete graph G =

(U,E) with n nodes, a weight function w that satisfies a weak
triangle inequality, and a parameter λ, 1≤ λ≤ n−1, it is possible
to construct in polynomial time a spanning tree T of G, so that
Δ(T )≤ n/λ+ logλ, and the weight of T is at most O(λ) times the
weight of the minimum weight spanning tree of G. In addition
the weight of an edge in T is at most λ2 times the maximum
weight of an edge in the minimum weight spanning tree of G. This
construction is based on a Hamiltonian cycle. The construction of
Hamiltonian circuit can be done very efficiently in a distributed
fashion using standard leader election techniques proposed by
Awerbuch [3]. Once the leader in the tree is found using O(n) time
with O(n logn) messages, the distributed algorithm for finding
Hamiltonian circuit behaves exactly as the centralized description
below. The algorithm is applied to a tree T and an edge e = (u,v)
of T . Removing the edge e divides the tree into two subtrees
T1 and T2. In each subtree the algorithm selects an arbitrary
edge e1 = (u,w) (for T1) and e2 = (x,v) (for T2), and recursively
computes a Hamiltonian cycle of T1 and T2 that includes the edge
e1 and e2, respectively. The circuit consists of the cycles in T1

and T2 without two edges e1 and e2. The two resulting paths are
glued together using e and the edge connecting other endpoints
of two edges e1 and e2. This can be done by the convergecast
process through the nodes towards the leader.

We use this construction to obtain a spanning tree T ′ = (V,E ′)
of GV with a weight function w′, which has similar properties;
this is possible since w′ satisfies the weak triangle inequality (
Lemma 3.1). Let e′ and eMST be the maximum weight edges in
T ′ and MST (w′), respectively. The next theorem summarizes the
properties of T ′.

Theorem 3.2 ([22]). For any λ, 1 ≤ λ ≤ n− 1, and a weight
function w′ which satisfies the triangle inequality, it is possible to
construct a spanning tree T ′ of GV so that w′(e′)≤ λ2w′(eMST ),
Δ(T ′)≤ n/λ+ logλ, and w′(T ′)≤ O(λ)w′(MST (w′)).

2. A weight function w holds a weak triangle inequality, if there exists some
constant value µ > 1, so that for any three nodes x,y,z, w(x,y) ≤ µ(w(x,z) +
w(z,y)).

We are now ready to define the power assignment p ′. Let
p′(u) = max(u,v)∈E ′ w

′(u,v), for every u∈V . The hop-diameter of
the induced communication graph and the cost of p ′ are derived
in the following lemma.

Lemma 3.3. The power assignment p′ induces a static h-bounded
communication graph for h = n/λ+ logλ and c(p ′)≤ 2w′(T ′).

Proof: Let T ′D be the directed version of T ′ (each undirected
edge appears as two directed edges). If an undirected edge (u,v)
is in T ′, then the two directed edges, (u,v) and (v,u), appear
in Hp′(t) for every t ∈ [ts, t f ], since p(u) ≥ w′(u,v) and p(v) ≥
w′(v,u) (which ensures that u and v are within the transmission
range of each other for the whole time interval [t s, t f ]). Therefore,
for every t ∈ [ts, t f ], T ′D is a subgraph of Hp′(t). Clearly, p′ induces
a static h-bounded communication graph for h = n/λ+ logλ as
the hop-diameter of T ′D is at most n/λ+ logλ. Finally,

c(p′) = ∑
u∈V

max
(u,v)∈E ′

w′(u,v)≤ ∑
u∈V

∑
(u,v)∈E ′

w′(u,v)

≤ 2 ∑
(u,v)∈E ′

w′(u,v) = 2w′(T ′).

This completes our proof.
In the next two lemmas we derive the lower and upper bounds

for the cost and network lifetime, respectively, of a power assign-
ment which induces a static h-bounded communication graph, for
any h≥ 1.

Lemma 3.4. Let pC
h be the minimum cost power assignment

which induces a static h-bounded communication graph for some
parameter h≥ 1. Then, it holds c(pC

h )≥ w′(MST (w′)).

Proof: It is easy to see that c(pC
h )≥ c(pC

n−1), as every graph
which is h-bounded, h ≥ 1, is also (n− 1)-bounded. We prove
c(pC

n−1)≥ w′(MST (w′)).
Let p be some power assignment which induces a static (n−1)-

bounded communication graph. Therefore, there exists a directed
graph Hp =(V,Ep), so that Hp is strongly connected and for every
t ∈ [ts, t f ], Hp is a subgraph of Hp(t). From the definition of Hp,
if (u,v) ∈ Ep, then p(u)≥ w′(u,v).

