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Abstract—In this paper we study asymmetric power assign-
ment which induce a low energyk-strongly connected communi-
cation graph with spanner properties. We address two spanner
models: energy and distance. The former serves as an indicator
for the energy consumed in a message propagation between
two nodes, and the latter reflects the latency overhead in the
induced communication graph. We consider a random wireless
ad-hoc network with |V | = n nodes distributed uniformly and
independently in a unit square.

For k ∈ {1, 2} we propose several power assignments which
obtain a good bicriteria approximation on the total cost and
stretch factor under the two models. For k > 2 we analyze a
power assignment developed in [1], and derive some interesting
bounds on the stretch factor for both models as well. We also
describe how to compute all the power assignments distributively,
and provide some simulation results. To the best of our knowl-
edge, these are the first provable theoretical bounds for low cost
spanners in wireless ad-hoc networks.

Index Terms—Communication systems, Network fault toler-
ance, Point processes, Stochastic approximation.

I. I NTRODUCTION

A wireless ad-hoc network consists of several transceivers
(nodes) located in the plane, communicating by radio. Unlike
wired networks, in which the link topology is fixed at the
time the network is deployed, wireless ad-hoc networks have
no fixed underlying topology. In addition, the relational dispo-
sition of wireless nodes is constantly changing. The temporary
physical topology of the network is determined by the distri-
bution of the wireless nodes, as well as the transmission range
of each node. The ranges determine a directed communication
graph, in which the nodes correspond to the transceivers and
the edges correspond to the communication links.

The key difference between wireless ad-hoc networks and
“conventional” communication structures, from the designer’s
point of view, is in thepower assignment model. Each node
decides on a transmission power level, and a transmission from
nodeu can be received at nodev if the transmission power of
u is at leastdc

u,v, wheredu,v is the Euclidean distance between
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u and v, andc the distance-power gradient, usually taken to
be in the interval[2, 4] (see [2]).

Producing astrongly connected1 communication graph for
wireless ad-hoc networks, through power assignments, was
introduced by Chen and Huang [3] and has been studied
since for the past 20 years. This not surprising since many
applications in civilian, industrial and military areas require a
strongly connected underlying topology to carry out different
networking tasks [4]. Unlike nodes in wired networks, wireless
devices are typically equipped with limited energy supplies
making energy efficiencyone the primary objectives in net-
work design [5]. Energy efficiency is especially important for
networks where battery replacement is infeasible.

One of the most studied topology control problems in the
context of energy preservation in wireless networks is the
M INSC problem: given a set of nodes in the plane, find a
power assignment so that the induced communication graph
is strongly connected and thetotal energy consumption(also
referred to ascost) is minimized. The problem appears to be
NP-hard [6] for the plane and polynomially solvable in the
linear case (a special case when all the nodes are placed along
a line segment). Thus, the majority of existing works produce
approximation algorithms that induce a strongly connected
graph with an upper guarantee on the total energy consumption
([3], [7], [8], [9], [10], [11], [12]).

In many scenarios wireless ad-hoc networks are deployed
in hostile environments where node failures are very likely
to happen. Developingfault resistant2 topology control algo-
rithms can play a crucial factor in keeping the network in
an operable state. Naturally, the fault resistant version of the
M INSC problem is also NP-hard, so the focus was developing
power assignment algorithms which approximate the total
power consumption ([1], [13], [14], [15], [16], [17], [18],[19],
[20], [21]).

Low total energy consumption and fault resistance are fun-
damental for successful network deployment. However, there
are additional factors which need to be taken into account.
A key component in the overall network performance is the
efficiency of routing algorithms[22]. There are many possible
metrics to measure the efficiency of a routing algorithm, such
as power, hop-count and residual energy [23]. Ultimately, each
node has a link to any other node in the system, so that
the routing possibilities are unlimited and any routing graph
is feasible. Unfortunately, this assumption is far from being

1A graph is strongly connected if for any pair of nodes,u, v, there is a
path fromu to v in the graph.

2A graph is k-strongly connected if it remains strongly connected even
after k − 1 node failures.
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realistic; it is impractical and usually impossible to allow each
node to have a transmission range sufficient to reach all the
other nodes. Instead, each node is assigned with enough power
to reach only a relatively small subset of nodes. As a result,
the topology of the induced communication graph has a strong
effect on the routing algorithms efficiency.

In this paper we focus on two parameters which have
an impact on the efficiency of several routing algorithms.
More specifically, we study the stretch factor of the induced
communication graph under twospannermodels: energy and
distance as described below.

• Energy spanner model: Let γu,v be the minimum energy
required to send a message fromu to v by using relay
nodes (if necessary). Then, the energy spanner is aimed
to minimize theenergy stretch factortE of the induced
communication graph, that is for any pair of nodes, the
energy required to propagate a message fromu to v is
at mosttE · γu,v. The energy model reflects the power
efficiency metric of routing protocols, which is essential
for prolonging the network lifetime due to the constrained
energy resource. A very good survey of power-aware
routing protocols in wireless network can be found in
[24].

• Distance spanner model: The distance spanner min-
imizes the distance stretch factortD of the induced
communication graph, that is for any pair of nodes, the
minimum distance path fromu to v is at mosttD · du,v.
The distance stretch factor has a strong effect on the qual-
ity of geographic routing protocols[25]. These protocols
use greedy forwarding decisions based on the geographic
progress towards the destination, thus having a low dis-
tance stretch factor in the underlying topology graph is
essential for efficient and successful geographic routing.
For existing protocols using the geographic scheme see
the survey in [23].

Remark: For both spanner models we choose to measure
the stretch factor by comparing the efficiency of the best
possible, in terms of either energy or distance, path in the
induced communication graph to the best one in thecomplete
graph, where every node can reach any other node in a single
hop. As already stated, the use of complete communication
graph, in terms of radio interference and energy consumption,
is unpractical and inefficient. However, the complete graphis
an optimal underlying topology for routing algorithms as it
makes no restrictions on available routes; thus, by providing
performance guarantees compared to the complete graph we
make a stronger statement about performance guarantees in
real network settings.

The majority of routing (and other) network protocols were
traditionally developed for undirected graphs with symmetric
(bidirectional) communication links. However, in wireless ad-
hoc networks it is not uncommon to have asymmetric (uni-
directional) links due to non-uniform background noise, non-
uniform external interference and energy efficiency considera-
tions. Some recent research addressed this phenomena by pro-
viding several approaches for various network tasks (e.g. [26],
[27], [28], [29], [30]). We choose not to enforce symmetry

over communication links, thus allowing unidirectional links
to exist, which addresses a more general and realistic model
of wireless ad-hoc networks.

As stated above, obtaining a minimum energy power as-
signment that induces ak-strongly connected,k ≥ 1, graph is
NP-hard. Adding an additional optimization objective, namely
the stretch factor (in either of the models), makes the problem
even harder. Almost all previous spanner constructions for
ad-hoc wireless networks assume the unit disk graph (UDG)
as the underlying topology ([31], [32], [33], [34], [35]).
The research efforts were generally targeted at constructing
a subgraph of UDG which holds the spanner property, and
additional criteria, such as planarity and bounded degree.
To the best of our knowledge, [36] is the only paper to
address the spanner problem with the optimization objective of
minimizing the total energy consumption. However, the authors
only provided heuristics for the problem, without provable
theoretical bounds.

One possible reason that all the current research efforts
provide no guarantee on the total energy consumption is that
the classical approaches for energy spanners, which involves
using relative neighborhood graphs (RNG), Gabriel graphs
(GG), and Yao graphs (YG), might result in an unbounded
cost, as stated in [31]. What makes it even more complicated
for the distance model is that the tradeoff between the total
energy consumption and distance stretch factor can be as
high asn1/3 times the total squared weight of the minimum
spanning tree as shown in Fig. 5.

We make the first step towards energy efficient spanner
construction in wireless settings by considering a random
wireless ad-hoc network whose nodes are uniformly and
independently distributed in a unit square. For these networks
we were able to develop low cost fault resistant spanners with
provable theoretical bounds. Throughout the paper we indicate
the probabilistic nature of our developments by stating that
the specific result iswith high probability, or in shortw.h.p.,
if the probability of the result converges to one as the number
of network nodes,n, increases.

This paper is organized as follows. In the rest of this section,
we present our system settings, discuss previous work and
state our results. In Section II we discuss probability related
results which we use in this paper. Followed by Section III,
where we describek-fault resistant power assignments used
in later parts. Then, in Sections IV and V we show low
cost spanner constructions under two spanner models, energy
and distance, respectively. In Section VI we describe how
the power assignments discussed in previous sections can be
computed distributively. Finally, in Section VII we conclude
and discuss possible future developments.

