1

In this paper we consider the problems of covering a given set P of n points

in the plane by two constrained (discrete) squares, under various conditions.

*

Constrained Square-Center Problems
Matthew J. Katz!, Klara Kedem!? and Michael Segall

Department of Mathematics and Computer Science

Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

2Computer Science Department

Upson Hall, Cornell University, Ithaca, NY 14853

October 28, 1999

Abstract

Given a set P of n points in the plane, we seek two squares whose
center points belong to P, their union contains P, and the area of
the larger square is minimal. We present efficient algorithms for three
variants of this problem: In the first the squares are axis parallel, in
the second they are free to rotate but must remain parallel to each
other, and in the third they are free to rotate independently.

Introduction

*Work by M. Katz and K. Kedem has been supported by the Israel Science Foundation
founded by the Israel Academy of Sciences and Humanities.
supported by the U.S.-Israeli Binational Science Foundation, and by the Mary Upson

Award, College of Engineering, Cornell University.

K. Kedem has also been

We call a square constrained if its center lies on one of the input points. In

particular, we solve the following problems:

1. Find two constrained axis-parallel squares whose union covers P, so as
to minimize the size of the larger square. We present an O(n log®n)-

time algorithm; its space requirement is O(nlogn).

2. Find two constrained parallel squares whose union covers P, so as to
minimize the size of the larger square. The squares are allowed to
rotate but must remain parallel to each other. Our algorithm runs in

O(n?log* n) time and uses O(n?) space.

3. Find two constrained squares whose union covers P, so as to minimize
the size of the larger square, where each square is allowed to rotate inde-
pendently. We present an O(n?log” n)-time and O(n?)-space algorithm
for this problem.

The problems above continue a list of optimization problems that deal with
covering a set of points in the plane by two geometric objects of the same
type. We mention some of them: The two center problem, solved in time
O(nlog”n) by Sharir [18], and recently in time O(nlog®n) by Eppstein [7]
(by a randomized algorithm); the constrained two center problem, solved in
time O(n3 log® n) by Agarwal et al. [2]; the two line-center problem, solved in
time O(n?log”n) by Jaromczyk and Kowaluk [11] (see also [9, 13]); the two
square-center problem, where the squares are with mutually parallel sides
(the unconstrained version of Problem 2 above), solved in time O(n?) by

Jaromczyk and Kowaluk [10].

We employ a variety of techniques to solve these optimization problems.
The decision algorithm of Problem 1 searches for the centers of a solution
pair (of squares) in an implicit special matrix, using a technique that has
recently been used in [6, 18]. To find an optimal solution, a search in a
collection of sorted matrices [8] is performed.

The decision algorithm of Problem 2 involves maintenance of dynamically
changing convex hulls, and maintenance of an orthogonal range search tree
that must adapt to a rotating axes system. For the optimization, we apply
Megiddo’s [14] parametric search. However, since our decision algorithm is
not parallelizable, we had to find an algorithm that solves a completely dif-
ferent problem, but is both parallelizable and enables to generate the optimal
square size when the parametric search technique is applied to it.

In Problem 3 we describe the sizes of candidate solution squares as a col-
lection of curves. For a dynamically changing set of such curves, we transform
the problem of determining whether their upper envelope has a point below
some horizontal line, into the problem of stabbing a dynamically changing
set of segments. The latter problem is solved using a (dynamic) segment

tree.

2 Two constrained axis-parallel squares

We are given a set P of n points in the plane, and wish to find two axis-
parallel squares, centered at points of P, whose union covers (contains) P,
such that the area of the larger square is minimal. We first transform the

corresponding decision problem into a constrained 2-piercing problem, which

we solve in O(nlogn) time. We then apply the algorithm of Frederickson

and Johnson [8] to find an optimal solution.

2.1 The decision algorithm

The decision problem is stated as follows: Given a set P of n points, are
there two constrained axis-parallel squares, each of a given area A, whose
union covers P. We present an O(nlogn) algorithm for solving the decision
problem.