Choose an arbitrary node r ∈ V as the root. For u ∈ V , u 
= r,
let Pu be a simple directed path from u to r in H p. Denote by
E(Pu) the set of directed edges in Pu. The union of the edges in
all the paths, E =

⋃
u∈V,u
=r E(Pu) forms a directed tree T =(V,E),

rooted at r, where all the edges are directed toward the root. For
every edge (u,v) in T , the power assigned to u is at least w ′(u,v)
(since E ⊆ Ep). As there is only one outgoing edge from every
node (toward the root), we obtain w ′(T ) = ∑(u,v)∈E w′(u,v) ≤
∑u∈V,u
=r p(u) ≤ c(p). Let TU be the undirected version of T
obtained by omitting the edge directions. Clearly TU is a spanning
tree of GV , and w′(T ) = w′(TU)≥MST (w′).

Since we chose p to be any power assignment which induces
a static (n− 1)-bounded communication graph, we therefore
conclude c(pC

n−1)≥ w′(T )≥ w′(MST (w′)).
Recall that the network lifetime is defined as the time it takes

the first node to run out of its battery charge. For equal initial
battery charges b and a power assignment p, the network lifetime
l(p) is defined as l(p) = minv∈V b/p(v).



Lemma 3.5. Let pL
h be the maximum network lifetime power

assignment which induces a static h-bounded communication
graph for some parameter h≥ 1. Then, l(pL

h)≤ b/w′(eMST ).

Proof: Since pL
h induces a static h-bounded communication

graph, there exists a directed h-bounded graph H pL
h
. It is a well

known fact that for any spanning tree ST = (V,EST ) of GV ,
maxe∈EST w′(e)≥w′(eMST ). Let e=(u,v) be the maximum weight
edge in HpL

h
. As in the proof of Lemma 3.4, p(u)≥ w ′(e). From

the definition of network lifetime, l(pL
h) ≤ b/p(u). Therefore,

since HpL
h

is strongly connected, w′(e)≥ w′(eMST ). We conclude

l(pL
h)≤ b/w′(e)≤ b/w′(eMST ).

Note that the bounds shown in Lemmas 3.4 and 3.5 do not
depend on the value of h. We can now state the main result of
this section based on Theorem 3.2, and Lemmas 3.3, 3.4, and 3.5.

Theorem 3.6. Given n mobile wireless nodes V , and a parameter
λ, 1 ≤ λ ≤ n− 1, it is possible to construct in polynomial
time a power assignment ph that induces a static h-bounded
communication graph, h= n/λ+ logλ, so that c(ph)∈O(λc(pC

h ))
and l(ph)≥ l(pL

h)/λ2, where pC
h and pL

h are optimal (in terms of
cost and network lifetime, respectively) power assignments that
induce a static h-bounded communication graph.

The tightness of the tradeoff follows from the fact that for the
linear layout of n nodes located on the line with unit distances
between neighboring nodes, the diameter of h is possible only
if the edge of weight ( n−1

h )2 exists. Putting h = n/λ proves the
result.

3.2 Dynamic bounded hop communication graph

In the case that the wireless nodes share the same initial bat-
tery charge b, maximizing the network lifetime is equivalent
to minimizing the maximum power assigned to any node. The
authors in [42] noted that if the required optimization is to
minimize the maximum power assigned, it is possible to assign
the same power level to all nodes. Hence, all we need to do is
to choose the minimum power level which induces an h-bounded
communication graph, for any given h≥ 1.

For non-mobile nodes, given a power level x it is easy to
test whether the induced communication graph is h-bounded in
polynomial time. Furthermore, it makes sense to test only those
power levels x, for which there exists a pair of nodes at a distance
exactly

√
x of each other, otherwise the power level can be

decreased. Thus, there are at most
(n

2

)
possible power levels. In

Figure 3(b) the same topology as in Figure 3(a) is induced with
a lower power level.

Adopting the above scheme to mobile nodes is challenging for
two reasons. First, given a specific power level, it is difficult to test
if the induced communication graph is dynamically h-bounded in
the whole time interval [ts, t f ]. Second, it is unclear what power
levels should be considered, as the distance between any pair of
nodes might change constantly.

