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We 
all a square 
onstrained if its 
enter lies on one of the input points. Inparti
ular, we solve the following problems:1. Find two 
onstrained axis-parallel squares whose union 
overs P , so asto minimize the size of the larger square. We present an O(n log2 n)-time algorithm; its spa
e requirement is O(n logn).2. Find two 
onstrained parallel squares whose union 
overs P , so as tominimize the size of the larger square. The squares are allowed torotate but must remain parallel to ea
h other. Our algorithm runs inO(n2 log4 n) time and uses O(n2) spa
e.3. Find two 
onstrained squares whose union 
overs P , so as to minimizethe size of the larger square, where ea
h square is allowed to rotate inde-pendently. We present an O(n3 log2 n)-time and O(n2)-spa
e algorithmfor this problem.The problems above 
ontinue a list of optimization problems that deal with
overing a set of points in the plane by two geometri
 obje
ts of the sametype. We mention some of them: The two 
enter problem, solved in timeO(n log9 n) by Sharir [18℄, and re
ently in time O(n log2 n) by Eppstein [7℄(by a randomized algorithm); the 
onstrained two 
enter problem, solved intime O(n 43 log5 n) by Agarwal et al. [2℄; the two line-
enter problem, solved intime O(n2 log2 n) by Jarom
zyk and Kowaluk [11℄ (see also [9, 13℄); the twosquare-
enter problem, where the squares are with mutually parallel sides(the un
onstrained version of Problem 2 above), solved in time O(n2) byJarom
zyk and Kowaluk [10℄. 2



We employ a variety of te
hniques to solve these optimization problems.The de
ision algorithm of Problem 1 sear
hes for the 
enters of a solutionpair (of squares) in an impli
it spe
ial matrix, using a te
hnique that hasre
ently been used in [6, 18℄. To �nd an optimal solution, a sear
h in a
olle
tion of sorted matri
es [8℄ is performed.The de
ision algorithm of Problem 2 involves maintenan
e of dynami
ally
hanging 
onvex hulls, and maintenan
e of an orthogonal range sear
h treethat must adapt to a rotating axes system. For the optimization, we applyMegiddo's [14℄ parametri
 sear
h. However, sin
e our de
ision algorithm isnot parallelizable, we had to �nd an algorithm that solves a 
ompletely dif-ferent problem, but is both parallelizable and enables to generate the optimalsquare size when the parametri
 sear
h te
hnique is applied to it.In Problem 3 we des
ribe the sizes of 
andidate solution squares as a 
ol-le
tion of 
urves. For a dynami
ally 
hanging set of su
h 
urves, we transformthe problem of determining whether their upper envelope has a point belowsome horizontal line, into the problem of stabbing a dynami
ally 
hangingset of segments. The latter problem is solved using a (dynami
) segmenttree.2 Two 
onstrained axis-parallel squaresWe are given a set P of n points in the plane, and wish to �nd two axis-parallel squares, 
entered at points of P , whose union 
overs (
ontains) P ,su
h that the area of the larger square is minimal. We �rst transform the
orresponding de
ision problem into a 
onstrained 2-pier
ing problem, whi
h3



we solve in O(n logn) time. We then apply the algorithm of Frederi
ksonand Johnson [8℄ to �nd an optimal solution.2.1 The de
ision algorithmThe de
ision problem is stated as follows: Given a set P of n points, arethere two 
onstrained axis-parallel squares, ea
h of a given area A, whoseunion 
overs P . We present an O(n logn) algorithm for solving the de
isionproblem.We adopt the notation of [20℄ (see also [12, 17℄). Denote by R the set ofaxis-parallel squares of area A 
entered at the points of P . R is p-pier
eableif there exists a set X of p points whi
h interse
ts ea
h of the squares in R.The set X is 
alled a pier
ing set for R. Noti
e that X is a pier
ing set for Rif and only if the union of the axis-parallel squares of area A 
entered at thepoints of X 
overs P . R is p-
onstrained pier
eable if there exists a pier
ingset of p points whi
h is 
ontained in P . Thus, solving the de
ision problemis equivalent to determining whether R is 2-
onstrained pier
eable.We �rst 
ompute the re
tangle R = \R. If R is not empty then Ris 1-pier
eable, and we 
he
k whether it is also 1-
onstrained pier
eable by
he
king whether P has a point in R. If R is 1-
onstrained pier
eable thenwe are done, so assume that it is not. If R was not found to be 1-pier
eable,then we apply the linear time algorithm of [20℄ (see also [5℄) to 
he
k whetherR is 2-pier
eable. IfR is neither 1-pier
eable nor 2-pier
eable, then obviouslyR is not 2-
onstrained pier
eable and we are done. Assume therefore that Ris 2-pier
eable (or 1-pier
eable).Assume R is 2-
onstrained pier
eable, and let p1; p2 2 P be a pair of4



