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We study the problem of spanner construction in wireless ad-hoc networks through power assignments under
two spanner models – distance and energy. In particular, we are interested in asymmetric power assignments
so that the induced communication graph holds good distance and energy stretch factors simultaneously. In
addition, we consider the following optimization objectives: low total energy consumption, low interference

level, low hop-diameter, and high network lifetime.
Two node deployment scenarios are studied: random and deterministic. For n random nodes distributed

uniformly and independently in a unit square we present several power assignments with varying construc-

tion time complexities. The results are based on various geometric properties of random points and shortest
path tree constructions. Due to the probabilistic nature of this scenario, the probability of our results
converges to one as the number of network nodes, n, increases. For the deterministic case we present two
power assignments with non-trivial bounds. These are established on addition of shortcut edges that satisfy

desired threshold stretch. To the best of our knowledge, these are the first results for spanner construction
in wireless ad-hoc networks with provable bounds for both, energy and distance, metrics simultaneously.
Our power assignments, in addition, try optimizing additional network properties such as network lifetime,
interference, and hop-diameter.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architecture and De-
sign—Network topology; G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms; Network problems

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Geometric and energy spanners, Approximation algorithms

1. INTRODUCTION

A wireless ad-hoc network consists of transceivers (nodes) which are located in the plane and
communicate by radio. In contrast to wired networks, wireless ad-hoc networks have no fixed
communication backbone. The temporary physical topology of the network is determined by
the relative disposition of the wireless nodes, and the transmission range assignment of each
of the nodes. The combination of these two factors produces a directed communication graph
where the nodes correspond to the transceivers and the edges correspond to the communica-
tion links.

The transmission range of each node is determined by the assigned transmission power.
It is common to assume that a transmission from node u can be received at node v if the
transmission power of u is at least d(u, v)α, where d(u, v) is the Euclidean distance between
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u and v, and α is the distance-power gradient, usually taken to be in the interval [2, 4] (see
[Pahlavan and Levesque 1995]).

Unlike nodes in wired networks, wireless devices are typically equipped with limited en-
ergy supplies, which are usually impossible or impractical to replenish. This makes energy
efficiency one of the primary objectives in network design [Chandrakasan et al. 1999]. One
of the most studied topology control problems in the context of energy preservation in wire-
less networks is the minimum energy strong connectivity problem:1 given a set of nodes in
the plane, find a power assignment so that the induced communication graph is strongly con-
nected and the total energy consumption (also referred to as cost) is minimized.

Producing a strongly connected communication graph for wireless ad-hoc networks, through
power assignments, was introduced by [Chen and Huang 1989] and has been studied since for
the past 20 years. This is not surprising as many applications in civilian, industrial and mili-
tary areas require a strongly connected underlying topology to carry out different networking
tasks [Römer and Mattern 2004]. The problem appears to be NP-hard [Clementi et al. 1999]
for the plane and polynomially solvable in the linear case (a special case when all the nodes
are placed along a line segment). Thus, the majority of existing works produce approxima-
tion algorithms that induce a strongly connected graph with an upper guarantee on the total
energy consumption (see [Chen and Huang 1989; Kirousis et al. 2000; Clementi et al. 2002;
Ramanathan and Hain 2000]).

As stated above, energy efficiency is fundamental for successful network deployment. How-
ever, there are additional factors which need to be taken into account. A key component in
the overall network performance is the efficiency of routing algorithms [Macker and Corson
1998]. There are many possible metrics to measure the efficiency of a routing algorithm, such
as power, hop-count and residual energy [Giordano et al. 2001]. Ultimately, each node has a
link to any other node in the system, so that the routing possibilities are unlimited and any
routing graph is feasible. Unfortunately, this assumption is far from being realistic; it is im-
practical and usually impossible to allow each node to have a transmission range sufficient to
reach all the other nodes. Instead, each node is assigned with enough power to reach only a
relatively small subset of nodes. As a result, the topology of the induced communication graph
has a strong effect on the routing algorithms efficiency. In this paper we focus on several key
properties of the induced communication graph as outlined below.

— Energy stretch factor: Let γu,v be the minimum energy required to send a message from u
to v (using other nodes if necessary). The energy spanner is aimed at minimizing the energy
stretch factor tE of the induced communication graph, i.e. for any u, v, the energy required to
propagate a message from u to v is at most tE · γu,v. The energy spanner model reflects the
power efficiency metric of routing protocols, which in the presence of constrained batteries
is essential for extending the network lifetime. A very good survey of power-aware routing
protocols in wireless networks can be found in [Lindsey et al. 2002].

— Distance stretch factor: The distance spanner minimizes the distance stretch factor tD
of the induced communication graph, that is for any pair of nodes, the minimum distance
path from u to v is at most tD · d(u, v). The distance stretch factor has a strong effect on
the quality of geographic routing protocols [Gao et al. 2001]. These protocols use greedy
forwarding decisions based on the geographic progress towards the destination, thus having
a low distance stretch factor in the underlying topology graph is essential for efficient and
successful geographic routing. For existing protocols using the geographic scheme see the
survey in [Giordano et al. 2001].

— Energy efficiency: Since the energy consumption of a single node is proportional to the
power it is assigned, a higher transmission range requires more energy, which grows non-

1A graph is strongly connected if for any pair of nodes, u, v, there is a path from u to v in the graph.
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linearly with the distance. Nodes in a wireless network are typically battery-powered and
have an initial battery charge which is sufficient for a limited amount of time. We evalu-
ate energy efficiency through two measures: total energy consumption and network lifetime,
which is defined as the time it takes the first node to run out of its initial battery charge.

— Hop-diameter: A low hop-diameter of the network allows faster data dissemination and
easier routing.

— Interference levels: As nodes communicate through radio transmissions – interference is
an inevitable consequence. Literally it means to what extent does a single transmission in-
terfere with other transmissions in the network, as a signal transmitted by one node may
disrupt other signals. The level of interference depends on the transmitting nodes proximity
and the transmission ranges. A high level of interference decreases the number of trans-
missions that can happen simultaneously, while increasing the number of retransmissions.
There are several common models for measuring the level of interference, all of which con-
verge to evaluating the transmissions schedule length.

The majority of routing (and other) network protocols were traditionally developed for undi-
rected graphs with symmetric (bidirectional) communication links. However, in wireless ad-
hoc networks it is not uncommon to have asymmetric (unidirectional) links due to non-uniform
background noise, non-uniform external interference and energy efficiency considerations.
Some recent research addressed this phenomenon by providing several approaches for var-
ious network tasks (e.g. [Gerla et al. 2005; Lin et al. 2008; Bao and Garcia-Luna-Aceves 2001;
Ramasubramanian et al. 2002; Zhang et al. 2008]). Moreover, [Moscibroda et al. 2006], proved
that network topologies preserving connectivity of the given communication network using
unidirectional links have significantly lower interference values and can therefore be sched-
uled much faster than connectivity preserving topologies using exclusively symmetric links.
This result sheds new light on the question of practicality of directed as opposed to symmetric
links in wireless ad-hoc and sensor networks: It shows that demanding communication links
to be symmetric theoretically incurs a high overhead when it comes to scheduling. In this
paper, we choose not to enforce symmetry over communication links, thus allowing unidirec-
tional links to exist, which addresses a more general and realistic model of wireless ad-hoc
networks.

We study the problem of topology control through power assignments so that the induced
communication graph is strongly connected under the optimization objectives of stretch factor
(for both models), energy efficiency, hop-diameter, and interference. We allow the nodes to
have arbitrary positions in R

2, while considering two cases.
Probabilistic case – We assume a random positioning of the wireless nodes so that they are
uniformly and independently placed inside the unit square. Our results for this case are with
high probability, or in short w.h.p., which means that the probability of the result converges to
one as the number of network nodes, n, increases. This assumption allows us to obtain better
results than in the deterministic case.
Deterministic case – We make no assumptions on the particular positions of the wireless
nodes, which makes the analysis more difficult.