A. System settings

Let GV = (V,EV ) be a complete directed graph of the
wireless nodesV positioned in the plane. We define a weight
function on the edge setEV as w(u, v) = dc

u,v, for any
u, v ∈ V . We also use the notationw(e) to indicate the
weight of an edgee = (u, v). Note that the weight of an
edge matches the amount of energy required for transmission
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between its endpoints. LetMSTV = (V,EMST ) be the
minimum spanning tree ofGV (with a weight functionw).

A power assignment is a functionp : V → R
+, which as-

signs each nodev ∈ V a transmission rangerv = c
√

p(v). The
transmission possibilities resulting from a power assignment
induce a directed communication graphHp = (V,Ep), where
Ep = {(u, v) : ru ≥ du,v} is a set of directed edges. The cost
of the power assignment is defined as

c(p) =
∑

v∈V

p(v) =
∑

v∈V

max
(v,u)∈Ep

w(v, u).

We assume the use offrame-basedMAC protocols which
divide the time into frames, containing a fixed number of
slots. The main difference from the classic TDMA is that
instead of having one access point which controls transmission
slot assignments, there is a localized distributed protocol
mimicking the behavior of TDMA. The advantage of a frame-
based (TDMA-like) approach compared to the traditional
IEEE 802.11 (CSMA/CA) protocol for a Wireless LAN is that
collisions do not occur, and that idle listening and overhearing
can be drastically reduced. When scheduling communication
links, that is, specifying the sender-receiver pair per slot,
nodes only need to listen to those slots in which they are
the intended receiver – eliminating all overhearing. When
scheduling senders only, nodes must listen in to all occupied
slots, but can still avoid most overhearing by shutting down
the radio after the MAC (slot) header has been received. In
both variants (link and sender-based scheduling) idle listening
can be reduced to a simple check if the slot is used or not.
Several MAC protocols have been developed that take classical
TDMA solutions using an access point to ad-hoc settings
without any infrastructure by employing a distributed slot-
selection mechanism that self-organizes a multi-hop network
into a conflict-free schedule (see [37], [38]).

Let G = (V,E) be some spanning subgraph ofGV , and
P be any path inG. We use the notationsh(P ), d(P ), and
w(P ) to denote the total number, length, and weight of the
edges inP , respectively. For any two nodesu, v ∈ V , if there
is a path fromu to v in G, we define the hop, Euclidean and
energy distances, respectively, fromu to v as follows,

χu,v(G) = min{h(P ) : P is a path fromu to v in G},
δu,v(G) = min{d(P ) : P is a path fromu to v in G},
γu,v(G) = min{w(P ) : P is a path fromu to v in G},

Otherwise, we defineχu,v(G) = δu,v(G) = γu,v(G) = ∞.
The hop-diameterof G is the maximum of the hop-distance
between any pair of nodes, and is denotedh(G). A pathP , so
that h(G) = h(P ) is called thehop-diameter pathof G. The
total weight ofG is given byw(G) =

∑

e∈E w(e). Note that
these definitions are applicable to undirected graphs as well.

In this paper we use two spanner models, energy and
distance. Some spanner related definitions follow. Thestretch
factor of G is the maximum deviation in one of the measures
comparing toGV . The energy and distance stretch factors of
G are denoted bytE(G) and tD(G), respectively, such that

tE(G) = max
u,v∈V

γu,v(G)

γu,v(GV )
,

tD(G) = max
u,v∈V

δu,v(G)

δu,v(GV )
.

GraphG is an energyt-spanner ofGV if tE(G) ≤ t. Similarly,
G is a distancet-spanner ofGV if tD(G) ≤ t.

GraphG is strongly connectedif for any two nodesu, v ∈
V , there exists a directed path fromu to v in G. The wireless
nodes are unreliable by their nature and may fail. For this
purpose fault resistance is used in wireless networks. A graph
G is said to bek-strongly connected if the removal of any
set of at mostk − 1 nodes does not disconnect the graph.3

The famous Menger theorem states that a graph isk-strongly
connected iff for any pair of nodesu, v ∈ V such that(u, v) /∈
E, there arek node-disjoint paths fromu to v.

An interesting combination of fault resistance and the span-
ner property (in either of the models defined above), is thek-
fault resistant spanner. GraphG is an energy (resp. distance)
k-fault resistantt-spanner ofGV , if it remains an energy (resp.
distance)t-spanner ofG after the removal of at mostk − 1
nodes. Therefore, in order to show thatG is an energy (resp.
distance)k-fault resistantt-spanner ofGV , we need that one
of the following conditions hold for anyu, v ∈ V :

a) There existk node-disjoint pathsP1, P2, . . . , Pk so that
w(Pi) ≤ t · γu,v(GV ), 1 ≤ i ≤ k.

b) The edge(u, v) is in G, andw(u, v) ≤ t · γu,v(GV ).
We denote bypOPT

k the minimum cost power assignment
so thatHpOP T

k
is k-strongly connected.

This paper addresses the minimum powerk-fault resistant
spanner problem (MPkS) under the energy and distance mod-
els. Formally, we consider the following two problems.

Problem 1 (MPkES):
Input: A Euclidean graphGV = (V,E), and param-

eterk ≥ 1.
Output: A power assignmentp so thatHp is an energy

k-fault resistantt-spanner ofGV .
Objective: Minimize c(p) and t.
Problem 2 (MPkDS):

Input: A Euclidean graphGV = (V,E), and param-
eterk ≥ 1.

Output: A power assignmentp so thatHp is a distance
k-fault resistantt-spanner ofGV .

Objective: Minimize c(p) and t.
In this work, for simplicity, we assume that the distance-

power gradient,c is c = 2, although our results can be easily
extended to any constantc.

B. Previous work

The idea of spanners was first introduced by Chew [39],
who claimed that for a set of points in the plane, there is a
triangulation of the Euclidean geometric graph so that the path
within the triangulation between any two points is bounded by
a constant times the Euclidean distance between the points.

This initiated the study of distance spanners, mainly within
the computational geometry society. In addition to the distance
spanner property, distance spanners are usually required to
have additional properties, such as planarity [39], [40], [41],
low number of edges [41], [42], [43], [44], bounded degree

3The deletion of a node removes all edges adjacent to it as well.
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[45], [46], [47], and low total edge length [48], [49], [50].
The NP-hardness of various aspects of the distance spanner
problem was addressed in [51], [52], [53], [54]. A very good
survey can be found in [55].

Recently, there has been an increased interest in both,
distance and power spanners in the context of wireless ad-
hoc networks. One of the first works to address the spanner
property in wireless settings were Li et al. [31]. They model
the network as a unit disk graph (UDG) and analyze the
power stretch factor of several common subgraphs of UDG,
the relative neighborhood graph (RNG), the Gabriel graph
(GG), and the Yao graph (YG):n − 1 for RNG, 1 for GG,
and O(1) for YG. They also propose a local construction of
a sparse spanner that has both constant degree and constant
power stretch factor. These three basic structures (RNG, GG,
YG) have been used in subsequent works. In [35] a distributed
algorithm for a power spanner is proposed with a power
stretch of2 and a constant bounded degree. Alzoubli et al.
[32] develop a planar distance spanner; it has a constant
degree and stretch factors (distance and hop). Li et al. [34]
presented a

√
2

c

1−(2
√

2 sin π/k)c
power spanner, wherek ≥ 9 is

a customizable parameter; in addition, their spanner is planar,
has a bounded degree, and the total edge length is within a
constant factor of the total edge length ofMSTV . Kanj and
Perkovic [33] improved the power stretch factor by showing
a localized distributed power spanner with a stretch factorof
1 + (2 sin π/k)c and a bounded degree ofk + 5, k ≥ 10.
They also claimed that this stretch factor is near-optimal.
Schindelhauer et al. [56] consider a different power model;the
stretch factor is compared againstdc

u,v instead of the cost of
the minimum energy path fromu to v. The authors investigate
the relations between various spanner models and apply their
results to the sparsified Yao graphs. Levcopoulos et al. [57]
incorporate fault resistance into spanner construction. They
transform an arbitrary spanner into ak-fault resistant spanner.
Additional interesting results for fault resistant spanners can
be found in [58], [59].

