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Abstract—In this paper we study asymmetric power assign- u andwv, andc the distance-power gradienusually taken to
ment which induce a low energyk-strongly connected communi- pe in the interval2, 4] (see [2]).
cation graph with spanner properties. We address two spanner Producing astrongly connectédcommunication graph for
models: energy and distance. The former serves as an indicator . .
for the energy consumed in a message propagation betweenywreless ad-hoc networks, through power assignments, was
two nodes, and the latter reflects the latency overhead in the introduced by Chen and Huang [3] and has been studied
induced communication graph. We consider a random wireless since for the past 20 years. This not surprising since many
ad-hoc network with [V| = n nodes distributed uniformly and  gpplications in civilian, industrial and military areagjuire a
independently in a unit square. strongly connected underlying topology to carry out dfer

For k € {1,2} we propose several power assignments which . . L .
obtain a good bicriteria approximation on the total cost and networking tasks [4]. Unlike nodes in wired networks, weres

stretch factor under the two models. Fork > 2 we analyze a devices are typically equipped with limited energy supplie
power assignment developed in [1], and derive some interesting making energy efficiencyne the primary objectives in net-
bounds on the stretch factor for both models as well. We also work design [5]. Energy efficiency is especially importaot f
describe how to compute all the power assignments distributively, networks where battery replacement is infeasible
and provide some simulation results. To the best of our knowl- . . .
edge, these are the first provable theoretical bounds for low cos One of the most studied t9p°'99y ?Omro' problems '_n the
spanners in wireless ad-hoc networks. context of energy preservation in wwelgss networks is the
MINSC problem: given a set of nodes in the plane, find a
power assignment so that the induced communication graph
is strongly connected and thetal energy consumptiofalso
referred to agos) is minimized. The problem appears to be
|. INTRODUCTION NP-hard [6] for the plane and polynomially solvable in the
) ) _ linear case (a special case when all the nodes are placegl alon
A wireless ad—_hoc network conS|sts.of _several tra_mscelv_eés"ne segment). Thus, the majority of existing works praguc
(nodes) located in the plane, communicating by radio. nliky,h-oximation algorithms that induce a strongly connected
wired networks, in which the link topology is fixed at theyraph with an upper guarantee on the total energy consumptio
time the network is deployed, wireless ad-hoc networks ha(/[g] [71, 181, [9], [10], [11], [22]).
no fixed underlying topology. In addition, the relationafd- |5 many scenarios wireless ad-hoc networks are deployed
sition of wireless nodes is constantly changing. The te@or i, nostile environments where node failures are very likely
physmal topolqu of the network is determined by.thg distrig happen. Developinéault resistant topology control algo-
bution of the wireless nodes, as Well as t.he transmssmggrarhthms can play a crucial factor in keeping the network in
of each node. The ranges determine a directed communicatipnoperaple state. Naturally, the fault resistant versiothe
graph, in which the nodes correspond to the transceivers aieh Sc problem is also NP-hard, so the focus was developing
the edges correspond to the communication links. power assignment algorithms which approximate the total
The kgy difference b_etw_een wireless ad-hoc networ_ks anger consumption ([1], [13], [14], [15], [16], [17], [18]19],
“conventional” communication structures, from the desity [20], [21)).
point of view, is in thepower assignment modetach node | ow total energy consumption and fault resistance are fun-
decides on a transmission power level, and a transmisgom frgamental for successful network deployment. However ether
nodeu can be received at nodeif the transmission power of gre additional factors which need to be taken into account.
ulis at least;, ,, whered, , is the Euclidean distance betweer key component in the overall network performance is the
efficiency of routing algorithmg22]. There are many possible
This is an extended version of a paper titled “Near Optimal tMriiteria  metrics to measure the efficiency of a routing algorithmhsuc
Spanner Constructions in Wireless Ad-Hoc Networks” whigpears in the . .
proceedings of IEEE INFOCOM'09. as power, hop.—count and residual energy [23]. Ultimatedghe
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realistic; it is impractical and usually impossible to alleach over communication links, thus allowing unidirectionails
node to have a transmission range sufficient to reach all tteeexist, which addresses a more general and realistic model
other nodes. Instead, each node is assigned with enoughr pogfewireless ad-hoc networks.
to reach only a relatively small subset of nodes. As a result,As stated above, obtaining a minimum energy power as-
the topology of the induced communication graph has a strogignment that induces fastrongly connecteds > 1, graph is
effect on the routing algorithms efficiency. NP-hard. Adding an additional optimization objective, redyn

In this paper we focus on two parameters which havbe stretch factor (in either of the models), makes the grobl
an impact on the efficiency of several routing algorithm&ven harder. Almost all previous spanner constructions for
More specifically, we study the stretch factor of the inducead-hoc wireless networks assume the unit disk graph (UDG)
communication graph under twgpannermodels: energy and as the underlying topology ([31], [32], [33], [34], [35)).
distance as described below. The research efforts were generally targeted at constgicti
« Energy spanner modei Let~, ,, be the minimum energy a subgraph of UDG which holds the spanner property, and

"y additional criteria, such as planarity and bounded degree.

required to send a message franmto v by using relay :
nodes (if necessary). Then, the energy spanner is aimT0 the best of our knowledge, [36] is the only paper to

e ; L .
to minimize theenergy stretch factot, of the induced adddress the spanner problem with the optimization objectiv

communication graph, that is for any pair of nodes, tHinimizing the total energy consumptidtowever, the authors

enerav required to bronagate a message fiobo v is only provided heuristics for the problem, without provable
gy req propag g theoretical bounds.

at mosttg - v,,. The energy model reflects the power o iol that all th i h effort
efficiency metric of routing protocols, which is essentialr V?; ;;os& er :iasonn tha tat | en crurren nresn(:a{icn ? ?hr St
for prolonging the network lifetime due to the constraine 0 Ie io ?ua ar eeho f ? %ar ene gﬁﬁor Suwhpi ﬁ 1S Iva
energy resource. A very good survey of powerawater UL R R0 EoRe (RNG), Gabriel graphs
routing protocols in wireless network can be found i . N
[24] gp GG), and Yao graphs (YG), might result in an unbounded
. Distance spanner model The distance spanner min_cost, as ;tated in [31]. What makes it even more complicated
for the distance model is that the tradeoff between the total

imizes the distance stretch factortp, of the induced . .
energy consumption and distance stretch factor can be as

communication graph, that is for any pair of nodes, t . i -
minimum distange Sath from to v is Z\tpmosttp d hh|gh asn'/3 times the total squared weight of the minimum
il spanning tree as shown in Fig. 5.

The distance stretch factor has a strong effect on the qu X .
We make the first step towards energy efficient spanner

ity of geographic routing protocolf25]. These protocols ruction | e i b deri d
use greedy forwarding decisions based on the geograpﬁ?@sl ruc '02 r:n W|retesskse hlngs ydcon5| ermg.fa r:l':m org
progress towards the destination, thus having a low di \réless ad-hoc network whose nodes are uniformly an

tance stretch factor in the underlying topology graph fgdependently distributed in a unit square. For these nisvo

essential for efficient and successful geographic routing‘.e were able to develop low cost fault resistant spannets wit
t

