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tWe show how to eÆ
iently maintain a minimum pier
ing set for a set S of intervals on theline, under insertions and deletions to/from S. A linear-size dynami
 data stru
ture is presented,whi
h enables us to 
ompute a new minimum pier
ing set following an insertion or deletion intime O(
(S) log jSj), where 
(S) is the size of the new minimum pier
ing set. We also show howto maintain a pier
ing set for S of size at most (1+")
(S), for 0 < " � 1, in �O( log jSj" ) amortizedtime per update. We then apply these results to obtain eÆ
ient solutions to the following threeproblems: (i) the shooter lo
ation problem, (ii) 
omputing a minimum pier
ing set for ar
s ona 
ir
le, and (iii) dynami
ally maintaining a box 
over for a d-dimensional point set.1 Introdu
tionLet S = fs1 = [l1; r1℄; : : : ; sn = [ln; rn℄g be a set of n intervals on the real line. An independentsubset of S is a set of pairwise non-interse
ting intervals of S. Let b(S) be the maximum size ofan independent subset of S. A pier
ing set for S is a set P of points on the real line, su
h that,for ea
h interval si 2 S, si \ P 6= ;. Let 
(S), the pier
ing number of S, be the size of a minimumpier
ing set for S. (In graph theory terminology, we are dealing with the interval graph de�nedby S that is obtained by asso
iating a node with ea
h of the intervals in S, and by drawing edgesbetween nodes whose 
orresponding intervals interse
t. The number b(S) is also 
alled the pa
kingnumber of S, a pier
ing set is also 
alled a 
ut set, and the number 
(S) is also 
alled the transversalnumber of S.)Clearly 
(S) � b(S), sin
e b(S) pier
ing points are needed in order to pier
e all intervals in amaximum independent subset of S. It is not diÆ
ult to see though that b(S) pier
ing points arealso suÆ
ient in order to pier
e all intervals in S, thus 
(S) = b(S), and a minimum pier
ing setfor S 
an be found in time O(n log 
(S)) (see [11℄).In this paper we deal with the problem where the set of intervals S is dynami
 (i.e., fromtime to time a new interval is inserted into S or an interval is deleted from S), and we wish toeÆ
iently maintain a minimum (or nearly minimum) pier
ing set for S. Assuming the size of S�Supported by the Israel S
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never ex
eeds n, we present two solutions: an exa
t solution and an approximate solution (whi
h isbased on the exa
t solution). In the exa
t solution, a new minimum pier
ing set for S is 
omputedfrom the 
urrent minimum pier
ing set, following an insertion/deletion of an interval to/from S.The 
omputation time is O(
 log n), where 
 is the size of the new minimum pier
ing set (whi
hdi�ers from the size of the 
urrent set by at most 1). More pre
isely, a linear-size data stru
ture,representing the 
urrent set of intervals and its minimum pier
ing set, is used to 
ompute the newminimum pier
ing set, following an insertion/deletion of an interval. The data stru
ture is updatedduring the 
omputation.In the approximate solution, a pier
ing set for S of size at most (1 + ")
(S) is maintained, fora given approximation fa
tor ", 0 < " � 1. The amortized 
ost of an update (for any sequen
eof updates following a prepro
essing stage that requires O(n log n) time) is �O( log n" ). (Noti
e thatthe update 
ost varies from O(log n), for " = 1 (i.e., a 2-approximation), to O(
(S) log n), for" < 1=
(S) (i.e., an exa
t solution).) Both the exa
t and approximate solutions are presented inSe
tion 2. In Se
tion 3, we apply the above exa
t and approximate solutions to obtain eÆ
ientsolutions to the problems below.The shooter lo
ation problem. Given a set of n disjoint segments in the plane, �nd a lo
ationp in the plane, for whi
