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We all a square onstrained if its enter lies on one of the input points. Inpartiular, we solve the following problems:1. Find two onstrained axis-parallel squares whose union overs P , so asto minimize the size of the larger square. We present an O(n log2 n)-time algorithm; its spae requirement is O(n logn).2. Find two onstrained parallel squares whose union overs P , so as tominimize the size of the larger square. The squares are allowed torotate but must remain parallel to eah other. Our algorithm runs inO(n2 log4 n) time and uses O(n2) spae.3. Find two onstrained squares whose union overs P , so as to minimizethe size of the larger square, where eah square is allowed to rotate inde-pendently. We present an O(n3 log2 n)-time and O(n2)-spae algorithmfor this problem.The problems above ontinue a list of optimization problems that deal withovering a set of points in the plane by two geometri objets of the sametype. We mention some of them: The two enter problem, solved in timeO(n log9 n) by Sharir [18℄, and reently in time O(n log2 n) by Eppstein [7℄(by a randomized algorithm); the onstrained two enter problem, solved intime O(n 43 log5 n) by Agarwal et al. [2℄; the two line-enter problem, solved intime O(n2 log2 n) by Jaromzyk and Kowaluk [11℄ (see also [9, 13℄); the twosquare-enter problem, where the squares are with mutually parallel sides(the unonstrained version of Problem 2 above), solved in time O(n2) byJaromzyk and Kowaluk [10℄. 2



We employ a variety of tehniques to solve these optimization problems.The deision algorithm of Problem 1 searhes for the enters of a solutionpair (of squares) in an impliit speial matrix, using a tehnique that hasreently been used in [6, 18℄. To �nd an optimal solution, a searh in aolletion of sorted matries [8℄ is performed.The deision algorithm of Problem 2 involves maintenane of dynamiallyhanging onvex hulls, and maintenane of an orthogonal range searh treethat must adapt to a rotating axes system. For the optimization, we applyMegiddo's [14℄ parametri searh. However, sine our deision algorithm isnot parallelizable, we had to �nd an algorithm that solves a ompletely dif-ferent problem, but is both parallelizable and enables to generate the optimalsquare size when the parametri searh tehnique is applied to it.In Problem 3 we desribe the sizes of andidate solution squares as a ol-letion of urves. For a dynamially hanging set of suh urves, we transformthe problem of determining whether their upper envelope has a point belowsome horizontal line, into the problem of stabbing a dynamially hangingset of segments. The latter problem is solved using a (dynami) segmenttree.2 Two onstrained axis-parallel squaresWe are given a set P of n points in the plane, and wish to �nd two axis-parallel squares, entered at points of P , whose union overs (ontains) P ,suh that the area of the larger square is minimal. We �rst transform theorresponding deision problem into a onstrained 2-piering problem, whih3



we solve in O(n logn) time. We then apply the algorithm of Frederiksonand Johnson [8℄ to �nd an optimal solution.2.1 The deision algorithmThe deision problem is stated as follows: Given a set P of n points, arethere two onstrained axis-parallel squares, eah of a given area A, whoseunion overs P . We present an O(n logn) algorithm for solving the deisionproblem.We adopt the notation of [20℄ (see also [12, 17℄). Denote by R the set ofaxis-parallel squares of area A entered at the points of P . R is p-piereableif there exists a set X of p points whih intersets eah of the squares in R.The set X is alled a piering set for R. Notie that X is a piering set for Rif and only if the union of the axis-parallel squares of area A entered at thepoints of X overs P . R is p-onstrained piereable if there exists a pieringset of p points whih is ontained in P . Thus, solving the deision problemis equivalent to determining whether R is 2-onstrained piereable.We �rst ompute the retangle R = \R. If R is not empty then Ris 1-piereable, and we hek whether it is also 1-onstrained piereable byheking whether P has a point in R. If R is 1-onstrained piereable thenwe are done, so assume that it is not. If R was not found to be 1-piereable,then we apply the linear time algorithm of [20℄ (see also [5℄) to hek whetherR is 2-piereable. IfR is neither 1-piereable nor 2-piereable, then obviouslyR is not 2-onstrained piereable and we are done. Assume therefore that Ris 2-piereable (or 1-piereable).Assume R is 2-onstrained piereable, and let p1; p2 2 P be a pair of4



