
Maintenane of a Piering Set for Intervals with AppliationsMatthew J. Katz1� Frank Nielsen2 Mihael Segal3y1Department of Mathematis and Computer SieneBen-Gurion University of the Negev, Beer-Sheva 84105, Israel2SONY Computer Siene Laboratories In., FRL3-14-13 Higashi Gotanda, Shinagawa-Ku, Tokyo 141-0022, Japan3Department of Computer SieneUniversity of British Columbia, Vanouver, B.C. V6T 1Z4, CanadaAbstratWe show how to eÆiently maintain a minimum piering set for a set S of intervals on theline, under insertions and deletions to/from S. A linear-size dynami data struture is presented,whih enables us to ompute a new minimum piering set following an insertion or deletion intime O((S) log jSj), where (S) is the size of the new minimum piering set. We also show howto maintain a piering set for S of size at most (1+")(S), for 0 < " � 1, in �O( log jSj" ) amortizedtime per update. We then apply these results to obtain eÆient solutions to the following threeproblems: (i) the shooter loation problem, (ii) omputing a minimum piering set for ars ona irle, and (iii) dynamially maintaining a box over for a d-dimensional point set.1 IntrodutionLet S = fs1 = [l1; r1℄; : : : ; sn = [ln; rn℄g be a set of n intervals on the real line. An independentsubset of S is a set of pairwise non-interseting intervals of S. Let b(S) be the maximum size ofan independent subset of S. A piering set for S is a set P of points on the real line, suh that,for eah interval si 2 S, si \ P 6= ;. Let (S), the piering number of S, be the size of a minimumpiering set for S. (In graph theory terminology, we are dealing with the interval graph de�nedby S that is obtained by assoiating a node with eah of the intervals in S, and by drawing edgesbetween nodes whose orresponding intervals interset. The number b(S) is also alled the pakingnumber of S, a piering set is also alled a ut set, and the number (S) is also alled the transversalnumber of S.)Clearly (S) � b(S), sine b(S) piering points are needed in order to piere all intervals in amaximum independent subset of S. It is not diÆult to see though that b(S) piering points arealso suÆient in order to piere all intervals in S, thus (S) = b(S), and a minimum piering setfor S an be found in time O(n log (S)) (see [11℄).In this paper we deal with the problem where the set of intervals S is dynami (i.e., fromtime to time a new interval is inserted into S or an interval is deleted from S), and we wish toeÆiently maintain a minimum (or nearly minimum) piering set for S. Assuming the size of S�Supported by the Israel Siene Foundation founded by the Israel Aademy of Sienes and Humanities, and byan Intel researh grant.ySupported by the Pai� Institute for Mathematial Studies and by the NSERC researh grant.1



never exeeds n, we present two solutions: an exat solution and an approximate solution (whih isbased on the exat solution). In the exat solution, a new minimum piering set for S is omputedfrom the urrent minimum piering set, following an insertion/deletion of an interval to/from S.The omputation time is O( log n), where  is the size of the new minimum piering set (whihdi�ers from the size of the urrent set by at most 1). More preisely, a linear-size data struture,representing the urrent set of intervals and its minimum piering set, is used to ompute the newminimum piering set, following an insertion/deletion of an interval. The data struture is updatedduring the omputation.In the approximate solution, a piering set for S of size at most (1 + ")(S) is maintained, fora given approximation fator ", 0 < " � 1. The amortized ost of an update (for any sequeneof updates following a preproessing stage that requires O(n log n) time) is �O( log n" ). (Notie thatthe update ost varies from O(log n), for " = 1 (i.e., a 2-approximation), to O((S) log n), for" < 1=(S) (i.e., an exat solution).) Both the exat and approximate solutions are presented inSetion 2. In Setion 3, we apply the above exat and approximate solutions to obtain eÆientsolutions to the problems below.The shooter loation problem. Given a set of n disjoint segments in the plane, �nd a loationp in the plane, for whih the number of shots needed to hit all segments is minimal, where a shotis a ray emanating from p. This problem was �rst introdued by Nandy et al. [10℄, who observedthat solving the problem for a given loation p is equivalent to �nding a minimum piering set for aset of n ars on a irle. The latter problem an be solved in time O(n log n), see below. They alsopresented an O(n3)-time algorithm for the ase where the shooter is allowed to move along a givenline, and left open the general problem. Wang and Zhu [15℄ obtained an O(n5 log n)-time solutionfor the general problem. They also gave an O(n5)-time algorithm for omputing a 2-approximation,that is, a loation for whih the number of required shots is at most twie the optimal number ofshots. Reently, Chaudhuri and Nandy [1℄ presented an improved solution for the general problem;its worst-ase running time is O(n5), but it is expeted to perform better in pratie. Atually, thegeneral problem an be solved by applying the solution for a shooter on a line to the O(n2) linesde�ned by the endpoints of the segments, thus obtaining an alternative O(n5)-time solution.Here we obtain an O(1"n4 logn)-time algorithm for omputing a (1 + ")-approximation for thegeneral problem (with possibly one extra shot), signi�antly improving the O(n5) 2-approximationof [15℄. We an also �nd a loation for whih the number of shots is at most r�+1, where r� is theoptimal number of shots, in (output-sensitive) O(n4r� logn) time. Finally, we desribe another,more ompliated, method for omputing a (1 + ")-approximation. This method uses uttings toompute a (1 + ")-approximation in O( 1"3 n4 log nr� ) time, thus breaking the O(n4) barrier for mostvalues of r�, assuming " is a onstant.A minimum piering set for ars on a irle. Let A = fa1; :::; ang be a set of n ars on theunit irle entered at the origin. As for intervals on the line, a set P of points on the irle is apiering set for A, if for eah ar ai 2 A, ai \ P 6= ;. We wish to ompute a minimum pieringset for A. (In graph theory terminology, we are dealing with the irular-ar graph for A that isobtained by assoiating a node with eah of the irular ars in A, and by drawing edges betweennodes whose orresponding irular ars interset. We denote this graph by G(A).)Observe that now, unlike in the ase of intervals on the line, the paking number b(A) andthe piering number (A) may di�er. (Assume, for example, that A onsists of three ars, eah oflength 2�=3, that together over the irle, then b(A) = 1 while (A) = 2.) However, it is easy tosee (Claim 8) that in this ase either (A) = b(A) or (A) = b(A) + 1.A point p on the unit irle indues a lique fai 2 A j p 2 aig of the graph G(A). Notie thatG(A) might also have liques whose ars do not share a point (as in the example above). Cliques ofthe former type are alled linear liques. Assume we wish to �nd a minimum number of liques of2