pier
ing points for R. We assume that p1 lies to the left of and below p2.(The 
ase where p1 lies to the left of and above p2 is treated analogously.)We next show that R 
an be divided into two subsets R1;R2, su
h that (i)p1 2 \R1, p2 2 \R2, and (ii) R1 (alternatively R2) 
an be represented in away that will assist us in the sear
h for p1 and p2.Denote by XR the 
enters of the squares in R (the points in P ) sortedby their x-
oordinate (left to right), and by YR the 
enters of the squares inR sorted by their y-
oordinate (low to high). We now 
laim:Claim 2.1 If p1 and p2 are as above, then R 
an be divided into two sub-sets R1 and R2, p1 2 \R1, p2 2 \R2, su
h that R1 
an be represented asthe union of two subsets Rx1 and Ry1 (not ne
essarily disjoint, and one ofthem might be empty), where the 
enters of squares of Rx1 form a 
onse
utivesubsequen
e of the list XR, starting from its beginning, and the 
enters ofsquares of Ry1 form a 
onse
utive subsequen
e of YR, starting from the list'sbeginning.Proof. We prove by 
onstru
ting the sets Rx1 and Ry1, and then puttingR1 = Rx1 [Ry1 and R2 = R�R1. We next show that indeed p1 2 \R1 andp2 2 \R2.We 
onsider the 
enters in YR, one by one, in in
reasing order, until a
enter is en
ountered whose 
orresponding square A is not pier
ed by p1. Ry1
onsists of all squares in YR below A (i.e., pre
eding A in YR). A might bethe �rst square in YR, in whi
h 
ase Ry1 is empty. We now �nd the lo
ationof the x-
oordinate of the 
enter of A in XR, and start moving from thispoint leftwards, i.e., in de
reasing order. Thus moving, we either en
ounter5



a square, 
all it B, that is higher than A and is not pier
ed by p2, or we donot.If we do not en
ounter su
h a square B (whi
h is 
learly the 
ase if thebottom edge of A lies above p1), then put Rx1 = ;, otherwise Rx1 
onsists ofall squares in XR to the left of B in
luding B.It remains to show that p1 2 \R1 and that p2 2 \R2. We assume thatthe square B exists, whi
h is the slightly more diÆ
ult 
ase. We �rst showthe former assertion, i.e., p1 2 \R1. The fa
t that p2 is not in B impliesthat p2 lies to the right of the right edge of B, be
ause B 
annot lie belowp2 sin
e it is higher than A whi
h is already pier
ed by p2. Therefore noneof the squares in Rx1 is pier
ed by p2 thus p1 2 \Rx1 . By our 
onstru
tion,p1 2 \Ry1, so together we have p1 2 \R1. Now 
onsider a square C 2 R2,C 6= A. C is higher than A, be
ause it is not in Ry1. Therefore if C is notpier
ed by p2, then C must lie to the left of A. But if so, it is in Rx1 and thusnot in R2.The 
laim above reveals a monotoni
ity property that allows us to designan eÆ
ient algorithm for the de
ision problem. We employ a te
hnique, dueto Sharir [18℄, that resembles sear
hing in monotone matri
es; for a re
entappli
ation and re�nement of this te
hnique, see [6℄. Let M be an n � nmatrix whose rows 
orrespond to XR and whose 
olumns 
orrespond to YR.An entryMxy in the matrix is de�ned as follows. Let Dx be the set of squaresin R su
h that the x-
oordinate of their 
enters is smaller or equal to x, andlet Dy be the set of squares in R su
h that the y-
oordinate of their 
enters
6