h the number of shots needed to hit all segments is minimal, where a shotis a ray emanating from p. This problem was �rst introdu
ed by Nandy et al. [10℄, who observedthat solving the problem for a given lo
ation p is equivalent to �nding a minimum pier
ing set for aset of n ar
s on a 
ir
le. The latter problem 
an be solved in time O(n log n), see below. They alsopresented an O(n3)-time algorithm for the 
ase where the shooter is allowed to move along a givenline, and left open the general problem. Wang and Zhu [15℄ obtained an O(n5 log n)-time solutionfor the general problem. They also gave an O(n5)-time algorithm for 
omputing a 2-approximation,that is, a lo
ation for whi
h the number of required shots is at most twi
e the optimal number ofshots. Re
ently, Chaudhuri and Nandy [1℄ presented an improved solution for the general problem;its worst-
ase running time is O(n5), but it is expe
ted to perform better in pra
ti
e. A
tually, thegeneral problem 
an be solved by applying the solution for a shooter on a line to the O(n2) linesde�ned by the endpoints of the segments, thus obtaining an alternative O(n5)-time solution.Here we obtain an O(1"n4 logn)-time algorithm for 
omputing a (1 + ")-approximation for thegeneral problem (with possibly one extra shot), signi�
antly improving the O(n5) 2-approximationof [15℄. We 
an also �nd a lo
ation for whi
h the number of shots is at most r�+1, where r� is theoptimal number of shots, in (output-sensitive) O(n4r� logn) time. Finally, we des
ribe another,more 
ompli
ated, method for 
omputing a (1 + ")-approximation. This method uses 
uttings to
ompute a (1 + ")-approximation in O( 1"3 n4 log nr� ) time, thus breaking the O(n4) barrier for mostvalues of r�, assuming " is a 
onstant.A minimum pier
ing set for ar
s on a 
ir
le. Let A = fa1; :::; ang be a set of n ar
s on theunit 
ir
le 
entered at the origin. As for intervals on the line, a set P of points on the 
ir
le is apier
ing set for A, if for ea
h ar
 ai 2 A, ai \ P 6= ;. We wish to 
ompute a minimum pier
ingset for A. (In graph theory terminology, we are dealing with the 
ir
ular-ar
 graph for A that isobtained by asso
iating a node with ea
h of the 
ir
ular ar
s in A, and by drawing edges betweennodes whose 
orresponding 
ir
ular ar
s interse
t. We denote this graph by G(A).)Observe that now, unlike in the 
ase of intervals on the line, the pa
king number b(A) andthe pier
ing number 
(A) may di�er. (Assume, for example, that A 
onsists of three ar
s, ea
h oflength 2�=3, that together 
over the 
ir
le, then b(A) = 1 while 
(A) = 2.) However, it is easy tosee (Claim 8) that in this 
ase either 
(A) = b(A) or 
(A) = b(A) + 1.A point p on the unit 
ir
le indu
es a 
lique fai 2 A j p 2 aig of the graph G(A). Noti
e thatG(A) might also have 
liques whose ar
s do not share a point (as in the example above). Cliques ofthe former type are 
alled linear 
liques. Assume we wish to �nd a minimum number of 
liques of2



G(A) whose union is A (the 
lique 
overing problem). Hsu and Tsai [7℄ and Rao and Rangan [12℄showed that if A itself is not a 
lique, then it suÆ
es to 
onsider only linear 
liques. Thus, if A isnot a 
lique, the problem of �nding a minimum pier
ing set for A is essentially equivalent to theproblem of �nding a minimum number of 
liques of G(A) whose union is A.Golumbi
 and Hammer [5℄, Hsu and Tsai [7℄, Lee et al. [8℄, and Masuda and Nakajima [9℄ gaveO(n log n)-time algorithms for 
omputing a maximum independent set of a 
ir
ular-ar
 graph withn ar
s. Gupta et al. [6℄ gave an 
(n log n) lower bound for this problem (a
tually, for the simplerproblem of 
omputing a maximum independent set of an interval graph with n intervals). Lee etal. [8℄ gave anO(n logn)-time algorithm for the minimum 
ut set (i.e., pier