G(A) whose union is A (the lique overing problem). Hsu and Tsai [7℄ and Rao and Rangan [12℄showed that if A itself is not a lique, then it suÆes to onsider only linear liques. Thus, if A isnot a lique, the problem of �nding a minimum piering set for A is essentially equivalent to theproblem of �nding a minimum number of liques of G(A) whose union is A.Golumbi and Hammer [5℄, Hsu and Tsai [7℄, Lee et al. [8℄, and Masuda and Nakajima [9℄ gaveO(n log n)-time algorithms for omputing a maximum independent set of a irular-ar graph withn ars. Gupta et al. [6℄ gave an 
(n log n) lower bound for this problem (atually, for the simplerproblem of omputing a maximum independent set of an interval graph with n intervals). Lee etal. [8℄ gave anO(n logn)-time algorithm for the minimum ut set (i.e., piering set) problem togetherwith an appliation to a faility loation problem, and Hsu and Tsai [7℄ gave an O(n log n)-timealgorithm for the minimum number of liques problem. More reently, Tsai and Lee [14℄ investigatedthe problem of �nding k best uts (i.e., k uts for whih the number of di�erent ars that are utis maximal). They showed how this problem is related to a faility loation problem. Daniels andMilenkovi [3℄ use piering sets (whih they all hitting sets) in onnetion with generating layoutsfor the lothing industry.We provide yet another optimal �(n log n)-time algorithm for omputing a minimum pieringset for A. We believe that our algorithm is (at least oneptually) simpler than the previousalgorithms. Moreover, we an maintain a piering set for A of size at most (1 + ")(A) + 1 inamortized update time �O( log n" ).Maintenane of a box over. Let Q be a set of n points in Rd . A over for Q is a set of(axis-parallel) unit hyperubes whose union ontains Q. The problem of omputing a minimumover is known to be NP-omplete [4℄, and is dual to the following piering problem. Given a setB of n unit hyperubes in Rd , ompute a minimum piering set for B. We present several eÆientalgorithms for dynamially maintaining a small piering set for a set of arbitrary (axis-parallel)boxes in Rd . We obtain an O(� logd n) update-time algorithm for maintaining a piering set ofsize  for arbitrary boxes, where  � (1 + log2 n)d�1� and � denotes the optimal size, and anO(2d�1� log n) update-time algorithm for maintaining a piering set of size  for ongruent boxes,where  � 2d�1�. We an also obtain (in both ases) a trade-o� between the update time andthe approximation fator. These algorithms are based both on our dynami data strutures forintervals on the line, and on ideas from [11℄.2 Maintenane of a Piering Set for Intervals2.1 Exat maintenaneLet S be a set of m � n intervals on the line. We assume that from time to time a new intervalis added to S or an existing interval is removed from S. However, we require that at any momentjSj � n. We show how to maintain a minimum piering set for S under insertions and deletions inO( log n) time, where  is the size of the new piering set. We atually maintain a ertain minimumpiering set whih we all the right-to-left piering set and whih is de�ned as follows. Find therightmost among the left endpoints of the intervals in S. Let s 2 S be the interval to whih thisendpoint belongs. Clearly the best loation for a piering point p in s is at its left endpoint. Removeall intervals that are piered by p and reiterate. In this way we obtain a minimum piering set forS. The right-to-left piering set an be omputed easily in O(n logn) time. (Atually it an beomputed in O(n log (S)) time, see [11℄). Initially, we ompute the right-to-left piering set P ofS. We now onstrut a data struture of size O(n) that will allow us to update the right-to-leftpiering set within the laimed bound. For eah piering point p 2 P, let Sp be the subset of3



initial piering point
(a) p0 = p (b) p0 6= p and 9r () p0 6= p and 6 9rp0two initial piering pointsp p psl sl slrp0 qtwo initial piering points