This paper is organized as follows. In the rest of this section we present the model, discuss
previous work and describe our contribution. Then, in Section 2 we show our results for the
probabilistic case, followed by the deterministic case in Section 3. Section 4 outlines a possible
distributed implementation of our algorithms. We present our simulations results in Section 5.
Finally, in Section 6 we discuss some possible future research.

1.1. Model

Let GV = (V,EV ) be a complete directed graph of the wireless nodes V , |V | = n, positioned
in the plane. We define the weight function, w : EV → R

+, on the edge set EV as w(u, v) =
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d(u, v)α, where d(u, v) is the Euclidean distance between u and v. Note that the weight of an
edge (u, v) matches the amount of energy which is required to transmit from u to v.

We proceed by first presenting some general definitions from graph theory used in this
paper, and then discuss the wireless ad-hoc network model in detail.

1.1.1. General definitions. The following definitions are used for both, directed and undirected
graphs. Let G = (V,E) be a subgraph of GV . Denote the total weight of G by w(G) =

∑

e∈E w(e).
For an edge e = (u, v) ∈ EV , let |e| = d(u, v). Also, let e∗u(G) be the longest outgoing edge from
u in G, and by e∗(G), |e∗(G)| = maxu∈V |e∗u(G)| the longest edge in G.

The hop-distance from u to v in G, hu,v(G), is defined as the minimum number of edges
in any path from u to v. The hop-diameter of graph G, denoted h(G), is the maximum hop-
distance between any pair of nodes u, v ∈ V in G. The weight of a path P in G is w(P ) =
∑

e∈P w(e); the distance of P is d(P ) =
∑

e∈P |e|. For any pair of nodes u, v ∈ V , let Pweight
u,v

and P dist
u,v be the minimum weight and distance paths from u to v in G, respectively. We define

γu,v(G) = w(Pweight
u,v ) and δu,v(G) = d(P dist

u,v ).
Let MSTV be a minimum weight spanning tree of the undirected version of GV (which is

obtained easily by omitting the edge directions). For any s ∈ V , we denote by SPT (s) a shortest
path tree of GV , rooted at s ∈ V , i.e. for any u ∈ V , γs,u(SPT (s)) = γs,u(GV ).

In this paper we address the following spanner models.

DEFINITION 1.1. [Shpungin and Segal 2009] G is an energy t-spanner of GV if for all
u, v ∈ V ,

γu,v(G) ≤ t · γu,v(GV ).

DEFINITION 1.2. [Chew 1986] G is a distance t-spanner of GV if for all u, v ∈ V ,

δu,v(G) ≤ t · δu,v(GV ) = t · d(u, v).
If G is an energy (resp. distance) t-spanner of GV , then we say that G has an energy (resp.

distance) stretch factor of t. We denote by γ(G) and δ(G) the energy and distance, respectively,
stretch factors of G.

1.1.2. Wireless ad-hoc network model. A power assignment is a function p : V → R
+, which

assigns each node v ∈ V a transmission range rv = α
√

p(v). The transmission possibilities
resulting from a power assignment induce a directed communication graph Hp = (V,Ep),
where

Ep = {(u, v) : ru ≥ d(u, v)}.
is a set of directed edges. The graph Hp is strongly connected if for every pair of nodes u, v ∈ V ,
there exists a directed path from u to v in Hp. The total energy consumption, also referred to
as the cost, of the power assignment is given by

c(p) =
∑

v∈V

p(v).

Let c∗ be the cost of the minimum cost power assignment p so that Hp is strongly connected.
We assume α = 2 for simplicity, although our results can be easily extended to any constant
α ≥ 2.

Each node v has some initial battery charge b(v), which is sufficient for a limited amount of
time, proportional to the power assignment p(v). It is common to take the lifetime of a wireless
node v to be l(v) = b(v)/p(v). The network lifetime is defined as the time it takes the first node
to run out of its battery charge. For a power assignment p and initial battery charges b, the
network lifetime is defined as

l(p) = min
v∈V

l(v).
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Let l∗ be the lifetime of the maximum lifetime power assignment p so that Hp is strongly
connected. In this paper we assume unit initial battery charges b ≡ 1, i.e. b(v) = 1, ∀v ∈ V .

Interference is a direct consequence of any power assignment p. The level of interference
determines the length of the transmission schedule. All common models of interference define
the notion of coverage, which is the number of nodes or edges that are affected (interfered) by
a transmission over a specific link in the induced communication graph Hp. [Burkhart et al.
2004] defined the coverage of an undirected edge (u, v) as the number of nodes covered by two
transmission disks centered at u and v with radius d(u, v) (implying that u and v communicate
with each other),

COVI(Hp, (u, v)) = |{w ∈ V,min{d(u,w), d(v, w)} ≤ d(u, v)}|.
Another coverage model proposed by [Moaveni-Nejad and Li 2005] puts emphasis on the
transmission range of a single node. The measure is the number of nodes covered by a trans-
mission from node u alone,

COVII(Hp, u) = |{w ∈ V, d(u,w) ≤ ru}|.
A third coverage model was introduced by [Khan et al. 2009]. They define the coverage as the
number of edges affected by an edge (u, v) ∈ Ep,

COVIII(Hp, (u, v)) = |{(u′, v′) ∈ Ep, d(u, v) ≤ d(u′, v′),

min{d(u, u′), d(u, v′), d(v, u′), d(v, v′)} ≤ d(u′, v′)}|.
Note that even though COVI(Hp, (u, v)) is defined for undirected edges, we find it useful also
in the context of asymmetric power assignments, as it describes the level of coverage for bi-
directional links in the induced communication graph. Let,

COV ∗

I (Hp) = max(u,v)∈Ep
COVI(Hp, (u, v)),

COV ∗

II(Hp) = maxu∈V COVII(Hp, u),
COV ∗

III(Hp) = max(u,v)∈Ep
COVIII(Hp, (u, v)).

The interference of Hp is defined as

I(Hp) = max{COV ∗

I (Hp), COV ∗

II(Hp), COV ∗

III(Hp)}.
We assume the use of frame-based MAC protocols which divide the time into frames, con-

taining a fixed number of slots. The main difference from the classic TDMA is that instead of
having one access point which controls transmission slot assignments, there is a localized dis-
tributed protocol mimicking the behavior of TDMA. The advantage of a frame-based (TDMA-
like) approach compared to the traditional IEEE 802.11 (CSMA/CA) protocol for a Wireless
LAN is that collisions do not occur, and that idle listening and overhearing can be drastically
reduced. When scheduling communication links, that is, specifying the sender-receiver pair
per slot, nodes only need to listen to those slots in which they are the intended receiver –
eliminating all overhearing. When scheduling senders only, nodes must listen in to all occu-
pied slots, but can still avoid most overhearing by shutting down the radio after the MAC (slot)
header has been received. In both variants (link and sender-based scheduling) idle listening
can be reduced to a simple check if the slot is used or not. Several MAC protocols have been
developed that take classical TDMA solutions using an access point to ad-hoc settings without
any infrastructure by employing a distributed slot-selection mechanism that self-organizes a
multi-hop network into a conflict-free schedule (see [Rajendran et al. 2003; van Hoesel and
Havinga 2004]).