piering points for R. We assume that p1 lies to the left of and below p2.(The ase where p1 lies to the left of and above p2 is treated analogously.)We next show that R an be divided into two subsets R1;R2, suh that (i)p1 2 \R1, p2 2 \R2, and (ii) R1 (alternatively R2) an be represented in away that will assist us in the searh for p1 and p2.Denote by XR the enters of the squares in R (the points in P ) sortedby their x-oordinate (left to right), and by YR the enters of the squares inR sorted by their y-oordinate (low to high). We now laim:Claim 2.1 If p1 and p2 are as above, then R an be divided into two sub-sets R1 and R2, p1 2 \R1, p2 2 \R2, suh that R1 an be represented asthe union of two subsets Rx1 and Ry1 (not neessarily disjoint, and one ofthem might be empty), where the enters of squares of Rx1 form a onseutivesubsequene of the list XR, starting from its beginning, and the enters ofsquares of Ry1 form a onseutive subsequene of YR, starting from the list'sbeginning.Proof. We prove by onstruting the sets Rx1 and Ry1, and then puttingR1 = Rx1 [Ry1 and R2 = R�R1. We next show that indeed p1 2 \R1 andp2 2 \R2.We onsider the enters in YR, one by one, in inreasing order, until aenter is enountered whose orresponding square A is not piered by p1. Ry1onsists of all squares in YR below A (i.e., preeding A in YR). A might bethe �rst square in YR, in whih ase Ry1 is empty. We now �nd the loationof the x-oordinate of the enter of A in XR, and start moving from thispoint leftwards, i.e., in dereasing order. Thus moving, we either enounter5



a square, all it B, that is higher than A and is not piered by p2, or we donot.If we do not enounter suh a square B (whih is learly the ase if thebottom edge of A lies above p1), then put Rx1 = ;, otherwise Rx1 onsists ofall squares in XR to the left of B inluding B.It remains to show that p1 2 \R1 and that p2 2 \R2. We assume thatthe square B exists, whih is the slightly more diÆult ase. We �rst showthe former assertion, i.e., p1 2 \R1. The fat that p2 is not in B impliesthat p2 lies to the right of the right edge of B, beause B annot lie belowp2 sine it is higher than A whih is already piered by p2. Therefore noneof the squares in Rx1 is piered by p2 thus p1 2 \Rx1 . By our onstrution,p1 2 \Ry1, so together we have p1 2 \R1. Now onsider a square C 2 R2,C 6= A. C is higher than A, beause it is not in Ry1. Therefore if C is notpiered by p2, then C must lie to the left of A. But if so, it is in Rx1 and thusnot in R2.The laim above reveals a monotoniity property that allows us to designan eÆient algorithm for the deision problem. We employ a tehnique, dueto Sharir [18℄, that resembles searhing in monotone matries; for a reentappliation and re�nement of this tehnique, see [6℄. Let M be an n � nmatrix whose rows orrespond to XR and whose olumns orrespond to YR.An entryMxy in the matrix is de�ned as follows. Let Dx be the set of squaresin R suh that the x-oordinate of their enters is smaller or equal to x, andlet Dy be the set of squares in R suh that the y-oordinate of their enters
6



is smaller or equal to y. Let Dlxy = Dx [Dy and Drxy = (R�Dlxy).Mxy = 8>>><>>>: `Y Y 0 if both Drxy and Dlxy are 1-onstrained piereable`Y N 0 if Drxy is 1-onstrained piereable but Dlxy is not`NY 0 if Drxy is not 1-onstrained piereable but Dlxy is`NN 0 if neither Drxy nor Dlxy is 1-onstrained piereableSharir's tehnique enables us to determine whether M ontains an entryof the form `YY' without having to onstrut the entire matrix. In order toapply his tehnique the lines and olumns ofM1 must be non-dereasing (as-suming `Y' > `N'), and the lines and olumns of M2 must be non-inreasing,where M i is the matrix obtained from M by piking from eah entry onlythe i'th letter, i = 1; 2. In our ase this property learly holds, sine, for ex-ample, if for some x0 and y0, M1x0;y0 =`Y', then for any x0 � x0 and y0 � y0,M1x0;y0=`Y'. Thus we an determine whether M ontains an entry `YY' byinspeting only O(n) entries in M , advaning along a onneted path withinM [6℄. For eah entry along this path, we need to determine whether Dzxyis 1-onstrained piereable, z 2 fl; rg. This an be done easily in O(logn)time by maintaining dynamially the intersetion \Dzxy, and utilizing a stan-dard orthogonal range searhing data struture of size O(n logn) [4℄. Thusin O(n logn) time we an determine whether M ontains a `YY' entry.Theorem 2.2 Given a set P of n input points and area A, one an �ndtwo onstrained axis-parallel squares of area A eah that over P in timeO(n logn) using O(n logn) spae.We have just found whether a set of equal-sized squares is 2-piereable bytwo of their enters. For the optimization, we shrink these squares as muhas possible, so that they remain 2-onstrained piereable.7