None of the results above addresses thetotal energy con-
sumption. Furthermore, the total energy might be unbounded,
as stated in [31], since it is easy to give examples that the
RNG, GG, and YG could consume arbitrarily more total
energy than the minimum total energy necessary to maintain
the connectivity of the network. What makes it even more
complicated for the distance model is that the tradeoff between
the total energy consumption and distance stretch factor can
be as high asn1/3 · w(MSTV ) as shown in Section V-A.

Unfortunately, the classic algorithms developed for general
graphs do not work for power spanners, as they were devel-
oped for undirected graphs, while the asymmetric model is
directed. Existing works for spanners in directed graphs [60],
[61], [62], [63], do not address the weight property, which
effects the total energy consumption.

To the best of our knowledge, [36] is the only paper to
address the spanner problem with the optimization objective
of minimizing the total energy consumption. However, the
authors only provided heuristics for the problem, without
provable theoretical bounds.

C. Our contribution

We study the minimum cost power assignment for random
wireless ad-hoc networks so that the induced communication
graph is ak-fault resistant spanner of the complete graph
GV = (V,EV ). We assume that the nodesV are uniformly
and independently distributed in a unit square. Hence, all of
our results are with high probability. In particular, our main
contributions are:

• For k = 1, we construct two power assignments,p̃e,m
1 in

O(mn2) time andpd
1 in O(n4 log n) time for the energy

and distance models, respectively, so that:

1) Hp̃e,m
1

is an energyO
(

α ·
(

n−m
m · log n

nε + 1
))

-

spanner ofGV and c(p̃e,m
1 ) = O(β · m + nε) ·

c(pOPT
1 ), for any α > 1, β ≥ 1 + 2

α−1 , 0 ≤ ε ≤ 1,
and any positive integerm ≤ n.

2) Hpd
1

is a distance
√

2-spanner ofGV and c(pd
1) =

O(log n) · c(pOPT
1 ).

• For k = 2, we develop a power assignmentp2 for the
distance model that can be computed inO(1) time, which
is then converted intõp2 (in O(1) time) for the energy
model, so that:

1) Hp̃2
is an energy2-fault resistantO

(√

n1−2ε

log n

)

-

spanner ofGV andc(p̃2) = O(nε log n) · c(pOPT
2 ),

for any 0 ≤ ε < 1/2.
2) Hp2

is a distance2-fault resistantO(1)-spanner of
GV , andc(p)O(log n) · c(pOPT

2 ).

• For any otherk, k > 2, we analyze the energy and
distance stretch factors of the power assignmentp̃k,
which can be computed inO(n log n) time, based on
a power assignment presented in [1], so thatc(p̃k) =
O(k) · c(pOPT

k ). We obtained the following:

1) Hp̃k
is an energy k-fault resistant

O
(

h(MSTV ) · k2 log n
)

-spanner ofGV .
2) Hp̃k

is a distance k-fault resistant
O
(

h(MSTV ) · √k log n
)

-spanner ofGV .

To the best of our knowledge, these are the first provable
theoretic results for low cost distance spanners in wireless ad-
hoc networks. Although our results for the1-fault resistant
energy spanner is not a strict improvement over the Chandra
et al. [48] result for arbitrary weighted spanners, it is nev-
ertheless the attempt to make any progress in this new open
question.

II. PRELIMINARIES

Chen and Huang [3], and later Kirousis et al. [7] made the
following statement, which already became a common folklore
in the study of wireless networks.

Theorem 2.1 ([3]): c(pOPT
1 ) ≥ w(MSTV ).

Recall that the weight function is defined asw(u, v) = d2
u,v

for any u, v ∈ V . The triangle inequality in the Euclidean
plane states that for anyx, y, z ∈ V dx,y ≤ dx,z + dy,z. We
can easily derive theweak triangle inequalityfor the weight
function w. For anyx, y, z ∈ V ,

w(x, y) ≤ 2 · (w(x, z) + w(z, y)).
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By using the well-known Cauchy-Schwarz inequality we ob-
tain that for anyx1, x2, . . . , xm ∈ V ,

w(x1, xm) ≤ (m− 1) ·
m−1
∑

i=1

w(xi, xi+1). (1)

In this paper we consider a wireless ad-hoc network with
nodes distributed uniformly and independently in a unit square.
We make use of several relevant theoretical results, which
apply to the random distribution. The probability of all the
statements below converges to one as the number of network
nodes,n, increases.

Zhang and Hou in [64] derived a lower bound on the
cost of a power assignment required to induce ak-strongly
connected communication graph under the assumption that
the nodes form a homogeneous Poisson point process with
density λ. They also mentioned that according to [65] it is
well accepted thatn nodes whose locations are independent
random variables, each with a uniform distribution over the
unit square, are essentially a Poisson process withλ = n, for
large values ofn. In the next theorem we bring the main result
of [64] adapted to our model.

Theorem 2.2 ([64]):For anyk ≥ 1, c(pOPT
k ) = Ω(1).

For some nodev, let dv(k) be the distance fromv to its
k-th nearest neighbor. Berend et al. [66] bounded the distance
to thek-th nearest neighbor from any node.

Theorem 2.3 ([66]):For every nodev ∈ V and any positive
integer k, 1 ≤ k ≤ n

(1+ϕ) log n , where ϕ is any positive
constant, it holds

dv(k) ≤ 2

√

(k + 1) log n

π(n− 1)
.

Let e∗ be the maximum length edge inMSTV . Penrose
[67] stated the following theorem, which compares the length
of e∗ and the maximum distance to the nearest neighbor.

Theorem 2.4 ([67]):w(e∗) = maxv∈V dv(1).
Using the upper bound of Theorem 2.3 we derive the next

corollary.

Corollary 2.5: w(e∗) = O

(

√

log n
n

)

.

III. k-STRONG CONNECTIVITY

In this section we address the issue of fault resistance in the
context of strong connectivity. We first describe an elegantlow
cost power assignmentp2, which w.h.p. induces a2-strongly
connected graph. Then we present a power assignmentpk,
developed in [1] fork-strong connectivity, for anyk > 1.
In later sections we show that these power assignments also
induce good spanners under both, energy and distance, models.
We propose a different power assignment,p2, for the case of
biconnectivity since it has better theoretical bounds on the
stretch factor (in both models) than general assignmentpk

with k = 2.

A. Strong biconnectivity

The power assignmentp2 is based on the following technical
lemma.

Lemma 3.1:For n nodes uniformly distributed in a unit
squareU , let D∗ be a maximum radius disk, which can be
placed inside the unit square, so that there are no nodes in
D∗. Let ε be the radius ofD∗. Then,

lim
n→∞

Pr

[

ε ≥
√

2 log n

n

]

= 0.

Proof: Let D be a disk with radiusε =
√

2 log n
n , andS be

a square of size
√

2ε. Let Pr[D] andPr[S] be the probabilities
that given a uniform distribution ofn nodes in the unit square,
disk D and squareS, respectively, can be put inside the unit
square without covering any node. ClearlyPr[D] ≤ Pr[S], as
S fits entirely inside ofD (see Fig. 1). To boundPr[S] we
divide the unit square into grid cells, each of sizeε/

√
2 ×

ε/
√

2. Let Pr[G] be the probability that one of the grid cells
is empty. If S can be placed inside the unit square without
covering any node, then there exists an empty grid cell (see
Fig. 1), thereforePr[S] ≤ Pr[G]. To prove the lemma it is
now sufficient to show thatlimn→∞ Pr[G] = 0 as follows,

Pr[G] ≤ 2

ε2
· Pr[a specific cell is empty] =

2

ε2

(

1− ε2

2

)n

=
n

log n

(

1− log n

n

)n

≈ n

log n · elog n
≤ 1

log n
.

Therefore,limn→∞ Pr[D] = 0 and the lemma holds.

ε

Fig. 1. SquareS lies within diskD with radiusε, and cell size ε√
2
×

ε√
2

Following the proof of the lemma above we can see that if

we divide the unit square into grid cells, each of size
√

log n
n ×

√

log n
n , then w.h.p. each cell contains at least one node.4 Let

g(1, 1) andg(
√

n/ log n,
√

n/ log n) be the leftmost top and
rightmost bottom grid cells, respectively. The rest of the cells
are indexed as depicted in Fig. 2. LetN(i, j) be the set of
nodes in a grid cellg(i, j). To make the notation simpler we
defineN(0, j) = N(i, 0) = ∅, for 1 ≤ i, j ≤

√

n/ log n.
To induce a2-strongly connected graph, we would like each

node in a grid cellg(i, j) to (a) reach all nodes inN(i, j), and
(b) reach all the nodes in vertically or horizontally adjacent
cells, A(i, j), where

A(i, j) = N(i−1, j)∪N(i+1, j)∪N(i, j−1)∪N(i, j +1).