We adopt the notation of [20] (see also [12, 17]). Denote by R the set of
axis-parallel squares of area A centered at the points of P. R is p-pierceable
if there exists a set X of p points which intersects each of the squares in R.
The set X is called a piercing set for R. Notice that X is a piercing set for R
if and only if the union of the axis-parallel squares of area A centered at the
points of X' covers P. R is p-constrained pierceable if there exists a piercing
set of p points which is contained in P. Thus, solving the decision problem
is equivalent to determining whether R is 2-constrained pierceable.

We first compute the rectangle R = NR. If R is not empty then R
is 1-pierceable, and we check whether it is also 1-constrained pierceable by
checking whether P has a point in R. If R is 1-constrained pierceable then
we are done, so assume that it is not. If R was not found to be 1-pierceable,
then we apply the linear time algorithm of [20] (see also [5]) to check whether
R is 2-pierceable. If R is neither 1-pierceable nor 2-pierceable, then obviously
R is not 2-constrained pierceable and we are done. Assume therefore that R
is 2-pierceable (or 1-pierceable).

Assume R is 2-constrained pierceable, and let p;,ps € P be a pair of

piercing points for R. We assume that p; lies to the left of and below p,.
(The case where p; lies to the left of and above ps is treated analogously.)
We next show that R can be divided into two subsets R, Ra, such that (i)
p1 € MRy, pe € MRy, and (ii) Ry (alternatively Rs) can be represented in a
way that will assist us in the search for p; and ps.

Denote by Xx the centers of the squares in R (the points in P) sorted
by their z-coordinate (left to right), and by Yz the centers of the squares in
R sorted by their y-coordinate (low to high). We now claim:

Claim 2.1 If p; and ps are as above, then R can be divided into two sub-
sets Ry and Ro, p1 € MRy, po € NRa, such that Ry can be represented as
the union of two subsets RY and RY (not necessarily disjoint, and one of
them might be empty), where the centers of squares of RY form a consecutive
subsequence of the list X, starting from its beginning, and the centers of
squares of Ry form a consecutive subsequence of Y, starting from the list’s

beginning.

Proof. We prove by constructing the sets RY and RY, and then putting
Ri =R7URY and Ry = R — Ry. We next show that indeed p; € N"R; and
P2 € NRo.

We consider the centers in Y3, one by one, in increasing order, until a
center is encountered whose corresponding square A is not pierced by p;. RY
consists of all squares in Yz below A (i.e., preceding A in Yz). A might be
the first square in Yz, in which case RY is empty. We now find the location
of the z-coordinate of the center of A in X%, and start moving from this

point leftwards, i.e., in decreasing order. Thus moving, we either encounter

a square, call it B, that is higher than A and is not pierced by p,, or we do
not.

If we do not encounter such a square B (which is clearly the case if the
bottom edge of A lies above p;), then put R} = (), otherwise R} consists of
all squares in X% to the left of B including B.

[t remains to show that p; € NR; and that py € NR,. We assume that
the square B exists, which is the slightly more difficult case. We first show
the former assertion, i.e., p; € NR;. The fact that py is not in B implies
that po lies to the right of the right edge of B, because B cannot lie below
pe since it is higher than A which is already pierced by py. Therefore none
of the squares in R7 is pierced by p, thus p; € NRY]. By our construction,
p1 € NRY, so together we have p; € NR;. Now consider a square C' € R,
C # A. C is higher than A, because it is not in RY. Therefore if C' is not
pierced by po, then C' must lie to the left of A. But if so, it is in R{ and thus
not in Ry. N

The claim above reveals a monotonicity property that allows us to design
an efficient algorithm for the decision problem. We employ a technique, due
to Sharir [18], that resembles searching in monotone matrices; for a recent
application and refinement of this technique, see [6]. Let M be an n x n
matrix whose rows correspond to Xz and whose columns correspond to Y3.
An entry M, in the matrix is defined as follows. Let D, be the set of squares
in R such that the z-coordinate of their centers is smaller or equal to z, and

let D, be the set of squares in R such that the y-coordinate of their centers

is smaller or equal to y. Let D! = D, U D, and D, = (R — D,).