For existing protocols using the geographic scheme s fvable th_e_or_etical bounds. Throughout the paperwe_ziamelic
the survey in [23]. e probg_blllstlc nz_atu_re o_f our deve_lqpments by stating tha
the specific result isvith high probability or in shortw.h.p,
Remark: For both spanner models we choose to measufghe probability of the result converges to one as the numbe
the stretch factor by comparing the efficiency of the begf network nodesp, increases.
possible, in terms of either energy or distance, path in theThjs paper is organized as follows. In the rest of this sectio
induced communication graph to the best one indbeplete \ve present our system settings, discuss previous work and
graph where every node can reach any other node in a singl@te our results. In Section Il we discuss probability tesla
hop. As already stated, the use of complete communicatigfsults which we use in this paper. Followed by Section III,
graph, in terms of radio interference and energy consumptiQuhere we describé-fault resistant power assignments used
is unpractical and inefficient. However, the complete graph i |ater parts. Then, in Sections IV and V we show low
an optimal underlying topology for routing algorithms as igost spanner constructions under two spanner models,yenerg
makes no restrictions on available routes; thus, by progidiand distance, respectively. In Section VI we describe how
performance guarantees compared to the complete graphiMe power assignments discussed in previous sections can be
make a stronger statement about performance guaranteegdmputed distributively. Finally, in Section VII we conde
real network settings. and discuss possible future developments.
The majority of routing (and other) network protocols were
traditionally developed for undirected graphs with symget )
(bidirectional) communication links. However, in wiredead- A System settings
hoc networks it is not uncommon to have asymmetric (uni- Let Gy = (V, Ey) be a complete directed graph of the
directional) links due to non-uniform background noisen-no wireless noded’ positioned in the plane. We define a weight
uniform external interference and energy efficiency cogrsie function on the edge seky as w(u,v) = dj, ,, for any
tions. Some recent research addressed this phenomena-by pro € V. We also use the notatiow(e) to indicate the
viding several approaches for various network tasks (2], [ weight of an edgez = (u,v). Note that the weight of an
[27], [28], [29], [30]). We choose not to enforce symmetnedge matches the amount of energy required for transmission



between its endpoints. LeM STy = (V,Eysr) be the tp(G) = max Ouw(G)

minimum spanning tree offy (with a weight functionw). uweV 8y (Gv)
A power assignment is a functign: V. — R, which as- Graphd is an energy-spanner of7y if ¢ z(G) < t. Similarly,

signs each node € V' a transmission range, = {/p(v). The G is a distance-spanner ofGy if t5(G) < t.

transmission possibilities resulting from a power assigntn  Graph( is strongly connectedf for any two nodesu, v €

induce a directed communication graph = (V. E,), where /, there exists a directed path framto v in G. The wireless

E, = {(u,v) : 7 > du,,} is a set of directed edges. The cosfiodes are unreliable by their nature and may fail. For this

of the power assignment is defined as purpose fault resistance is used in wireless networks. Atgra
G is said to bek-strongly connected if the removal of any

& = v) = max wlv,u). .
(p) gp( ) A CRDIS 28 (v, ) set of at mostk — 1 nodes does not disconnect the grdph.

. The famous Menger theorem states that a graphsgongly
di \(\ée a:rs]surt'pe th.etusfe d]fame-basteQ\/!AC pr?tozols th')Ch onnected iff for any pair of nodes v € V such that(u, v) ¢
ivide the time into frames, containing a fixed number o%l there arel: node-disjoint paths from to v,

;Sri(;::é(;”c])?hg]v?:]n gIr:f:fclceessfm;]nttt/]v?]ic(:;:]acszilnctr;)rlzllc:n;n:zs An interesting combination of fault resistance and the span
9 P ner property (in either of the models defined above), iskthe

fri?rtrlialfiilgr;rr? egtsﬁ \t/?erre f I'?DT\I/I Al\oc_:rarl]|ze?jvd|r?ttr|butefd ﬁ‘)rrdrtr? ult resistant spanner. Graygh is an energy (resp. distance)
cking the benhavior o - 1he advantage ot a lramey._c, resistant-spanner of7y, if it remains an energy (resp.

Fé‘é;%ég?’lﬂpél'sk&k/%%mac? c?;npars\clj_ t? theL A:[l:laq 'tt'gnt istance)t-spanner ofG after the removal of at most — 1
A1 ( ) protocol for a Wireless 'S al, 5des. Therefore, in order to show tiGitis an energy (resp.

collisions do not oceur, and that idle Ilstenm_g and overhnga distance)k-fault resistant-spanner ofGy, we need that one
can be drastically reduced. When scheduling communlcat|8pthe following conditions hold for any.. v € V:

links, that is, specifying the sender-receiver pair pet,slo ) L

nodes only need to listen to those slots in which they aréal) There exist nOde'd'SJO'nt_ pathsy, ..., P; so that
the intended receiver — eliminating all overhearing. Whe w(l) <t 7“7'”(.G‘./)’ I<i<k

scheduling senders only, nodes must listen in to all oceupie? 1€ €dg€(u, v) isin G, E.in.dw(u,v) st %‘”’(GV,)'

slots, but can still avoid most overhearing by shutting down We denote by’ the minimum cost power assignment
the radio after the MAC (slot) header has been received. $A thatHorr is k-strongly connected. _

both variants (link and sender-based scheduling) idlerisy ~ This paper addresses the minimum powefault resistant

can be reduced to a simple check if the slot is used or n§panner problem (MPkS) under the energy and distance mod-
Several MAC protocols have been developed that take ctssig!S: Formally, we consider the following two problems.

TDMA solutions using an access point to ad-hoc settings Problem 1 (MPKES):

without any infrastructure by employing a distributed slot nput: A El;:';dfan graplGy = (V, E), and param-
selection mechanism that self-organizes a multi-hop ndtwo eterk > 1. . .
Output: A power assignment so thatH,, is an energy

into a conflict-free schedule (see [37], [38]).
Let G = (V, E) be some spanning subgraph @f,, and
P be any path inG. We use the notations(P), d(P), and

k-fault resistant-spanner ofGy,.
Objective:  Minimize ¢(p) andt.
Problem 2 (MPKDS):

w(P) tp denote thg total number, length, and we_ight of thelnput: A Euclidean graptGy = (V, E), and param-
edges inP, respectively. For any two nodeswv € V, if there eterk > 1.
is a path.fromu towvin G, we define the hop, Euclidean and Output: A power assignmeni so thatf, is a distance
energy distances, respectively, framto v as follows, k-fault resistant-spanner oGy .
Xu.(G) = min{h(P) : P is a path fromu to v in G}, Objective: ~ Minimize c(p) andt. _
. _ _ In this work, for simplicity, we assume that the distance-
6uw(G) = min{d(P) : P is a path fromu to v in G}, power gradientg is ¢ = 2, although our results can be easily
Yo (G) = min{w(P) : P is a path fromu to v in G}, extended to any constant

Otherwise, we define, ,(G) = 0,,4(G) = Yuv(G) = .
The hop-diameterof G is the maximum of the hop-distance ) o
between any pair of nodes, and is dendié@). A path P, so The |Qea of spanners was fII’S't mtroduced by Chew [39],
that h(G) = h(P) is called thehop-diameter pattof G. The who cla|med that for a_set of points in the plane, there is a
total weight of G is given byw(G) = 3, , w(e). Note that trl_an_gulatlon of the I_Euclldean geometric gra_ph so that titt p
these definitions are applicable to undirected graphs as wef/ithin the triangulation between any two points is boundgd b
In this paper we use two spanner models, energy afFonstant times the Euclldegn distance between the points.
distance. Some spanner related definitions follow. Sinetch ~ This initiated the study of distance spanners, mainly withi
factor of G is the maximum deviation in one of the measure$® computational geometry society. In addition to thezfise
comparing toGy. The energy and distance stretch factors giP@nner property, distance spanners are usually required t

G are denoted by (G) andtp(G), respectively, such that have additional properties, such as planarity [39], [4@]][
low number of edges [41], [42], [43], [44], bounded degree

B. Previous work

uweV Yy o (Gy )’ 3The deletion of a node removes all edges adjacent to it as well.