In the rest of this section we assume that every node moves
with constant speed in a single direction along a straight line
during [ts, t f ]. We show that given a power level x, it is possible
to test in polynomial time whether the power assignment induces
a dynamic h-bounded communication graph, and also show that

(a) (b)

Fig. 3. Power efficiency: (a) an inefficient power level; (b) an
efficient power level, same topology.

the number of possible power levels is at most O(n4). Let px be
a power assignment, where for every u ∈V , px(u) = x.

The distance between any two nodes, each moving with con-
stant speed in a single direction along a line, can be either constant
or first decrease to some minimum value and then constantly
increase (see Figure 4 for the exposition of different types), as
summarized in the following observation.

Observation 3.7. If during the time interval [ts, t f ] every node
moves in a single direction along a straight line with constant
speed then there exists t ′ ∈ [ts, t f ] for any pair of nodes u,v ∈ V
so that the distance function du,v(t) is monotone non-increasing
in [ts, t ′] and monotone non-decreasing in [t ′, t f ].

ts t ft1

√
x

(a)

ts t f

√
x

(b)

ts t ft1 t2

√
x

(c)

Fig. 4. Distance function types and different cases of the C u,v
x set:

(a) Cu,v
x = {t1}; (b) Cu,v

x = /0; (c) Cu,v
x = {t1, t2}.

3.2.1 Verifying the hop-diameter

Given a power level x, we would like to verify that the com-
munication graph induced by px(u) = x, for every u ∈ V , is h-
bounded. The general idea is to verify the hop-diameter in a finite
set of critical time points, and then based on these verifications
to conclude for the whole time interval [t s, t f ].

For any u,v ∈ V , let [t u,v
s , tu,v

f ] ⊆ [ts, t f ] be a non-empty time
interval (if exists) so that du,v(t) ≤ √x for t ∈ [tu,v

s , tu,v
f ]. If such



an interval exists, we define the set of critical time points, Cu,v
x ,

to be
Cu,v

x = {tu,v
s , tu,v

f } \ {ts, t f }.
Otherwise, Cu,v

x = /0. That is, Cu,v
x is a set of time points, in the

open time interval (ts, t f ), when the nodes u and v change their
connectivity status. Note that Cu,v

x = Cv,u
x . Let Cx =

⋃
u,v∈V Cu,v

x .
We claim that it is sufficient to verify the hop-diameter only for
the time points in Cx∪{ts, t f }.
Lemma 3.8. Given a power level x, the power assignment px

induces a dynamic h-bounded communication graph if and only
if for each t ∈Cx∪{ts, t f }, Hpx(t) is h-bounded.

Proof: Let ts = t0 ≤ t1 ≤ . . . ≤ tm = t f be the time points in
Cx ∪{ts, t f } sorted in ascending order. Let us focus on a single
arbitrary interval [ti, ti+1], where 0≤ i≤m−1. From the definition
of Cx, for any pair of nodes u,v ∈ V and any time point t ′, ti <
t ′ < ti+1, it holds du,v(t ′) 
=√x. Thus, there are no edge changes
inside the open time interval (ti, ti+1). Also, due to the definition
of Cx, edge cannot exist only at ti. Therefore, the graphs Hpx(ti)
and Hpx(t

′) are identical for every t ′, ti ≤ t ′ < ti+1.
The only if case is trivial, so we concentrate on the if case.

Suppose that for every i, 0≤ i≤m, Hp(ti) is h-bounded. From the
above, the graphs remain unchanged within each interval [t i, ti+1),
0≤ i≤m−1. Therefore, Hpx(t) is h-bounded for every t ∈ [ts, t f ].

3.2.2 Possible power levels

Although the nodes constantly change their location, there is a
finite set of possible power levels which should be tested. The
irrelevant power levels are either those which do not supply full
coverage for a specific node, or those which supply excessive
coverage and may be reduced.

There are three types of power levels which should be consid-
ered. Intuitively, the first type L1 allows nodes to remain within
the reach of each other for the whole time interval [t s, t f ]. That is
the power level matches the definition of w ′ in Section 3.1,

L1 =

{
x : ∃u,v ∈V, max

t∈[ts,t f ]
du,v(t) =

√
x

}
.

The second type is due to the following simple logic; if some-
thing changes at one place, something has to change at some
other place, otherwise the power level is either insufficient or
exaggerated. In other words, the second type of relevant power
levels consists of values which match the squared distance of a
pair of nodes, shared at the same time by at least two pairs.

L2 =

{
x : ∃t ∈ [ts, t f ],∃u,v,z,y ∈V,(u,v) 
= (z,y),

du,v(t) = dz,y(t) =
√

x

}
.