Figure 1: Three di�erent ases that may our during the insertion proess. The dashed segmentis the one being inserted.intervals of S that were piered by p during the right-to-left piering proess. These subsets areomputed during the omputation of P. Notie that an interval s 2 S is assoiated with therightmost piering point of P that lies in it. Construt a balaned binary searh tree T on thepiering points in P. For eah node v in T representing a piering point p, onstrut a balanedbinary searh tree Tp on the right endpoints of the intervals in Sp, and let v point to the root ofTp. With eah node w in Tp we store the point lw whih is the rightmost among the left endpointsorresponding to the right endpoints in the subtree rooted at w. Notie that lroot = p. The overallonstrution time is O(n logn), and the resulting data struture is of size O(n). We now desribethe updating proedures for insertion and deletion of an interval.2.1.1 InsertionLet s = [sl; sr℄ be a new segment to be added to S. We �rst hek, using the tree T , whether s isalready piered by the urrent piering set P. If it is, then P is also the right-to-left piering set ofS [fsg. We insert s into the tree Tp, where p is the rightmost point in P that lies in s, and updatethe values lw in the relevant nodes of Tp. All these operations an be done in O(logn) time.Assume now that s \ P = ;. Notie that all the piering points of P that lie to the right ofs are also present in the right-to-left piering set of S [ fsg and their orresponding trees do nothange. We �rst insert sl as a new piering point to the main tree T . Next we need to reate itsorresponding tree Tsl. Tsl should onsist of the new segment s together with all segments in Sthat are piered by sl, but not by any other piering point to the right of sl. All these segments,however, must belong to Sp, where p is the rightmost piering point to the left of sl. So we loatep in O(logn) time using T , and searh in Tp in O(log n) time for the leftmost right endpoint e thatlies to the right of sl. All the intervals in Tp whose right endpoint is to the right of e, inluding e,should be removed from Tp and added to Tsl. We must also update the values lw in the relevantnodes of both trees. Below, we desribe how to perform this transfer and update in a more generalsetting.It is possible that the interval de�ning the point p has been transfered to Tsl . Let p0 be thevalue that is urrently stored in the root of Tp, i.e., lroot = p0. (If p0 does not exist, i.e., if Tp isempty, we simply delete p from T and stop.) If p0 = p, then we are done, otherwise the intervalde�ning p has been transfered and we replae the piering point p by p0 (see Figure 1).We now have to hek whether there is a piering point (perhaps several of them) in T that liesto the right of p0 and to the left of sl. If the answer is positive, we onsider the rightmost pieringpoint r in T that lies between p0 and sl. All right endpoints of the intervals that are urrentlystored in Tr are to the left of all right endpoints of the intervals urrently stored in Tp0. Thus, wean remove the point p0 from T and transfer the intervals in the tree Tp0 to the tree Tr, by applyingthe join operation desribed below. We update the values lw in Tr and stop. Otherwise, if the4



answer is negative, we need to loate the piering point q that lies immediately to the left of p0,and transfer the intervals of Tq that are piered by p0 to Tp0. As before we searh in Tq for theleftmost right endpoint e that lies to the right of p0. We need to transfer the intervals in Tq whoseright endpoint is to the right of e, inluding e, to Tp0. Observe that if s0 is an interval in Tq whoseright endpoint e0 is to the right of e, inluding e, then e0 lies to the left of all right endpoints in Tp0 ,sine otherwise p 2 s0 and s0 should already be in Tp0 (whih was obtained from Tp). This propertyallows us to apply the standard split and join operations, see below, for �rst removing the intervalswhose right endpoint e0 is to the right of e, inluding e, from Tq (split) and then adding them toTp0 (join) in O(log n) time. We update the values lw in both trees (see Figure 2). We ontinue inthis way until we either reah a step in whih the piering point does not hange (Figure 1(a)),or the ase of Figure 1(b) ours, or there are no more piering points to the left of the pieringpoint. Clearly the whole insertion proess takes only O( log n) time, i.e., O(log n)-time for the atmost  asading steps. A more areful analysis yields O( log n ). (We apply H�older's inequalityto Pi=1 logni, where Pi ni = n.)2.1.2 DeletionLet s = [sl; sr℄ be an interval to be deleted from S. We loate the rightmost piering point p of Pthat lies in s. We distinguish between two ases. If p 6= sl, then we remove s from Tp, update theneessary lw values and stop. This an be done in O(logn) time. The more diÆult ase is whenp = sl. In this ase, we �rst remove s from Tp and update the neessary lw values. We then replaep (in T ) by the value p0 that is stored in the root of Tp, whih now beomes Tp0. (If p0 does notexist, we simply delete p from T and stop.) We proeed as desribed in the insertion proedure,that is, we either loate the rightmost piering point r whih lies to the right of p0 and to the leftof sl (if suh a point exists) and transfer the intervals of Tp0 to Tr thus removing p0, or we loatethe piering point q that lies immediately to the left of p0, and transfer the intervals of Tq that arepiered by p0 to Tp0 , and so on. The overall time spent on a deletion operation is thus O( log n).Theorem 1 Let S be a set of intervals on a line, and assume that the size of S never exeedsn. It is possible to onstrut, in time O(n logn), a data struture of size O(n), that enables us tomaintain a minimum piering set for S, under insertions and deletions of intervals to/from S, intime O( log n ) per update, where  is the size of the urrent minimum piering set for S.Notie that we an use the data-struture above to maintain a maximum independent subsetof S. (The subset of intervals orresponding to the points of the minimum piering set, i.e., theintervals whose left endpoint is a piering point, is suh a subset.)Theorem 2 Let S be a set of intervals on a line, and assume that the size of S never exeedsn. It is possible to onstrut, in time O(n logn), a data struture of size O(n), that enables us tomaintain a maximum independent set of S, under insertions and deletions of intervals to/from S,in time O(b log nb ) per update, where b is the size of the urrent maximum independent set of S.2.1.3 Joining and splitting treesWe now desribe how to implement the split and join operations that are used by the algorithmsfor insertion and deletion above.Joining trees. Let A1 and A2 be two sets of keys, suh that all the keys in A1 are smaller thani, and all the keys in A2 are greater than i, for some key i. Let TA1 and TA2 be the balaned binarysearh (red-blak) trees for the sets A1 and A2, respetively. The join operation join(A1; i; A2),5