is smaller or equal to y. Let Dlxy = Dx [Dy and Drxy = (R�Dlxy).Mxy = 8>>><>>>: `Y Y 0 if both Drxy and Dlxy are 1-
onstrained pier
eable`Y N 0 if Drxy is 1-
onstrained pier
eable but Dlxy is not`NY 0 if Drxy is not 1-
onstrained pier
eable but Dlxy is`NN 0 if neither Drxy nor Dlxy is 1-
onstrained pier
eableSharir's te
hnique enables us to determine whether M 
ontains an entryof the form `YY' without having to 
onstru
t the entire matrix. In order toapply his te
hnique the lines and 
olumns ofM1 must be non-de
reasing (as-suming `Y' > `N'), and the lines and 
olumns of M2 must be non-in
reasing,where M i is the matrix obtained from M by pi
king from ea
h entry onlythe i'th letter, i = 1; 2. In our 
ase this property 
learly holds, sin
e, for ex-ample, if for some x0 and y0, M1x0;y0 =`Y', then for any x0 � x0 and y0 � y0,M1x0;y0=`Y'. Thus we 
an determine whether M 
ontains an entry `YY' byinspe
ting only O(n) entries in M , advan
ing along a 
onne
ted path withinM [6℄. For ea
h entry along this path, we need to determine whether Dzxyis 1-
onstrained pier
eable, z 2 fl; rg. This 
an be done easily in O(logn)time by maintaining dynami
ally the interse
tion \Dzxy, and utilizing a stan-dard orthogonal range sear
hing data stru
ture of size O(n logn) [4℄. Thusin O(n logn) time we 
an determine whether M 
ontains a `YY' entry.Theorem 2.2 Given a set P of n input points and area A, one 
an �ndtwo 
onstrained axis-parallel squares of area A ea
h that 
over P in timeO(n logn) using O(n logn) spa
e.We have just found whether a set of equal-sized squares is 2-pier
eable bytwo of their 
enters. For the optimization, we shrink these squares as mu
has possible, so that they remain 2-
onstrained pier
eable.7



2.2 OptimizationFor solving the optimization problem we observe that ea
h L1 distan
e (mul-tiplied by 2 and squared) 
an be a potential area solution. We 
an repre-sent all L1 distan
es as in [9℄ by sorted matri
es. We sort all the pointsof P in x and y dire
tions. Entry (i; j) in the matrix M1 stores the value4(xj � xi)2, where xi; xj are the x-
oordinates of the points with indi
es i; jin the sorted x-order, and, similarly, entry (i; j) in the matrix M2 stores thevalue 4(yj � yi)2, where yi; yj are the y-
oordinates of the points with in-di
es i; j in the sorted y-order. We then apply the Frederi
kson and Johnsonalgorithm [8℄ to M1 and M2 and obtain the smallest value in the matri
esfor whi
h the de
ision algorithm answers \Yes" and thus obtain the optimalsolution. We have shown:Theorem 2.3 Given a set P of n input points, one 
an �nd two 
onstrainedaxis-parallel squares that 
over all the input points su
h that the size of thelarger square is minimized in O(n log2 n) time using O(n logn) spa
e.3 Two 
onstrained parallel squaresIn this se
tion we deal with the following problem. Given a set P of n pointsin the plane, �nd a pair of parallel 
onstrained squares whose union 
ontainsP , so as to minimize the area (equivalently, the side length) of the largersquare. The problem where the squares are not 
onstrained was re
entlysolved by Jarom
zyk and Kowaluk [10℄ in O(n2) time using O(n2) spa
e.We �rst solve the de
ision problem for squares with a given areaA in timeO(n2 log2 n) and O(n2) spa
e. For the optimization, we present a parallel8