2.2 OptimizationFor solving the optimization problem we observe that eah L1 distane (mul-tiplied by 2 and squared) an be a potential area solution. We an repre-sent all L1 distanes as in [9℄ by sorted matries. We sort all the pointsof P in x and y diretions. Entry (i; j) in the matrix M1 stores the value4(xj � xi)2, where xi; xj are the x-oordinates of the points with indies i; jin the sorted x-order, and, similarly, entry (i; j) in the matrix M2 stores thevalue 4(yj � yi)2, where yi; yj are the y-oordinates of the points with in-dies i; j in the sorted y-order. We then apply the Frederikson and Johnsonalgorithm [8℄ to M1 and M2 and obtain the smallest value in the matriesfor whih the deision algorithm answers \Yes" and thus obtain the optimalsolution. We have shown:Theorem 2.3 Given a set P of n input points, one an �nd two onstrainedaxis-parallel squares that over all the input points suh that the size of thelarger square is minimized in O(n log2 n) time using O(n logn) spae.3 Two onstrained parallel squaresIn this setion we deal with the following problem. Given a set P of n pointsin the plane, �nd a pair of parallel onstrained squares whose union ontainsP , so as to minimize the area (equivalently, the side length) of the largersquare. The problem where the squares are not onstrained was reentlysolved by Jaromzyk and Kowaluk [10℄ in O(n2) time using O(n2) spae.We �rst solve the deision problem for squares with a given areaA in timeO(n2 log2 n) and O(n2) spae. For the optimization, we present a parallel8



version of another algorithm (solving a di�erent problem), to whih we applyMegiddo's parametri searh [14℄ to obtain an O(n2 log4 n) time and O(n2)spae optimization algorithm.3.1 The deision algorithmFor eah of the input points, pi 2 P , draw an axis-aligned square Qi of areaA, entered at pi. For eah pi denote by Ui the set of points in P that arenot overed by Qi. If, for some i, there is a onstrained axis-aligned square ofarea A whih overs Ui, then we are done. Otherwise, we rotate the squaresfQi j i = 1; : : : ; ng simultaneously about their enters, stopping at ertainrotation events to hek if any of the orresponding Ui's an be overed by aparallel square of area A, and halting when the answer is \yes".A rotation event ours whenever a point of P enters or leaves a squareQi, i = 1 : : : n. When a square Qi rotates by �2 from its initial axis-alignedposition, every point of P enters and leaves Qi at most one. Thus, thenumber of rotation events for Qi is O(n). For all the points in P we anpreompute all the O(n2) rotation events in O(n2) time with O(n2) spae.We sort the rotation events aording to their orresponding angles.We ompute the initial onvex hulls for eah Ui, i = 1; : : : ; n (i.e., atorientation � = 0), and start rotating the squares till we get to the nextrotation event. Assume that at the urrent rotation event a point pj entersQi. (The ase where a point pj leaves Qi is treated similarly.) The set Uiand its onvex hull are updated as pj leaves Ui, and we hek whether thereexists a onstrained over of P involving Qi and another onstrained square(that overs Ui). 9