Remark: We would like to draw the reader’s attention to the fact that our energy spanner
definition differs from a related definition of power spanners (e.g. see [Schindelhauer et al.
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Table I. Notation summary

Notation Description

GV = (V,EV ) A complete graph on the set of wireless nodes V , |V | = n

d(u, v) Euclidean distance between u and v

α Distance-power gradient (path loss coefficient)

w : EV → R
+ The weight function on GV , w(u, v) = d(u, v)α

|e| Length of edge e (i.e. for e = (u, v), |e| = d(u, v))

w(P ) The total weight of path P

d(P ) The total distance of path P

w(G) The total weight of all the edges in G

e∗(G) The longest edge in G

e∗u(G) The longest outgoing edge from u in G

hu,v(G) The hop-distance from u to v in G

MSTV The minimum weight spanning tree of GV

SPTV (s) Shortest (minimum weight) path tree of GV rooted at s

p : EV → R
+ The transmission power assignment

p(u) The transmission power assigned to u

Hp The communication graph as a result of power assignment p

c∗ The cost of a power assignment needed for strong connectivity

l∗ The lifetime of a power assignment needed for strong connectivity

δu,v(G) The length of the minimum distance path from u to v in G

γu,v(G) The weight of the minimum weight path from u to v in G

h(G) The hop-diameter of G

c(p) The cost of the power assignment p

l(p) The lifetime of the power assignment p

I(p) The interference measure of Hp

p1, p2, p3, p4, p5 Power assignments constructed in this paper

2007]), which sets γu,v(GV ) to be w(u, v). The energy stretch factor is a more accurate estima-
tor of energy efficiency since the cost of the minimum energy cost path from u to v in GV may
be significantly lower than w(u, v).

A summary of the main notations used in this paper can be found in Table I.

1.2. Previous work

The first to introduce the concept of spanners was [Chew 1986]. The trivial 1-spanner (under
both models) is to take the complete graph. Unfortunately the optimal stretch factor comes at a
cost of high inefficiency. Therefore, much of the research considers an additional optimization
objective, in addition to low dilation, such as a low number of edges, low total edge weight or
low maximum node degree. Some of the works try to satisfy two or more of these properties at
the same time. The NP-hardness of the problem was addressed in [Gudmundsson and Smid
2006; Klein and Kutz 2006; Cheong et al. 2007; Lloyd 1977]. The results can be roughly divided
into two categories, geometric graphs and general graphs.
Geometric graphs – For a Euclidean graph G in R

2, [Keil and Gutwin 1992] showed that for
any constant t > 1, it is possible to construct a t-spanner of G with O(n) edges in O(n log n)
time. The same result for any fixed dimension d can be found in [Salowe 1991; Vaidya 1991;
Callahan and Kosaraju 1993]. [Chandra et al. 1992] presented a construction of a t-spanner
with a total weight of O(log n) · w(MSTV ).
General graphs – [Chandra et al. 1992] also showed a construction of a t-spanner with weight

O
(

n
2+ε
t−1

)

·w(MSTV ). [Althöfer et al. 1993] and [Chandra et al. 1995] construct a t-spanner in

O(n3+4/(t−1)) time with O(1+ 2/(t− 1)) edges. [Peleg and Roditty 2010] provides an algorithm

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



Improved Multi-criteria Spanners for Ad-Hoc Networks Under Energy and Distance Metrics A:7

with running time O(n2 log n) for constructing a (1+ ε)-spanner for a given disk graph of a set
of points in the plane with O(n/ε logM) edges, where M is the maximum transmission radius.
However, they [Peleg and Roditty 2010] did not consider distance and energy stretch factors,
simultaneously. The energy stretch is particularly important in this case, since the cost of the
minimum energy cost path from u to v in the complete graph may be significantly lower than
the energy required to directly send the message from u to v, i.e., w(u, v). In addition, [Peleg
and Roditty 2010] ignores other optimization criteria such as cost, lifetime, interference and
hop-diameter which influence the suggested solutions.

Additional references may be found in [Peleg 2000; Cohen 1998; Thorup and Zwick 2005;
Eppstein 2000; Abu-Affash et al. 2010].

1

. . .

...
...

A B

CD u v

2+1/n1/3

n−1

1/n1/3

Fig. 1. An example of a bad tradeoff for a distance spanner ([Shpungin and Segal 2010])

One might think that applying traditional algorithms for the construction of spanners with
low total edge weight in our model is possible. This is, however, not always possible for distance
spanners, since the result of applying such an algorithm might result in a very large cost, due
to our weight function.

Consider an example shown in Figure 1 adopted from [Shpungin and Segal 2010]. The nodes

are placed in a continuous manner at a fixed distance of 2+1/n1/3

n−1 from each other along the

sides AD, AB, and BC of a rectangle ABCD, with |AD| = |BC| = 1, and |AB| = |CD| = 1
n1/3 .

Let u and v be two nodes positioned at D and C, respectively. For any power assignment, if
the communication graph has no edges between the nodes on the side AD and the nodes on
the side BC, then the distance (in the communication graph) between u and v is Θ(1), which
imposes a stretch factor of Ω(n1/3). Otherwise, if there is at least one edge which crosses
from the AD side to BC, then the cost of that power assignment is at least 1/n2/3, which is
Ω(n1/3) times higher than w(MSTV ) = Θ(1/n) (in MSTV there are edges between any pair of
adjacent nodes on the sides AD, AB, and BC). We can conclude that the product of the stretch
factor and the cost is always Ω(n1/3)w(MSTV ) which implies that good approximation factors
for both measures are impossible in the general case. Thus, there is no immediate deduction
from geometric spanners to the proposed distance spanner problem due to the very high total
energy cost.

For energy spanners, on the other hand, it is possible to use the algorithms developed for
general graphs, but it seems that better results can be achieved due to the fact that nodes are
positioned in the plane and the weight function holds the weak triangle inequality.

There was little research towards the development of energy efficient spanners in ad-hoc
networks. In [Wang and Li 2006] the authors provided heuristics for the distance spanner
construction without provable theoretical bounds. Then, in [Shpungin and Segal 2009] we
showed several spanner constructions, for both models, while minimizing the total cost. In
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[Schindelhauer et al. 2007] the authors show a relation between distance spanners and power
spanners. Recall that the definition of power spanners significantly differs from energy span-
ners as it sets γu,v(GV ) to be w(u, v). To the best of our knowledge this paper is the first to
address the problem of spanner construction under the energy and distance metrics simulta-
neously.

The interference models addressed in this paper were studied before. In [Burkhart et al.
2004], the authors show that the common belief that graph sparseness induces low inter-
ference is not true. They give a clear definition of interference and develop connectivity-
preserving and spanner constructions that are interference minimal. [Moaveni-Nejad and Li
2005] extends the interference definitions of [Burkhart et al. 2004] and show optimal and ap-
proximation algorithm for low interference network topology contruction. [Khan et al. 2009]
argued that the model proposed by [Burkhart et al. 2004] was not optimal and proposed power
efficient, low interference topology constructions with node failures while preserving connec-
tivity. Additional results can be found in [Johansson and Carr-Motyčková 2005; Chen et al.
2007].

An extensive research was also conducted on power efficiency in strongly connected ad-hoc
networks. We refer the reader to the following works, [Kirousis et al. 2000; Ramanathan and
Hain 2000; Carmi et al. 2006; Chang and Tassiulas 2000; Calinescu et al. 2003; Lloyd et al.
2005], for further information.

1.3. Our contribution

We study asymmetric power assignments in ad-hoc networks so that the induced communi-
cation graph is simultaneously an energy and distance spanner, while optimizing additional
properties: cost, network lifetime, interference, and hop-diameter. We distinguish between two
possible node deployments:

— For random and uniform node distribution: We construct three power assignments,
with varying time complexity. The distance stretch factor of each of the power assignments
is

√
2. We obtain energy stretch factors of 1 in O(n3) time,

√

n/k log n in O(kn2) time, and
√

n/ log n in O(1) time (can also be implemented distributively). The cost for all of the power
assignments is O(log n) · c∗, the network lifetime is Ω(1) · l∗, and the interference is O(log n)
(we note that it can be shown by using Chernoff bounds that w.h.p. the interference of any
strongly connected topology is at least Θ(log n) in our model). The results are based on var-
ious geometric properties of random points and shortest path tree constructions. We choose
to concentrate on shortest path trees since the length longest edge in such tree for uniformly
distributed nodes is asymptotically equal to the length of the minimum spanning tree as we
claim below. In particular, we analyze the behavior of shortest path trees that are rooted at
the nodes relatively close to the remaining ones.