ing set) problem togetherwith an appli
ation to a fa
ility lo
ation problem, and Hsu and Tsai [7℄ gave an O(n log n)-timealgorithm for the minimum number of 
liques problem. More re
ently, Tsai and Lee [14℄ investigatedthe problem of �nding k best 
uts (i.e., k 
uts for whi
h the number of di�erent ar
s that are 
utis maximal). They showed how this problem is related to a fa
ility lo
ation problem. Daniels andMilenkovi
 [3℄ use pier
ing sets (whi
h they 
all hitting sets) in 
onne
tion with generating layoutsfor the 
lothing industry.We provide yet another optimal �(n log n)-time algorithm for 
omputing a minimum pier
ingset for A. We believe that our algorithm is (at least 
on
eptually) simpler than the previousalgorithms. Moreover, we 
an maintain a pier
ing set for A of size at most (1 + ")
(A) + 1 inamortized update time �O( log n" ).Maintenan
e of a box 
over. Let Q be a set of n points in Rd . A 
over for Q is a set of(axis-parallel) unit hyper
ubes whose union 
ontains Q. The problem of 
omputing a minimum
over is known to be NP-
omplete [4℄, and is dual to the following pier
ing problem. Given a setB of n unit hyper
ubes in Rd , 
ompute a minimum pier
ing set for B. We present several eÆ
ientalgorithms for dynami
ally maintaining a small pier
ing set for a set of arbitrary (axis-parallel)boxes in Rd . We obtain an O(
� logd n) update-time algorithm for maintaining a pier
ing set ofsize 
 for arbitrary boxes, where 
 � (1 + log2 n)d�1
� and 
� denotes the optimal size, and anO(2d�1
� log n) update-time algorithm for maintaining a pier
ing set of size 
 for 
ongruent boxes,where 
 � 2d�1
�. We 
an also obtain (in both 
ases) a trade-o� between the update time andthe approximation fa
tor. These algorithms are based both on our dynami
 data stru
tures forintervals on the line, and on ideas from [11℄.2 Maintenan
e of a Pier
ing Set for Intervals2.1 Exa
t maintenan
eLet S be a set of m � n intervals on the line. We assume that from time to time a new intervalis added to S or an existing interval is removed from S. However, we require that at any momentjSj � n. We show how to maintain a minimum pier
ing set for S under insertions and deletions inO(
 log n) time, where 
 is the size of the new pier
ing set. We a
tually maintain a 
ertain minimumpier
ing set whi
h we 
all the right-to-left pier
ing set and whi
h is de�ned as follows. Find therightmost among the left endpoints of the intervals in S. Let s 2 S be the interval to whi
h thisendpoint belongs. Clearly the best lo
ation for a pier
ing point p in s is at its left endpoint. Removeall intervals that are pier
ed by p and reiterate. In this way we obtain a minimum pier
ing set forS. The right-to-left pier
ing set 
an be 
omputed easily in O(n logn) time. (A
tually it 
an be
omputed in O(n log 
(S)) time, see [11℄). Initially, we 
ompute the right-to-left pier
ing set P ofS. We now 
onstru
t a data stru
ture of size O(n) that will allow us to update the right-to-leftpier
ing set within the 
laimed bound. For ea
h pier
ing point p 2 P, let Sp be the subset of3



initial pier
ing point
(a) p0 = p (b) p0 6= p and 9r (
) p0 6= p and 6 9rp0two initial pier
ing pointsp p psl sl slrp0 qtwo initial pier
ing points

Figure 1: Three di�erent 
ases that may o

ur during the insertion pro
ess. The dashed segmentis the one being inserted.intervals of S that were pier
ed by p during the right-to-left pier
ing pro
ess. These subsets are
omputed during the 
omputation of P. Noti
e that an interval s 2 S is asso
iated with therightmost pier
ing point of P that lies in it. Constru
t a balan
ed binary sear
h tree T on thepier
ing points in P. For ea
h node v in T representing a pier
ing point p, 
onstru
t a balan
edbinary sear