[45], [46], [47], and low total edge length [48], [49], [50].C. Our contribution

The NP-hardness of vari_ous aspects of the distance spanngfe study the minimum cost power assignment for random
problem was addressed in [51], [52], [53], [54]. A very goodire|ess ad-hoc networks so that the induced communication
survey can be found in [55]. graph is ak-fault resistant spanner of the complete graph
Recently, there has been an increased interest in bath, — (V, Ey). We assume that the nod&s are uniformly
distance and power spanners in the context of wireless aghd independently distributed in a unit square. Hence, fall o
hoc networks. One of the first works to address the spanmglr results are with high probability. In particular, our ima
property in wireless settings were Li et al. [31]. They modejontributions are:
the network as a unit disk graph (UDG) and analyze the
power stretch factor of several common subgraphs of UDG,
the relative neighborhood graph (RNG), the Gabriel graph
(GG), and the Yao graph (YG) — 1 for RNG, 1 for GG,
and O(1) for YG. They also propose a local construction of
a sparse spanner that has both constant degree and constant ~ spanner ofGy and ¢(p;"™) = O(8 - m + n°) -

« For k =1, we construct two power assignmeni$,” in
O(mn?) time andp{ in O(n*logn) time for the energy
and distance models, respectively, so that:

1) Hper is an energyO (a- (2= . loan 4 q)).

m

power stretch factor. These three basic structures (RNG, GG c(pPrT), foranya > 1, 8> 1+ 2;,0<e <1,
YG) have been used in subsequent works. In [35] a distributed and any positive integemn < n.

algorithm for a power spanner is proposed with a power  2) H,s is a distancey/2-spanner ofGy and ¢(pf) =
stretch of2 and a constant bounded degree. Alzoubli et al. O(logn) - c(p§rT).

[32] develop a planar distance spanner; it has a constan{ For k = 2, we develop a power assignment for the
degree and stretch factors (distance and hop). Li et al. [34] distance model that can be computedfl ) time, which

presented 7(2\}2/3;/16)6 power spanner, where > 9 is is then converted int@, (in O(1) time) for the energy
a customizable parameter; in addition, their spanner isgpja model, so that:

has a bounded degree, and the total edge length is within a
constant factor of the total edge length &fS7Ty,. Kanj and
Perkovic [33] improved the power stretch factor by showing
a localized distributed power spanner with a stretch faofor . . .
| + (2sin7/k)° and a bounded degree &f+ 5, k > 10, 2) H,, is a distance2-fault reosllgsq'gantO(l)—spanner of
They also claimed that this stretch factor is near-optimal. Gy, ande(p)O(logn) - c(p3™7).

Schindelhauer et al. [56] consider a different power motthel; ~ » For any otherk, k& > 2, we analyze the energy and
stretch factor is compared again&t, instead of the cost of ~ distance stretch factors of the power assignmgpt
the minimum energy path fromto v. The authors investigate ~ Which can be computed i@ (nlogn) time, based on
the relations between various spanner models and apply thei @ Power assignment presented in [1], so thgl,) =
results to the sparsified Yao graphs. Levcopoulos et al. [57] O(k) - c(pf?""). We obtained the following:

logn
spanner oGy andc(pz) = O(nf logn) - ¢(p§*
forany0 <e < 1/2.

1) Hp, is an energy2-fault resistantO (\/an)
)

incorporate fault resistance into spanner constructidmeyT 1) Hp, is an energy k-fault  resistant
transform an arbitrary spanner intckefault resistant spanner. 0] (h(M STy ) - k? log n) -spanner ofGy .
Additional interesting results for fault resistant spaisnean 2) Hp, is a distance k-fault resistant
be found in [58], [59]. O (h(MSTy) - \/klogn)-spanner oGy .

None of the results above addresses tthtal energy con-  To the best of our knowledge, these are the first provable
sumption Furthermore, the total energy might be unboundetheoretic results for low cost distance spanners in wiseteb
as stated in [31], since it is easy to give examples that thec networks. Although our results for thefault resistant
RNG, GG, and YG could consume arbitrarily more totatnergy spanner is not a strict improvement over the Chandra
energy than the minimum total energy necessary to mainta&ihal. [48] result for arbitrary weighted spanners, it is nev
the connectivity of the network. What makes it even morertheless the attempt to make any progress in this new open
complicated for the distance model is that the tradeoff betw question.
the total energy consumption and distance stretch factor ca
be as high as'/? - w(M STy ) as shown in Section V-A. Il PRELIMINARIES

Unfortunately, the classic algorithms developed for gaher Chen and Huang [3], and later Kirousis et al. [7] made the
graphs do no_t work for power spanners, as they were devﬁfﬂ_lowing statement, which already became a common fokklor
oped for undirected graphs, while the asymmetric model IS e study of wireless networks
directed. Existing works for spanners in directed grapl®§,[6 y '

. OPT p
[61], [62], [63], do not address the weight property, which Theorem 2.1 ([3])'.C(p1 ).Z “f(MS.TV)' 0
effects the total energy consumption. Recall that the weight function is defined @$u, v) = d

) for any u,v € V. The triangle inequality in the Euclidean
To the best of our knowledgg, [36] is t'he. on]y paper t_BIane states that for any,y,z € V dy, < dy.. + dy... We
address the spanner problem with the optimization objectita easily derive theveak triangle inequalityfor the weight
of minimizing the total energy consumption. However, thg,ntion w. For anyz,y,z €V,
authors only provided heuristics for the problem, without
provable theoretical bounds. w(z,y) <2 (w(z,2) +w(z,y)).



By using the well-known Cauchy-Schwarz inequality we ob- Lemma 3.1:For n nodes uniformly distributed in a unit

tain that for anyzy, xs,..., 2, € V, squareU, let D* be a maximum radius disk, which can be
S placed inside the unit square, so that there are no nodes in
w(zy, zm) < (m—1)- Z w(wi, Tip1)- (1) Dr. Lete be the radius of)*. Then,
=1 . 2logn
In this paper we consider a wireless ad-hoc network with Jdim Prje > n =0.

nodes distributed uniformly and independently in a unitsqu

We make use of several relevant theoretical results, which . . . s [2logn
apply to the random distribution. The probability of all the Proof: Let D be a disk with radius = nandsbe

statements below converges to one as the number of netwgrkauare of siz_e/ﬁa. Let Pr[D] andPr[S] be the probabilities
nodes.n. increases. that given a uniform distribution af nodes in the unit square,

Zhang and Hou in [64] derived a lower bound on thdisk D aqd squares, respectively, can be put inside the unit
cost of a power assignment required to inducé-sirongly Sduare without covering any node. CleaRy[D] < Pr[S5], as
connected communication graph under the assumption thafits entirely inside ofD (see Fig. 1). To boundr[S] we
the nodes form a homogeneous Poisson point process v fde the unit square into grid cells, each of sizé/2 x
density \. They also mentioned that according to [65] it i€/ V2 L&t Pr[G] be the probability that one of the grid cells
well accepted that nodes whose locations are independel €MPY. If S can be placed inside the unit square without
random variables, each with a uniform distribution over tHePVering any node, then there exists an empty grid cell (see
unit square, are essentially a Poisson process withn, for 119 1), thereforePr[S] < Pr[G]. To prove the lemma it is
large values ofi. In the next theorem we bring the main resulfoW sufficient to show thalim,, .. Pr[G] = 0 as follows,

of [64] adapted to our model. 2 B _ 9 22\ "
Theorem 2.2 ([64]):For anyk > 1, ¢(pQF7) = Q(1). P1[G] < = - Pr[a specific cell is emply= - (1 - 2)
For some node, let d, (k) be the distance fromv to its ) n 1
k-th nearest neighbor. Berend et al. [66] bounded the distanc =" -1 NPV i < .
logn n logn - elog”™ ~ logn

to the k-th nearest neighbor from any node.
Theorem 2.3 ([66]):For every node € V and any positive Therefore lim,, .., Pr[D] = 0 and the lemma holds. =

integerk, 1 < k < m, where ¢ is any positive

constant, it holds T

(k+1)logn e
du(k) < 2 [ =0y IR A

Let e* be the maximum length edge i STy . Penrose AU (B N B
[67] stated the following theorem, which compares the lengt L8N YT T T
of ¢* and the maximum distance to the nearest neighbor. L g @ S