— For arbitrary node positions: We construct two power assignments. The first has a dis-
tance stretch of O(nε), energy stretch of 1+O( 1

1−ε ) and a cost of O(n2−2ε)·c∗, for any 0 < ε < 1.

The second has a distance stretch of O(h(T ) · nε), energy stretch of 1 + O( 1
1−ε ), a cost of

O(n1−2ε) · w(T ), and hop-diameter of h(T ), where 0 < ε < 1 and T is any spanning subgraph
of GV . These are established on addition of shortcut edges that satisfy desired threshold
stretch. Particularly, we start with a tree (MST or bounded-hop tree) and add shortcuts
to produce a low weight distance spanner if the distance between nodes is less than some
threshold value that depends on the weight of MST or length of the longest edge in bounded-
hop tree. In addition, we explore the distance stretch factor of MSTV , which is of indepen-
dent interest in the spanner construction research. We show that the distance stretch factor
of MSTV is h(MSTV ).
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Table II. Contribution summary (distance/energy stretch factors and cost/lifetime approximation bounds)

PA Layout Distance Energy Cost Lifetime Interference

p1 Random
√

2 1 O(c∗ log) Ω(l∗) O(log n)

p2 Random
√

2
√

n/k log n O(c∗ log n) Ω(l∗) O(log n)

p3 Random
√

2
√

n/ log n O(c∗ log n) Ω(l∗) O(log n)
p4 Arbitrary O(nε) 1 +O( 1

1−ε
) O(c∗n2−2ε) - -

p5 Arbitrary O(h(T ) · nε) 1 +O( 1

1−ε
) O(w(T )n1−2ε) - -

[T is any spanning subgraph of GV ]

We also discuss a possible distributed implementation of our algorithms and provide thorough
simulation results. A summary of our results can be found in Table II.

Note that all the upper bounds derived in this paper are compared with the best possible
(optimal) lower bounds. Thus, the produced results serve as approximation guarantees for the
considered problems.

2. THE PROBABILISTIC CASE

In this section we consider a wireless ad-hoc network with n random nodes distributed uni-
formly and independently in a unit square. First, we present several preliminary theoretical
results for the uniform distribution used in later developments. Then, we construct three dis-
tinct power assignments with different stretch factors and running time complexity. We start
with a basic simple homogeneous power assignment and analyze its performance criteria.
This is followed by two power assignments which use the SPT (shortest path tree) structure
to obtain better bounds.

2.1. Preliminaries

In [Berend et al. 2010] the authors showed the following lemma for the case that all the initial
battery charges are equal.2

LEMMA 2.1 ([BEREND ET AL. 2010]). If for every v ∈ V , b(v) = b, where b is a constant.
Then, l∗ ≤ b/|e∗(MSTV )|2.

[Zhang and Hou 2008] derives a lower bound on the cost of a power assignment required to
induce a k-fault resistant strongly connected communication graph (k = 1 in our case) under
the assumption that the nodes form a homogeneous Poisson point process with density λ.
According to [Hall 1988], a random, uniform and independent n-point process in a unit square
is essentially a Poisson process with λ = n, for large values of n. In the next theorem we bring
the main result of [Zhang and Hou 2008] adapted to the case of k = 1 and our point process.

THEOREM 2.2 ([ZHANG AND HOU 2008]). If n wireless nodes are randomly, indepen-
dently, and uniformly distributed in a unit square, then w.h.p., c∗ = Ω(1).

In [Shpungin and Segal 2009] we derived an interesting result on the density of independent
nodes, randomly placed in a unit square under the uniform distribution, as shown in the next
lemma.

LEMMA 2.3 ([SHPUNGIN AND SEGAL 2009]). Let D∗ be a maximum radius disk, which
can be placed inside a unit square, so that there are no nodes inside D∗. Let ε be the radius of

D∗. Then w.h.p., ε <
√

2 log n/n.

2Note that Lemma 2.1 from [Berend et al. 2010] applies to an arbitrary node distribution, despite the fact that it
appears in the context of random distribution, both in this paper and in [Berend et al. 2010].
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One of the structures used later in the paper is the shortest path tree (SPT). The next the-
orem, which was derived in [Shpungin 2011] draws lower and upper bounds on w(e∗(MSTV ))
and w(e∗(SPT (s)), for any s ∈ V .

THEOREM 2.4 ([SHPUNGIN 2011]). For n wireless nodes randomly, independently, and
uniformly distributed in a unit square, and for any s ∈ V it holds

w(e∗(SPT (s)) = Θ (w(e∗(MSTV ))) = Θ(log n/n).

The power assignments presented in Sections 2.2, 2.3, and 2.4 share a similar bound on the
maximum power level. The following lemma derives bounds on energy efficiency and interfer-
ence levels of these power assignments.

LEMMA 2.5. Given a power assignment p, if p(u) = O(log n/n) for every u ∈ V , then w.h.p.
c(p) = O(log n) · c∗, l(p) = Ω(1) · l∗ and I(Hp) = O(log n).

PROOF. The bound on the total cost is obtained by using Theorem 2.2, c(p) = O(log n) =
O(log n) · c∗. The bound on the network lifetime is due to a combination of Lemma 2.1 and
Theorem 2.4. Hence, under the assumption that b ≡ 1,

l(p) = Ω

(

n

log n

)

= Ω

(

1

|e∗(MSTV )|2
)

= Ω(1) · l∗.

It is easy to observe that I(Hp) ≤ 2 · COV ∗

II(Hp). The bound on COV ∗

II(Hp) is derived by
applying the “balls and bins” analysis. Divide the unit square into n

logn grid cells3, each of

size
√

logn
n ×

√

logn
n . We can look at the distribution of nodes in the grid as a random process

where we independently and uniformly throw n balls into n
logn bins. The authors in [Raab

and Steger 1998] analyzed the maximum number of balls in each bin (in our case, nodes in a
grid cell). They showed that w.h.p. each grid cell contains at most O(log n) nodes. Therefore,
as p(u) = O(log n/n) for every u ∈ V , O(log n) nodes within the transmission range of u (a

disk with radius
√

p(u), centered at u, intersects at most O(1) grid cells). Thus, I(Hp) ≤ 2 ·
COV ∗

II(Hp) = O(log n).

The use of w.h.p. is omitted in the rest of the section. However, every claim which uses one
of the probabilistic statements in Section 2.1 is with high probability.

2.2. Basic spanner construction

We begin by demonstrating a fast algorithm, which does not require any coordination between
the nodes. Each node only has to be aware of the total number of nodes, n, which means it can
be implemented in a distributed fashion. Our power assignment is based on Lemma 2.3; we
try to exploit the density of the nodes in the unit square. More specifically, for every u ∈ V let
p1(u) = 32·logn

n be the power assignment. Surprisingly, this simple power assignment, which
can be computed locally at each node, produces a power assignment with good performance in
all three optimization categories. The next two lemmas show that Hp1

is strongly connected
and analyze its stretch factors.

LEMMA 2.6. W.h.p., Hp1
is strongly connected.

PROOF. For any pair of nodes u, v ∈ V , we show an existence of a directed path from u to v
in Hp1

.

If d(u, v) ≤
√

32 log n/n then it immediately follows that (u, v) ∈ Hp1
. Otherwise, denote

x0 = u, and let x1, x2, . . . , xm be m points evenly placed on the line segment (u, v) so that

3For convenience we omit the use of floors and ceilings throughout the paper, which does not affect our analysis.
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d(xi, xi+1) =
√

8 logn
n , 0 ≤ i ≤ m − 1, where m =

⌊

d(u, v)
√

n
8 logn

⌋

. Let Di be a disk with

(xi−1, xi), 1 ≤ i ≤ m, as a diameter. From Lemma 2.3, each such disk contains at least one
node. Let zi be an arbitrary node in Di, 1 ≤ i ≤ m. We observe that d(u, z1), d(zm, v), and

d(zi, zi+1), 1 ≤ i ≤ m − 1, are each less than or equal to
√

32 log n/n, and hence are in Ep1
.