YY" if both Dy, and DfL,y are 1-constrained pierceable
‘YN' if Dy, is 1-constrained pierceable but D} is not
‘NY" if D}, is not 1-constrained pierceable but D} is
‘NN' if neither D, nor D is 1-constrained pierceable

M, =

Sharir’s technique enables us to determine whether M contains an entry
of the form ‘YY’ without having to construct the entire matrix. In order to
apply his technique the lines and columns of M' must be non-decreasing (as-
suming ‘Y’ > ‘N’), and the lines and columns of M? must be non-increasing,
where M is the matrix obtained from M by picking from each entry only
the ¢’th letter, 7 = 1,2. In our case this property clearly holds, since, for ex-
ample, if for some zy and vy, Mxlo,y0 =Y, then for any ' > x4 and y' > vy,

M%,’y,:‘Y’. Thus we can determine whether M contains an entry ‘YY’ by
inspecting only O(n) entries in M, advancing along a connected path within
M [6]. For each entry along this path, we need to determine whether D7,

is 1-constrained pierceable, z € {l,r}. This can be done easily in O(logn)

z

time by maintaining dynamically the intersection ND7 ,

and utilizing a stan-
dard orthogonal range searching data structure of size O(nlogn) [4]. Thus

in O(nlogn) time we can determine whether M contains a ‘Y'Y’ entry.

Theorem 2.2 Given a set P of n input points and area A, one can find
two constrained axis-parallel squares of area A each that cover P in time

O(nlogn) using O(nlogn) space.

We have just found whether a set of equal-sized squares is 2-pierceable by
two of their centers. For the optimization, we shrink these squares as much

as possible, so that they remain 2-constrained pierceable.

7

2.2 Optimization

For solving the optimization problem we observe that each L, distance (mul-
tiplied by 2 and squared) can be a potential area solution. We can repre-
sent all Lo, distances as in [9] by sorted matrices. We sort all the points
of P in z and y directions. Entry (4,j) in the matrix M; stores the value
4(x; — x;)?, where z;, z; are the x-coordinates of the points with indices i, j
in the sorted xz-order, and, similarly, entry (i, 7) in the matrix M, stores the
value 4(y; — y;)?, where y;,y; are the y-coordinates of the points with in-
dices 7, 7 in the sorted y-order. We then apply the Frederickson and Johnson
algorithm [8] to M; and M, and obtain the smallest value in the matrices
for which the decision algorithm answers “Yes” and thus obtain the optimal

solution. We have shown:

Theorem 2.3 Given a set P of n input points, one can find two constrained
axis-parallel squares that cover all the input points such that the size of the

larger square is minimized in O(nlog?n) time using O(nlogn) space.

3 Two constrained parallel squares

In this section we deal with the following problem. Given a set P of n points
in the plane, find a pair of parallel constrained squares whose union contains
P, so as to minimize the area (equivalently, the side length) of the larger
square. The problem where the squares are not constrained was recently
solved by Jaromczyk and Kowaluk [10] in O(n?) time using O(n?) space.
We first solve the decision problem for squares with a given area A in time

O(n?log”n) and O(n?) space. For the optimization, we present a parallel

8

version of another algorithm (solving a different problem), to which we apply
Megiddo’s parametric search [14] to obtain an O(n?log" n) time and O(n?)

space optimization algorithm.

3.1 The decision algorithm

For each of the input points, p; € P, draw an axis-aligned square (); of area
A, centered at p;. For each p; denote by U; the set of points in P that are
not covered by ;. If, for some 7, there is a constrained axis-aligned square of
area A which covers U, then we are done. Otherwise, we rotate the squares
{Qi | i =1,...,n} simultaneously about their centers, stopping at certain
rotation events to check if any of the corresponding U;’s can be covered by a
parallel square of area A, and halting when the answer is “yes”.

A rotation event occurs whenever a point of P enters or leaves a square
Qi, i = 1...n. When a square ; rotates by 7 from its initial axis-aligned
position, every point of P enters and leaves (); at most once. Thus, the
number of rotation events for @; is O(n). For all the points in P we can
precompute all the O(n?) rotation events in O(n?) time with O(n?) space.
We sort the rotation events according to their corresponding angles.