We explain how this is done for one square Qi at orientation � = 0. Firstwe �nd the tangents of the onvex hull of Ui that are parallel to the sidesof Qi. They de�ne a retangle R whih is the bounding box of Ui. If R hasa side of length greater than pA, then none of the other n � 1 onstrainedsquares overs Ui. Otherwise we de�ne a searh region C whih is the lousof all points of L1 distane at most pA2 from all four sides of R, and searhfor a point of P in C. (Clearly C is a retangle whose sides are parallel to thesides of Qi.) We perform orthogonal range searhing to determine whetherthere is a point of P in C. If there exists suh a point then the answer tothe deision problem is \yes".Assume we have omputed all the rotation events and have O(n2) retan-gular searh regions assoiated with them. (Assume the oordinate systemrotates together with the rotating squares fQig, thus, at any rotation event,the orresponding retangular searh region is parallel to the urrent axes.)In order to perform orthogonal range searh on the retangular regions we usea dynami orthogonal range searh tree whih is updated at ertain rotationevents as follows.Denote by L the list of all O(n2) lines passing through pairs of points inP . Let S onsist of all the slopes of lines in L that lie in the range [0; �=2),and of all the slopes in the range [0; �=2) of lines that are perpendiular tothe lines in L. We sort S, obtaining the sorted sequene f�1; �2; : : :g. Werotate the axes so that the x-axis has slope �1, and ompute an orthogonalrange searh tree for P with respet to the rotated axes, storing just thelabels of the points of P in the tree. For eah searh region whose side slopeis between �1 and �2 we perform a usual range searh with this tree. Before10



onsidering the next searh regions, we rotate the axes some more until thex-axis has slope �2. Notie that just one pair of points in P has swapped in xor y order in this angle range. We update the range searh tree aordingly:Assuming the leaves of the main struture in the range tree are sorted by x-oordinate, and the leaves in the seondary trees are sorted by y-oordinate.If, when moving from �1 to �2, the swap ourred in the x-order of the pairof points, then we swap the (labeling of the) points in the main struture andin the seondary strutures a�eted by that swap; if the swap ourred inthe y-order, then we swap the labeling in the a�eted seondary strutures.Now we an proeed with the searh ranges whose sides have slopes between�2 and �3. And so on.We analyze the time and spae required for the deision algorithm. Thetotal number of rotation events is O(n2). They an be preomputed andsorted in O(n2 logn) time with O(n2) spae. Similarly S an be obtainedand sorted within the same bounds. Merging the two sets of slopes (rotationevents and S) is done in time O(n2). Initially omputing the onvex hullsfor all sets Ui takes O(n2 logn) time with O(n2) spae. Applying the datastruture and algorithm of Overmars and van Leeuwen [16℄, eah update ofa onvex hull takes O(log2 n) time, totaling in O(n2 log2 n) time and O(n2)spae for all rotation events. Our range searhing algorithm takes O(log2 n)time per query and per update, after spending O(n logn) preproessing timeand using O(n logn) spae (notie that this is the total spae requirementfor the range searhing), and we perform O(n2) queries and updates. Thuswe have shown: 11



(iii) (iv)(ii)(i) (v)Figure 1: Critial events that determine andidate square sizes. Cases (i) {(iv) involve a single square, and ase (v) two squares.Theorem 3.1 Given a set P of n points and an area A, one an deidewhether P an be overed by two onstrained parallel squares, eah of areaA, in O(n2 log2 n) time and O(n2) spae.3.2 OptimizationHaving provided a solution to the deision problem, we now return to theminimization problem. The number of andidate square sizes is O(n4) (seebelow and Figure 1). The andidate sizes are determined by either� A point of P as a enter of a square (see Figure 1(i){(iv)) and either(i) another point of P on a orner of this square, or (ii) two points ofP on parallel sides of the square, or (iii) two points of P on one side ofthe square, or (iv) two points of P on adjaent sides of the square, or� Two points of P as enters of two squares and another point of P onthe boundary of eah of the squares (Figure 1(v)).In order to apply the Megiddo optimization sheme we have to parallelize ourdeision algorithm. However, the range searhing part of the deision algo-rithm is not parallelizable, so, as in [1℄, we ome up with an auxiliary problemwhose parallel version will generate the optimal solution to our problem.12