Consequently, the path 〈u, z1, z2, . . . , zm, v〉 is in Hp1
.

D1 D2 D3 D4

z1 z2

z3
z4

u v

(a) Path 〈u, z1, z2, . . . , zm, v〉

D1 D2 D3 D4

z1 z2

z3
z4

u v

(b) Path 〈u, z1, x1, z2, x2 . . . , zm, xm, v〉

Fig. 2. The construction of a path from u to v

LEMMA 2.7. W.h.p., h(Hp1
) =

√

n
4·logn + 1, γ(Hp1

) ≤
√

n
4·logn + 1, δ(Hp1

) ≤
√
2.

PROOF. For any arbitrary pair of nodes u, v ∈ V , recall the path constructed in the proof
of Lemma 2.6, P = 〈u, z1, z2, . . . , zm, v〉. As the nodes are inside of a unit square, d(u, v) ≤√
2. Therefore, m ≤

√

n
4·logn , and hence h(Hp1

) ≤
√

n
4·logn + 1. Next, we show d(P ) ≤

√
2 ·

d(u, v), which guarantees δ(Hp1
) ≤

√
2. If m = 0 then d(P ) = d(u, v). Otherwise, let P ′ be a

path obtained from P by enforcing it to visit the points xi, 1 ≤ i ≤ m, as follows P ′ = 〈u =
x0, z1, x1, z2, x2 . . . , zm, xm, v〉. Clearly, d(P ) ≤ d(P ′) due to the triangle inequality of Euclidean
distances. It is easy to verify that

d(xi, zi+1) + d(zi+1, xi+1) ≤
√
2 · d(xi, xi+1),

for 0 ≤ i ≤ m− 1, and as a result

d(P ′) ≤
√
2 · d(u, xm) + d(xm, v) ≤

√
2 · d(u, v).

Finally, we bound the energy stretch factor. Let P ∗ be the minimum weight path from u to v
in GV . We consider two cases:
Case 1: If w(P ∗) < 32 log n/n then each edge e in P ∗ has a bounded weight, w(e) < 32 log n/n.
Therefore, path P ∗ is in Hp1

and γu,v(Hp1
) = w(P ∗) = γu,v(GV ).

Case 2: Otherwise, w(P ∗) ≥ 32 log n/n. From the construction of p1 for every e ∈ Ep1
, w(e) ≤

32 log n/n. Thus,

γu,v(Hp1
) ≤ 32 log n

n
· h(Hp1

) ≤ w(P ∗) · h(Hp1
).

Note that a bound on γu,v(Hp1
) is also a bound on γ(Hp1

) as u and v are two arbitrary nodes.
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The following theorem summarizes the properties of p1 and is immediate from Lem-
mas 2.5, 2.6, and 2.7.

THEOREM 2.8. For n wireless nodes randomly, independently, and uniformly distributed
in a unit square, w.h.p. Hp1

is strongly connected and

c(p1) = O(log n) · c∗
l(p1) = Ω(1) · l∗
I(Hp1

) = O(log n)

h(Hp1
) = O(

√

n/ log n)

γ(Hp1
) = O(

√

n/ log n)
δ(Hp1

) ≤
√
2

2.3. Grid-based construction

The algorithm consists of three steps intuitively outlined as follows: (a) Select a subset of nodes
S ⊂ V , |S| = k, which are relatively close to the remaining ones; (b) Compute k shortest path
trees, rooted at the nodes from S. Assign powers to all nodes, so that these trees are subgraphs
of the induced communication graph; (c) Increase the power of each node, if needed, to ensure
that Hp1

(from the previous section) is a subgraph of the induced communication graph. The
idea is that by enforcing Hp1

to be a subgraph of the induced communication graph, the hop-
diameter and distance stretch factor are at most h(Hp1

) and δ(Hp1
), respectively. We will show

that the energy stretch factor is better than γ(Hp1
) by using the constructed shortest path

trees. We now describe the above steps in detail.
Step 1 – Let k be an integer parameter, 1 ≤ k ≤ n

8·logn . Divide the unit square into k grid cells

of size
√

1/k×
√

1/k. Denote by N(i) the nodes in cell j, 1 ≤ j ≤ k. Note that a disk with radius
√

2 log n/n fits entirely inside each of the grid cells, for any value of k in range {1, . . . ,
√

n
8·logn}.

Therefore, from Lemma 2.3 we can conclude that there exists at least one node in each of the
cells. Let S = {s1, s2, . . . , sk} be an arbitrary subset of nodes so that sj ∈ N(j) (as shown in
Figure 3).

s1

s2
s3

s4
s5 s6

s7
s8 s9

Fig. 3. The source nodes for the shortest path trees in the grid-based construction (k = 9)

Step 2 – We define the initial power assignment for every u ∈ V as p′2(u) =
maxsj∈S |e∗u(SPT (sj))|2.
Step 3 – Finally, we ensure that Hp1

is a subgraph of the induced communication graph, as
follows. For every u ∈ V , p2(u) = max{p′2(u), p1(u)}.

The next observation is due to Theorem 2.4 and the definition of p1.

OBSERVATION 2.9. W.h.p., for every u ∈ V , p2(u) = O( logn
n ).

Next, we analyze the energy stretch factor of Hp2
.

LEMMA 2.10. W.h.p., γ(Hp2
) = O

(
√

n
k·logn

)

.
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PROOF. For any pair of nodes u, v ∈ V we show γu,v(Hp2
) = O

(
√

n
k·logn

)

· γu,v(GV ). Similar

to the proof of Lemma 2.7, let P ∗ be the minimum weight path from u to v in GV . We consider
two cases:
Case 1: If w(P ∗) < 32·logn

n then P ∗ is in Hp2
.

Case 2: Otherwise, w(P ∗) ≥ 32·logn
n . Denote by i the grid cell that contains u, that is u ∈ N(i).

There exists a path P in Hp2
from u to v which consists of two parts. The first part, P1, is a

path from u to si and the second part, P2, is from si to v. In what follows we show the existence
of P and analyze its weight.

From the definition of p2, Hp1
is a subgraph of Hp2

; let P1 = 〈u, z1, z2, . . . , zm, si〉 be the path

from u to si as constructed in the proof of Lemma 2.6. Since u ∈ N(i) then d(u, si) ≤
√

2
k , and

as a result m ≤
√

n
4·k·logn . The weight of P1 can therefore be bounded,

w(P1) ≤ (m+ 1) · 32 · log n
n

= O

(

√

log n

k · n

)

.

Let P2 be shortest path from si to v in GV . According to the construction of Hp2
, P2 is a also

a path in Hp2
. Let P ′

1 = 〈si, zm, . . . , z1, u〉 be a reverse of path P1. Note that P ′

1 exists in GV (a
complete graph), but does not necessarily exists in Hp2

. Clearly, w(P ′

1) = w(P1). Next, consider
a path P ′

2, which is a concatenation of P ′

1 with P ∗ (the concatenation is valid since both paths
are in GV ). We can therefore conclude.

w(P2) ≤ w(P ′

2) ≤ w(P ′

1) + w(P ∗) = w(P1) + w(P ∗).

By combining the above we can finally bound the weight of P :

w(P ) =w(P1) + w(P2) ≤ 2 · w(P1) + w(P ∗)

=O

(

√

log n

k · n

)

+ w(P ∗) = O

(
√

n

k · log n · log n
n

)

+ w(P ∗)

=O

(
√

n

k · log n

)

w(P ∗) + w(P ∗).