We compute the initial convex hulls for each U;, i = 1,...,n (i.e., at
orientation # = 0), and start rotating the squares till we get to the next
rotation event. Assume that at the current rotation event a point p; enters
Qi (The case where a point p; leaves (); is treated similarly.) The set U;
and its convex hull are updated as p; leaves U;, and we check whether there
exists a constrained cover of P involving (); and another constrained square

(that covers Uj;).

We explain how this is done for one square (); at orientation # = 0. First
we find the tangents of the convex hull of U; that are parallel to the sides
of ;. They define a rectangle R which is the bounding box of U;. If R has
a side of length greater than /A, then none of the other n — 1 constrained
squares covers U;. Otherwise we define a search region C' which is the locus
of all points of L., distance at most @ from all four sides of R, and search
for a point of P in C'. (Clearly C' is a rectangle whose sides are parallel to the
sides of @;.) We perform orthogonal range searching to determine whether
there is a point of P in C'. If there exists such a point then the answer to
the decision problem is “yes”.

Assume we have computed all the rotation events and have O(n?) rectan-
gular search regions associated with them. (Assume the coordinate system
rotates together with the rotating squares {@;}, thus, at any rotation event,
the corresponding rectangular search region is parallel to the current axes.)
In order to perform orthogonal range search on the rectangular regions we use
a dynamic orthogonal range search tree which is updated at certain rotation
events as follows.

Denote by L the list of all O(n?) lines passing through pairs of points in
P. Let S consist of all the slopes of lines in L that lie in the range [0, 7/2),
and of all the slopes in the range [0, 7/2) of lines that are perpendicular to
the lines in L. We sort S, obtaining the sorted sequence {aq,as,...}. We
rotate the axes so that the z-axis has slope oy, and compute an orthogonal
range search tree for P with respect to the rotated axes, storing just the
labels of the points of P in the tree. For each search region whose side slope

is between oy and as we perform a usual range search with this tree. Before

10

considering the next search regions, we rotate the axes some more until the
x-axis has slope ay. Notice that just one pair of points in P has swapped in x
or y order in this angle range. We update the range search tree accordingly:
Assuming the leaves of the main structure in the range tree are sorted by z-
coordinate, and the leaves in the secondary trees are sorted by y-coordinate.
If, when moving from «; to as, the swap occurred in the x-order of the pair
of points, then we swap the (labeling of the) points in the main structure and
in the secondary structures affected by that swap; if the swap occurred in
the y-order, then we swap the labeling in the affected secondary structures.
Now we can proceed with the search ranges whose sides have slopes between
oy and «s. And so on.

We analyze the time and space required for the decision algorithm. The
total number of rotation events is O(n?). They can be precomputed and
sorted in O(n?logn) time with O(n?) space. Similarly S can be obtained
and sorted within the same bounds. Merging the two sets of slopes (rotation
events and S) is done in time O(n?). Initially computing the convex hulls
for all sets U; takes O(n?logn) time with O(n?) space. Applying the data
structure and algorithm of Overmars and van Leeuwen [16], each update of
a convex hull takes O(log”n) time, totaling in O(n?log®n) time and O(n?)
space for all rotation events. Our range searching algorithm takes O(log® n)
time per query and per update, after spending O(nlogn) preprocessing time
and using O(nlogn) space (notice that this is the total space requirement
for the range searching), and we perform O(n?) queries and updates. Thus

we have shown:

11

(i) (i) (i) (iv) (v)

Figure 1: Critical events that determine candidate square sizes. Cases (i) —
(iv) involve a single square, and case (v) two squares.

Theorem 3.1 Given a set P of n points and an area A, one can decide
whether P can be covered by two constrained parallel squares, each of area

A, in O(n*log®n) time and O(n?) space.

3.2 Optimization

Having provided a solution to the decision problem, we now return to the
minimization problem. The number of candidate square sizes is O(n*) (see

below and Figure 1). The candidate sizes are determined by either

e A point of P as a center of a square (see Figure 1(i)—(iv)) and either
(i) another point of P on a corner of this square, or (ii) two points of
P on parallel sides of the square, or (iii) two points of P on one side of

the square, or (iv) two points of P on adjacent sides of the square, or

e Two points of P as centers of two squares and another point of P on

the boundary of each of the squares (Figure 1(v)).