Theorem 2.4 ([67]):w(e*) = max,ey dy(1). @ e e

Using the upper bound of Theorem 2.3 we derive the next e e g
corollary. B S

Corollary 2.5: w(e*) = O (\/k’i”)

I1l. k-STRONG CONNECTIVITY

. . e . . . -
Fig. 1. SquareS lies within disk D with radiuse, and cell size 5 X

Following the proof of the lemma above we can see that if

In this section we addrg;s the issue of faglt resistanceein me divide the unit square into grid cells, each of i _/!(,gn «
context of strong connectivity. We first describe an eledant n

cost power assignment, which w.h.p. induces &-strongly logn “then w.h.p. each cell contains at least one rfodet

n

connected graph. Then we present a power assignment (1 1) andg(+/n/logn, \/n/logn) be the leftmost top and
developed in [1] fork-strong connectivity, for any: > 1. rightmost bottom grid cells, respectively. The rest of tetisc
In later sections we show that these power assignments alg@ indexed as depicted in Fig. 2. Lat(i, j) be the set of
induce good spanners under both, energy and distance, snodgddes in a grid cell(4, j). To make the notation simpler we
We propose a different power assignment, for the case of define N (0,5) = N(i,0) = 0, for 1 < i,j < \/n/logn.
biconnectivity since it has better theoretical bounds oa th Tq jnduce a2-strongly connected graph, we would like each
stretch factor (in both models) than general assignmgnt node in a grid cell(4, §) to (a) reach all nodes itV (i, j), and
with k£ = 2. (b) reach all the nodes in vertically or horizontally adjaice
cells, A(, 5), where

A. Strong biconnectivity

The power assignmept is based on the following technical
lemma. 4To simplify the discussion we avoid the use of floors and cgdlin

A(t,7) =N@GE—1,5)UN(i+1,j)UN(i, 7 —1)UN (3,5 +1).



n

1 i Togn two node-disjoint pathsPl,Pg, from u to v in Hp,, so that

‘ ‘ ‘ | max{h(P1), h(P2)} <2, /555
1 Corollary 3.5: With high probability, for any two nodes
u,v € V such thatu € N(i,j), v € N(l,m), and
v ¢ N(i,j)UA(, ), itholds|l —i|+|m—j| < 2ds ;- /-2

logn*

""" o B. Generalk-strong connectivity
j - g(i,7) - In [1] Carmi et al. developed a power assignmentso that
H,, is k-strongly connected, for any positive integerand
c(pr) = O(k) - c(p¢TT). The power assignmeni, is defined
as follows.
For everyv € V, initialize px(v) = d,(k)?, whered,, (k) is
‘ ‘ ‘ ‘ the distance fromv to its k-th nearest neighbor. LéY,(v) C
,/@ V' be the set ofk nearest neighbors af in G,. For every
edgee = (u,v) in M STy, increase the range of the nodes in
Ni(u) U Ng(v) (if necessary), so that each nodec N (u)
reaches all nodes iV, (v) U {v}, and vice versa. The cost
of the power assignment has an approximation rati® (%)
We can easily obtain the following observation. times the optimum and can be computedin log n) time.
Observation 3.2:For any1 < i,j < /-2 andu € It is rather simple to show thdi,, is k-strongly connected.
ogn Therek node-disjoint paths along the edgesidfSTy, . Every

Fig. 2. The grid cells in a unit square

N(@i,j), ve N3, j) UA(E,J), duo <4/ Slog" N (v) can be viewed as a large intersection, which contains
The power assignment is then deflned as follows For everyk intersection points, and for every ed@e v) in M STy, all
veV, nodes inNy(v) U {v} are reachable within one hop from the
po(v) = 810%”. nodes inNy(u). The following observation is straightforward.
n Observation 3.6:For any pair of nodesy,v € V, either
Note that following the observation, both conditions (ajflanthe edge(u,v) is in H,,, or there existk node-disjoint
(b) hold. The next theorem shows the propertiepof paths Py, Ps, ..., P, from u to v in Hp, so thath(P;) <
Theorem 3.3:With high probability, the graphff,,, is 2- h(MSTy)+2,1<i<k.
strongly connected ane(pz) = O(logn) - c(pQ*7). For technical reasons, we want to ensure ihav) > 1/n.

Proof: The cost bound is immediate due to Theorem 2.%Ve define for every € V,
To prove that the grapli/,,, is 2-strongly connected we need 1
to show that for any pair of nodes v € V' there are eithe2 Pr(v) = max {pk(v), } .
node-disjoint paths from to v, or pa(u) > w(u,v). Suppose "
w € N(i,j) andv € N(k,0), 1 < i,5,k, 01 < y/n/logn. Then w.h.p.,c(px) < c(px) + 1, and due to Theorem 2.2,
If i = kandj = [, thenpy(u) > w(u,v) by definition. ¢(py) = O(k) - (pkOPT) Finally we can present a theorem
Otherwise, there are two cases to consider. which summarizes the properties @f. It is a combination of
Case 1:The two grid cellsy(i, j) andg(k, 1) are either in the the results obtained in [1] and [66].
same column or row. Without the loss of generalityiet & Theorem 3.7 ([1],[66]): With high probability, ¢(px) =
and1 < j = [. Then the first path can be described as o(k) - (pkOPT) and for everyv € V, pr(v) = O (m(;#)
P1 (u, 1)) = (u, Zi+1,j, Zi+2,j, Py Zk—l,la 1}>,
IV. ENERGY SPANNER

wherez,, ; is an arbitrary node iV (m, j), i+1 < m < k—1. . .
That is, we hop to the right along the grid row frogf, ;) In this section we address the MPKES problem. We start

ith the casek = 1 and construct several power assignments
to g(k, 1) — one hop per cell. The second path would be to CElased on multiple Light Approximate Shortest-path Trees
the same, only one row above,

(LASTS) [68]. Then, fork = 2, we analyze the energy stretch
Po(u,0) = (U, Zi j—1, Zit1,j—1s Zit2,j—1s - - - s Zh,j—1,U), factor of the power assignment described in Section IlI-A.

wherez,,,_ is an arbitrary node itV (m, j— 1), i < m < k Finally, we derive some interesting results for the genesak.

(see Fig. 3(a)).
Case 2:The nodesu, v are not on the same row or columnA- 1-strong connectivity
Then the paths are constructed in a similar fashion (seeThe first power assignment is constructed on topnof

Fig. 3(b)). m LASTSs - we call it the basic construction. Then, we geneealiz
Based on the previous theorem, we can easily derive tthe idea and produce, for any given integer(1 < m < n),
following two corollaries. a power assignment on top ef LASTs. Finally, we show

Corollary 3.4: With high probability, for any pair of nodes how the energy stretch factor can be improved at the expense
u,v € V, which are not in the same grid cell, there exisbf an additive factor to the power assignment cost.



(a) Case 1: wlgi< kandl <j=1I (b) Case 2: w.l.gj < kandj > 1

Fig. 3. Two node-disjoint paths from to v in Hy,, whereu € N(3,j) andv € N(k,1), so thatu andv are not in the same grid cell