version of another algorithm (solving a di�erent problem), to whi
h we applyMegiddo's parametri
 sear
h [14℄ to obtain an O(n2 log4 n) time and O(n2)spa
e optimization algorithm.3.1 The de
ision algorithmFor ea
h of the input points, pi 2 P , draw an axis-aligned square Qi of areaA, 
entered at pi. For ea
h pi denote by Ui the set of points in P that arenot 
overed by Qi. If, for some i, there is a 
onstrained axis-aligned square ofarea A whi
h 
overs Ui, then we are done. Otherwise, we rotate the squaresfQi j i = 1; : : : ; ng simultaneously about their 
enters, stopping at 
ertainrotation events to 
he
k if any of the 
orresponding Ui's 
an be 
overed by aparallel square of area A, and halting when the answer is \yes".A rotation event o

urs whenever a point of P enters or leaves a squareQi, i = 1 : : : n. When a square Qi rotates by �2 from its initial axis-alignedposition, every point of P enters and leaves Qi at most on
e. Thus, thenumber of rotation events for Qi is O(n). For all the points in P we 
anpre
ompute all the O(n2) rotation events in O(n2) time with O(n2) spa
e.We sort the rotation events a

ording to their 
orresponding angles.We 
ompute the initial 
onvex hulls for ea
h Ui, i = 1; : : : ; n (i.e., atorientation � = 0), and start rotating the squares till we get to the nextrotation event. Assume that at the 
urrent rotation event a point pj entersQi. (The 
ase where a point pj leaves Qi is treated similarly.) The set Uiand its 
onvex hull are updated as pj leaves Ui, and we 
he
k whether thereexists a 
onstrained 
over of P involving Qi and another 
onstrained square(that 
overs Ui). 9



We explain how this is done for one square Qi at orientation � = 0. Firstwe �nd the tangents of the 
onvex hull of Ui that are parallel to the sidesof Qi. They de�ne a re
tangle R whi
h is the bounding box of Ui. If R hasa side of length greater than pA, then none of the other n � 1 
onstrainedsquares 
overs Ui. Otherwise we de�ne a sear
h region C whi
h is the lo
usof all points of L1 distan
e at most pA2 from all four sides of R, and sear
hfor a point of P in C. (Clearly C is a re
tangle whose sides are parallel to thesides of Qi.) We perform orthogonal range sear
hing to determine whetherthere is a point of P in C. If there exists su
h a point then the answer tothe de
ision problem is \yes".Assume we have 
omputed all the rotation events and have O(n2) re
tan-gular sear
h regions asso
iated with them. (Assume the 
oordinate systemrotates together with the rotating squares fQig, thus, at any rotation event,the 
orresponding re
tangular sear
h region is parallel to the 
urrent axes.)In order to perform orthogonal range sear
h on the re
tangular regions we usea dynami
 orthogonal range sear
h tree whi
h is updated at 
ertain rotationevents as follows.Denote by L the list of all O(n2) lines passing through pairs of points inP . Let S 
onsist of all the slopes of lines in L that lie in the range [0; �=2),and of all the slopes in the range [0; �=2) of lines that are perpendi
ular tothe lines in L. We sort S, obtaining the sorted sequen
e f�1; �2; : : :g. Werotate the axes so that the x-axis has slope �1, and 
ompute an orthogonalrange sear
h tree for P with respe
t to the rotated axes, storing just thelabels of the points of P in the tree. For ea
h sear
h region whose side slopeis between �1 and �2 we perform a usual range sear
h with this tree. Before10




onsidering the next sear
h regions, we rotate the axes some more until thex-axis has slope �2. Noti
e that just one pair of points in P has swapped in xor y order in this angle range. We update the range sear
h tree a

ordingly:Assuming the leaves of the main stru
ture in the range tree are sorted by x-
oordinate, and the leaves in the se
ondary trees are sorted by y-
oordinate.If, when moving from �1 to �2, the swap o

urred in the x-order of the pairof points, then we swap the (labeling of the) points in the main stru
ture andin the se
ondary stru
tures a�e
ted by that swap; if the swap o