In order to apply the Megiddo optimization scheme we have to parallelize our
decision algorithm. However, the range searching part of the decision algo-
rithm is not parallelizable, so, as in [1], we come up with an auxiliary problem

whose parallel version will generate the optimal solution to our problem.

12

The auxiliary problem is described as follows. Assume we have a set P
of n > 2 points and a fixed size d. Assume we have produced the set of
strips such that each strip is of width d and contains at least one point of P
on each of its boundaries. In this situation a point on one boundary might
stand for the square center and the point on the other boundary is the one
on the side of the square. Maintain the set of strips by storing their slopes
and the corresponding pairs of points that define them in S. Let S be the
set of slopes obtained by the slopes of S by adding 7/2 (mod 7). With each
slope in S we store the pair of points associated with the corresponding slope
in S.

A slope 5 € S stands for a pair of square sides perpendicular to the ones
defined by its corresponding slope s € S. So that if two perpendicular slopes,
s; and sy (in S) define a square (as in Figure 1 (i),(iv) and (v)), then s; and
Sy are equal. The set of squares thus defined is a superset of the candidate
solution squares as defined above. Let S = SUS be a set of slopes with their
associated point pairs. The auxiliary problem is to sort the slopes in S.

Clearly not all pairs of points in P define strips, and thus slopes, in S.
A pair of points in P whose distance is smaller than d will not generate the
required width strip. For every pair of points in P whose distance from each
other is larger than d, there are exactly two slopes for which the width of the
strip, with a point of this pair on each of its boundaries, is d. We add these
slopes (and their S corresponding slopes) to S. Reporting the sorted order
of 8 can be done in O(n?logn) time, and a parallel algorithm with O(n?)
processors will sort the list in O(logn) time [3].

We now want to (generically) apply this parallel sort algorithm for finding

13

the optimal square size d*. For this we first augment our algorithm, as in
[1], and get an initial interval where d* resides. We perform a preliminary
stage that disposes of the cases in which the width of the strip is exactly
the distance between two points of P, and those in which the width is the
distance between two points multiplied by \/5/2 We call these distances
special distances. We can afford to list all these O(n?) strip widths, sort
them, and perform a binary search for d* over them, applying our decision
algorithm of the previous subsection at each of the comparisons. This results
in an initial closed interval of real numbers, I, that contains the optimal
square size d*, and none of the just computed special sizes is contained in its
interior.

Consider now a single step in the parallel sort (the auxiliary problem).
In this step we perform O(n?) slope comparisons, each comparison involving
two pairs of points. There are two cases: (a) the two compared slopes are
from S (or both are in S), and (b) one slope is in S and the other in S. Let
one such comparison involve the pairs (py, p2) and (p3, ps). In order to resolve
this comparison, we must compute for the point pair (py, p2) the slopes of the
two strips of width d* that have p; on one boundary of the strip and p, on the
other. Similarly, we compute the slopes of the two strips of width d* through
(p3,p4). Then we sort the four strips by their slopes. Of course, we do not
know d*, so we compute the (at most two) critical values d where the sorted
order of the four strips changes, namely, for case (a) above, where the two
strips are parallel, and for case (b), when the two strips are perpendicular
to each other. We do this for all O(n?) critical value comparisons. Now we

apply the decision algorithm of the subsection above to perform a binary

14

search over the O(n?) critical values that were computed. Thus we find an
interval I C I, where d* resides, resolve all the comparisons of this parallel
stage, and proceed to the next parallel stage.