4To simplify the discussion we avoid the use of floors and ceilings.
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· · · · · ·

...

...

1

1

i

j g(i, j)

√

n
log n

√

n
log n

Fig. 2. The grid cells in a unit square

We can easily obtain the following observation.
Observation 3.2:For any 1 ≤ i, j ≤

√

n
log n and u ∈

N(i, j), v ∈ N(i, j) ∪A(i, j), du,v ≤
√

8 log n
n .

The power assignmentp2 is then defined as follows. For every
v ∈ V ,

p2(v) =
8 log n

n
.

Note that following the observation, both conditions (a) and
(b) hold. The next theorem shows the properties ofp2.

Theorem 3.3:With high probability, the graphHp2
is 2-

strongly connected andc(p2) = O(log n) · c(pOPT
2 ).

Proof: The cost bound is immediate due to Theorem 2.2.
To prove that the graphHp2

is 2-strongly connected we need
to show that for any pair of nodesu, v ∈ V there are either2
node-disjoint paths fromu to v, or p2(u) ≥ w(u, v). Suppose
u ∈ N(i, j) and v ∈ N(k, l), 1 ≤ i, j, k, l ≤

√

n/ log n.
If i = k and j = l, then p2(u) ≥ w(u, v) by definition.
Otherwise, there are two cases to consider.
Case 1:The two grid cellsg(i, j) andg(k, l) are either in the
same column or row. Without the loss of generality leti < k
and1 < j = l. Then the first path can be described as

P1(u, v) = 〈u, zi+1,j , zi+2,j , . . . , zk−1,l, v〉,
wherezm,j is an arbitrary node inN(m, j), i+1 ≤ m ≤ k−1.
That is, we hop to the right along the grid row fromg(i, j)
to g(k, l) – one hop per cell. The second path would be to do
the same, only one row above,

P2(u, v) = 〈u, zi,j−1, zi+1,j−1, zi+2,j−1, . . . , zk,j−1, v〉,
wherezm,j−1 is an arbitrary node inN(m, j−1), i ≤ m ≤ k
(see Fig. 3(a)).
Case 2:The nodesu, v are not on the same row or column.
Then the paths are constructed in a similar fashion (see
Fig. 3(b)).

Based on the previous theorem, we can easily derive the
following two corollaries.

Corollary 3.4: With high probability, for any pair of nodes
u, v ∈ V , which are not in the same grid cell, there exist

two node-disjoint paths,P1, P2, from u to v in Hp2
, so that

max{h(P1), h(P2)} ≤ 2
√

n
log n .

Corollary 3.5: With high probability, for any two nodes
u, v ∈ V such that u ∈ N(i, j), v ∈ N(l,m), and
v /∈ N(i, j)∪A(i, j), it holds |l−i|+ |m−j| ≤ 2ds,t ·

√

n
log n .

B. Generalk-strong connectivity

In [1] Carmi et al. developed a power assignmentpk, so that
Hpk

is k-strongly connected, for any positive integerk, and
c(pk) = O(k) · c(pOPT

k ). The power assignmentpk is defined
as follows.

For everyv ∈ V , initialize pk(v) = dv(k)2, wheredv(k) is
the distance fromv to its k-th nearest neighbor. LetNk(v) ⊆
V be the set ofk nearest neighbors ofv in Gv. For every
edgee = (u, v) in MSTV , increase the range of the nodes in
Nk(u) ∪Nk(v) (if necessary), so that each nodew ∈ Nk(u)
reaches all nodes inNk(v) ∪ {v}, and vice versa. The cost
of the power assignment has an approximation ratio ofO(k)
times the optimum and can be computed inO(n log n) time.

It is rather simple to show thatHpk
is k-strongly connected.

Therek node-disjoint paths along the edges ofMSTV . Every
Nk(v) can be viewed as a large intersection, which contains
k intersection points, and for every edge(u, v) in MSTV , all
nodes inNk(v) ∪ {v} are reachable within one hop from the
nodes inNk(u). The following observation is straightforward.

Observation 3.6:For any pair of nodes,u, v ∈ V , either
the edge(u, v) is in Hpk

, or there existk node-disjoint
pathsP1, P2, . . . , Pk, from u to v in Hpk

so thath(Pi) <
h(MSTV ) + 2, 1 ≤ i ≤ k.

For technical reasons, we want to ensure thatpk(v) ≥ 1/n.
We define for everyv ∈ V ,

p̃k(v) = max

{

pk(v),
1

n

}

.

Then w.h.p.,c(p̃k) ≤ c(pk) + 1, and due to Theorem 2.2,
c(p̃k) = O(k) · c(pOPT

k ). Finally we can present a theorem
which summarizes the properties ofp̃k. It is a combination of
the results obtained in [1] and [66].

Theorem 3.7 ([1],[66]): With high probability, c(p̃k) =

O(k) · c(pOPT
k ) and for everyv ∈ V , p̃k(v) = O

(

k log n
n

)

.

IV. ENERGY SPANNER

In this section we address the MPkES problem. We start
with the casek = 1 and construct several power assignments
based on multiple Light Approximate Shortest-path Trees
(LASTs) [68]. Then, fork = 2, we analyze the energy stretch
factor of the power assignment described in Section III-A.
Finally, we derive some interesting results for the generalcase.

A. 1-strong connectivity

The first power assignment is constructed on top ofn
LASTs - we call it the basic construction. Then, we generalize
the idea and produce, for any given integerm (1 ≤ m ≤ n),
a power assignment on top ofm LASTs. Finally, we show
how the energy stretch factor can be improved at the expense
of an additive factor to the power assignment cost.
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(a) Case 1: w.l.g.,i < k and1 < j = l (b) Case 2: w.l.g.,i < k andj > l

Fig. 3. Two node-disjoint paths fromu to v in Hp2
, whereu ∈ N(i, j) andv ∈ N(k, l), so thatu andv are not in the same grid cell

A Light Approximate Shortest-path Tree (LAST) is a com-
bination of a minimum spanning tree and a shortest path tree.
Given an instance〈G,w, s〉, whereG is an undirected graph
with a weight function on edgesw, and s is a source node,
Khuller et al. [68] presented a linear time algorithm, which
computes a spanning treeT of G, so that its weight is at
most β times the weight of a minimum spanning tree ofG,
and for every nodev, γs,v(T ) ≤ α · γs,v(G), whereα > 1
and β ≥ 1 + 2

α−1 . A spanning tree which complies with
the α, β bounds is called an(α, β)-LAST. The LAST can
be constructed inO(n2) time for complete graphs.

Since the LASTs are computed for undirected graphs, we
defineG′

V to be a simple complete undirected graph, which is
obtained fromGV by omitting the edge directions. Note that
since the weight functionw is symmetric, it can be applied
to G′

V as well. Also, the minimum spanning tree ofG′
V is

exactlyMSTV .
For everyu ∈ V , let Tu be an arborescence5 of an (α, β)-

LAST computed for an instance〈G′
V , w, u〉. Denote byeu

v

ande∗v the maximum weight outgoing edge fromv in Tu and
MSTV , respectively.

1) Basic construction:We start with a construction based
on n LASTs. This construction also serves as a good expo-
sition of the general case, where the number of LASTs is
arbitrary. We would like to define a power assignmentpe,n

1 ,
so that each of then arborescenses,{Tu}u∈V , is a subgraph
in Hpe,n

1
. Denote byeu

v the maximum weight outgoing edge
from v in Tu. Then for everyv ∈ V

pe,n
1 (v) = max

u∈V
w(eu

v ).

The algorithm computesn LASTs. We can maintain the
maximum range requirement for each node during the whole
process, and update it only if some LAST requires a bigger
range. Therefore the total construction time isO(n3).

Theorem 4.1:Hpe,n
1

is an energyα-spanner ofGV and
c(pe,n

1 ) ≤ β · n · c(pOPT
1 ), for any α > 1 andβ ≥ 1 + 2

α−1 .
Proof: Clearly, for every u ∈ V , Tu is a subgraph

of Hpe,n
1

, by definition. Therefore, for everyu, v ∈ V ,

5An arborescenceis a directed, rooted tree in which all edges point away
from the root.