h tree Tp on the right endpoints of the intervals in Sp, and let v point to the root ofTp. With ea
h node w in Tp we store the point lw whi
h is the rightmost among the left endpoints
orresponding to the right endpoints in the subtree rooted at w. Noti
e that lroot = p. The overall
onstru
tion time is O(n logn), and the resulting data stru
ture is of size O(n). We now des
ribethe updating pro
edures for insertion and deletion of an interval.2.1.1 InsertionLet s = [sl; sr℄ be a new segment to be added to S. We �rst 
he
k, using the tree T , whether s isalready pier
ed by the 
urrent pier
ing set P. If it is, then P is also the right-to-left pier
ing set ofS [fsg. We insert s into the tree Tp, where p is the rightmost point in P that lies in s, and updatethe values lw in the relevant nodes of Tp. All these operations 
an be done in O(logn) time.Assume now that s \ P = ;. Noti
e that all the pier
ing points of P that lie to the right ofs are also present in the right-to-left pier
ing set of S [ fsg and their 
orresponding trees do not
hange. We �rst insert sl as a new pier
ing point to the main tree T . Next we need to 
reate its
orresponding tree Tsl. Tsl should 
onsist of the new segment s together with all segments in Sthat are pier
ed by sl, but not by any other pier
ing point to the right of sl. All these segments,however, must belong to Sp, where p is the rightmost pier
ing point to the left of sl. So we lo
atep in O(logn) time using T , and sear
h in Tp in O(log n) time for the leftmost right endpoint e thatlies to the right of sl. All the intervals in Tp whose right endpoint is to the right of e, in
luding e,should be removed from Tp and added to Tsl. We must also update the values lw in the relevantnodes of both trees. Below, we des
ribe how to perform this transfer and update in a more generalsetting.It is possible that the interval de�ning the point p has been transfered to Tsl . Let p0 be thevalue that is 
urrently stored in the root of Tp, i.e., lroot = p0. (If p0 does not exist, i.e., if Tp isempty, we simply delete p from T and stop.) If p0 = p, then we are done, otherwise the intervalde�ning p has been transfered and we repla
e the pier
ing point p by p0 (see Figure 1).We now have to 
he
k whether there is a pier
ing point (perhaps several of them) in T that liesto the right of p0 and to the left of sl. If the answer is positive, we 
onsider the rightmost pier
ingpoint r in T that lies between p0 and sl. All right endpoints of the intervals that are 
urrentlystored in Tr are to the left of all right endpoints of the intervals 
urrently stored in Tp0. Thus, we
an remove the point p0 from T and transfer the intervals in the tree Tp0 to the tree Tr, by applyingthe join operation des
ribed below. We update the values lw in Tr and stop. Otherwise, if the4



answer is negative, we need to lo
ate the pier
ing point q that lies immediately to the left of p0,and transfer the intervals of Tq that are pier
ed by p0 to Tp0. As before we sear
h in Tq for theleftmost right endpoint e that lies to the right of p0. We need to transfer the intervals in Tq whoseright endpoint is to the right of e, in
luding e, to Tp0. Observe that if s0 is an interval in Tq whoseright endpoint e0 is to the right of e, in
luding e, then e0 lies to the left of all right endpoints in Tp0 ,sin
e otherwise p 2 s0 and s0 should already be in Tp0 (whi
h was obtained from Tp). This propertyallows us to apply the standard split and join operations, see below, for �rst removing the intervalswhose right endpoint e0 is to the right of e, in
luding e, from Tq (split) and then adding them toTp0 (join) in O(log n) time. We update the values lw in both trees (see Figure 2). We 
ontinue inthis way until we either rea
h a step in whi
h the pier