As a result, γu,v(Hp2
) = O

(
√

n
k·logn

)

· γu,v(GV ).

Note that Hp1
is a subgraph of Hp2

. The next theorem follows from Observation 2.9, Theo-
rem 2.8, and Lemmas 2.5 , 2.10.

THEOREM 2.11. For n wireless nodes randomly, independently, and uniformly distributed
in a unit square, w.h.p. Hp2

is strongly connected and

c(p2) = O(log n) · c∗
l(p2) = Ω(1) · l∗
I(Hp2

) = O(log n)

h(Hp2
) = O(

√

n/ log n)

γ(Hp2
) = O(

√

n/k log n)
δ(Hp2

) ≤
√
2

2.4. SPT-based construction

The final construction for the probabilistic case consists of n shortest path trees, rooted at
every node, and Hp1

as subgraphs. As before, let SPT (v) be the shortest path tree rooted at v.
We define the power assignment p3 for every u to be

p3(u) = max

{

max
v∈V

|e∗u(SPT (v))|2, p1(u)
}

.
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The next theorem summarizes the properties of p3.

THEOREM 2.12. For n wireless nodes randomly, independently, and uniformly distributed
in a unit square, w.h.p. Hp1

is strongly connected and

c(p3) = O(log n) · c∗
l(p3) = Ω(1) · l∗
I(Hp3

) = O(log n)

h(Hp3
) = O(

√

n/ log n)
γ(Hp3

) = 1
δ(Hp3

) ≤
√
2

PROOF. From Theorem 2.4 we have p3(u) = Θ

(

√

logn
n

)

. Using Lemma 2.5 we obtain the

bounds for total cost, network lifetime and interference. The rest is similar to Theorem 2.11.
Since Hp1

is a subgraph of Hp3
, it easily follows that δ(Hp3

) ≤ δ(Hp1
) and h(Hp3

) ≤ h(Hp1
).

The energy stretch factor, γ(Hp3
) = 1, is immediate from the construction.

2.5. Construction time complexity

The first power assignment, p1 can be constructed in O(1) time, as each node only has to be
aware of the total number of nodes, n. It also means that it can be implemented in a distributed
fashion. The second power assignment p2 requires a construction of k shortest path trees. As
GV is a complete graph, a single tree is constructed in O(n2) time. Thus, the total running

time to O(k · n2), 1 ≤ k ≤
√

n
8·logn (the other steps are negligible). Finally, the third power

assignment p3 requires the computation of n shortest path trees, resulting in a O(n3) running
time. Note that the results in this section can be generalized to any convex fat area. An area
is considered fat if for some bounded constant α > 1, the ratio between the radius of the
minimum enclosing circle and the radius of the maximum inscribed circle is at most α.

3. THE DETERMINISTIC CASE

In this section we make no assumptions on node distribution; nodes are allowed to have ar-
bitrary positions in R

2. We start with some general statements which we use later on. Then,
we present several power assignments that achieve non trivial energy and distance stretch
factors. Our main challenge is the construction of low weight distance spanners; the energy
stretch factor is then added by a simple alternation of the power assignments. The general
idea of our constructions is to implement a simple greedy algorithm, which adds shortcut
edges if some distance stretch factor threshold is violated. We examine two possible thresh-
olds and provide theoretical bounds for the obtained power assignments.

Note that both power assignments presented in this section can be constructed in O(n2)
time.

3.1. Preliminaries

The following simple technical observation is very useful in all our developments.

OBSERVATION 3.1. Given a graph G = (V,E) and a power assignment p so that for every
u ∈ V , p(u) = |e∗u(G)|2, it holds c(p) ≤ 2 · w(G) and G is a subgraph of Hp.

PROOF. For every edge (u, v) ∈ E, d(u, v) ≤ |e∗u(G)| and therefore (u, v) ∈ Ep, implying G is
a subgraph of Hp. Also,

c(p) =
∑

u∈V

p(u) =
∑

u∈V

|e∗u(G)|2 ≤
∑

u∈V

∑

(u,v)∈E

w(u, v) ≤ 2 ·
∑

e∈E

w(e).

Consequently, c(p) ≤ 2 · w(G).
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[Chen and Huang 1989], and later [Kirousis et al. 2000] made the following statement,
which has already become common folklore in the study of wireless networks. It derives a
lower bound on the cost of any strongly connected power assignment, which in turn is a lower
bound for any strongly connected spanner.

THEOREM 3.2 ([CHEN AND HUANG 1989]). c∗ ≥ w(MSTV ).

[Chandra et al. 1992] studied the problem of spanner constructions for arbitrary positive
weighted graphs (the energy spanner model according to our definitions). One of their results
is given in the next theorem (adopted to our model).

THEOREM 3.3 ([CHANDRA ET AL. 1992]). Let G′ be an arbitrary graph with a positive
weight function w′ and MST ′ be a minimum weight spanning tree of G′ (with respect to w′).
For any t′ > 1 and any ε′ > 0, it is possible to construct in polynomial time an energy t′-spanner

of G′ with a weight at most O(n
2+ε′

t′−1 ) times the weight of MST ′.

Based on the theorem above we show how it is possible to add the energy stretch factor to
the induced communication graph degrading the overall cost of a power assignment by using
the construction proposed in Theorem 3.3.

LEMMA 3.4. Let p be a power assignment so that c(p) = O(nε) ·w(MSTV ), with any 0 < ε <
1. It is possible to obtain a power assignment p′ so that γ(Hp′) = 1 + O(1/ε), c(p′) = Θ(c(p)),
and Hp is a subgraph of Hp′ .

PROOF. From Theorem 3.3, by setting t′ = 1 + 2+ε′

ε , with any constant ε′ > 0, it is possible
to construct an energy t′-spanner of GV with a total weight of O(nε) · w(MSTV ). Denote this
spanner as G′.

To ensure that G′ is a subgraph of the induced communication graph, we increase power (if
needed) as follows. For every u ∈ V

p′(u) = max{p(u), |e∗u(G′)|2}.
We first concentrate on the cost of p′ (the inequality is due to Observation 3.1).

c(p′) =
∑

u∈V

max{p(u), |e∗u(G′)|2} ≤ c(p) + 2 · w(G′)

= O(nε) · w(MSTV ) +O(n
2+ε′

t′−1 ) · w(MSTV ) = O(nε) · w(MSTV ) = Θ(c(p)).

Clearly, G′ and Hp are subgraphs of Hp′ . The fact that G′ is a subgraph of Hp′ results in
γ(Hp′) = O(t′) = 1 +O(1/ε).

3.2. Augmentation by total edge length criterion

Our first algorithm is AUGMENT-TOTAL-EDGE-LENGTH. It is based on computing an MSTV =
(V,E), and then adding shortcuts to produce a low weight distance spanner. A shortcut is an
edge (u, v), which is added if d(u, v) < D/nε, where D =

∑

e∈E |e| is the total length of MSTV ,
and ε is a configurable parameter in the open interval (0, 1).

The next lemma analyzes the total cost and distance stretch of the algorithm.

LEMMA 3.5. For any 0 < ε < 1, c(p4) = O(n2−2ε) · w(MSTV ) and δ(Hp4
) ≤ nε.