The auxiliary problem is desribed as follows. Assume we have a set Pof n > 2 points and a �xed size d. Assume we have produed the set ofstrips suh that eah strip is of width d and ontains at least one point of Pon eah of its boundaries. In this situation a point on one boundary mightstand for the square enter and the point on the other boundary is the oneon the side of the square. Maintain the set of strips by storing their slopesand the orresponding pairs of points that de�ne them in S. Let �S be theset of slopes obtained by the slopes of S by adding �=2 (mod �). With eahslope in �S we store the pair of points assoiated with the orresponding slopein S.A slope �s 2 �S stands for a pair of square sides perpendiular to the onesde�ned by its orresponding slope s 2 S. So that if two perpendiular slopes,s1 and s2 (in S) de�ne a square (as in Figure 1 (i),(iv) and (v)), then s1 and�s2 are equal. The set of squares thus de�ned is a superset of the andidatesolution squares as de�ned above. Let S = S[ �S be a set of slopes with theirassoiated point pairs. The auxiliary problem is to sort the slopes in S.Clearly not all pairs of points in P de�ne strips, and thus slopes, in S.A pair of points in P whose distane is smaller than d will not generate therequired width strip. For every pair of points in P whose distane from eahother is larger than d, there are exatly two slopes for whih the width of thestrip, with a point of this pair on eah of its boundaries, is d. We add theseslopes (and their �S orresponding slopes) to S. Reporting the sorted orderof S an be done in O(n2 logn) time, and a parallel algorithm with O(n2)proessors will sort the list in O(logn) time [3℄.We now want to (generially) apply this parallel sort algorithm for �nding13



the optimal square size d�. For this we �rst augment our algorithm, as in[1℄, and get an initial interval where d� resides. We perform a preliminarystage that disposes of the ases in whih the width of the strip is exatlythe distane between two points of P , and those in whih the width is thedistane between two points multiplied by p2=2. We all these distanesspeial distanes. We an a�ord to list all these O(n2) strip widths, sortthem, and perform a binary searh for d� over them, applying our deisionalgorithm of the previous subsetion at eah of the omparisons. This resultsin an initial losed interval of real numbers, I0, that ontains the optimalsquare size d�, and none of the just omputed speial sizes is ontained in itsinterior.Consider now a single step in the parallel sort (the auxiliary problem).In this step we perform O(n2) slope omparisons, eah omparison involvingtwo pairs of points. There are two ases: (a) the two ompared slopes arefrom S (or both are in �S), and (b) one slope is in S and the other in �S. Letone suh omparison involve the pairs (p1; p2) and (p3; p4). In order to resolvethis omparison, we must ompute for the point pair (p1; p2) the slopes of thetwo strips of width d� that have p1 on one boundary of the strip and p2 on theother. Similarly, we ompute the slopes of the two strips of width d� through(p3; p4). Then we sort the four strips by their slopes. Of ourse, we do notknow d�, so we ompute the (at most two) ritial values d where the sortedorder of the four strips hanges, namely, for ase (a) above, where the twostrips are parallel, and for ase (b), when the two strips are perpendiularto eah other. We do this for all O(n2) ritial value omparisons. Now weapply the deision algorithm of the subsetion above to perform a binary14