1g2a1 b1h2 b2d1a2g1(a)
(b)h1 1 d2(d1)T b2(1)Te1 T1Tg1 2(1)e1 e2(e1)g1()
(d) f1 d2(d1)T Te1 Tf1e1a1

f1 d2(d1)T a2(a1)Te1 T1Tg1b2(b1) f2(f1)Ta1 f2(f1)b2(b1) 2(f1)a2(a1)

2f1 e1

2(f1)
h2(h1)g2(g1)

g2(g1)h2(h1)
g2(a1)h2(h1) e2(e1)

e2(e1)
a2(a1)

1

e2

e1g1

d2f2

Tf1
Figure 2: Inserting a new interval. (a) The initial interval set together with the new interval [f1; f2℄;the initial piering set is P = fe1; 1; g1g. (b) The initial data struture. () [f1; f2℄ \ P = ; andtherefore f1 is added to T and Tf1 is reated. (d) 1 is replaed by a1, the value at the root of T1(whih now beomes Ta1); �nally g1 is removed from T sine Tg1 is empty; the new piering set isfe1; f1; a1g.desribed by Tarjan [13℄, takes TA1 , the key i, and TA2 , and returns the balaned binary searhtree T(A1[fig[A2) for the set A1 [ fig [ A2. In our ase, i stands for the smallest value in the treeTp0 . The ost of Tarjan's join operation is O(log n). Moreover, within the same time bound we anupdate the values lw wherever needed.Splitting trees. Let A be a set of keys, i some key that belongs to A, and TA a balanedbinary searh (red-blak) tree for A. The split operation split(A; i), desribed in [13℄, takes TA andi and returns two balaned binary searh trees: TA1 for all members of A that are smaller than i,and TA2 for all members of A that are greater than i. In our ase, i stands for the right endpoint ein the desription of the algorithms for insertion and deletion. The ost of Tarjan's split operationis O(log n). Moreover, within the same time bound we an update the values lw wherever needed.2.2 Approximate maintenaneWe now show how to maintain a piering set P 0 for S, where S is as above, suh thatjP 0j � (1 + ")(S), for any �xed 0 < " � 1. The amortized ost per update is �O( log n" ), for anysequene of insertions and deletions, whih begins immediately after a preproessing stage in whihthe right-to-left (minimum) piering set P, jPj = 0, for S is omputed and some additional work,6



that does not a�et the time bound for this stage, is done. (Of ourse, we ontinue to assume thatat any time jSj � n.)The key idea is to avoid long asades by �xing stopping points, whih are points in P 0, suhthat, a asade annot ontinue beyond a stopping point. Initially, we set P 0 = P = (p1; : : : ; p0),and p1; p1+d 2" e; p1+2d 2" e; : : : are the stopping points. The stopping points partition the sequene ofpiering points into at most d "20e groups, eah of size at most d2"e. (The �rst group begins withp0 and ends with the �rst stopping point from the right, the seond group begins with the pointimmediately to the left of this stopping point and ends with the seond stopping point from theright, and so on.) Roughly, at any time, eah of the groups onsists of the right-to-left piering setfor the subset of intervals assoiated with the points in the group. An insertion or a deletion ofan interval an only a�et a single group, whih now has to adapt to the hange in the subset ofintervals assoiated with its points.A stopping point is never deleted (in between lean-up stages, see below), even if it is not neededas a piering point any more. One an think of a stopping point as a degenerate (dummy) interval.But, whenever the size of a group reahes twie its initial size, i.e. 2d2"e, it is split into two, bymaking the point in position d2"e in the group a new stopping point. This guarantees an updateost of �O( log n" ) time.In this way, we an ensure for a while that P 0 is a (1 + ")-approximation. However, afterperforming a sequene of "40 insertions and deletions, we need to perform a lean-up stage (seebelow), in whih we reset P 0 to the urrent right-to-left piering set of S. This stage requiresO(0 log n) time, whih is divided among the updates in the sequene. Below, we desribe theinsertion and deletion operations and then analyze our approximation sheme.2.2.1 InsertionLet s = [sl; sr℄ be a new interval to be added to S. We hek in O(log n) time whether s is alreadypiered by a point in P 0. If yes, we insert s in O(logn) time, assoiating it with the rightmostpoint in P 0 that lies in it, as in the exat sheme. If not, we add sl as a new piering point to P 0,and begin the iterative proess (whih we all a asade) that was desribed in Setion 2.1.1. Thisproess an either end naturally, before the group's stopping point is enountered, or arti�ially,upon reahing this stopping point. The number of points in the group may inrease by 1, and if ithas reahed 2d2"e, we split it into two equal size groups by making the point in position d2"e in thegroup a new stopping point. The length of the asade is thus less than 2d2"e, and therefore theost of an insertion is O( log n" ).2.2.2 DeletionLet s = [sl; sr℄ be an interval to be deleted from S, and let p be the rightmost point in P 0 thatlies in s. If p 6= sl, we simply remove the segment s in O(log n) time from p's tree, as in the exatsheme. If, however, p = sl, we begin the iterative proess desribed in Setion 2.1.2, whih eitherstops naturally, or when the group's stopping point is enountered. The ost of a deletion is thusO( log n" ). In both ases, if p is a stopping point, we simply remove s without replaing or deletingp, even if p's tree is empty.2.2.3 The lean-up stageIn order to ensure that we remain with a (1 + ")-approximation after eah update, we need toperform a lean-up stage following a sequene of "40 updates. The lean-up stage brings us bakto the initial state, where P 0 is the right-to-left piering set for S, and the stopping points are7