PROOF. From the last line of the algorithm AUGMENT-TOTAL-EDGE-LENGTH it follows
that for every u ∈ V , p4(u) ≤ max{|e∗u(MSTV )|2, D2/n2ε}. Therefore due to Observation 3.1,

c(p4) ≤ 2·w(MSTV )+
n·D2

n2ε . We bound the value of D2 by using the Cauchy-Schwartz inequality,

D2 =
(
∑

e∈E |e|
)2 ≤ n ·∑e∈E |e|2 = n · w(MSTV ).
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AUGMENT-TOTAL-EDGE-LENGTH

1 compute MSTV = (V,E)
2 D ←

∑
e∈E |e| ; E

′ ← ∅

3 foreach u, v ∈ V do
4 if d(u, v) < D/nε then
5 add (u, v) to E′

6 let G = (V,E ∪ E′)
7 foreach u ∈ V do
8 p4(u) = |e∗u(G)|2

The distance stretch factor is almost straightforward from the definition of p4. As MSTV

is a subgraph in Hp4
, for any pair of nodes u, v ∈ V , δu,v(MSTV ) ≤ δu,v(Hp4

). Two cases are
considered:
Case 1: d(u, v) ≥ D/nε. Since there exists a path from u to v in MSTV , δu,v(Hp4

) ≤
δu,v(MSTV ) ≤ D. Thus, δu,v(Hp4

) ≤ nε · d(u, v).
Case 2: d(u, v) < D/nε. In this case, the edge u, v is added and δu,v(Hp4

) = d(u, v).

The following theorem summarizes the properties of p4 and adds the energy stretch factor
to the induced communication graph.

THEOREM 3.6. For any 0 < ε < 1, there exists a power assignment p′4 so that c(p′4) =
O(n2−2ε) · c∗, δ(Hp′

4
) = nε, and γ(Hp′

4
) = 1 +O( 1

1−ε ).

PROOF. From Lemma 3.5, c(p4) = O(n2−2ε) ·w(MSTV ) and δ(Hp4
) = nε, 0 < ε < 1. By using

Lemma 3.4 we obtain a power assignment p′4 so that γ(Hp′

4
) = 1 +O( 1

2−2ε ), Hp4
is a subgraph

of Hp′

4
, which results in δ(Hp′

4
) = nε, and

c(p′4) = Θ(c(p4)) = O(n2−2ε) · w(MSTV ).

Combining with Theorem 3.2, c(p′4) = O(n2−2ε) · c∗.

3.3. Augmentation by maximum edge length criterion

The second algorithm, AUGMENT-MAX-EDGE utilizes the hop-diameter of the underlying
structure. Let T be a bounded hop-diameter spanning tree of GV (we discuss its computa-
tion in the remark below). For any pair of nodes u, v ∈ V , if d(u, v) < |e∗(T )|/nε we add the
edge (u, v) to T .

AUGMENT-MAX-EDGE-LENGTH

1 compute a bounded hop-diameter tree T = (V,E)
2 E′ ← ∅
3 foreach u, v ∈ V do
4 if d(u, v) < |e∗(T )|/nε then
5 add (u, v) to E′

6 let G = (V,E ∪ E′)
7 foreach u ∈ V do
8 p5(u) = |e∗u(G)|2

The obtained distance stretch factor and the cost are given in the following lemma.

LEMMA 3.7. For any 0 < ε < 1, c(p5) = O(n1−2ε) · w(T ) and δ(Hp5
) ≤ h(T ) · nε.
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PROOF. The proof resembles the one in Lemma 3.5.

c(p5) ≤ 2 · w(T ) + n · |e∗(T )|2
n2ε

= O(n1−2ε) · w(T ).

Since T is a tree, for any two nodes u, v ∈ V there exists only one path P from u to v in T .
The total distance of P is bounded by d(P ) ≤ h(T ) · |e∗(T )|. Following Observation 3.1, G is a
subgraph of Hp5

; therefore δu,v(Hp5
) ≤ δu,v(T ), Again, two cases are considered:

Case 1: If d(u, v) < |e∗(T )|/nε then a shortcut is added and δu,v(Hp5
) = d(u, v).

Case 2: Otherwise, d(u, v) ≥ |e∗(T )|/nε. Then,

δu,v(T ) = d(P ) ≤ h(T ) · |e∗(T )| ≤ h(T ) · nε · d(u, v).
Our proof is complete.

The properties of p5 are summarized below.

THEOREM 3.8. For any 0 < ε < 1 and spanning tree T of GV , there exists a power
assignment p′5 so that c(p′5) = O(n1−2ε) · w(T ), h(Hp′

5
) = h(T ), δ(Hp′

5
) = h(T ) · nε, and

γ(Hp′

5
) = 1 +O( 1

1−ε ).

PROOF. The proof is very similar to the proof of Theorem 3.6. We can use Theorem 3.4 as
T is a spanning subgraph of GV and therefore, w(T ) ≥ w(MSTV ). The hop-diameter of Hp′

5
is

due to the fact that T is a subgraph of Hp′

5
.

Remark: Note that we can choose any low cost bounded hop-diameter tree as the underly-
ing structure T in the algorithm AUGMENT-MAX-EDGE. For instance, it is possible to use a
tree developed in [Kesselman et al. 2005]. The authors constructed a BDMST (bounded hop-
diameter spanning tree of GV ) with an arbitrary diameter h > 1, and a cost O(f(n) · log n)
times the optimal cost of a minimum weight BDMST, where f(n) is the worst-case ratio be-
tween the cost of an optimal BDMST and that of an optimal solution for the bounded hop-
diameter broadcast problem. It is also possible to use the bounded-hop construction in [Elkin
et al. 2011].

3.4. Distance stretch factor of a minimum weight spanning tree

Finally, we show an observation which demonstrates a connection between the hop-diameter
of MSTV and its distance stretch factor. The following lemma might be known as a folklore,
but since we are not aware of any similar published statement, we present it here for com-
pleteness.

LEMMA 3.9. MSTV is a distance h(MSTV )-spanner of GV .

PROOF. The proof is inductive on the number of nodes n. Clearly, for n = 2, the distance
stretch factor is of MSTV is h(MSTV ) = 1. Assume that the claim holds for any number of
nodes less than n. Let (V1, V2) be the cut induced by the longest edge in MSTV , e∗(MSTV ).
We define T1 and T2 to be the subtrees of MSTV , spanning V1 and V2, respectively. It is easy
to verify that T1 and T2 are minimum weight spanning trees, and |V1|, |V2| < n. Due to the
induction hypothesis, T1 (resp. T2) has a distance stretch factor of h(T1) (resp. h(T2)), which is
at most h(MSTV ). This means that for any pair of nodes u, v in either of the trees, w.l.o.g. in
T1,

δu,v(MSTV ) = δu,v(T1) ≤ h(MSTV ) · d(u, v).
Next we bound the value of δu,v(MSTV ) for any u ∈ V1 and v ∈ V2 (nodes not in the same

tree). Note that e∗(MSTV ) is the minimum length edge in the cut (V1, V2) in GV . Therefore,
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d(u, v) ≥ e∗(MSTV ). Since in MSTV there is only one path between every pair of nodes we can
conclude that

δu,v(MSTV ) ≤ h(MSTV ) · |e∗(MSTV )| ≤ h(MSTV ) · d(u, v).
This concludes our proof.

To make use of this property, we define the following power assignment. For every u ∈ V ,
p6(u) = |e∗u(MSTV )|2. The next theorem summarizes the properties of p6.

THEOREM 3.10. c(p6) ≤ 2 · c∗, l(p6) = l∗, and δ(Hp6
) = h(MSTV ).

PROOF. The cost and distance stretch factor follow immediately from Observation 3.1, The-
orem 3.2, and Lemma 3.9. The lifetime can be easily derived from Lemma 2.1.