urred inthe y-order, then we swap the labeling in the a�e
ted se
ondary stru
tures.Now we 
an pro
eed with the sear
h ranges whose sides have slopes between�2 and �3. And so on.We analyze the time and spa
e required for the de
ision algorithm. Thetotal number of rotation events is O(n2). They 
an be pre
omputed andsorted in O(n2 logn) time with O(n2) spa
e. Similarly S 
an be obtainedand sorted within the same bounds. Merging the two sets of slopes (rotationevents and S) is done in time O(n2). Initially 
omputing the 
onvex hullsfor all sets Ui takes O(n2 logn) time with O(n2) spa
e. Applying the datastru
ture and algorithm of Overmars and van Leeuwen [16℄, ea
h update ofa 
onvex hull takes O(log2 n) time, totaling in O(n2 log2 n) time and O(n2)spa
e for all rotation events. Our range sear
hing algorithm takes O(log2 n)time per query and per update, after spending O(n logn) prepro
essing timeand using O(n logn) spa
e (noti
e that this is the total spa
e requirementfor the range sear
hing), and we perform O(n2) queries and updates. Thuswe have shown: 11



(iii) (iv)(ii)(i) (v)Figure 1: Criti
al events that determine 
andidate square sizes. Cases (i) {(iv) involve a single square, and 
ase (v) two squares.Theorem 3.1 Given a set P of n points and an area A, one 
an de
idewhether P 
an be 
overed by two 
onstrained parallel squares, ea
h of areaA, in O(n2 log2 n) time and O(n2) spa
e.3.2 OptimizationHaving provided a solution to the de
ision problem, we now return to theminimization problem. The number of 
andidate square sizes is O(n4) (seebelow and Figure 1). The 
andidate sizes are determined by either� A point of P as a 
enter of a square (see Figure 1(i){(iv)) and either(i) another point of P on a 
orner of this square, or (ii) two points ofP on parallel sides of the square, or (iii) two points of P on one side ofthe square, or (iv) two points of P on adja
ent sides of the square, or� Two points of P as 
enters of two squares and another point of P onthe boundary of ea
h of the squares (Figure 1(v)).In order to apply the Megiddo optimization s
heme we have to parallelize ourde
ision algorithm. However, the range sear
hing part of the de
ision algo-rithm is not parallelizable, so, as in [1℄, we 
ome up with an auxiliary problemwhose parallel version will generate the optimal solution to our problem.12



The auxiliary problem is des
ribed as follows. Assume we have a set Pof n > 2 points and a �xed size d. Assume we have produ
ed the set ofstrips su
h that ea
h strip is of width d and 
ontains at least one point of Pon ea
h of its boundaries. In this situation a point on one boundary mightstand for the square 
enter and the point on the other boundary is the oneon the side of the square. Maintain the set of strips by storing their slopesand the 
orresponding pairs of points that de�ne them in S. Let �S be theset of slopes obtained by the slopes of S by adding �=2 (mod �). With ea
hslope in �S we store the pair of points asso
iated with the 
orresponding slopein S.A slope �s 2 �S stands for a pair of square sides perpendi
ular to the onesde�ned by its 
orresponding slope s 2 S. So that if two perpendi
ular slopes,s1 and s2 (in S) de�ne a square (as in Figure 1 (i),(iv) and (v)), then s1 and�s2 are equal. The set of squares thus de�ned is a superset of the 
andidatesolution squares as de�ned above. Let S = S[ �S be a set of slopes with theirasso
iated point pairs. The auxiliary problem is to sort the slopes in S.Clearly not all pairs of points in P de�ne strips, and thus slopes, in S.A pair of points in P whose distan
e is smaller than d will not generate therequired width strip. For every pair of points in P whose distan
e from ea
hother is larger than d, there are exa
tly two slopes for whi
h the width of thestrip, with a point of this pair on ea
h of its boundaries, is d. We add theseslopes (and their �S 
orresponding slopes) to S. Reporting the sorted orderof S 
an be done in O(n2 logn) time, and a parallel algorithm with O(n2)pro
essors will sort the list in O(logn) time [3℄.We now want to (generi
ally) apply this parallel sort algorithm for �nding13