the points of P 0 in position 1; 1 + d2"e; 1 + 2d2"e; : : : The lean-up requires only O(0 logn) time(unlike the initial preproessing stage whih requires O(n logn) time), so if we divide it over thelast sequene of updates, we obtain the laimed �O( log n" ) amortized ost per update.The situation just before the lean-up is that eah interval is stored with the rightmost point inP 0 that lies in it. However, there may be piering points (among the stoppers) whose orrespondingset of intervals is empty, and there may be piering points (among the stoppers) for whih the valuelroot at the root of their tree is di�erent from the piering point itself.In the lean-up stage we perform a right-to-left traversal, beginning at the rightmost stopperin P 0. During the traversal the various ases whih are desribed in Setion 2.1.1 our, and wehandle them aordingly.If p is of the �rst type above, then we delete it, and jump to the next stopper q. Otherwise, letp0 be the value stored at the root of p's tree. If p0 = p, then we jump to q, and if p0 6= p, then weproeed as follows. If p0 is to the left of r, the point immediately to the left of p, then we transferthe intervals in p's tree to r's tree, delete p, and jump to q. Otherwise, we replae p with p0, andstart a asade as in Setion 2.1.1. We then jump to the �rst stopper following the asade.At the end of this proess P 0 is again the right-to-left minimum piering set for S and we updatethe value of 0. The whole proess requires only O(0 log n) time.2.2.4 The analysisWe have to show that P 0 is a (1 + ")-approximation after eah update. At time t (i.e., after thet'th update), the size t of the minimum piering set and the size 0t of P 0 are surely in between0 � "40 and 0 + "40. Thus, even in the worst ase, where t is equal to the minimum value and0t is equal to the maximum value, we have0t = (1 + "4)0 � (1 + 3"4 � "24 )0 = (1 + ")t ;so P 0 is indeed a (1 + ")-approximation.We obtain the following theorem:Theorem 3 For any 0 < " � 1, we an maintain a (1 + ")-approximation of a minimum pieringset for S in amortized update time �O( log n" ).As a orollary, we obtain the following theorem onerning the size b(S) of a maximum inde-pendent subset of S.Theorem 4 For any 0 < " � 1, we an maintain a (1 + ")-approximation of the size b(S) of amaximum independent subset of S in amortized update time �O( log n" ). (That is, at time t, 0t1+" �b(S) � 0t.)3 AppliationsIn this setion we present the three appliations that were mentioned in Setion 1. See Setion 1for a survey of related previous results.
8



3.1 Shooter loation problemIn the Shooter Loation Problem (SLP for short), we are given a set S = fs1; : : : ; sng of n disjointsegments in the plane, and we seek a point p from whih the number of shots needed to hit allsegments in S is minimal, where a shot is a ray emanating from p.A (1+")-approximation. Let L be the set of O(n2) lines de�ned by the endpoints of the segmentsin S. Consider any ell f of the arrangement A(L), and let p be a point in the interior of f . Thenumber of shots from p needed to hit all segments in S is equal to the size of a minimum pieringset for the set of irular ars obtained by projeting eah of the segments in S on a irle enlosingall the segments in S and entered at p. For any other point p0 in the interior of f , the numberof shots from p0 is equal to the number of shots from p, sine the irular-ar graphs for p and forp0 are idential. Moving from one ell of A(L) to an adjaent ell orresponds to a swap in theloations of two adjaent ar endpoints.We traverse the arrangement A(L), dynamially maintaining an approximation of the minimumnumber of rays required to interset all the segments from a point in the urrent ell. At eah ellof A(L), we shoot a vertial ray direted upwards, allowing us to deal with the interval graphobtained by unrolling the ell's irular-ar graph (after removing the ars that are interseted bythe vertial ray). We use the data struture of Setion 2.2 to maintain in amortized time �O( log n" )a (1+ ")-approximation of the size of the minimum piering set for this interval graph. At the end,we hoose the ell for whih the number omputed is the smallest. (Atually, this sheme will alsowork for segments that are not neessarily disjoint.)Theorem 5 For any �xed 0 < " � 1, a (1 + ")-approximation (with possibly one extra shot) forthe shooter loation problem an be found in O(1"n4 log n) time.Towards an exat solution. We showed how to obtain a (1 + ")-approximation, that is, howto �nd a number r suh that r� � r � (1 + ")r� + 1, where r� is the optimal number of shots.Therefore, if "r� < 1, we obtain a loation for whih the number of rays is either optimal or optimalplus one. Sine we need to hoose " < 1r� without knowing r�, we �rst run the algorithm with,say, " = 1, and obtain a number of rays r� � r0 � 2r� + 1. Then we hoose " = 1r0 < 1r� andrun the algorithm to obtain the optimal, or optimal with one extra shot, solution in O(n4r� logn)output-sensitive time (single bootstrapping).Theorem 6 The optimal number of shots r� (with possibly one extra shot) of the shooter loationproblem an be omputed in O(n4r� logn) time.Avoiding the omplete arrangement traversal. We now desribe another method for obtain-ing a (1+ ")-approximation, whih is often more eÆient than the method desribed above. Let L0be a 1 -utting of L (see [2℄). That is, L0 is a set of O() lines, and eah ell of the (vertial deom-position of the) arrangement A(L0) is ut by at most jLj � 2n2 lines of L. For eah of these linesl, we dynamially ompute a (1 + Æ)-approximation for a shooter moving along l (in the originalenvironment S). The total omputation time is O(n2 log nÆ ). Let rmin be the best sore obtainedduring the omputation. We have r� � rmin � (1 + Æ)(r� + 2n2 ). (The right inequality holds sineif C 2 A(L) is the ell from whih only r� shots are needed, then there exists a ell C 0 2 A(L) thatis supported by a line in L0, suh that, C an be reahed from C 0 by passing through at most 2n2ells of A(L).) By setting  = 2n2r� , for some 0 <  < 1, we obtain r� � rmin � (1 + Æ)(1 + )r� inO( 1Æ n4 log nr� ) time. We hoose Æ =  = "3 to ensure a (1 + ")-approximation sheme in O( 1"2 n4 log nr� )time. 9