What does resolving mean here? See Figure 2 which depicts case (a). If
the comparison was made for two pairs of points (p1,p2) and (ps,ps) then,
if the distance between a pair of points, d; = (p1,p2) or dy = (ps,p4), is
smaller than the smaller endpoint of the current interval I then this pair will
not have a strip of width d* and it is omitted from the rest of the sort. If
the distance is larger than the smaller endpoint of I then the slope ordering
of the four strips at d* is uniquely determined as follows. In Figure 2(a)
the strips s; and sy are parallel at some width d’, and in Figure 2(b) we
plot the strips of width d* for the two pairs of points. In Figure 2(c) we
graph d as a function of § € [0, 7) for the two pairs of points. The graph of
d = d; cos(f—6;) achieves its maximum at (6, d;), and similarly the graph of
d = dy cos(f — 0,) achieves its maximum at (6o, ds), where 0; (65) is the angle
that the line perpendicular to the line through (p1,p2) ((ps,ps)) makes with
the positive z-axis. It is easy to see that for every d each pair of points has
two strips and that the two functions intersect at two points. We split the
domain of definition of each function to two parts, one in which the function
strictly increases and one in which it strictly decreases. In Figure 2(a) and
2(b) the strip s; corresponds to the decreasing half of the function in Figure
2(c) and s3 to the increasing half. Similarly with the strips of (ps, ps), so
corresponds to the increasing half and s to the decreasing half. Thus the
order of the strips at d* is the order in which the line d = d* intersects their

functions, and the width values at the intersection points of the two functions

15

? p2 s4
53 3
51 s
(a)
pl‘s vy . .
; h . L]
B “sa - pa;
.
(b)
d
dy
d2
0 01 0> T 0
(c)

Figure 2: Slope ordering for the comparison of (p;,p2) and (ps, ps): (a) strips
s1 and sy are parallel for some d, (b) the ordering of the slopes at d*, (¢) d
as a function of

16

consist of the critical values for these two pairs of points.

For case (b) assume the pair (pi,p;) belongs to a strip of S. We sim-
ply cyclically shift the function of (p1,p2) (of S) by 7/2. The intersection
points of the functions are now at two values of d" where the two strips are
perpendicular to each other, and all the rest of the argument is analogous.
Note: We have to be a little more careful here about the notion of the
domain of definition of the functions, and we might want to break the domain
of definition of the functions also at # = 0. This is a slight formality that we
neglect since it does not change anything in the analysis.

The closed interval I is always guaranteed to contain d* but we need to

show that a comparison is made where d = d*.

Claim 3.2 If d* is not one of the special distances then the slope order of
the strips changes as d changes from values slightly smaller than d* to values

slightly larger than d*.

Proof. Observe again Figure 1. Clearly if d* is not one of the special distances
then it involves two pairs of points. In Figure 1(ii), (iii), (iv), the pairs are
the center point of the square paired with each of the two points on the
boundary of this square, and in Figure 1(v) the pairs are the center point of
each square paired with the point on the side of its square. None of these
cases represents a special distance, and hence the slopes of the strips are
monotone functions of their widths. These two monotone functions intersect
at d* thus in a small neighborhood of d* one function is above the other for

d < d* and below ford > d*. 11

17

Note that at some stage the optimal solution will appear on the boundary
of the interval I computed at that stage (it could even appear on the bound-
ary of Iy). However, once it appears, it will remain one of the endpoints of all
subsequently computed intervals. At the end, we run the decision algorithm
for the left endpoint of the final interval. If the answer is positive, then this

endpoint is d*, otherwise d* is the right endpoint of the final interval.

Theorem 3.3 Let P be a set of n points, we can find a pair of parallel
constrained squares whose union covers P and such that the area of the larger

square is minimized in O(n?log" n) time and O(n?) space.

4 Two constrained general squares

In this section the squares may rotate independently. We first state a sub-
problem whose solution is used as a subroutine in the full solution. Then
we present an algorithm for solving the decision problem. This algorithm is
used to perform a binary search over the sorted set of potential solutions,
producing the solution to the optimization problem.
The subproblem: Given a set P of n points in the plane and a point ¢,
find the minimum area square that is centered at ¢ and that covers P. The
square may rotate.

The algorithm for solving the subproblem is as follows. Assume ¢ is the
origin. Let be an angle in [0, 7). Consider the projections, z;(#) and y;(6),
of a point p; € P on the x-axis and y-axis, after rotating the axes by 6. If

the distance between p; and ¢ is d;, and the angle between the vector p; and

18

20

%

Figure 3: The functions z; and the lowest point (6, zp) on their upper enve-
lope

the z-axis at its initial position is 6;, then we have
z;(0) = d; cos(0; — 0) and y;(0) = d;sin(6; — 0) .