The third type covers all possible power levels at time points t s

and t f , similar to the non-mobile case.

L3 =
{

x : ∃u,v ∈V,du,v(ts) =
√

x or du,v(t f ) =
√

x
}
.

Denote by L = L1 ∪ L2 ∪ L3. We are ready to present the next
lemma.

Lemma 3.9. Let x be the minimum possible (optimal) power level
so that px induces a dynamic h-bounded communication graph,
where for every u ∈V, px(u) = x. Then, x ∈ L.

Proof: Suppose by contradiction that x /∈ L. There are two
possible cases to consider.

Case 1: The induced graph remains unchanged for the entire
time interval [ts, t f ]. that is for every t1, t2 ∈ [ts, t f ] the graphs
Hpx(t1) and Hpx(t2) are identical. Then, from the definition of
L for every pair of nodes u,v ∈ V and t ∈ [t s, t f ], du,v(t) 
= √x.
Therefore, if du,v(ts) <

√
x, then it is also du,v(t) <

√
x for any

t ∈ [ts, t f ].
Let Nu be the set of nodes which are within the transmission

range
√

x from u in [ts, t f ] (note that this set does not change for
the whole time interval). Let,

x′ = max
u∈V,v∈Nu,t∈[ts ,tg]

d2
u,v(t).

It is easy to verify that x′ < x and that px′ induces a dynamic h-
bounded communication graph. A contradiction that x is optimal.

ts t f

lx

(a)

ts t f

ly

lz

lx′

(b)

Fig. 5. The Illustration of Lemma 3.9, Case 2: (a) Distance functions
of all pairs; (b) Lowering the l x bar to obtain x′.

Case 2: The induced graph changes during the time interval
[ts, t f ]. Let us look at some distance function du,v(t) in time inter-
val [ts, t f ], and let lx =

√
x be a horizontal line corresponding to

the transmission range threshold. Whenever du,v(t) is not above lx,
the edges (u,v) and (v,u) both exist in the communication graph.
Once du,v(t) crosses lx, a topology change occurs and nodes u,v
either connect or disconnect. This resembles the definition of C u,v

x .
We now draw all the distance functions (there are

(n
2

)
such

functions) on the same coordinates system (see Figure 5(a)). The
topology of the communication graph can be described as follows.
Top-1 Initially, at time ts, an edge (u,v) exists in the graph Hpx(ts)
if du,v(ts) is not above lx.
Top-2 Then, each time some distance function crosses l x, a
topology change occurs and either a new edge is added or an



existing is removed.3 This resembles the definition of Cx.
Top-3 Finally, at time t f , an edge (u,v) exists in the graph Hpx(t f )
if du,v(t f ) is not above lx.

For some power level x′, let lx′ =
√

x′. We say that a power
level x′ preserves the topology properties of a power level x if
the following conditions hold
Cond-1 Graph Hpx(ts) is identical to Hpx′ (ts), and graph Hpx(t f )
is identical to Hpx′ (t f ) (Top 1 and Top 3)
Cond-2 The distance functions cross lx and lx′ at exactly the same
order (Top 2).

Since px induces a dynamic h-bounded communication graph,
it is easy to see that if a power level x′ preserves the topology
properties of power level x, then px′ also induces a dynamic
h-bounded communication graph. Before we proceed, we make
some observations.
Fact-1 Since x /∈ LI , then there does not exist a constant distance
function du,v(t) =

√
x.

Fact-2 Since x /∈ L2, only one distance function can cross or
tangent to lx at any time point.
Fact-3 Since x /∈ L3, each distance function is either strictly above
or strictly below lx at times ts and t f .

We next use the monotonicity characteristics of the distance
functions (Observation 3.7) and the above facts to derive a power
level x′< x so that x′ preserves the topology properties of x. From
Facts 1 and 3, there exists a power level y< x so that graph H px(ts)
is identical to Hpy(ts), and graph Hpx(t f ) is identical to Hpy(t f )
(complying with Cond 1). From Fact 2 we conclude that there
exists a power level z < x so that the distance functions cross
lx and lz at exactly the same order (complying with Cond 2). 4

Intuitively, this is achieved by lowering the lx bar until it first
encounters one of the following: (1) a distance function on one
of the vertical lines ts or t f , (2) a constant distance function, (3) a
intersection between two distance functions. In figure Figure 5(b)
we can see the ly power level, as an intersection between ts and
one of the distance functions, while lz = lx′ is an intersection
between two distance functions.