searh over the O(n2) ritial values that were omputed. Thus we �nd aninterval I � I0 where d� resides, resolve all the omparisons of this parallelstage, and proeed to the next parallel stage.What does resolving mean here? See Figure 2 whih depits ase (a). Ifthe omparison was made for two pairs of points (p1; p2) and (p3; p4) then,if the distane between a pair of points, d1 = (p1; p2) or d2 = (p3; p4), issmaller than the smaller endpoint of the urrent interval I then this pair willnot have a strip of width d� and it is omitted from the rest of the sort. Ifthe distane is larger than the smaller endpoint of I then the slope orderingof the four strips at d� is uniquely determined as follows. In Figure 2(a)the strips s1 and s2 are parallel at some width d0, and in Figure 2(b) weplot the strips of width d� for the two pairs of points. In Figure 2() wegraph d as a funtion of � 2 [0; �) for the two pairs of points. The graph ofd = d1 os(���1) ahieves its maximum at (�1; d1), and similarly the graph ofd = d2 os(���2) ahieves its maximum at (�2; d2), where �1 (�2) is the anglethat the line perpendiular to the line through (p1; p2) ((p3; p4)) makes withthe positive x-axis. It is easy to see that for every d eah pair of points hastwo strips and that the two funtions interset at two points. We split thedomain of de�nition of eah funtion to two parts, one in whih the funtionstritly inreases and one in whih it stritly dereases. In Figure 2(a) and2(b) the strip s1 orresponds to the dereasing half of the funtion in Figure2() and s3 to the inreasing half. Similarly with the strips of (p3; p4), s2orresponds to the inreasing half and s4 to the dereasing half. Thus theorder of the strips at d� is the order in whih the line d = d� intersets theirfuntions, and the width values at the intersetion points of the two funtions15
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()Figure 2: Slope ordering for the omparison of (p1; p2) and (p3; p4): (a) stripss1 and s2 are parallel for some d, (b) the ordering of the slopes at d�, () das a funtion of �
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onsist of the ritial values for these two pairs of points.For ase (b) assume the pair (p1; p2) belongs to a strip of �S. We sim-ply ylially shift the funtion of (p1; p2) (of S) by �=2. The intersetionpoints of the funtions are now at two values of d0 where the two strips areperpendiular to eah other, and all the rest of the argument is analogous.Note: We have to be a little more areful here about the notion of thedomain of de�nition of the funtions, and we might want to break the domainof de�nition of the funtions also at � = 0. This is a slight formality that weneglet sine it does not hange anything in the analysis.The losed interval I is always guaranteed to ontain d� but we need toshow that a omparison is made where d = d�.Claim 3.2 If d� is not one of the speial distanes then the slope order ofthe strips hanges as d hanges from values slightly smaller than d� to valuesslightly larger than d�.Proof. Observe again Figure 1. Clearly if d� is not one of the speial distanesthen it involves two pairs of points. In Figure 1(ii), (iii), (iv), the pairs arethe enter point of the square paired with eah of the two points on theboundary of this square, and in Figure 1(v) the pairs are the enter point ofeah square paired with the point on the side of its square. None of theseases represents a speial distane, and hene the slopes of the strips aremonotone funtions of their widths. These two monotone funtions intersetat d� thus in a small neighborhood of d� one funtion is above the other ford < d� and below for d > d� . 17



Note that at some stage the optimal solution will appear on the boundaryof the interval I omputed at that stage (it ould even appear on the bound-ary of I0). However, one it appears, it will remain one of the endpoints of allsubsequently omputed intervals. At the end, we run the deision algorithmfor the left endpoint of the �nal interval. If the answer is positive, then thisendpoint is d�, otherwise d� is the right endpoint of the �nal interval.Theorem 3.3 Let P be a set of n points, we an �nd a pair of parallelonstrained squares whose union overs P and suh that the area of the largersquare is minimized in O(n2 log4 n) time and O(n2) spae.4 Two onstrained general squaresIn this setion the squares may rotate independently. We �rst state a sub-problem whose solution is used as a subroutine in the full solution. Thenwe present an algorithm for solving the deision problem. This algorithm isused to perform a binary searh over the sorted set of potential solutions,produing the solution to the optimization problem.The subproblem: Given a set P of n points in the plane and a point q,�nd the minimum area square that is entered at q and that overs P . Thesquare may rotate.The algorithm for solving the subproblem is as follows. Assume q is theorigin. Let � be an angle in [0; �2 ). Consider the projetions, xi(�) and yi(�),of a point pi 2 P on the x-axis and y-axis, after rotating the axes by �. Ifthe distane between pi and q is di, and the angle between the vetor pi and18



�
z0

�0

z(�)

Figure 3: The funtions zi and the lowest point (�0; z0) on their upper enve-lopethe x-axis at its initial position is �i, then we havexi(�) = di os(�i � �) and yi(�) = di sin(�i � �) :A square entered at q rotated by angle � that has pi on its boundaryis of side length 2 � maxfjxi(�)j; jyi(�)jg. Note that it is enough to rotatethe axes by angle �; 0 � � < �2 , in order to get all possible sizes of squaresentered at q having pi on their boundary.Observe the plane (�; z), on whih we graph both z2i�1(�) = 2jxi(�)j andz2i(�) = 2jyi(�)j, i = 1; : : : n. We all the set of these 2n funtions Eq, anddepit them in Figure 3. It is easy to see that every pair of funtions zjand zk intersets at most twie. The upper envelope of the funtions in Eq19