γu,v(Hpe,n
1

) ≤ α · γu,v(GV ). Hence we conclude thatHpe,n
1

is an energyα-spanner ofGV . Also,

c(pe,n
1 ) =

∑

v∈V

max
u∈V

w(eu
v ) ≤

∑

v∈V

∑

u∈V

w(eu
v )

≤
∑

u∈V

w(Tu) ≤ β · n · w(MSTV ).

From Theorem 2.1,c(pe,n
1 ) ≤ β · n · c(pOPT

1 ).
2) General construction:We consider a wireless network

with uniform and independent random node distribution in a
unit square. Different from the previous construction, this time
we base our power assignment onm LASTs, wherem is any
positive integer between1 andn. The difficulty is to findm
nodes to be the roots of LASTs, so that each of the remaining
nodes is relatively close to one of them. The rest is similar to
the previous construction. We call this set ofm root nodesU ,
and use the following graph-theoretical lemma to compute it.

Lemma 4.2:For any treeT = (V,E), and a positive integer
m ≤ |V | = n, there exists a set ofm nodes,1 ≤ m ≤ n,
U ⊆ V , so that for everyv ∈ V \U , there existsu ∈ U , with
a hop-distance of at most

⌈

n−m
m

⌉

betweenv andu.
Proof: Let x =

⌈

n−m
m

⌉

. The construction of the setU is
recurssive. We show the first step, in which we chooseu1 in
T .

Let P = 〈z1, z2, . . . , zh(T )+1〉 be the hop-diameter path in
T . Chooseu1 = zmax{x,h(T )}+1. We consider two cases.
Case 1: If x ≥ h(T ), then we are finished. Easy to see that
all nodes inV reachzx in less thanx hops sincezx is the
leaf on the hop-diameter path ofT .
Case 2:If x < h(T ), then take the cut(V ′, V ′′) induced by the
edge(zx+1, zx+2), so thatzx+1 ∈ V ′ andzx+2 ∈ V ′′. Let T ′

andT ′′ be the subtrees ofT induced by the node setsV ′ and
V ′′, respectively. Repeat the process to findu2, u3, . . . , um in
T ′′.

We argue that all the nodes inV ′ are within x hops from
zx+1 in T . Let zx+1 be the root ofT ′. The height ofT ′ is
at mostx, otherwiseh(T ) ≥ h(T ′) + h(T ) − x > h(T ); a
contradiction.

Clearly, the process ends after at mostm steps, since in
each step we decrease the tree size by at leastx + 1 = n/m
nodes. Also for every nodev ∈ V , there exists a nodeu ∈ U
so that the hop-distance fromv to u is at mostx.
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Next, we describe the power assignmentpe,m
1 . According

to the lemma above, there exists a subset of nodes,U =
{u1, . . . , um}, so that for everyv ∈ V \U , there existsu ∈ U ,
with a hop-distance of at most

⌈

n−m
m

⌉

betweenv and u in
MSTV . Note that the construction ofU takesO(n2) time.

Similarly to the basic construction, we would like the
communication graphHpe,m

1
to contain all the edges of all

the arborescences. In addition, to guarantee there is a path
from every node to one of the nodes inU , the induced
communication graph will include theMSTV paths. Finally,
for technical reasons we would like to ensure that each node
is assigned a range of at least

√

1/n. To achieve all of the
above, we define for everyv ∈ V ,

pe,m
1 (v) = max

{

max
1≤i≤m

w(eui
v ), w(e∗v),

1

n

}

.

The algorithm works in two phases. First, it computes
an MSTV and the set of root nodesU , and then them
LASTs. Again, throughout the algorithm we can maintain the
maximum range required from each nodes, and as a result the
total running time isO(mn2).

Theorem 4.3:With high probability, Hpe,m
1

is an en-
ergy O

(

α ·
(

n−m
m · log n + 1

))

-spanner of GV , such that
c(pe,m

1 ) = O(β ·m) · c(pOPT
1 ), for any α > 1, β ≥ 1 + 2

α−1 ,
and any positive integerm ≤ n.

Proof: The power assignment cost,c(pe,m
1 ), is bounded

in a similar way as in Theorem 4.1.

c(pe,m
1 ) =

∑

v∈V

max

{

max
1≤i≤m

w(eui
v ), w(e∗v),

1

n

}

≤
∑

v∈V

m
∑

i=1

w(eui
v ) +

∑

v∈V

e∗v + 1

≤(β ·m + 2) · w(MSTV ) + 1.

From Theorems 2.1 and 2.2 if follows,

c(pe,m
1 ) = O(β ·m) · c(pOPT

1 ).

We next focus on analyzing the energy stretch factor ofHpe,m
1

,
and prove that for any pair of nodess, t ∈ V , γs,t(Hpe,m

1
) =

O
(

α ·
(

n−m
m · log n + 1

))

· γs,t(GV ).
Let P ∗ be a minimum weight path froms to t in GV , so

that γs,t(GV ) = w(P ∗). We consider two cases.
Case 1:For every edgee in P ∗, w(e) < 1/n. Then, from the
definition of pe,m

1 , P ∗ is also a path inHpe,m
1

, and therefore
γs,t(Hpe,m

1
) = γs,t(GV ).

s

ui

t

Fig. 4. The path inHp
e,m
1

for γs,tGV (s, t) = Ω(1/n), where solid lines
areMSTV edges and dashed lines areTi edges

Case 2:There is at least one edgee in P ∗ so thatw(e) ≥
1/n. As a result,γs,t(GV ) = Ω(1/n). There exists a pathP
from s to t in Hpe,m

1
, which first arrives at some LAST origin

nodeui ∈ U (closest tos in terms of hop-distance inMSTV ),
using the edges ofMSTV , and then tot using the edges of
the LAST rooted atui (see Fig. 4). Note thatP is unique as
MSTV andTi are trees. Therefore,

w(P ) = γs,ui
(MSTV ) + γui,t(Ti). (2)

From the definition ofTi, γui,t(Ti) ≤ α · γui,t(GV ). Let
P ′ be a path inGV from ui to t which first travels along
the edges ofMSTV to s and then coincides withP ∗.
Clearly, γui,t(GV ) ≤ w(P ′) ≤ γui,s(MSTV ) + γs,t(GV )
and γs,ui

(MSTV ) = γui,s(MSTV ). Combining with (2) we
derive,

w(P ) ≤ (1 + α) · γs,ui
(MSTV ) + αγs,t(GV ). (3)

Next we analyzeγs,ui
(MSTV ). Following Lemma 4.2,

χs,ui
(MSTV ) ≤

⌈

n−m
m

⌉

. By using Theorem 2.5, w.h.p.

γs,ui
(MSTV ) = O

(

n−m

m
· log n

n

)

. (4)

Finally, from (3), (4), and the assumptionw(P ∗) = Ω(1/n)
we conclude,

γs,t(Hpe,m
1

) = O

(

α · n−m

m
· log n + α

)

γs,t(GV ).

Therefore,tE(Hpe,m
1

) = O
(

α ·
(

n−m
m · log n + 1

))

.
3) Improving the energy stretch factor:The analysis of the

energy stretch factor in Theorem 4.3 was divided into two
cases; in the first case, the minimum weight pathP ∗ in GV

consisted of low weight edges only (below1/n), while the
second case was based on a lower boundf(n) = Ω(1/n) on
the weight ofP ∗. In this section we improve the energy stretch
factor ofpe,m

1 by raising the lower boundf(n) at the expense
of an additive factor to the power assignment cost.

Based onpe,m
1 we define the power assignmentp̃e,m

1 as
follows. For everyv ∈ V ,

p̃e,m
1 (v) = max{pm(v), nε−1},

where0 ≤ ε ≤ 1. The next theorem analyzes the cost and the
energy stretch factor of̃pe,m

1 .
Theorem 4.4:With high probability, Hp̃e,m

1
is an energy

O
(

α ·
(

n−m
m · log n

nε + 1
))

-spanner ofGV and c(p̃e,m
1 ) =

O(β · m + nε) · c(pOPT
1 ), for any α > 1, β ≥ 1 + 2

α−1 ,
and any positive integerm ≤ n.

Proof: From theorems 2.2 and 4.3 it follows,

c(p̃e,m
1 ) ≤ c(pe,m

1 ) + n · nε−1 = O(β ·m + nε) · c(pOPT
1 ).