However, we do not know r�, the size of the optimal solution, beforehand. We are going toapproximate it by r0 as follows. We �rst demonstrate the method for the speial ase where a4-approximation is desired, and then present it for the general ase.For a 4-approximation, assume Æ =  = 14 , and set r0  n2 . Let  = 2n2r0 = 16n, and, as above,�rst ompute a 1 -utting of L and then, for eah of the O() lines in the utting, ompute a (1+Æ)-approximation for a shooter moving along the line. The total omputation time is O(n3 logn). Bytaking the minimum sore rmin along the lines of the utting, we have r� � rmin � (1+ 14)(r�+ n8 ).Therefore, if rmin � n2 , then r� � 11n40 � n4 and we return rmin and stop. This gives rminr� � nn=4 = 4.Otherwise, we set r0  r02 and repeat. We ontinue halving r0 until at some stage rmin � r0 (andrmin < 2r0). At this stage we have r� � 11r020 � r02 , and rminr� � 2r0r0=2 = 4. The overall ost of thisalgorithm is bounded by O(n4 logn)Pr0 1r0 with r0 = n2i for i � log nr� . Thus we end up with a4-approximation in O(n4 log nr� ) time.For the general ase, where a (1+")-approximation is desired, we set r0 = �n, for an appropriate0 < � < 1, as our urrent estimate of r�, and let  = 2n2r0 = 2n2�n . After omputing a 1 -utting andrmin as before, we haver� � rmin � (1 + Æ)(r� + 2n2 ) = (1 + Æ)(r� + �n) :Now, if rmin � r0 (i.e., if rmin � �n), then (1 + Æ)(r� + �n) � �n, whih implies thatr� � �n(1� (1 + Æ))1 + Æ :Thus, rminr� � 1 + Æ�(1� (1 + Æ)) ; (�)sine rmin � n.If, however, rmin < r0, we set r0  �r0, and repeat until at some stage rmin � r0. At this stagewe have �in � rmin < �i�1n, for some i � 2, and the ratio between rmin and r� is as in the �rststage (Equation (�)), this time using rmin < �i�1n.Therefore, we must pik Æ;  and � suh that1 + Æ�(1� (1 + Æ)) � 1 + " : (��)The running time is n4 lognÆ �i 1�in ;with i ranging from 1 to log 1� nr� . That is,n3 lognÆ log 1� nr�Xi=1 ( 1� )i :But Plog 1� nr�i=1 ( 1� )i is less than n(1��)r� . Therefore the running time for a (1 + ")-approximation isO( n4 log nÆ(1��)r� ). It is easy to verify that by piking  = Æ = "5 and � = 1� "5 , Equation (��) is satis�ed(assuming " � 1), and thus the running time beomes O( 1"3 n4 log nr� ).Comparing this method with the �rst method, we see that this method is more eÆient thanthe �rst method whenever r� � 1"2 . 10