the optimal square size d�. For this we �rst augment our algorithm, as in[1℄, and get an initial interval where d� resides. We perform a preliminarystage that disposes of the 
ases in whi
h the width of the strip is exa
tlythe distan
e between two points of P , and those in whi
h the width is thedistan
e between two points multiplied by p2=2. We 
all these distan
esspe
ial distan
es. We 
an a�ord to list all these O(n2) strip widths, sortthem, and perform a binary sear
h for d� over them, applying our de
isionalgorithm of the previous subse
tion at ea
h of the 
omparisons. This resultsin an initial 
losed interval of real numbers, I0, that 
ontains the optimalsquare size d�, and none of the just 
omputed spe
ial sizes is 
ontained in itsinterior.Consider now a single step in the parallel sort (the auxiliary problem).In this step we perform O(n2) slope 
omparisons, ea
h 
omparison involvingtwo pairs of points. There are two 
ases: (a) the two 
ompared slopes arefrom S (or both are in �S), and (b) one slope is in S and the other in �S. Letone su
h 
omparison involve the pairs (p1; p2) and (p3; p4). In order to resolvethis 
omparison, we must 
ompute for the point pair (p1; p2) the slopes of thetwo strips of width d� that have p1 on one boundary of the strip and p2 on theother. Similarly, we 
ompute the slopes of the two strips of width d� through(p3; p4). Then we sort the four strips by their slopes. Of 
ourse, we do notknow d�, so we 
ompute the (at most two) 
riti
al values d where the sortedorder of the four strips 
hanges, namely, for 
ase (a) above, where the twostrips are parallel, and for 
ase (b), when the two strips are perpendi
ularto ea
h other. We do this for all O(n2) 
riti
al value 
omparisons. Now weapply the de
ision algorithm of the subse
tion above to perform a binary14



sear
h over the O(n2) 
riti
al values that were 
omputed. Thus we �nd aninterval I � I0 where d� resides, resolve all the 
omparisons of this parallelstage, and pro
eed to the next parallel stage.What does resolving mean here? See Figure 2 whi
h depi
ts 
ase (a). Ifthe 
omparison was made for two pairs of points (p1; p2) and (p3; p4) then,if the distan
e between a pair of points, d1 = (p1; p2) or d2 = (p3; p4), issmaller than the smaller endpoint of the 
urrent interval I then this pair willnot have a strip of width d� and it is omitted from the rest of the sort. Ifthe distan
e is larger than the smaller endpoint of I then the slope orderingof the four strips at d� is uniquely determined as follows. In Figure 2(a)the strips s1 and s2 are parallel at some width d0, and in Figure 2(b) weplot the strips of width d� for the two pairs of points. In Figure 2(
) wegraph d as a fun
tion of � 2 [0; �) for the two pairs of points. The graph ofd = d1 
os(���1) a
hieves its maximum at (�1; d1), and similarly the graph ofd = d2 
os(���2) a
hieves its maximum at (�2; d2), where �1 (�2) is the anglethat the line perpendi
ular to the line through (p1; p2) ((p3; p4)) makes withthe positive x-axis. It is easy to see that for every d ea
h pair of points hastwo strips and that the two fun
tions interse
t at two points. We split thedomain of de�nition of ea
h fun
tion to two parts, one in whi
h the fun
tionstri
tly in
reases and one in whi
h it stri
tly de
reases. In Figure 2(a) and2(b) the strip s1 
orresponds to the de
reasing half of the fun
tion in Figure2(
) and s3 to the in
reasing half. Similarly with the strips of (p3; p4), s2
orresponds to the in
reasing half and s4 to the de
reasing half. Thus theorder of the strips at d� is the order in whi
h the line d = d� interse
ts theirfun
tions, and the width values at the interse
tion points of the two fun
tions15



p1 p2 p3 p4s1 s2s4s3 (a)
(b)s3 s4 s2

�d2d1d
p2p1 s1

0 �2 ��1 s3s4 s2 s4s1s3
p3 p4

(
)Figure 2: Slope ordering for the 
omparison of (p1; p2) and (p3; p4): (a) stripss1 and s2 are parallel for some d, (b) the ordering of the slopes at d�, (
) das a fun
tion of �
16