Clearly x′ preserves the topology properties of x, and therefore
px′ , induces a dynamic h-bounded communication graph. A
contradiction to the optimality of x.

3.2.3 Running time analysis

To implement the scheme above we first need to compute L. Then
for each value x∈L we compute Cx and compute the hop-diameter
of Hpx(t) for every t ∈Cx∪{ts, t f }. We choose the minimum value
of x for which all the graphs Hpx(t), t ∈Cx∪{ts, t f } are h-bounded.
We base our time analysis on the following lemma.

Lemma 3.10. In polynomial time it is possible to compute L,
Cx, for any x > 0, and the hop-diameter of H px(t) for every t ∈
Cx∪{ts, t f }. It also holds |L|= O(n4) and maxx∈L |Cx∪{ts, t f }|=
O(n2).

Proof: Clearly |L1| and |L3| can be computed in polynomial
time, and |L1|=O(n2), |L3|= O(n2). Since all the nodes travel at

3. If a distance function does not cross, but only a tangent to lx, then no topology
change occurs, since the relevant edge does not appear in the communication graph
for a continuous time period.

4. Due to Observation 3.7 we can also conclude that any two values a,b so that
y≤ a≤ x and z≤ b≤ x, comply with conditions Cond 1 and Cond 2, respectively.

constant speeds without direction changes, each pair of distance
functions intersects at most 3 times. Therefore, we can compute
L2 in polynomial time and |L2|= O(n4).

From Observation 3.7 it is easy to see that for any x, |C u,v
x | ≤ 2

and therefore maxx∈L |Cx ∪{ts, t f }|= O(n2).
To compute the hop-diameter of a graph we apply the BFS

algorithm from an arbitrary node r and then run another BFS
from the most distant node from r. This can be done in time
linear to the number of edges, i.e. O(n2) time.

Clearly, Lemma 3.10 implies the main theorem of this section.

Theorem 3.11. Given n mobile wireless nodes V , and a param-
eter h, 1 ≤ h ≤ n− 1, if during the time interval [ts, t f ] every
node moves in a single direction along a straight line with
constant speed then it is possible to construct in polynomial
time a power assignment ph that induces a dynamic h-bounded
communication graph, and l(ph) = l(pL

h), where pL
h is a maximum

network lifetime power assignment that induces a dynamic h-
bounded communication graph.

3.2.4 Running time optimization

According to Lemma 3.10 the computation of L can take Ω(n 4)
time. The most efficient method to search for the optimum power
level x is to have a sorted array of values in L and then perform a
binary search over L. However, to obtain a sorted array of values
in L may require Ω(n4 logn) time even if we use binary search
trees (e.g. AVL trees). Therefore, the overall running time may
take Ω(n4 logn)+Ω(logn)σ(n), where σ(n) is the validation time
for a given power level x, which according to Lemma 3.10 is
O(n2).

In what follows we show how to substantially decrease the
search range of relevant power levels which will reduce the overall
running time to O(n2). Recall the definition of w′ from Section 3.1
which defines the square of the maximum distance between any
two nodes in the time interval [ts, t f ]. Let d∗=maxu,v∈V

√
w′(u,v)

and u∗,v∗ ∈V be two nodes such d∗ =
√

w′(u∗,v∗). Note that for

any x<
(

d∗
n−1

)2
there exists t ∈ [ts, t f ] such that there is no path in

Hpx(t) from u∗ to v∗ since the distance between u∗ to v∗ cannot
be covered by n− 1 hops of

√
x each – which is the longest

possible (in terms of distance) path in Hpx(t). On the other hand,
considering power levels above (d ∗)2 is impractical as Hpw∗ (t)
has a hop-diameter of 1 for every t ∈ [t s, t f ]. Thus, we can limit

our search only to the range

[(
d∗

n−1

)2
,(d∗)2

]
.

Clearly it is possible to compute d∗ in O(n2) time and then use
a standard binary search technique with O(logn+k) steps, k >=
0, to obtain a power level x′ which is at most O(1+1/2k) times
the optimum. To conclude, we obtain a PTAS with an approxima-
tion ratio O(1+1/2k) in O(n2+(logn+k)n2) = O((logn+k)n2)
time.