Theorem 7 A (1+")-approximation for the shooter loation problem an be found in O( 1"3 n4 log nr� )time.3.2 Minimum piering set for irular arsLet A = fa1; : : : ; ang be a set of n ars on the unit irle C entered at the origin. Our goal is toompute a minimum piering set P � C for A.Let  denote the size of a minimum piering set for A, and let b denote the maximum size ofan independent subset of A, that is, a subset of A whose ars are pairwise disjoint. Clearly  � b,sine we need b piering points in order to piere all ars in a maximum independent subset of A.For a set S of intervals on a line, it is easy to see ([11℄) that b(S) piering points are also suÆientin order to piere all intervals in S. In our ase, however, b piering points may not be enough. Forexample, if A onsists of three ars obtained by utting the irle C into three parts, then b = 1while  = 2. It is easy to see though that the di�erene between b and  an never exeed 1. Plaea piering point p anywhere on the irle C and remove all ars that are piered by p. We anthink of the remaining ars as intervals on a line. The size of a maximum independent subset ofthese intervals is either b or b�1. Thus, in view of the remark above onerning intervals on a line,either  = b+ 1, or  = b. Therefore, we have:Claim 8 b �  � b+ 1, and there exists sets of ars that require b+ 1 piering points.For an ar a 2 A, let f(a) be the number of ar endpoints that lie in a, inluding a's twoendpoints. Let a� be an ar in A suh that f(a�) � f(a) for any other ar a 2 A. Clearlyf(a�) � b2nb , by the pigeon hole priniple. We an �nd a� in O(n log n) time: After sorting theendpoints by their polar angle, one an determine the number of endpoints lying in an ar a inO(log n) time.The endpoints that lie in the interior of a� together with a�'s two endpoints divide a� intoO(n=b) subars. Sine a� must be piered, we traverse a� from end to end moving from one subarto an adjaent subar. For eah of these subars, we plae in it a piering point p, and ompute aminimum piering set for the remaining set of ars that are not piered by p (whih an be viewed asa set of intervals on a line). The subar whose orresponding minimum piering set is the smallest,is then hosen as the subar in whih p is eventually plaed, and the �nal piering set is omposedof p and the piering set that was omputed for this subar. (Of ourse, if there exists a point ofC that is not overed by A, then we an simply treat the set A as a set of intervals on the line.)During the traversal, when moving from one subar to an adjaent subar we either enter orleave an ar of A. We an therefore use our data struture for maintaining a minimum piering setfor a set S of intervals on a line (see Setion 2.1). Initially S is obtained from the ars in A thatare not piered by a point lying in the �rst subar of a�. We onstrut our data struture for S inO(n log n) time. When moving from one subar to an adjaent subar, an interval is either insertedor deleted to/from S. For any subar of a�, the number of intervals in S is at most n� 1, the sizeof the minimum piering set that is omputed is at most b+ 1 (by Claim 8), and the omputationtime is O(b logn). Sine there are O(n=b) subars, we onlude that the total running time of ouralgorithm (for omputing a minimum piering set for A) is O(n log n).Theorem 9 Let A be a set of n ars on a irle. It is possible to ompute a minimum piering setfor S in O(n log n) time.Remark: We an apply the approximation sheme of Setion 2.2 in order to maintain a smallpiering set for A, under insertions and deletions of ars to/from A. Let p0 be any point on the11



irle C. We maintain a (1 + ") approximation for the set of intervals orresponding to the ars inA that are not piered by p0. Thus, if (A) is the piering number of A, then we an maintain apiering set for A of size at most (1 + ")(A) + 1 in amortized �O( log n" ) time per update.3.3 Maintenane of a box overLet Q be a set of n points in d-spae. We wish to ompute a minimum over for Q, onsistingof unit (axis-parallel) hyperubes. Dually, we wish to ompute a minimum piering set for a setQ� of n d-dimensional unit hyperubes. These problems are referred to in the literature as theBOX COVERING and BOX PIERCING problems. For d � 2, these problems were shown to be NP-omplete by Fowler et al. [4℄. We onsider the BOX PIERCING problem for arbitrary (axis-parallel)boxes and in a dynami setting, where from time to time boxes are inserted and deleted from Q�.We begin with a simple observation, and then dynamize an approximation sheme presented in [11℄.Let S = fB1; :::; Bng be a set of n boxes (i.e., hyperretangles) in d-spae, where eah boxis represented as the ordered Cartesian produt Bi = Qdj=1[xij ;Xij ℄. Let P�j denote a minimumpiering set for the interval set Sj = f(xij ;Xij)j i 2 [1::n℄ g. Clearly P = Qdj=1 P�j is a piering setfor S. Let � be the size of a minimum piering set for S. Sine jP�j j � �, for j = 1; : : : ; d, weonlude that jPj � (�)d. Therefore, by dynamially maintaining a piering set for eah of the setsSj independently, we an maintain a piering set for S of size at most (�)d. The ost of an updateis O(d� logn). Alternatively, we an maintain in �O(d log n� ) amortized time per update a pieringset for S of size at most (1 + ")d(�)d.A divide-and-onquer sheme proposed in [11℄ onsists of �nding the median x of the endpointsof the intervals in S1, and partitioning the set S into three subsets: (1) S 0 = fS \ (x1 = x)g, i.e.,the set of (d � 1)-dimensional boxes obtained from the boxes in S that are ut by the hyperplanex1 = x, (2) Sl, the boxes in S that are fully ontained in the half-spae x1 < x, and (3) Sr, theboxes in S that are fully ontained in the half spae x1 > x. Now, a piering set P for S is obtainedby reursively omputing piering sets Pl;Pr;P 0 for the sets Sl;Sr;S 0, respetively, and by settingP = Pl [Pr [P 0 (after onverting the points in P 0 to d-dimensional points by adding a oordinateat the front whose value is x). (The 1-dimensional ase is solved exatly in �(n logn)-time.) It anbe shown that jPj � (1 + log2 n)d�1� for arbitrary boxes, and jPj � 2d�1� for ongruent boxes;see [11℄ for proof and other bounds/tradeo�s.The above sheme an be dynamized in a straightforward way, using our exat and approx-imate solutions for intervals. Indeed, whenever a box is inserted or deleted from S, the medianmight hange, but only loally (i.e., the new median is either the urrent median, or the end-point immediately to the left/right of the urrent median), and thus the sets Sl;Sr, and S 0 anbe easily maintained by adding and removing a onstant number of boxes. Now, if S 0 onsists of1-dimensional boxes (i.e., intervals), we update the appropriate (exat or approximate) dynamidata struture, and proeed to handle the sets Sl and Sr reursively. Otherwise, we handle all threesets reursively.We an view the whole proess as a d-dimensional binary tree. At the root of the main tree westore the d-dimensional set S, and the median x of the endpoints of the intervals in S1. The lefthild of the root stores the set Sl, and the right hild stores Sr. In addition, the root points to the(d � 1)-dimensional binary tree whose root stores the set S 0. For eah of the 1-dimensional sets,we onstrut our exat (alternatively, approximate) dynami piering data struture for intervals.We observe that the depth of the main tree is O(log n), that the sets stored in the nodes of itsk'th level are pairwise separable, and, therefore, the sum of the sizes of all minimum (alternatively,nearly minimum) piering sets omputed by their desendant piering strutures is at most �(alternatively, (1 + ")�). 12