onsist of the 
riti
al values for these two pairs of points.For 
ase (b) assume the pair (p1; p2) belongs to a strip of �S. We sim-ply 
y
li
ally shift the fun
tion of (p1; p2) (of S) by �=2. The interse
tionpoints of the fun
tions are now at two values of d0 where the two strips areperpendi
ular to ea
h other, and all the rest of the argument is analogous.Note: We have to be a little more 
areful here about the notion of thedomain of de�nition of the fun
tions, and we might want to break the domainof de�nition of the fun
tions also at � = 0. This is a slight formality that wenegle
t sin
e it does not 
hange anything in the analysis.The 
losed interval I is always guaranteed to 
ontain d� but we need toshow that a 
omparison is made where d = d�.Claim 3.2 If d� is not one of the spe
ial distan
es then the slope order ofthe strips 
hanges as d 
hanges from values slightly smaller than d� to valuesslightly larger than d�.Proof. Observe again Figure 1. Clearly if d� is not one of the spe
ial distan
esthen it involves two pairs of points. In Figure 1(ii), (iii), (iv), the pairs arethe 
enter point of the square paired with ea
h of the two points on theboundary of this square, and in Figure 1(v) the pairs are the 
enter point ofea
h square paired with the point on the side of its square. None of these
ases represents a spe
ial distan
e, and hen
e the slopes of the strips aremonotone fun
tions of their widths. These two monotone fun
tions interse
tat d� thus in a small neighborhood of d� one fun
tion is above the other ford < d� and below for d > d� . 17



Note that at some stage the optimal solution will appear on the boundaryof the interval I 
omputed at that stage (it 
ould even appear on the bound-ary of I0). However, on
e it appears, it will remain one of the endpoints of allsubsequently 
omputed intervals. At the end, we run the de
ision algorithmfor the left endpoint of the �nal interval. If the answer is positive, then thisendpoint is d�, otherwise d� is the right endpoint of the �nal interval.Theorem 3.3 Let P be a set of n points, we 
an �nd a pair of parallel
onstrained squares whose union 
overs P and su
h that the area of the largersquare is minimized in O(n2 log4 n) time and O(n2) spa
e.4 Two 
onstrained general squaresIn this se
tion the squares may rotate independently. We �rst state a sub-problem whose solution is used as a subroutine in the full solution. Thenwe present an algorithm for solving the de
ision problem. This algorithm isused to perform a binary sear
h over the sorted set of potential solutions,produ
ing the solution to the optimization problem.The subproblem: Given a set P of n points in the plane and a point q,�nd the minimum area square that is 
entered at q and that 
overs P . Thesquare may rotate.The algorithm for solving the subproblem is as follows. Assume q is theorigin. Let � be an angle in [0; �2 ). Consider the proje
tions, xi(�) and yi(�),of a point pi 2 P on the x-axis and y-axis, after rotating the axes by �. Ifthe distan
e between pi and q is di, and the angle between the ve
tor pi and18
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Figure 3: The fun
tions zi and the lowest point (�0; z0) on their upper enve-lopethe x-axis at its initial position is �i, then we havexi(�) = di 
os(�i � �) and yi(�) = di sin(�i � �) :A square 
entered at q rotated by angle � that has pi on its boundaryis of side length 2 � maxfjxi(�)j; jyi(�)jg. Note that it is enough to rotatethe axes by angle �; 0 � � < �2 , in order to get all possible sizes of squares
entered at q having pi on their boundary.Observe the plane (�; z), on whi
h we graph both z2i�1(�) = 2jxi(�)j andz2i(�) = 2jyi(�)j, i = 1; : : : n. We 
all the set of these 2n fun
tions Eq, anddepi
t them in Figure 3. It is easy to see that every pair of fun
tions zjand zk interse
ts at most twi
e. The upper envelope of the fun
tions in Eq19