A Light Approximate Shortest-path Tree (LAST) is a comwu,v(Hp?n) < a - vu»(Gy). Hence we conclude thdf{pi,n
bination of a minimum spanning tree and a shortest path trée an energyy-spanner ofGy . Also,
Given an instancéG, w, s), whereG is an undirected graph en ” w
with a weight fun(ition or>1 edges, and s is a source node, ") =2 maxw(ey) < SN w(ed)
Khuller et al. [68] presented a linear time algorithm, which vev VeV uey
computes a spanning tréE of G, so that its weight is at <Y w(Ty) < B-n-w(MSTy).
most 5 times the weight of a minimum spanning tree @f uev
and for every node), v, ,(T) < a - 7s,,(G), whereaw > 1 From Theorem 2.1¢(p;") < 8- n - c(p{FT). [ |
and 3 > 1+ —%;. A spanning tree which complies with 2) General construction:We consider a wireless network
the o, 3 bounds is called arf, 3)-LAST. The LAST can with uniform and independent random node distribution in a
be constructed i®(n?) time for complete graphs. unit square. Different from the previous constructions tiifne
Since the LASTs are computed for undirected graphs, wee base our power assignment@nLASTs, wherem is any
defineGY, to be a simple complete undirected graph, which jgositive integer betweeih and n. The difficulty is to findm
obtained fromGy, by omitting the edge directions. Note thanodes to be the roots of LASTs, so that each of the remaining
since the weight functionv is symmetric, it can be applied nodes is relatively close to one of them. The rest is simdar t
to G, as well. Also, the minimum spanning tree 6, is the previous construction. We call this setrofroot nodes/,
exactly M STy . and use the following graph-theoretical lemma to compute it
For everyu € V, let T,, be an arborescentef an («, 3)- Lemma 4.2:For any treel’ = (V, ), and a positive integer
LAST computed for an instancéa,, w,u). Denote bye? m < |[V| = n, there exists a set aof nodes,1 < m < n,
ande’ the maximum weight outgoing edge fromin T, and U C V, so that for every € V'\ U, there exists, € U, with
M STy, respectively. a hop-distance of at moﬁw] betweenv and u.

1) Basic construction:‘We start with a construction based ~ Proof: Letz = [®]. The construction of the séf is
on n LASTs. This construction also serves as a good exptcurssive. We show the first step, in which we choosen
sition of the general case, where the number of LASTs Ts ) )
arbitrary. We would like to define a power assignmefit’, Lt P = (z1,22,..., z5()41) be the hop-diameter path in
so that each of the arborescense§T,}, .y, is a subgraph 1 Chooseu; = zmax{z,h(1)}+1- We consider two cases.

in H,..». Denote bye! the maximum weight outgoing edgeCase 1:If z > h(T), then we are finished. Easy to see that
from v in T,,. Then for everyw € V all nodes inV' reachz, in less thanz hops sincez, is the

leaf on the hop-diameter path @f.

Case 2:If < h(T), then take the cutV’, V') induced by the

edge(zz+1, 2e+2), SO thatz, 11 € V' andz, o € V. Let T’
The algorithm computes LASTs. We can maintain the and7” be the subtrees &f induced by the node set§’ and

maximum range requirement for each node during the whdl€’, respectively. Repeat the process to findus, . . ., u,, in

process, and update it only if some LAST requires a bigg&t’.

range. Therefore the total construction timelign?). We argue that all the nodes ¥’ are withinz hops from
Theorem 4.1:H,.» is an energya-spanner ofGy and z;41 in 7. Let z,1 be the root ofI”. The height of7” is

c(pi™) < B-n- C(p?PT), foranya >1andg8>1+ a%l at mostz, otherwiseh(T) > h(T") + h(T) — x > h(T); a

Proof: Clearly, for everyu € V, T, is a subgraph contradiction.

of H,en, by definition. Therefore, for every,v € V, Clearly, the process ends after at maststeps, since in
! each step we decrease the tree size by at least = n/m

5An arborescencés a directed, rooted tree in which all edges point awaj?0des. Also for every node € V, th.ere exists a node € U
so that the hop-distance fromto « is at mostz. [ ]

e,n _ u
Py (v) = maxw(ey).

from the root.



Next, we describe the power assignmeft™. According
to the lemma above, there exists a subset of nobess
{u1,...,un}, so that for every € V\U, there exists; € U,
with a hop-distance of at mogt®="| betweenv and v in
M STy . Note that the construction d@f takesO(n?) time.

Similarly to the basic construction, we would like the

nodeu; € U (closest tos in terms of hop-distance in/ STy/),
using the edges ao#/ STy, and then tat using the edges of
the LAST rooted atu; (see Fig. 4). Note thaP is unique as
M STy andT; are trees. Therefore,

w(P) = Ysu;(MSTV) + Yu; 1 (T)- )

communication graphH,.~ to contain all the edges of all o
the arborescences. In addition, to guarantee there is a paffim the definition of7i, vy, +(T3) < a -7, +(Gv). Let
from every node to one of the nodes Ui, the induced P’ be a path inGy from u; to ¢t which first travels along

communication graph will include th&/ STy paths. Finally,

the edges ofM STy to s and then coincides withP*.

for technical reasons we would like to ensure that each no@aMy, 7u..«(Gv) < w(P’) < 7u,s(MSTv) + 75.:(Gv)
is assigned a range of at leagfl/n. To achieve all of the @Nd7s.u, (MSTv) = 7u;,s(MSTy). Combining with (2) we

above, we define for every € V,

1
py"(v) = max{

o (el w(ed). 1}

The algorithm works in two phases. First, it compute¥eXt We analy

an MSTy and the set of root node&, and then them

LASTSs. Again, throughout the algorithm we can maintain the
maximum range required from each nodes, and as a result the

total running time isO(mn?).

Theorem 4.3:With high probability, H,.~ is an en-
ergy O (a- (%2 -logn + 1))-spanner of Gy, such that
c(py™) =O0(B-m) - c(pP*T), foranya > 1, 8 > 1+ 25,
and any positive integern < n.

Proof: The power assignment costp]"™"), is bounded

in a similar way as in Theorem 4.1.

(™) = 3 max { . wlet),u(es). |

veV sism "
m
<D D wler)+ ) e+l
veV i=1 veV

<(B-m+2) - w(MSTy) + 1.
From Theorems 2.1 and 2.2 if follows,

c(py™) = OB - m) - c(p*").

We next focus on analyzing the energy stretch factapf.,
and prove that for any pair of nodest € V', v, :(H,em)
O(a- (=2 logn+1)) - 7.:(Gv).

Let P* be a minimum weight path from to ¢ in Gy, so
that v, .(Gv) = w(P*). We consider two cases.
Case 1:For every edge in P*, w(e) < 1/n. Then, from the
definition of p™, P* is also a path inf,..~, and therefore

Ws,t(pr’m) = ’YS,t(GV)-

U;

I

e,

Fig. 4. The path ian;,m for vs,: Gy (s,t) = Q(1/n), where solid lines
are M STy edges and dashed lines &g edges

Case 2:There is at least one edgein P* so thatw(e) >
1/n. As a resultys +(Gy) = Q(1/n). There exists a pattf

derive,

®3)

ze7s ., (MSTy). Following Lemma 4.2,
Xs,us (MSTy) < [2=]. By using Theorem 2.5, w.h.p.

m

w(P) < (14 ) - Ysu; (MSTv) + ays.(Gy).

n—m logn
m n '

Finally, from (3), (4), and the assumptian(P*) = Q(1/n)
we conclude,

n—m

’Ys,t(Hpj»m) =0 <a : -logn + a) 5.t (Gv).
Therefore,tg(Hyem) = O (a- (%52 -logn +1)). [ ]

3) Improving the energy stretch factomhe analysis of the
energy stretch factor in Theorem 4.3 was divided into two
cases; in the first case, the minimum weight p&thin Gy
consisted of low weight edges only (belolyn), while the
second case was based on a lower bofifd) = Q(1/n) on
the weight of P*. In this section we improve the energy stretch
factor of p{""" by raising the lower bound(n) at the expense
of an additive factor to the power assignment cost.

Based onp]"™ we define the power assignmepf™ as
follows. For everyv € V,

ﬁ(lzvm(v) = max{pm(v), n671}7
where0 < ¢ < 1. The next theorem analyzes the cost and the
energy stretch factor qf"™.

Theorem 4.4:With high probability, Hze.» is an energy

n—m  logn ~eﬂn) _

- = +12 -spanner ofGy and c(p]

OB -m +n°) - c(p¢FT), foranya > 1, 3 > 1+
and any positive integen < n.

Proof: From theorems 2.2 and 4.3 it follows,

0(04'( =1

C(ﬁtlz,m) < C(pi,m) +n. ns—l _ O(ﬁ om 4 nE) . C(pIOPT).