The energy stretch factor ofHp̃e,m
1

is analyzed similarly to
the proof of Theorem 4.3. For any two nodess, t ∈ V , let P ∗

be the minimum weight path froms to t in GV . Again, we
consider two cases.
Case 1:Every edgee in P ∗ has a weightw(e) ≤ nε−1. Then,
P ∗ is a path inHp̃e,m

1
, andγs,t(Hp̃e,m

1
) = γs,t(GV ).

Case 2:There exists an edgee in P ∗, so thatw(e) > nε−1.



9

Then,γs,t(GV ) = Ω(nε−1). Following the same reasoning as
in the proof of Theorem 4.3 we conclude

γs,t(Hp̃e,m
1

) ≤γs,ui
(MSTV ) + γui,t(Ti)

≤(1 + α) · γs,ui
(MSTV ) + α · γs,t(GV )

=O

(

(1 + α) · n−m

m
· log n

n

)

+ αγs,t(GV )

=O

(

α · n−m

m
· log n

n1−ε
+ α

)

γs,t(GV ).

Therefore,tE(Hp̃e,m
1

) = O
(

α ·
(

n−m
m · log n

nε + 1
))

.

B. 2-strong connectivity

In Section III-A we showed that the power assignmentp2

induces a2-strongly connected graph with high probability and
has a costO(log n) · c(pOPT

2 ). In this section we first analyze
the energy stretch factor ofHp2

, and then show a modified
power assignment̃p2 with an improved energy stretch factor
at the expense of a multiplicative factor to the cost.

Theorem 4.5:With high probability,Hp2
is an energy2-

fault resistantO
(
√

n
log n

)

-spanner ofGV .

Proof: For any two nodess, t ∈ V , let Let

P ∗ = 〈s = z0, z1, . . . , zl−1, zl = t〉,

be the minimum energy path froms to t in GV , so that
γs,t(GV ) = w(P ∗). Similar to the proof of Theorem 4.3 we
consider two cases for any pair of nodess, t ∈ V .
Case 1: For every i, 0 ≤ i ≤ l − 1, w(ui, ui+1) ≤ log n

n .
Then, due to the weak triangle inequality,w(zi, zi+2) ≤
4 log n

n . We can conclude that the edges{(zi, zi+2)}l−2
i=0 and

{(zi, zi+1)}l−1
i=0 are inHp2

. For l ≤ 2, clearly the edge(s, t)
is in Hp2

and w(s, t) = O(1) · w(P ∗) = O(1) · γs,t(GV ).
So we assume without the loss of generality thatl is an odd
integer andl > 2. Let,

P1 = 〈z0, z2, z4, . . . , zl−1, zl〉,

be a path which uses even indexed intermediate nodes, and

P2 = 〈z0, z1, z3, . . . , zl−2, zl〉,

to be a path which uses odd indexed intermediate nodes.
Since the only edges inP1 andP2 are either{(zi, zi+2)}l−2

i=0

or {(zi, zi+1)}l−1
i=0, both paths are inHp2

. Also, it is easy
to see that the weight of each of the paths is at most
O(1) · w(P ∗) = O(1) · γs,t(GV ).
Case 2: There exists an edge(zi, zi+1), 0 ≤ i ≤ i − 1, so

that w(zi, zi+1) > log n
n and henceγs,t(GV ) = Ω

(

log n
n

)

.

If s and t are in the same grid cell, then(s, t) is in Hp2
and

w(s, t) = O(1)·γs,t(GV ). Otherwise, letP1 andP2 be the two
node-disjoint paths constructed in the proof of Theorem 3.3.
Due to symmetry it is sufficient to analyze the weight ofP1.
From Corrolary 3.4,h(P1) ≤ 2

√

n
log n . Combined with the

fact thatp2(v) = 8 log n
n we obtain,

w(P1) = O

(
√

n

log n
· log n

n

)

= O

(
√

n

log n

)

γs,t(GV ).

Therefore,tE(Hp1
) = O

(
√

n
log n

)

.

As in Theorem 4.4 we now show how it is possible to gain
a decrease in an energy stretch factor by increasing the cost
of the power assignmentp2. We define the power assignment
p̃2 as follows. For everyv ∈ V ,

p̃2(v) = nεp2(v),

where0 ≤ ε < 1/2. The next theorem analyzes the cost and
energy stretch factor of̃p2.

Theorem 4.6:With high probability,Hp̃2
is an energy2-

fault resistantO
(√

n1−2ε

log n

)

-spanner ofGV and c(p̃2) =

O(nε log n) · c(pOPT
2 ).

Proof: Clearly, c(p̃2) = O(nε log n) · c(pOPT
2 ). We now

concentrate on the energy stretch factor ofHp2
. For any pair of

nodess, t ∈ V , let P ∗ be the minimum energy path inGV . We
adopt the approach used in the proof of Theorem 4.5, where
we considered two cases: either all the edges inP ∗ have a
bounded weight oflog b

n , orγs,t(GV ) = Ω
(

log n
n

)

. This time if

for everye in P ∗, w(e) ≤ nε−1 log n, then the rest is analyzed
in exactly the same fashion as the first case in Theorem 4.5.
Otherwise,γs,t(GV ) = Ω(nε−1 log n). Again, we follow the
same reasoning as in the second case of Theorem 4.5 and
construct two pathsP1, P2. This time the evaluation of the
energy stretch factor is slightly different.

w(P1) = O

(
√

n

log n
· log n

n

)

= O

(

√

n1−2ε

log n

)

γs,t(GV ).

Therefore,tE(Hp1
) = O

(√

n1−2ε

log n

)

.

C. k-strong connectivity

The power assignment̃pk was introduced in Section III-B.
We now analyze its energy stretch factor using the same
technique as in Theorem 4.5.

Theorem 4.7:With high probability,Hp̃k
is an energyk-

fault resistantO
(

h(MSTV ) · k2 log n
)

-spanner ofGV .
Proof: Following the steps of the proof of Theorem 4.5,

let
P ∗ = 〈s = z0, z1, . . . , zl−1, zl = t〉,

be the minimum energy path froms to t in GV , so that
γs,t(GV ) = w(P ∗). The two cases we consider this time are
as follows.
Case 1:For every edgee in P ∗, w(e) ≤ 1

k·n . If l ≤ k, then
due to (1),

w(s, t) ≤ k

l−1
∑

j=0

w(zj , zj+1) ≤
1

n
,

and therefore(s, t) is in Hp̃k
andw(s, t) = O(k) · γs,t(GV ).

Otherwisel > k and we define

Pi = 〈z0, zi, zi+k, zi+2·k, . . . , zi+⌊ l−i
k ⌋·k, zl〉,

for 1 ≤ i ≤ k. Again due to (1) for every1 ≤ i ≤ k and
0 ≤ j ≤ l − k,

w(zj , zj+i) ≤ k ·
j+i−1
∑

q=j

w(zq, zq+1) ≤
1

n
,
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and therefore the edge(zj , zj+i) is in Hp̃k
. Also, w(Pi) ≤

k ·w(P ∗). We conclude that for every1 ≤ i ≤ k, Pi is a path
in Hp̃k

, andw(Pi) ≤ k · γs,t(GV ).
Case 2:There exists an edgee in P ∗ so thatw(e) > 1

k·n , and
thereforeγs,t(GV ) = Ω

(

1
k·n
)

. From Theorem 3.7,p(s) =

O
(

k log n
n

)

. Due to Observation 3.6 there are two possibilities:

(a) if the edge(s, t) is in Hp̃k
, then

w(s, t) ≤ p(s) = O

(

k log n

n

)

= O(k2 log n) · γs,t(GV );

(b) there existk node-disjoint pathsP1, . . . , Pk, so that
h(Pi) ≤ h(MSTV ) + 2, 1 ≤ i ≤ k. As a result,

w(Pi) = O

(

h(MSTV ) · k log n

n

)

= O
(

h(MSTV ) · k2 log n
)

· γs,t(GV ).

Therefore,tE(Hp̃k
) = O

(

h(MSTV ) · k2 log n
)

.

V. D ISTANCE SPANNER

Here we consider the MPkDS problem for any value ofk.
We construct a wireless network, which complies with a more
common spanner definition – the distance spanner. We start by
showing a tradeoff between the total energy consumption and
the distance stretch factor for arbitrarily placed nodes. Then,
we first consider the casesk = 1, 2 for which we obtain better
results than in the general case. Note that for any pair of nodes
u, v ∈ V , δu,v(GV ) = du,v.