4. DISTRIBUTED IMPLEMENTATION

In order to make our solutions feasible, i.e. to allow them to work in real life node deployments,
we outline how it is possible to implement them in a decentralized (distributed) manner (with-
out the need for coordination by a central unit). In the proposed distributed implementations
we make a use of the works [Awerbuch 1987] and [Bertsekas and Gallager 1987]. [Awer-
buch 1987] shows how to find a leader in a distributed fashion in a network with n nodes in
O(n) time using O(n log n) messages. The distributed algorithm for building an SPT is shown
in [Bertsekas and Gallager 1987]; its time complexity is O(h(G)) and message complexity is
O(n|E|), where G = (V,E) is the initial graph. We assume that some initial undirected con-
nected topology exists for the distributed schemes to take place and that nodes can compute
the distance to any other node. In order to find locally its neighbors, each node transmits at
maximum possible transmission range and discovers its neighbors. Moreover, we may also fol-
low the different approach. The paper by Dolev et al. [Dolev et al. 2012] presents distributed
algorithm, CONSTRUCT UNDERLYING TOPOLOGY, which provides the initial construc-
tion of the network. The algorithm is executed at every node and can be divided into two
steps. First, the nodes discover their immediate neighbors by allowing them to transmit at
maximum possible transmission range. Then this information is flooded so that each node
could locally construct the entire network which can later be used for computing spanners.

Regarding the probabilistic case, for the basic spanner construction we can use the algo-
rithm in [Awerbuch 1987] which also counts the number of nodes in the network with the
same time and message complexity as the leader election problem. In order to implement the
grid-based scheme, we first apply an algorithm for the leader election problem with a conse-
quent choice (by elected leader) of k nodes running distributed SPT algorithm from [Bertsekas
and Gallager 1987], in parallel. As in the previous case, we also need to count the number of
nodes in the network in order to choose the final power assignment. The running time remains
O(n), while the message complexity becomes O(n log n + kn|E|). Finally, the SPT-based algo-
rithm executes n shortest-path tree constructions in parallel. In this case as well we apply the
algorithm from [Awerbuch 1987] for counting the total number of nodes. Thus, the running
time remains O(n) while the message complexity deteriorates to O(n2|E|).

In order to deal with the deterministic case for augmentation by total edge length crite-
rion, we first find the MSTV , using the appropriate algorithm from [Awerbuch 1987], and
compute its total length D in O(n) time using O(n log n) messages through a convergecast
process towards the leader. Using D, each node, in parallel, computes the edges required to be
added to the constructed graph and chooses the largest outgoing edge. The total time and mes-
sage complexities are dominated by the initial MSTV construction step. For augmentation by
maximum edge length criterion we notice that the difference from the augmentation by total
edge length criterion scheme is by replacing D by maximum edge length of the bounded hop-
diameter tree. One of possible constructions was given by [Elkin et al. 2011] that show how to
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build a tree of O(n/ρ+ log ρ) hop-diameter having weight O(ρw(MSTV )), where ρ is a positive
parameter. As was pointed in [Elkin et al. 2011] this tree can be found distributively in O(n)
time using O(n log n) messages. As before, using the convergecast process started from leaves
where each node transmits towards the leader the maximum outgoing edge in its subtree, we
find the maximal edge. All the rest remains the same.

5. SIMULATIONS

We tested the performance of our power assignment algorithms through simulations. The
wireless nodes were randomly, uniformly and independently placed in a unit square, with the
values of n ranging from 100 to 1000 with steps of 100. Each point in the plot is an average of
5 tries.

In our simulations we compared the behavior of 7 different power assignments. The power
assignments developed in Section 2, p1, p2 with k = n

8 logn , and p3 are denoted as basic, grid

and spt, respectively. For the power assignments constructed in Section 3 we consider two
possible values of ε, 0.1 and 0.9; we denote by atel1 and atel2 the output of the AUGMENT-
TOTAL-EDGE-LENGTH algorithm with ε = 0.1 and ε = 0.9, respectively; similarly, amel1 and
amel2 denote the output of the AUGMENT-MAX-EDGE-LENGTH algorithm.

We measured different performance criteria of the power assignments: energy efficiency (to-
tal cost and lifetime), general graph characteristics (hop-diameter and interference), and the
stretch factors under the two models (energy and distance).

5.1. Energy efficiency

(a) Results for basic, grid, and atel1 (b) Results for spt, atel2, amel1, and amel2

Fig. 4. Total energy consumption as a function of the number of nodes

We are able to compare the performance of our power assignments with lower and upper
bounds of an optimal solution (denoted as opt) as derived in Lemma 2.1 and Theorem 3.2.

As expected, the total energy consumption of basic, grid, and atel1 is higher than for
the rest of the power assignments (Figure 4(a)). It is interesting to observe that basic and
grid have an almost identical energy consumption. This is probably due to the fact that the
requirement that Hp1

is a subgraph of Hp2
dominates the power assigned to nodes. It comes

without much surprise that the network lifetime of these power assignments is quite low as
well (Figure 5(a)).

The other power assignments (spt, atel2, amel1, and amel2), however, are very energy
efficient. It can be seen, that both, the total energy consumption (Figure 4(b)) and network
lifetime (Figure 5(b)) are within a small constant from the best possible.
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(a) Results for basic, grid, and atel1 (b) Results for spt, atel2, amel1, and amel2

Fig. 5. Network lifetime as a function of the number of nodes

5.2. General graph characteristics

(a) Results for basic, grid, and atel1 (b) Results for spt, atel2, amel1, and amel2

Fig. 6. Network hop-diameter as a function of the number of nodes

(a) Results for basic, grid, and atel1 (b) Results for spt, atel2, amel1, and amel2

Fig. 7. Maximum interference as a function of the number of nodes

High energy consumption power assignments (basic, grid, and atel1) produce communi-
cation graphs which have a low hop-diameter (Figure 6(a)). In fact the hop-diameter is a very
small constant, 1−3, which significantly simplifies the task of routing. On the other hand, the
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interference is naturally increased, compared to lower level power assignments, as it can be
seen in Figure 7.

The lower level power assignments (spt, atel2, amel1, and amel2) produce a more balanced
communication graph, in terms of both hop-diameter and interference (Figure 6(b) and Fig-
ure 7(b)). It should be noted that spt has the best performance, with the lowest interference
and hop-diameter.

5.3. Stretch factors

(a) Results for basic, grid, and atel1 (b) Results for spt, atel2, amel1, and amel2

Fig. 8. Energy stretch factor as a function of the number of nodes

(a) Results for basic, grid, and atel1 (b) Results for spt, atel2, amel1, and amel2

Fig. 9. Distance stretch factor as a function of the number of nodes

It is intuitive that energy consuming power assignments will have better stretch factors
as depicted in Figure 8 and Figure 9. Clearly, the power assignments basic, grid, and atel1
acquire (almost) all the minimum cost paths (in both models) and therefore the stretch factors
are very close to 1 (Figure 8(a) and Figure 9(a)).

The power assignments atel2, amel1, and amel2 result in a stable stretch factor for both
measures, while spt provides a very good, small constant stretch factor for both, energy and
distance, models.
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6. CONCLUSIONS AND FUTURE WORK

In this paper we studied the problem of spanner construction in wireless ad hoc networks
through power assignments. We presented power assignment algorithms which achieve prov-
able theoretical bounds on the stretch factor in both, energy and distance, spanner models.
In addition we addressed several other optimization objectives: low total energy consumption,
low interference level, low hop-diameter, and high network lifetime. We studied two possible
node deployments: random and arbitrary. To the best of our knowledge, the presented re-
sults are the first results for spanner construction in wireless ad-hoc networks with provable
bounds for both, energy and distance, metrics simultaneously.

We outlined a possible distributed implementation of our power assignments and analyzed
the complexity of such schemes. Finally, we tested the performance of our power assignments
through simulation and measured each of the optimization criteria for 6 different power as-
signments.

One of the obvious conclusions of this paper is that the SPT-based power assignment has
the best performance in every considered optimization criteria. However, it also has the worst
construction time.

A natural future research direction would be to expand our understanding of the deter-
ministic case and provide stronger bounds. The simulations results certainly show that the
bounds can be refined. It would also be of great interest to scale down by a constant the basic
and grid-based power assignments to make them more energy efficient, without compromis-
ing other optimization objectives. Finally, we would like to identify the best values for ε for p4
and p5 in the deterministic case.
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