The energy stretch factor dif;-.~ is analyzed similarly to
the proof of Theorem 4.3. For any two nodes € V, let P*
be the minimum weight path from to ¢ in Gy . Again, we
consider two cases.

Case 1:Every edge: in P* has a weightv(e) < n~t. Then,
P* is a path inHﬁ;,m, and%vt(Hﬁ;.m) =75.t(Gy).

from s to t in H .., which first arrives at some LAST origin Case 2:There exists an edgein P*, so thatw(e) > n°~'.



Then,vs.+(Gy) = Q(n°~1). Following the same reasoning asThereforetg(H,,) = O ( Toen ) [ |
in the proof of Theorem 4.3 we conclude As in Theorem 4.4 we now show how it is possible to gain
e, t(H~e ) <sus (MSTy) + Yur +(T3) a decrease in an energy stretch factor by increasing the cost
of the power assignment,. We define the power assignment
S(L+a) Yo, (MSTy) + - 75,4 (Gv) po as follows. For every € V,
n—m logn
—o((+a)- 2T B 4 (Gu) Po(v) = sl
n—m logn where0 < ¢ < 1/2. The next theorem analyzes the cost and
=0 <O" i T 0‘) s.+(GV) energy stretch factor qfs.
Theorem 4.6:With high probability, H;, is an energy2-
Thereforetp(Hyem) = O (a- (% : 1‘:% + 1)) B fault resistantO g Ten )-spanner of Gy and ¢(p2) =
O(n®logn) - c(p9FT).
B. 2-strong connectivity Proof: Clearly, c(j2) = O(nflogn) - ¢(p9F7T). We now

concentrate on the energy stretch factoffpf . For any pair of
nodess, ¢t € V, let P* be the minimum energy path @&, . We
dopt the approach used in the proof of Theorem 4.5, where

In Section 1lI-A we showed that the power assignmgst
induces &-strongly connected graph with high probability andol
has a cosO(logn) -¢(py ™). In this section we first analyze we considered two cases: either all the edge®inhave a
the energy stretch factor dff,,,, and then show a modified . posb o (logn o
power assignmeni, with an improved energy stretch factorbounded weight 022, 0r s, (Gv) = €2 (T) This time if
at the expense of a multiplicative factor to the cost. for everye in P*, w(e) < n°~'logn, then the rest is analyzed

Theorem 4.5:With hlgh probability, H,,, is an energy2- N exactly the same fashion as the first case in Theorem 4.5.

Otherwise,y; :(Gy) = Q(n°~!logn). Again, we follow the
same reasoning as in the second case of Theorem 4.5 and
construct two pathd’;, P,. This time the evaluation of the

log n

fault resistantO (1 [ ) -spanner ofGy .
Proof: For any two nodes,t € V, let Let

P*=(s=2z0,21,..., 21,2 = 1) energy stretch factor is slightly different.
be the minimum energy path from to ¢ in Gy, so that w(Py) = O( n .logn> _0 nl—2e (G,
vs.t(Gy) = w(P*). Similar to the proof of Theorem 4.3 we logn n logn ’

consider two cases for any pair of nodes € V. —
Case 1:For everyi, 0 < i < I — 1, w(u;,u;1) < 2. Thereforety(H,,) = O( Yoz ) u
Then, due to the weak triangle inequality(z;, z;42) <

41°8™ “We can conclude that the edgéé;, z;12)}'—5 and C. k-strong connectivity

{(zi,2zi41)}/Z¢ are in H,,. Forl < 2, clearly the edgds, t) The power assignmeni, was introduced in Section 1I-B.
is in Hy, andw(s,t) = O(1) - w(P*) = O(1) - 75:(Gv). We now analyze its energy stretch factor using the same
So we assume without the loss of generality th& an odd technique as in Theorem 4.5.
integer and > 2. Let, Theorem 4.7:With high probability, H, is an energyk-
fault resistantO (h(MSTv) - k* log n)-spanner oGy .

Proof: Following the steps of the proof of Theorem 4.5,

Py = (20,22, 24, .., 21-1, 21),

be a path which uses even indexed intermediate nodes, arlet
P* = <S = ZO,Zl,.--,Z[-l,Z[ :t>7

Py = (z0,21,23,...,21—-2,21), . .
2= (20,21, 25 =2, 2) be the minimum energy path from to ¢ in Gy, so that

to be a path which uses odd indexed intermediate nodes.(Gyv) = w(P*). The two cases we consider this time are
Since the onIy edges if’, and P, are either{(z;, z;12) g;g as follows.

or {(2;,2+1)}_5, both paths are inH,,. Also, it is easy Case 1:For every edge: in P*, w(e) < /2. If I <k, then

to see that the weight of each of the paths is at modtie to (1),

O(1) - w(P*) = O(1) - 75.4(Gv). _
Case 2:There exists an edg€z;, zi+1), 0 < i < i—1, S0 Z
that w(z;, zi11) > 1"% and hencey, .(Gy) = Q (k’f?l” . j=0

If s andt are in the same grid cell, the, ¢) is in H,, and and therefore(s, t) is in Hz, andw(s,t) = O(k) - vs.+(Gv).
w(s,t) = O(1)-v,,(Gy). Otherwise, let?; and P, be the two Otherwisel > k and we define
node-disjoint paths constructed in the proof of Theorem 3.3

—_

Zjv Z]+1 )

3

Due to symmetry it is sufficient to analyze the weight/af Py = (20, 2is Zihs Zie2der - Zig | 1 ko 20
From Corrolary 3.4h(P;) < 2 @. Combined with the for 1 < ¢ < k. Again due to (1) for everyl < i < k and
0<y<Il—k,

log .
fact thatp, (v) = 8<2= we obtain,
j+i—1

1

P)=0 ! — _ -

w(Py) b 08h 0O & Vs,t(GV). w(zj, zj+i) < k- E: w(2g; Zq+1) ;
logn n logn

3
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and therefore the edgg;, z;+;) is in Hp,. Also, w(P;) < Proof: Let p be a power assignment so thaj is strongly
k-w(P*). We conclude that for every < i < k, P, is a path connected. We consider two cases:

in Hz,, andw(P;) < k- v5+(Gv). Case L1:If for every u € V, p(u) < n?/3, there are no edges
Case 2:There exists an edgem P* so thatw(e) > 71, and between the nodes on the sidé) and the nodes on the side
thereforev, +(Gv) = Q (). From Theorem 3.7p(s) = BC. As aresulttp(H,) > 6,,,(H,) = Q(n'/3). Combining

o) (’“‘f“) Due to Observation 3.6 there are two possibilitiedVith Theorem 2.1¢p(H,) - c(p) = Q(n'/? - w(MSTv)).
Case 2:Otherwise,c(p) > 1/n%/3. It is easy to verify that

if the ed t Hj, , th
(8) if the edge(s, 1) is in 15, then w(MSTy) = O(1/n). Therefore,tp(H,) - c(p) > c(p) =
k1 /3.
w(s,t) <p(s) =0 ( ogn) = O(k?logn) - vs.4+(Gv); 2(n w(MSTy)). "
(b) there existk node-disjoint pathsPy,...,P;, so that .

h(P;) < h(MSTy) +2,1 < i<k As a resul, B. 1-strong connectivity
klogn We construct a power assignmepf so that H . is a
w(P;) =0 (h(MSTV) : ) distance2-spanner ofGy and c(p¢) = O(logn) - ( OPT)

We make use of Lemma 3.1.

= O (h(MSTy) - k*logn) - vs,:(Gv).
( ( v) 8 ) 720(Gv) 1) Power assignmentFor a given fixed integei > 0, let

Thereforetp(Hp,) = O (R(MSTv) - k*logn). B D(u,v,i) = {D}{,Dj,...,Di}, be a set of adjacent, non-
intersecting disks with diametet, , /2!, centered along the
V. DISTANCE SPANNER edge(u, v) in Gy . For example, in Fig. 6(a) the sét(u, v, 2)

of 4 disks is shown.