A. Worst case tradeoff analysis

It turns out that the tradeoff between the total energy
consumption and the distance stretch factor for arbitrarily
placed nodes can be as high asn1/3 ·w(MSTV ). We construct
an example that demonstrates this. In Fig. 5, the nodes are
placed along the sidesAD, AB, and BC of a rectangle
ABCD, with |AD| = |BC| = 1, and |AB| = |CD| = 1

n1/3 .
The nodes are placed in a continuous manner at a fixed
distance of2+1/n1/3

n−1 from each other. Letu andv be two nodes
positioned atD and C, respectively. The following theorem
proves the lower bound of the tradeoff.

1

. . .

...
...

A B

CD u v

2+1/n1/3

n−1

1/n1/3

Fig. 5. Worst case tradeoff example for a distance spanner

Theorem 5.1:Given node placements as in Fig. 5, for any
power assignmentp, tD(Hp) · c(p) = Ω(n1/3 · w(MSTV )).

Proof: Let p be a power assignment so thatHp is strongly
connected. We consider two cases:
Case 1:If for every u ∈ V , p(u) < n2/3, there are no edges
between the nodes on the sideAD and the nodes on the side
BC. As a result,tD(Hp) ≥ δu,v(Hp) = Ω(n1/3). Combining
with Theorem 2.1,tD(Hp) · c(p) = Ω(n1/3 · w(MSTV )).
Case 2: Otherwise,c(p) ≥ 1/n2/3. It is easy to verify that
w(MSTV ) = Θ(1/n). Therefore,tD(Hp) · c(p) ≥ c(p) =
Ω(n1/3 · w(MSTV )).

B. 1-strong connectivity

We construct a power assignmentpd
1 so that Hpd

1
is a

distance2-spanner ofGV and c(pd
1) = O(log n) · c(pOPT

1 ).
We make use of Lemma 3.1.

1) Power assignment:For a given fixed integeri ≥ 0, let
D(u, v, i) = {Di

1,D
i
2, . . . ,D

i
2i}, be a set of adjacent, non-

intersecting disks with diameterdu,v/2i, centered along the
edge(u, v) in GV . For example, in Fig. 6(a) the setD(u, v, 2)
of 4 disks is shown.

Start with a zero power assignment functionpd
1. For every

pair of nodesu, v ∈ V , increase the power assignment of
certain nodes, as described in algorithm CONSTRUCT-PATH,
to induce a directed path with low distance stretch factor from
u to v in Hpd

1
.

CONSTRUCT-PATH(u,v)

i← 01

if there are no nodes inD0
1 ∈ D(u, v, 0) then2

pd
1(u)← max{pd

1(u), w(u, v)}3

return4

while there exists a node in everyDi+1
j ∈ D(u, v, i + 1)5

do
i← i + 16

Let z1, z2, . . . , z2i be arbitrary nodes, so thatwj ∈ Di
j ,7

for Di
j ∈ D(u, v, i)

z0 ← u; z2i+1 ← v8

for j ← 0 to 2i do9

pd
1(zj)← max{pd

1(zj), w(zj , zj+1)}10

return11

To analyze the running time of the algorithm, we make the
following simple observation. The condition verification in the
main loop of the algorithm CONSTRUCT-PATH (line 5) takes
at mostO(n2) time, and the number of iterations (line 6) is at
most⌊log n⌋. This is because the number of non-empty disks
can be at mostn, and the number of disks doubles with each
iteration. The path is then constructed (line 10) in linear time.

Therefore, the running time of one execution of the
CONSTRUCT-PATH algorithm is O(n2 log n), and the total
running time for all pairs isO(n4 log n).

Clearly, the communication graphHpd
1

is strongly con-
nected, as there is a directed path from anyu ∈ V to any
v ∈ V . Next we analyze the cost ofpd

1 and the distance stretch
factor of Hpd

1
.
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2) Analysis:We base our analysis on the following lemma.
Lemma 5.2:With high probability, for everyv ∈ V ,

pd
1(v) ≤ 128 log n

n .
Proof: The power assignmentpd

1 is first initialized to be a
zero function. Then, it is modified in consecutive applications
of the algorithm CONSTRUCT-PATH. We follow a single
application of the algorithm on the pairu, v. The update of
pd
1 can occur in two places – lines 3 and 10. We show that

when one of these lines is executed, the valuesw(u, v) (line 3)
and w(zj , zj+1) (line 10) are at mostO(log n/n) with high
probability.

Line 3 is executed only in the case where there are no nodes
in the disk D0

1. Therefore, according to Lemma 3.1, w.h.p.

du,v ≤
√

8 log n
n .

Line 10 is executed oncei is increased up to the point
where there are no nodes in some diskDi+1

j . Recall, that
the diameter of any disk inD(u, v, i + 1) is du,v/2i+1. Then

by Lemma 3.1, w.h.p.du,v/2i+1 ≤ 2
√

2 log n
n . It is easy to

verify that dzj ,zj+1
≤ 2du,v/2i, for 0 ≤ j ≤ 2i. Combining

the above,dzj ,zj+1
≤ 8
√

2 log n
n w.h.p., and thereforepd

1(v) ≤
128 log n

n .
To prove the following technical lemma we need some

definitions. For any two pointsx, y, we denote by||x, y|| the
Euclidean distance betweenx andy, and for any three points,
we denote by∠xyz the angle between the two line segments
xy andyz.

Lemma 5.3:For any two points in the planeA andB, let
D be a disk which has the line segmentAB as its diameter.
Then, for any pointC in D, ||A,C||+ ||C,B|| ≤

√
2 · ||A,B||.

Proof: Clearly the expression||A,C||+ ||C,B|| is max-
imized whenC is on the circumference ofD and∠ACB =
π/2. Therefore,

||A,C||+ ||C,B|| ≤ ||A,B|| sin ∠ABC + ||A,B|| cos ∠ABC

≤
√

2||A,B||.
This completes our proof.

We are ready to prove our main theorem of this section.
Theorem 5.4:With high probability,Hpd

1
is a distance

√
2-

spanner ofGV andc(pd
1) = O(log n) · c(pOPT

1 ).
Proof: We start from the cost of the power assignment.

From Lemma 5.2 it follows directly that w.h.p.c(pd
1) =

O(log n). From Theorem 2.2, w.h.p.c(pd
1) = O(log n) ·

c(pOPT
1 ).

To analyze the distance stretch factor between any two
nodesu andv, we focus on a directed path,

P = 〈u = z0, z1, z2, . . . , z2i+1 = v〉,
induced in lines 7 – 10 (e.g., in Fig. 6(b) there is a path for
i = 2).

Let u = z0,1, z1,2, . . . , z2i,2i+1 = v be 2i + 1 points
placed at equal distances along the edge(u, v). These are the
tangent points between disks in addition tou andv. Note that
dzi,i+1,zi+1,i+2

= du,v/2i, for anyi, 0 ≤ i ≤ 2i−1. We define
a pathP ′, from u to v which uses the nodesV and the just
added pointszi,i+1 as follows (see Fig. 6(c)),

P ′ = 〈z0,1, z1, z1,2, z2, . . . , z2i , z2i,2i+1〉.

It is easy to see thatd(P ) ≤ d(P ′) and therefore,

d(P ) ≤ d(P ′) =

2i−1
∑

i=0

(dzi,i+1,zi+1
+ dzi+1,zi+1,i+2

).

Due to Lemma 5.3 for anyi, 0 ≤ i ≤ 2i − 1,

dzi,i+1,zi+1
+ dzi+1,zi+1,i+2

≤
√

2du,v/2i.

We conclude,

δs,t(Hpd
1
) = d(P ′) ≤ 2i

√
2du,v/2i =

√
2du,v.

Therefore,tD(Hpd
1
) =
√

2.

vu
D2

1 D2
2 D2

3 D2
4

(a) The set of disksD(u, v, 2)

vu
z1 z2 z3 z4

(b) The constructed pathP

vu
z1,2 z2,3

z3,4

(c) The pathP ′ (the squares represent nodesz1,2, z2,3, z3,4)

Fig. 6. The construction of a path fromu to v

C. 2-strong connectivity

We will now show that the power assignmentp2, described
in Section III-A is a distance2-fault resistantO(1)-spanner
of GV . Recall thatN(i, j) denotes the set of nodes in a grid
cell g(i, j), andA(i, j) denotes the nodes in adjacent cells of
g(i, j), 1 ≤ i, j ≤

√

n
log n . The distance stretch factor ofHp2

is derived in the following Theorem.
Theorem 5.5:With high probability,Hp2

is a distance2-
fault resistantO(1)-spanner ofGV .