4 NUMERICAL RESULTS

We measure the efficiency of our power assignments through
extensive simulations of various network scenarios. We consider
various network sizes ranging from n= 50 to 200 with an increase
of 10. For each network size we randomly and uniformly place n



(a) Static mode (slow) (b) Dynamic mode (slow)

(c) Static mode (moderate) (d) Dynamic mode (moderate)

(e) Static mode (fast) (f) Dynamic mode (fast)

Fig. 6. Total energy consumption

nodes in a unit square and generate mobility patterns. Each node
travels along a line segment in a unit square while we distinguish
between three types of networks: in slow networks a node travels
a distance which is in the interval

[
0, 1√

n

]
; in moderate networks

the traveled distance is in
[

1√
n ,

logn√
n

]
; and in fast networks the

distance is in
[

logn√
n ,1

]
. Each point in the plot is an average of 5

tries.
For each network size and type we compute two power

assignments, denoted L=5 and L=10, for the static mode, which
are essentially the construction described in Section 3.1 with λ= 5
and λ = 10, respectively. For the dynamic mode we compute the
power assignments LOG-HOP and SQRT-HOP which are the
power assignment described in Section 3.2 with h = logn and
h =
√

n. For both modes and three network types we measure the
total energy consumption (Figure 6), network lifetime (Figure 7)
and the produced hop-diameter (Figure 8). The numerical results
show that in practice the approximation ratios are much better
than the theoretical ones.

4.1 Total energy consumption

The total energy consumption is depicted in Figure 6. For the
static mode we compute the optimal lower bound (OPT) accord-
ing to Lemma 3.4. The optimal lower bound for the dynamic
mode is the cost of the maximum lifetime unit range power
assignment such that the network is connected at all times. We
can observe that for slow networks, the total energy consumption

(a) Static mode (slow) (b) Dynamic mode (slow)

(c) Static mode (moderate) (d) Dynamic mode (moderate)

(e) Static mode (fast) (f) Dynamic mode (fast)

Fig. 7. Network lifetime

of the static mode is lower than in the dynamic mode, even though
the produced hop-diameters are similar (see Figure 8). However,
as the nodes have an increased velocity and they travel to larger
distances, the total energy consumption in the static mode grows
while it remains stable under the dynamic mode.

It is interesting to notice that the SQRT-HOP power assignment
is almost optimal in terms of energy efficiency. This is due to
the fact that in the presence of omnidirectional antennas we get
many “short-cuts” which substantially decrease the hop-diameter.
Which means that the requirement for a relatively high hop-
diameter is easily satisfied and that the basic requirement for
strong connectivity induces a communication graph with a low
hop-diameter.

4.2 Network lifetime

The performance of our power assignments, in terms of network
lifetime, is shown in Figure 7. Similarly, the optimal network
lifetime for the static mode is computed according to Lemma 3.5.
For the dynamic mode the optimal network lifetime is taken as
the network lifetime of a strongly connected topology, without the
hop-diameter requirement. The simulation results show that the
dynamic mode is superior to the static one, especially when the
velocity of the nodes increases. In addition we can see that OPT
bound in the static mode decreases considerably in fast networks
as opposed to slow networks (almost 5 times lower), while in the
dynamic mode it is experiences only a slight drop. Note that, as
in the case of total energy consumption, the power assignment
SQRT-HOP is almost optimal.



(a) Static mode (slow) (b) Dynamic mode (slow)

(c) Static mode (moderate) (d) Dynamic mode (moderate)

(e) Static mode (fast) (f) Dynamic mode (fast)

Fig. 8. Actual hop-diameter

4.3 Hop-diameter

We measured the actual hop-diameter produced by the power
assignments as presented in Figure 8. Interestingly, the hop-
diameter remains stable in both modes and for all network types.
In addition it is much higher than the theoretical guarantee. As
already noted, this is due to the positive side-effect of omnidi-
rectional propagation model which results in multiple “short-cut”
links.

5 CONCLUSIONS AND FUTURE WORK

In this paper we consider a set of n mobile wireless nodes,
which have no initial information about each other. The only
information a single node holds is its current location and future
mobility plan. We proposed a two-phase scheme to solve the
stretchable topology control problem under two modes, static and
dynamic. The scheme optimize the obtained network for an entire
continuous time segment, rather than discrete time(s).

We believe that these realistic settings should be further studied.
One of the most interesting future direction is to try and provide
a power assignment for the DBH problem which is both cost and
network lifetime efficient. Another possible direction is to study
the case when different nodes may have different initial power
for both modes of topology construction – notice that now the
constructions based on minimum spanning tree would not work.
It would be also intriguing to perform some simulation tests for
the first phase of the scheme and calibrate the various parameters.
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