Here we consider the MPkDS problem for any valuekof
Start with a zero power assignment functigh For every

We construct a wireless network, which complies with a more
common spanner definition — the distance spanner. We star of nodesy,v € V, increase the power assignment of
showing a tradeoff between the total energy consumption al taln nodes, as described in algorithmeNSTRUCTPATH,

the distance stretch factor for arbitrarily placed noddserT to induce a directed path with low distance stretch factomfr
we first consider the casés— 1,2 for which we obtain better % © v in Hpyg.

results than in the general case. Note that for any pair oésod

U, v €V, 0up(Gy) = du,o- CONSTRUCTFPATH(U,V)
14«0
A. Worst case tradeoff analysis 2 if there are no nodes i € D(u,v,0) then

It turns out that the tradeoff between the total energy pf(u) — max{p{(u), w(u,v)}
consumption and the distance stretch factor for arbigrarib return
placed nodes can be as highid$® - w(M STy ). We construct 5 While there exists a node in eve®y;*! € D(u, v,i + 1)
an example that demonstrates this. In Fig. 5, the nodes ar€lo
placed along the sideglD, AB, and BC of a rectangle 6 te—i+1 ‘
ABCD, with [AD| = [BC| =1, and|AB| = |CD| = —5. 7 Letz,z,..., 2 be arbitrary nodes, so that; € D7,
The nodes are placed in a continuous manner at a fixedor D7 € D(u,v,1)
distance ofM from each other. Let andv be two nodes 8 20 < U 122141 < U
positioned ath and C, respectively. The following theorem 9 for J «—0to2" do

proves the lower bound of the tradeoff. 10 pf(z) — max{p{(z;), w(z;, 2j41)}
11 return
1/n1/3
A‘ _e————® B To analyze the running time of the algorithm, we make the
L | following simple observation. The condition verificationthe
+ o main loop of the algorithm GNSTRUCFPATH (line 5) takes
! at mostO(n?) time, and the number of iterations (line 6) is at
1 : . ! most|logn|. This is because the number of non-empty disks
. : can be at most, and the number of disks doubles with each
® ° iteration. The path is then constructed (line 10) in linearet
! I”}l/# \ Therefore, the running time of one execution of the
"D‘cu -— == —ch CONSTRUCTFPATH algorithm is O(n?logn), and the total

running time for all pairs i< (n*logn).
Fig. 5. Worst case tradeoff example for a distance spanner Clearly, the communication grapE{p(li is strongly con-
nected, as there is a directed path from ang V to any
Theorem 5.1:Given node placements as in Fig. 5, for any € V. Next we analyze the cost pf and the distance stretch
power assignment, tp(H,) - c(p) = Q(n'/3 - w(MSTy)).  factor of H.
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2) Analysis:We base our analysis on the following lemmalt is easy to see thaf(P) < d(P’) and therefore,

Lemma 5.2:With high probability, for everyv € V,
pl( )< 128logn N

Proof: The power assignmenf is first initialized to be a d(P) < d(P") = Z (i ivrzim F daigrzinina)-
zero function. Then, it is modified in consecutive applicas =0
of the algorithm @NSTRUCFPATH. We follow a single Due to Lemma 5.3 for any, 0 < i < 2¢ —1,
application of the algorithm on the pair,v. The update of ;
p¢ can occur in two places — lines 3 and 10. We show that Aeiiprizips T daigrzignin < \/Eduﬁv/QV
when one of these lines is executed, the valugs, v) (line 3) Wi
e conclude,

and w(zj, zj+1) (line 10) are at mosO(logn/n) with high

201

probability. Ost(Hya) = d(P') < 2V2dy 0 /2" = V2l 0.
Line 3 is executed only in the case where there are no nodes
in the disk DY. Therefore, according to Lemma 3.1, w.h.pTherefore,tp(H,q) = v/2. [ ]

duv < 810gn
Line 10 |s executed once is increased up to the point
where there are no nodes in some d@k“ Recall, that

the diameter of any disk i (u,v,i+ 1) is du /21T Then
by Lemma 3.1, w.h.pd, /2" < 24/21%" |t is easy to
verify thatd. < 2d,,/2¢, for 0 < j < 2%, Combining

the aboved., . ., < 8\/% w.h.p., and thereforg$ (v) <

BT,
To prove the following technical lemma we need some ‘A'

definitions. For any two points, y, we denote by|z, y|| the
Euclidean distance betweeanandy, and for any three points, (b) The constructed patF
we denote byZxyz the angle between the two line segments

zy andyz. AA ‘
Lemma 5.3:For any two points in the pland and B, let u / Y
D be a disk which has the line segme#B as its diameter. Qv
Then, for any poinC in D, ||A, C||+||C, B|| < v2-||4, B||.

Proof: Clearly the expressiofjA4, C|| + ||C, B|| is max- (c) The pathP’ (the squares represent nodass, 22,3, 23,4)

imized whenC is on the circumference ab and ZACB =
/2. Therefore,

[|A,Cl|| + ||C, B|| < ||A, B||sin LZABC + || A, B|| cos ZABC
<V2||4, BJ|. C. 2-strong connectivity

This completes our proof. ' . B We will now show that the power assignment described

We are ready to prove our main theorem of this section.in Section IlI-A is a distance-fault resistantO(1)-spanner

Theorem 5.4:With high probability, H ¢ is a distance/2-  of G. Recall that (i, j) denotes the set of nodes in a grid
spanner ofGy andc(pf) = O(logn) - (ploPT) cell g(z’ 7), andA(i,j) denotes the nodes in adjacent cells of

Proof: We start from the cost of the power assugnmenb (i,5), 1 < 14,5 < /5 The distance stretch factor f,,,
— J = ogn

From Lemma 5.2 it follows directly that w.h.p:(p{) = is derived in the following Theorem.
O(logn). From Theorem 2.2, wh.pe(p{) = O(logn) - thaorem 5.5:With high probability, H,

( OPT)
v fault resistantO(1)-spanner ofGy .
Proof: For any pair of nodess,t € V, lets € N(i,j)

Zj+1

Fig. 6. The construction of a path fromto v

p, 1S @ distance-

To analyze the distance stretch factor between any tw
nodesu andwv, we focus on a directed path,

andt € N(l,m), 1 < i,j,l,m < /e If t € N(i,5) U
P=(u=2z0,21,22. .., 2041 = V), A(i, §), then from the definition ops, pa(s) > w(s,t), and
induced in lines 7 — 10 (e.g., in Fig. 6(b) there is a path fdw.:(Hp,) = 1. Otherwise,v ¢ N(i,j) U A(4, j). Let P
i=2). and P, be the two paths constructed in Theorem 3.3. From
Let u = 201,21.2,---,22i0i41 = v be 2¢ + 1 points Corollary 3.5, the hop-distance of each of the paths is at mos

placed at equal distances along the e¢ige)). These are the 2ds; - | /oo Combining it with the fact thap, (v) = 8252,
tangent points between disks in additiont@ndv. Note that for everyv € V, we conclude
Aoy itz is = duw/2, foranyi, 0 < i < 2°—1. We define

a pathP’, from u to v which uses the nodeg and the just ) < 2d; - /810gn dy,
added points; ;4 as follows (see Fig. 6(c)), * logn At

P'=(z201,21,21,2, 22, - - ., %21, Z2i 2i 41)- wherei € {1,2}. Thereforeitp(H,,) = O(1). [ ]
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D. k-strong connectivity deployment area$, and the parameter. Note that the power

We now analyze the distance stretch factoppfdefined in assignm_ent needs to be scaled Bl as it is initially computed
Section I1I-B, and show thall;;, is a distance:-fault resistant for & unit square.
O (h(MSTyv) - /klogn)-spanner oGy .