Proof: For any pair of nodes,s, t ∈ V , let s ∈ N(i, j)

and t ∈ N(l,m), 1 ≤ i, j, l,m ≤
√

n
log n . If t ∈ N(i, j) ∪

A(i, j), then from the definition ofp2, p2(s) ≥ w(s, t), and
δs,t(Hp2

) = 1. Otherwise,v /∈ N(i, j) ∪ A(i, j). Let P1

and P2 be the two paths constructed in Theorem 3.3. From
Corollary 3.5, the hop-distance of each of the paths is at most
2ds,t ·

√

n
log n . Combining it with the fact thatp2(v) = 8 log n

n ,

for everyv ∈ V , we conclude

d(Pi) ≤ 2ds,t ·
√

n

log n
·
√

8 log n

n
= O(1) · ds,t,

wherei ∈ {1, 2}. Therefore,tD(Hp2
) = O(1).
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D. k-strong connectivity

We now analyze the distance stretch factor ofp̃k defined in
Section III-B, and show thatHp̃k

is a distancek-fault resistant
O
(

h(MSTV ) · √k log n
)

-spanner ofGV .
Theorem 5.6:With high probability,Hpk

is a distancek-
fault resistantO

(

h(MSTV ) · √k log n
)

-spanner ofGV .
Proof: For any two nodess, t ∈ V , we consider two

cases. Ifds,t ≤
√

1/n, then from the definition of̃pk, the
edge(s, t) is in Hp̃k

and thereforeδs,t(Hp̃k
) = 1. Otherwise,

δs,t(GV ) = ds,t >
√

1/n. From Observation 3.6 there existk
node-disjoint pathsP1, P2, . . . , Pk, from s to t in Hpk

so that
h(Pi) < h(MSTV ) + 2, 1 ≤ i ≤ k. The power assignment
p̃k is bounded in Theorem 3.7, so we can deduce that for any

edge (u, v) in Hp̃k
, du,v = O

(

√

k log n
n

)

. As a result for

every i, 1 ≤ i ≤ k,

d(Pi) = O

(

h(MSTV ) ·
√

k log n

n

)

= O
(

h(MSTV ) ·
√

k log n
)

.

Therefore,tD(Hp̃k
) = O

(

h(MSTV ) · √k log n
)

.

VI. D ISTRIBUTED IMPLEMENTATION

Usually, the deployment of wireless nodes is not controlled
by some centralized entity which coordinates network activi-
ties. As a result, the nodes are required to carry on their tasks
independently, communicating only with a small set of close
nodes. In this section we describe how the power assignments
discussed in Sections V and IV can be computed distributively.
Our only requirement is that each node has a unique ID and
knows the size of the deployment area, the total number of
nodes,n, and various parameters (if needed), such asε and
m.

The power assignments described in this paper can be
roughly divided into two types: power assignments a bound on
the maximum assigned power and those which do not have this
bound. The first type can be computed easily as each node has
the information about the total number of nodes and the size
of the deployment area, so maximum power can be assigned
without effecting the theoretical bounds. The second type of
power assignments do not have a bound on the maximum
power, and hence require an execution of the algorithm to
compute each individual power assignment. In what follows
we show thatpd

1, p2, andp̃2 fall into the first category. Then we
describe how to compute distributively the power assignments
p̃e,m
1 and p̃k.

A. Power assignmentspd
1, p2, and p̃2

From Lemma 5.2,pd
1 ≤ 8

√

2 log n
n . Clearly, if we assign

pd
1(u) = 8

√

2 log n
n , for everyu ∈ V , the asymptotic bounds

are not effected. By definition,p2 = 8 log n
n , and p̃2 can be

easily derived fromp2.
The three power assignments,pd

1, p2, and p̃2, can be com-
putedlocally without engaging in any kind of communication,
based solely on the number of nodesn, the size of the

deployment area,S, and the parameterε. Note that the power
assignment needs to be scaled by|S|, as it is initially computed
for a unit square.

B. Power assignments̃pe,m
1 and p̃k

We now outline how to construct the power assignments
pe,m
1 andpk distributively. This will allow us to computẽpe,m

1

and p̃k.
1) Distributed computation ofpe,m

1 : The algorithm in Sec-
tion IV-A first constructs theMSTV , followed by the set of
nodesU , and finally the computation of LASTs. We address
each of these steps in detail.

The construction of MSTV : First, each nodeu ∈ V
transmits its ID using power level ofp′(u) = 8 log n

π(n−1) (scaled
according to the size of the deployment area). After some
timeout, u receives all the transmissions of close nodes and
obtains a list of all nodesN(u) which are within a distance of

2
√

2 log n
π(n−1) from it. Using the standard methods described in

[69] it is possible to compute all distancesdu,v, v ∈ S(u)
(we skip the discussion about the correct reception of all
these transmissions). Due to the upper bound of Theorem 2.3,
MSTV is a subgraph ofHp. Recall that a weight of an
edge (u, v) ∈ Ep is d2

u,v, and therefore can be computed.
As all the links inHp are bidirectional, we can now use the
Distributed Algorithm for Minimum-Weight Spanning Trees
[70] to compute the minimum weight spanning tree ofHp,
which is exactlyMSTV .

The construction of the setU : Recall thatU is constructed
by recursively selecting thex-th node,x = ⌈n−m

m ⌉ on the
diameter, and then removing the subtree rooted at that node.
The diameter can be computed by executing the distributed
BFS algorithm [71] twice; first from the node with the smallest
ID (denote byu), and then from the node at the maximum hop-
distance fromv (denote byv). This involves two simple leader
election procedures to findu andv. Thex-th node (denotez)
on the diameter is easily selected by following a path fromv.
Finally, all nodes in a subtree rooted atz (with v as a leaf) are
notified not to participate in further BFS queries. The process
continues until all nodes are notified.

The computation of LASTs: The m nodes which were
identified as the sources for LASTs execute the distributed
LAST algorithm as described in [72].

It is important to note that the second and third steps can
be executed in parallel.

2) Distributed computation ofpk: As described in Sec-
tion III-B, the power assignmentpk is based onMSTV ,
which is then used to connect thek-closest neighborhoods
alongMSTV edges. The distributed implementation consists
of three steps.

Querying the k-closest nodes:Similar to the technique
used in the first step ofpe,m

1 construction, the information
about thek-closest neighborhood,Nk(u), of nodeu ∈ V can

be gathered using a transmission range of2
√

k+1 log n
π(n−1) which,

according to Theorem 2.3, is an upper bound ondk(u).
The construction of MSTV : Similar to the first step in the

construction ofpe,m
1 .
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Power assignment: Once MSTV is obtained, the end-
points of every MSTV edge (u, v) ∈ EMST exchange
information about theirk-neighborhoods,Nk(u) and Nk(v).
Then each node propagates the received information to its
k-neighborhood. Recall that the power assignment of each
nodew only depends on the distance to thek-closest node,
dk(w), and the received information,Nk(v) ∪ {v}, where
(u, v) ∈ EMST andw ∈ Nk(u). Thus, the power assignment
can be computed after this step.

Note that the first two steps can be executed in parallel.

VII. C ONCLUSIONS AND FUTURE WORK

In this paper we studied asymmetric power assignments
of low cost for which the induced communication graph is
a good fault resistant spanner ofGV . We addressed two
spanner models, energy and distance, under the requirement
that the stretch factor (in both models) remains unchanged if
the number of node failures is at mostk − 1, wherek is any
positive integer.

We assume that the nodes are uniformly and independently
distributed in a unit square. The probability of all our results
converges to one as the number of network nodes,n, increases.

For k ∈ {1, 2} we propose several power assignments
which obtain a good bicriteria approximation on the total
cost and stretch factor under the two models. Fork > 2
we analyze a power assignment developed in [1], and derive
some interesting bounds on the stretch factor for both models
as well. To the best of our knowledge, these are the first
provable theoretic results for low cost spanners in wireless
ad-hoc networks.

To the best of our knowledge, these are the first provable
theoretic results for low cost distance spanners in wireless ad-
hoc networks. Although our results for the1-fault resistant
energy spanner is not a strict improvement over the Chandra et
al. [48] result for arbitrary weighted spanners, is is nevertheless
the attempt to make any progress in this new open question.

One of the possible future directions would be to perform
finer analysis of the power assignmentp̃e,m

1 in Section IV. It
would be also interesting to perform simulations to measure
the performance of the power assignmentp1 developed in
Section V for large scaled networks.
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