A square centered at ¢ rotated by angle 6 that has p; on its boundary
is of side length 2 x max{|z;(#)|, |y:(#)|}. Note that it is enough to rotate
the axes by angle 6,0 < < 7, in order to get all possible sizes of squares
centered at ¢ having p; on their boundary.

Observe the plane (6, z), on which we graph both zy; 1(0) = 2|z;(0)| and
20:(0) = 2|yi(#)|, i = 1,...n. We call the set of these 2n functions E,, and

depict them in Figure 3. It is easy to see that every pair of functions z;

and zj intersects at most twice. The upper envelope of the functions in E,

19

denotes, for each 6, the size z(f) of the smallest square (centered at ¢ and
rotated by @) that covers P, and the point (or two points) of P corresponding
to the function (or two functions) that attains (attain) the maximum at this
0 is the point (are the two points) of P on the boundary of the square. The
lowest point on this envelope gives the angle, the size, and the point(s) that
determine the minimal square. The upper envelope, and the lowest point on
it, can be computed in O(nlogn) time [19], and this is the runtime of the
solution of the subproblem above.

For the two squares decision problem we repeat some notations and ideas
from the previous section. Let (); be a square of the given area A centered
at p; € P. We define rotation events for (); as the angles at which points of
P enter or leave ();. Denote by U; the set of points not covered by (); at the
current rotation angle. Using the subproblem described above, we find the
smallest constrained square that covers U;, by computing n sets E;, where
E; is the set of 2|U;| functions associated with the center point p;.

We describe our algorithm for determining whether one of the constrained
centers is some fixed point p; € P. Then we apply this algorithm for each of
the points in P. Initially, at & = 0, we construct all the sets F;, so that each
set contains only the functions that correspond to the points in the initial U;.
The rotation events for this phase are those caused by a point of P entering
or leaving ;. At each rotation event we update U; and all the sets F;. We
then check whether there is a point on the upper envelope of one of the F;’s
which is below the line z = v/ A. If there exists a point (6, 20), 20 < VA on
the upper envelope of some Ej, then the square (); at its current position,

and the square (); at angle 0, are the solution to the decision problem.

20

Updating the upper envelopes corresponding to the sets E; turns out
to be time consuming, therefore we transform the problem of determining
whether one of the upper envelopes has a low enough point to a segment
stabbing problem as follows. Observe one set E;. If we draw a horizontal
line at z = v/ A, then each function curve in E; is cut into at most three
continuous subcurves, of which at most two lie below the line. We project
all the subcurves of F; that are below the line on the §-axis, obtaining a set
of segments. Assume the number of points in U; is k, then if (and only if)
there is a point 6, on the f-axis that is covered by 2k segments then there is
a square of the required size, of orientation 6, centered at p; which covers
the points of U;.

We construct a segment tree 7; [15] with O(n) leaves (for the segments
obtained from all potential curves in E;). Each node in the tree contains,
besides the standard segment information, the maximum cover of the node
(namely, the largest number of segments that can be stabbed in the range of
the node, for details see [15]). The root of the tree contains the mazimum
cover of the whole range 0 < 6 < 7. The size of one tree is O(n) and each
update is performed in time O(logn). Initially, at § = 0, we insert into T; the
segments corresponding to the curves of the points in U;, and check whether
the maximum cover equals twice the cardinality of U;. One update to U;
involves at most four segment updates in 7j.

We consider the time and space complexity of the algorithm. For one
point p; as a candidate center, the initial trees 7} are constructed in time
O(n*logn), occupying O(n?) space. There are O(n) rotation events for Q;,

and an update to one T} is performed in O(logn) time, totaling O(n*logn)

21

time for all rotation events and all T}’s. The space requirement is O(n?).
Applying the algorithm sequentially for all 7 in {1,...,n} gives O(n3logn)
runtime, while the space remains O(n?).