Theorem 5.6:With high probability, 7, is a distancek-
fault resistantO (h(M STy ) - v/klog n)-spanner ofGy . _ _

Proof: For any two nodess,t € V, we consider two W& now ogtlme how to construct the power assignments

cases. Ifd,, < /1/n, then from the definition ofyy, the pf’m~andpk distributively. This will allow us to computg]"™
edge(s, t) is in H;, and therefore, ;(H;, ) = 1. Otherwise, andpr. _ o
85.4(Gv) = ds; > /1/n. From Observation 3.6 there exist 1) Dlstr!buted computation gf""™": The algorithm in Sec-
node-disjoint paths®,, P, ..., P, from s to t in H,, so that tion IV-A first gonstructs theMSTx{, followed by the set of
h(P;)) < h(MSTy)+2,1 < i < k. The power assignment”OdeSU- and finally the computation of LASTs. We address

i, is bounded in Theorem 3.7, so we can deduce that for a@§ch of these steps in detail.
The construction of M STy . First, each nodew € V

B. Power assignments;’” and py

edge (u,v) in Hp,, duy = O ( Mongn) As a result for transmits its ID using power level gf (u) = f(lﬁ% (scaled
everyi, 1 <i <k, according to the size of the deployment area). After some
timeout, v receives all the transmissions of close nodes and
d(P) =0 (h(MSTv) 1/ klog”) obtains a list of all node#’(«) which are within a distance of
K 2,/73(15%’11) from it. Using the standard methods described in
=0 (h(MSTV) . \/klogn) . [69] it is possible to compute all distances ,, v € S(u)
(we skip the discussion about the correct reception of all
Therefore,tp(Hp, ) = O (R(MSTy) - V/klogn). B these transmissions). Due to the upper bound of Theorem 2.3,

MSTy is a subgraph ofH,. Recall that a weight of an

VI. DISTRIBUTED IMPLEMENTATION edge (u,v) € E, is d2,, and therefore can be computed.

Usually, the deployment of wireless nodes is not controlles all the links inH,, are bidirectional, we can now use the
by some centralized entity which coordinates network activDistributed Algorithm for Minimum-Weight Spanning Trees
ties. As a result, the nodes are required to carry on theistag70] to compute the minimum weight spanning tree i,
independently, communicating only with a small set of clos&hich is exactlyM STy .
nodes. In this section we describe how the power assignment3he construction of the setU: Recall that/ is constructed
discussed in Sections V and IV can be computed distribytiveby recursively selecting the-th node,z = [*-™] on the
Our only requirement is that each node has a unique ID adémeter, and then removing the subtree rooted at that node.
knows the size of the deployment area, the total number Bfie diameter can be computed by executing the distributed
nodes,n, and various parameters (if needed), sucle ad BFS algorithm [71] twice; first from the node with the smalles
. ID (denote byu), and then from the node at the maximum hop-
The power assignments described in this paper can distance fromv (denote byv). This involves two simple leader
roughly divided into two types: power assignments a bound @fection procedures to find andv. The z-th node (denote)
the maximum assigned power and those which do not have thisthe diameter is easily selected by following a path fram
bound. The first type can be computed easily as each node Ramlly, all nodes in a subtree rootedzafwith v as a leaf) are
the information about the total number of nodes and the sinetified not to participate in further BFS queries. The pesce
of the deployment area, so maximum power can be assigretinues until all nodes are notified.
without effecting the theoretical bounds. The second type o The computation of LASTs: The m nodes which were
power assignments do not have a bound on the maximitentified as the sources for LASTs execute the distributed
power, and hence require an execution of the algorithm tAST algorithm as described in [72].
compute each individual power assignment. In what follows It is important to note that the second and third steps can
we show thap?, p,, andp- fall into the first category. Then we be executed in parallel.
describe how to compute distributively the power assigrisien 2) Distributed computation of;: As described in Sec-

m

py™ andpy. tion I1I-B, the power assignmenp, is based onM STy,
which is then used to connect thieclosest neighborhoods
A. Power assignments{, p,, and j, along M STy edges. The distributed implementation consists

of three steps.

Querying the k-closest nodes:Similar to the technique
pl(u) = 84 /210%, for everyu € V, the asymptotic bounds used in the first step op]"™ construction, the information
are not effected. By definitiony, — 810%, and j, can be about thek-closest neighborhoodyy,(u), of nodeu € V' can
easily derived fromps. be gathered using a transmission range gff 2% which,

The three power assignmenis, p», andp,, can be com- according to Theorem 2.3, is an upper bounddpfu).
putedlocally without engaging in any kind of communication, The construction of M STy : Similar to the first step in the
based solely on the number of nodes the size of the construction ofp]™.

From Lemma 5.2p¢ < 8 21"%. Clearly, if we assign




Power assignment: Once M STy is obtained, the end- [6]
points of every M STy edge (u,v) € Eysr exchange
information about theik-neighborhoodsN (u) and Ny (v). 7]
Then each node propagates the received information to its
k-neighborhood. Recall that the power assignment of each
nodew only depends on the distance to theclosest node,
dr(w), and the received informationy(v) U {v}, where
(u,v) € Eypsr andw € Ni(u). Thus, the power assignment [9]
can be computed after this step.

Note that the first two steps can be executed in parallel. ;g

VIl. CONCLUSIONS AND FUTURE WORK [11]

In this paper we studied asymmetric power assignments
of low cost for which the induced communication graph is12
a good fault resistant spanner ¢fy,. We addressed two[ ]
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A. E. F. Clementi, P. Penna, and R. Silvestri, “Hardnessilts for the
power range assignmet problem in packet radio network&ANDOM-
APPROX'99 1999, pp. 197-208.

L. M. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc, “Pewconsump-
tion in packet radio networksTheoretical Computer Scienceol. 243,
no. 1-2, pp. 289-305, 2000.

] C. Ambuhl, A. Clementi, P. Penna, G. Rossi, and R. SilveSinergy

consumption in radio networks: Selfish agents and rewardinghaie
nisms,” Theoretical Computer Scienceol. 343(1-2), pp. 27-41, 2004.
C. Ambuhl, A. Clementi, M. D. lanni, A. Monti, G. Rossi, and
R. Silvestri, “The range assignment problem in non-homogesstatic
ad-hoc networks,” ifPDPS’04 2004.

G. Calinescu, S. Kapoor, A. Olshevsky, and A. ZelikoysiNetwork
lifetime and power assignment in ad hoc wireless networksEZ3a\'03
2003, pp. 114-126.

A. E. F. Clementi, G. Huiban, P. Penna, G. Rossi, and Yhdeven,
“Some recent theoretical advances and open questions ogyecen-
sumption in ad-hoc wireless networks,”ARACNE’022002, pp. 23-38.
R. Ramanathan and R. Hain, “Topology control of multihopeless
networks using transmit power adjustment,” INFOCOM'00, 2000,

spanner models, energy and distance, under the requirement pp. 404-413.

that the stretch factor (in both models) remains unchanfjedd]
the number of node failures is at mdst- 1, wherek is any
positive integer.

We assume that the nodes are uniformly and independently
distributed in a unit square. The probability of all our résu [1°]
converges to one as the number of network nodecreases.

For £k € {1,2} we propose several power assignmentse]
which obtain a good bicriteria approximation on the total
cost and stretch factor under the two models. kEor> 2
we analyze a power assignment developed in [1], and derive
some interesting bounds on the stretch factor for both nsodel
as well. To the best of our knowledge, these are the fifdf]
provable theoretic results for low cost spanners in wikeles
ad-hoc networks. [19]

To the best of our knowledge, these are the first provable
theoretic results for low cost distance spanners in wisetgs |5
hoc networks. Although our results for thefault resistant
energy spanner is not a strict improvement over the Charidra e
al. [48] result for arbitrary weighted spanners, is is nthaless
the attempt to make any progress in this new open question.

One of the possible future directions would be to perforia2]
finer analysis of the power assignmeijt™ in Section IV. It
would be also interesting to perform simulations to measugg;
the performance of the power assignment developed in
Section V for large scaled networks.
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