denotes, for ea
h �, the size z(�) of the smallest square (
entered at q androtated by �) that 
overs P , and the point (or two points) of P 
orrespondingto the fun
tion (or two fun
tions) that attains (attain) the maximum at this� is the point (are the two points) of P on the boundary of the square. Thelowest point on this envelope gives the angle, the size, and the point(s) thatdetermine the minimal square. The upper envelope, and the lowest point onit, 
an be 
omputed in O(n logn) time [19℄, and this is the runtime of thesolution of the subproblem above.For the two squares de
ision problem we repeat some notations and ideasfrom the previous se
tion. Let Qi be a square of the given area A 
enteredat pi 2 P . We de�ne rotation events for Qi as the angles at whi
h points ofP enter or leave Qi. Denote by Ui the set of points not 
overed by Qi at the
urrent rotation angle. Using the subproblem des
ribed above, we �nd thesmallest 
onstrained square that 
overs Ui, by 
omputing n sets Ej, whereEj is the set of 2jUij fun
tions asso
iated with the 
enter point pj.We des
ribe our algorithm for determining whether one of the 
onstrained
enters is some �xed point pi 2 P . Then we apply this algorithm for ea
h ofthe points in P . Initially, at � = 0, we 
onstru
t all the sets Ej, so that ea
hset 
ontains only the fun
tions that 
orrespond to the points in the initial Ui.The rotation events for this phase are those 
aused by a point of P enteringor leaving Qi. At ea
h rotation event we update Ui and all the sets Ej. Wethen 
he
k whether there is a point on the upper envelope of one of the Ej'swhi
h is below the line z = pA. If there exists a point (�0; z0), z0 � pA onthe upper envelope of some Ej, then the square Qi at its 
urrent position,and the square Qj at angle �0 are the solution to the de
ision problem.20



Updating the upper envelopes 
orresponding to the sets Ej turns outto be time 
onsuming, therefore we transform the problem of determiningwhether one of the upper envelopes has a low enough point to a segmentstabbing problem as follows. Observe one set Ej. If we draw a horizontalline at z = pA, then ea
h fun
tion 
urve in Ej is 
ut into at most three
ontinuous sub
urves, of whi
h at most two lie below the line. We proje
tall the sub
urves of Ej that are below the line on the �-axis, obtaining a setof segments. Assume the number of points in Ui is k, then if (and only if)there is a point �0 on the �-axis that is 
overed by 2k segments then there isa square of the required size, of orientation �0, 
entered at pj whi
h 
oversthe points of Ui.We 
onstru
t a segment tree Tj [15℄ with O(n) leaves (for the segmentsobtained from all potential 
urves in Ej). Ea
h node in the tree 
ontains,besides the standard segment information, the maximum 
over of the node(namely, the largest number of segments that 
an be stabbed in the range ofthe node, for details see [15℄). The root of the tree 
ontains the maximum
over of the whole range 0 � � < �2 . The size of one tree is O(n) and ea
hupdate is performed in time O(logn). Initially, at � = 0, we insert into Tj thesegments 
orresponding to the 
urves of the points in Ui, and 
he
k whetherthe maximum 
over equals twi
e the 
ardinality of Ui. One update to Uiinvolves at most four segment updates in Tj.We 
onsider the time and spa
e 
omplexity of the algorithm. For onepoint pi as a 
andidate 
enter, the initial trees Tj are 
onstru
ted in timeO(n2 logn), o

upying O(n2) spa
e. There are O(n) rotation events for Qi,and an update to one Tj is performed in O(logn) time, totaling O(n2 logn)21



time for all rotation events and all Tj's. The spa
e requirement is O(n2).Applying the algorithm sequentially for all i in f1; : : : ; ng gives O(n3 logn)runtime, while the spa
e remains O(n2).To �nd an optimal solution, we perform for ea
h i as above the following.Assume pi 2 P is one of the two 
enters in the solution. The 
orrespondingsquare is de�ned either by another point of P in its 
orner, or by two pointsof P on its boundary. So we 
ompute the O(n2) potential area sizes with pi asthe 
enter. We sort the area sizes and apply binary sear
h to �nd the smallestarea squares that 
over P with pi as one of the 
enters in the solution. Atea
h of the O(logn) sear
h steps, we apply the de
ision algorithm above (justwith pi as one of the 
enters). We perform this sear
h for all i 2 f1; : : : ; ng.We have shown:Theorem 4.1 Given a set P of n input points we 
an �nd a pair of general
onstrained squares whose union 
overs P and su
h that the area of the largersquare is minimized in O(n3 log2 n) time and O(n2) spa
e.A
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