To find an optimal solution, we perform for each i as above the following.
Assume p; € P is one of the two centers in the solution. The corresponding
square is defined either by another point of P in its corner, or by two points
of P on its boundary. So we compute the O(n?) potential area sizes with p; as
the center. We sort the area sizes and apply binary search to find the smallest
area squares that cover P with p; as one of the centers in the solution. At
each of the O(logn) search steps, we apply the decision algorithm above (just
with p; as one of the centers). We perform this search for all i € {1,...,n}.

We have shown:

Theorem 4.1 Given a set P of n input points we can find a pair of general
constrained squares whose union covers P and such that the area of the larger

square is minimized in O(n®log?n) time and O(n?) space.

Acknowledgments

We express our thanks to Paul Chew for helpful discussions.

References

[1] P. Agarwal and M. Sharir, “Planar geometric location problems”, Algorithmica
11 (1994), 185-195.

[2] P. Agarwal, M. Sharir, E. Welzl, “The discrete 2-center problem”, Proc. 13th
ACM Symp. on Computational Geometry, 147-155, 1997.

[3] R. Cole, “Parallel merge sort”, SIAM J. Computing 17(4) (1988), 770-785.

22

[4] M. de Berg, M. van Kreveld, M. Overmars and O. Schwartzkopf, Computational
Geometry, Algorithms and Applications, Springer-Verlag, 1997.

[5] L. Danzer and B. Griinbaum, “Intersection properties of boxes in R%”, Com-
binatorica 2(3) (1982), 237-246.

6| O. Devillers and M.J. Katz, “Optimal line bipartitions of point sets”, Int. J.
[, “Op P p :
Comput. Geom. and Appls, to appear.

[7] D. Eppstein, “Faster construction of planar two-centers”, Proc. 8th ACM-
SIAM Symp. on Discrete Algorithms, 131-138, 1997.

[8] G.N. Frederickson and D.B. Johnson, “Generalized selection and ranking:
sorted matrices”, SIAM J. Computing 13 (1984), 14-30.

9] A. Glozman, K. Kedem and G. Shpitalnik, “Efficient solution of the two-line
center problem and other geometric problems via sorted matrices”, Proc. 4th

Workshop Algorithms Data Struct., Lecture Notes in Computer Science (955),
26-37, 1995.

[10] J.W. Jaromczyk and M. Kowaluk, “Orientation independent covering of point
sets in R? with pairs of rectangles or optimal squares”, Proc. European Workshop
on Computational Geometry, Lecture Notes in Computer Science (871), 71-78,
1996.

[11] J.W. Jaromczyk and M. Kowaluk, “The two-line center problem from a polar
view: A new algorithm and data structure”, Proc. Jth Workshop Algorithms
Data Struct., Lecture Notes in Computer Science (955), 13-25, 1995.

[12] M.J. Katz and F. Nielsen, “On piercing sets of objects”, Proc. 12th ACM
Symp. on Computational Geometry, 113-121, 1996.

[13] M.J. Katz and M. Sharir, “An expander-based approach to geometric opti-
mization”, SIAM J. Computing 26 (1997), 1384-1408.

[14] N. Megiddo, “Applying parallel computation algorithms in the design of serial
algorithms”, J. ACM 30 (1983), 852—-865.

[15] K. Mehlhorn, Multi-dimensional Searching and Computational Geometry, in
“Data Structures and Algorithms”, vol. 3, Springer-Verlag, 1984.

[16] M.H. Overmars and J. van Leeuwen, “Maintenance of configurations in the
plane”, J. Comput. Syst. Sci. 23 (1981), 166-204.

23

[17] M. Segal, “On the piercing of axis-parallel rectangles and rings”, Proc. 5th
European Symp. on Algorithms, Lecture Notes in Computer Science (1284),
430-442, 1997.

[18] M. Sharir, “A near-linear algorithm for the planar 2-center problem”, Discrete
Comput. Geom. 18 (1997), 125-134.

[19] M. Sharir and P. Agarwal, Davenport-Shintzel sequences and their applica-
tions, Cambridge University Press, New-York, 1995.

[20] M. Sharir and E. Welzl, “Rectilinear and polygonal p-piercing and p-center
problems”, Proc. 12th ACM Symp. on Computational Geometry, 122-132, 1996.

24