denotes, for eah �, the size z(�) of the smallest square (entered at q androtated by �) that overs P , and the point (or two points) of P orrespondingto the funtion (or two funtions) that attains (attain) the maximum at this� is the point (are the two points) of P on the boundary of the square. Thelowest point on this envelope gives the angle, the size, and the point(s) thatdetermine the minimal square. The upper envelope, and the lowest point onit, an be omputed in O(n logn) time [19℄, and this is the runtime of thesolution of the subproblem above.For the two squares deision problem we repeat some notations and ideasfrom the previous setion. Let Qi be a square of the given area A enteredat pi 2 P . We de�ne rotation events for Qi as the angles at whih points ofP enter or leave Qi. Denote by Ui the set of points not overed by Qi at theurrent rotation angle. Using the subproblem desribed above, we �nd thesmallest onstrained square that overs Ui, by omputing n sets Ej, whereEj is the set of 2jUij funtions assoiated with the enter point pj.We desribe our algorithm for determining whether one of the onstrainedenters is some �xed point pi 2 P . Then we apply this algorithm for eah ofthe points in P . Initially, at � = 0, we onstrut all the sets Ej, so that eahset ontains only the funtions that orrespond to the points in the initial Ui.The rotation events for this phase are those aused by a point of P enteringor leaving Qi. At eah rotation event we update Ui and all the sets Ej. Wethen hek whether there is a point on the upper envelope of one of the Ej'swhih is below the line z = pA. If there exists a point (�0; z0), z0 � pA onthe upper envelope of some Ej, then the square Qi at its urrent position,and the square Qj at angle �0 are the solution to the deision problem.20



Updating the upper envelopes orresponding to the sets Ej turns outto be time onsuming, therefore we transform the problem of determiningwhether one of the upper envelopes has a low enough point to a segmentstabbing problem as follows. Observe one set Ej. If we draw a horizontalline at z = pA, then eah funtion urve in Ej is ut into at most threeontinuous suburves, of whih at most two lie below the line. We projetall the suburves of Ej that are below the line on the �-axis, obtaining a setof segments. Assume the number of points in Ui is k, then if (and only if)there is a point �0 on the �-axis that is overed by 2k segments then there isa square of the required size, of orientation �0, entered at pj whih oversthe points of Ui.We onstrut a segment tree Tj [15℄ with O(n) leaves (for the segmentsobtained from all potential urves in Ej). Eah node in the tree ontains,besides the standard segment information, the maximum over of the node(namely, the largest number of segments that an be stabbed in the range ofthe node, for details see [15℄). The root of the tree ontains the maximumover of the whole range 0 � � < �2 . The size of one tree is O(n) and eahupdate is performed in time O(logn). Initially, at � = 0, we insert into Tj thesegments orresponding to the urves of the points in Ui, and hek whetherthe maximum over equals twie the ardinality of Ui. One update to Uiinvolves at most four segment updates in Tj.We onsider the time and spae omplexity of the algorithm. For onepoint pi as a andidate enter, the initial trees Tj are onstruted in timeO(n2 logn), oupying O(n2) spae. There are O(n) rotation events for Qi,and an update to one Tj is performed in O(logn) time, totaling O(n2 logn)21



time for all rotation events and all Tj's. The spae requirement is O(n2).Applying the algorithm sequentially for all i in f1; : : : ; ng gives O(n3 logn)runtime, while the spae remains O(n2).To �nd an optimal solution, we perform for eah i as above the following.Assume pi 2 P is one of the two enters in the solution. The orrespondingsquare is de�ned either by another point of P in its orner, or by two pointsof P on its boundary. So we ompute the O(n2) potential area sizes with pi asthe enter. We sort the area sizes and apply binary searh to �nd the smallestarea squares that over P with pi as one of the enters in the solution. Ateah of the O(logn) searh steps, we apply the deision algorithm above (justwith pi as one of the enters). We perform this searh for all i 2 f1; : : : ; ng.We have shown:Theorem 4.1 Given a set P of n input points we an �nd a pair of generalonstrained squares whose union overs P and suh that the area of the largersquare is minimized in O(n3 log2 n) time and O(n2) spae.AknowledgmentsWe express our thanks to Paul Chew for helpful disussions.Referenes[1℄ P. Agarwal and M. Sharir, \Planar geometri loation problems", Algorithmia11 (1994), 185{195.[2℄ P. Agarwal, M. Sharir, E. Welzl, \The disrete 2-enter problem", Pro. 13thACM Symp. on Computational Geometry , 147{155, 1997.[3℄ R. Cole, \Parallel merge sort", SIAM J. Computing 17(4) (1988), 770{785.22
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