Insertions and deletions are handled similarly. We start at the root of the main tree, with theoriginal update instrution (i.e., insert/delete some d-dimensional box B). At the urrent nodev storing a k-dimensional set: If k > 1, we �rst update the set and median that are stored withv, aording to the update instrution. Next, for eah of the hildren of v and for the root ofv's (k � 1)-dimensional substruture, we issue an appropriate update instrution and treat eah ofthem reursively. If k = 1, we update the piering data struture assoiated with v, aording tothe update instrution.Using the exat interval piering data struture, we obtain:Theorem 10 We an maintain a piering set of size  for a set S, jSj � n, of arbitrary (axis-parallel) d-dimensional boxes in O( log n)-time per update, where  � (1 + log2 n)d�1�. For ubeswe have  � 2d�1�.As a orollary, we an maintain an approximation of the size b(S) of a maximum independentsubset of S (that is a maximum subset of S onsisting of pairwise disjoint boxes), sine (1+log n)d�1 �b(S) � .4 ConlusionWe developed a data struture for maintaining a minimum (or nearly minimum) piering set fora set of intervals on a line. The eÆieny of our maintenane shemes was demonstrated in theimproved (approximate) solutions that were obtained to the shooter loation problem. We alsoapplied these maintenane shemes to obtain (oneptually) simpler algorithms for omputing aminimum (or nearly minimum) piering set for a set of ars on a irle, and for maintaining a smallpiering set for a set of d-dimensional boxes. A natural question is whether or not it is possible tomaintain a minimum piering set for intervals in O(log n) time (rather than O( log n) time) perupdate. It would also be nie to be able to maintain in O( log n) time per update a minimum(rather than minimum plus possibly 1) piering set for ars on a irle.Referenes[1℄ J. Chaudhri and S.C. Nandy \Generalized shooter loation problem", in Leture Notes in ComputerSiene 1627, pp. 389{401, 1999.[2℄ B. Chazelle \Cutting hyperplanes for divide-and-onquer", Disrete Comput. Geom. 9 (1993), pp. 145{158.[3℄ K. Daniels and V. Milenkovi \Limited Gaps", in Pro. 6th Canad. Conf. Comput. Geom., pp. 225{231,1994.[4℄ R. J. Fowler and M. S. Paterson and S. L. Tanimoto \Optimal paking and overing in the plane areNP-omplete", Information Proessing Letters 12(3) (1981), pp. 133{137.[5℄ M. C. Golumbi and P. L. Hammer \Stability in irular ar graphs", J. of Algorithms 9 (1988), pp.314{320.[6℄ U. Gupta, D. T. Lee and Y.-T. Leung \EÆient algorithms for interval graphs and irular-ar graphs",Networks 12 (1982), pp. 459{467.[7℄ W.-L. Hsu and K.-H. Tsai \Linear time algorithms on irular-ar graphs", Information ProessingLetters 40 (1991), pp. 123{129. 13



[8℄ D. T. Lee, M. Sarrafzadeh and Y. F. Wu \Minimum uts for irular-ar graphs", SIAM J. Computing19(6) (1990), pp. 1041{1050.[9℄ S. Masuda and K. Nakajima \An optimal algorithm for �nding a maximum independent set of airular-ar graph", SIAM Journal on Computing 17(1) (1988), pp. 41{52.[10℄ S. C. Nandy and K. Mukhopadhyaya and B. B. Bhattaharya \Shooter loation problem", in Pro. 8thCanad. Conf. Comput. Geom., pp. 93{98, 1996.[11℄ F. Nielsen \Fast stabbing of boxes in high dimensions", in Pro. 8th Canad. Conf. Comput. Geom., pp.87{92, 1996. To appear in Theo. Comp. Si..[12℄ A. S. Rao and C. P. Rangan \Optimal parallel algorithms on irular-ar graphs", Information Pro-essing Letters 33 (1989), pp. 147-156.[13℄ R. E. Tarjan \Data Strutures and Network Algorithms", Regional Conferene Series in Applied Math-ematis 44, SIAM, 1983.[14℄ K. H. Tsai and D. T. Lee \k-best uts for irular-ar graphs", Algorithmia 18(2) (1997), pp. 198{216.[15℄ C. A. Wang and B. Zhu \Shooter loation problems revisited", in Pro. 9th Canad. Conf. Comput.Geom., pp. 223{228, 1997.

14