ing point does not 
hange (Figure 1(a)),or the 
ase of Figure 1(b) o

urs, or there are no more pier
ing points to the left of the pier
ingpoint. Clearly the whole insertion pro
ess takes only O(
 log n) time, i.e., O(log n)-time for the atmost 
 
as
ading steps. A more 
areful analysis yields O(
 log n
 ). (We apply H�older's inequalityto P
i=1 logni, where Pi ni = n.)2.1.2 DeletionLet s = [sl; sr℄ be an interval to be deleted from S. We lo
ate the rightmost pier
ing point p of Pthat lies in s. We distinguish between two 
ases. If p 6= sl, then we remove s from Tp, update thene
essary lw values and stop. This 
an be done in O(logn) time. The more diÆ
ult 
ase is whenp = sl. In this 
ase, we �rst remove s from Tp and update the ne
essary lw values. We then repla
ep (in T ) by the value p0 that is stored in the root of Tp, whi
h now be
omes Tp0. (If p0 does notexist, we simply delete p from T and stop.) We pro
eed as des
ribed in the insertion pro
edure,that is, we either lo
ate the rightmost pier
ing point r whi
h lies to the right of p0 and to the leftof sl (if su
h a point exists) and transfer the intervals of Tp0 to Tr thus removing p0, or we lo
atethe pier
ing point q that lies immediately to the left of p0, and transfer the intervals of Tq that arepier
ed by p0 to Tp0 , and so on. The overall time spent on a deletion operation is thus O(
 log n).Theorem 1 Let S be a set of intervals on a line, and assume that the size of S never ex
eedsn. It is possible to 
onstru
t, in time O(n logn), a data stru
ture of size O(n), that enables us tomaintain a minimum pier
ing set for S, under insertions and deletions of intervals to/from S, intime O(
 log n
 ) per update, where 
 is the size of the 
urrent minimum pier
ing set for S.Noti
e that we 
an use the data-stru
ture above to maintain a maximum independent subsetof S. (The subset of intervals 
orresponding to the points of the minimum pier
ing set, i.e., theintervals whose left endpoint is a pier
ing point, is su
h a subset.)Theorem 2 Let S be a set of intervals on a line, and assume that the size of S never ex
eedsn. It is possible to 
onstru
t, in time O(n logn), a data stru
ture of size O(n), that enables us tomaintain a maximum independent set of S, under insertions and deletions of intervals to/from S,in time O(b log nb ) per update, where b is the size of the 
urrent maximum independent set of S.2.1.3 Joining and splitting treesWe now des
ribe how to implement the split and join operations that are used by the algorithmsfor insertion and deletion above.Joining trees. Let A1 and A2 be two sets of keys, su
h that all the keys in A1 are smaller thani, and all the keys in A2 are greater than i, for some key i. Let TA1 and TA2 be the balan
ed binarysear
h (red-bla
k) trees for the sets A1 and A2, respe
tively. The join operation join(A1; i; A2),5
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Figure 2: Inserting a new interval. (a) The initial interval set together with the new interval [f1; f2℄;the initial pier
ing set is P = fe1; 
1; g1g. (b) The initial data stru
ture. (
) [f1; f2℄ \ P = ; andtherefore f1 is added to T and Tf1 is 
reated. (d) 
1 is repla
ed by a1, the value at the root of T
1(whi
h now be
omes Ta1); �nally g1 is removed from T sin
e Tg1 is empty; the new pier
ing set isfe1; f1; a1g.des
ribed by Tarjan [13℄, takes TA1 , the key i, and TA2 , and returns the balan
ed binary sear
htree T(A1[fig[A2) for the set A1 [ fig [ A2. In our 
ase, i stands for the smallest value in the treeTp0 . The 
ost of Tarjan's join operation is O(log n). Moreover, within the same time bound we 
anupdate the values lw wherever needed.Splitting trees. Let A be a set of keys, i some key that belongs to A, and TA a balan
edbinary sear
h (red-bla
k) tree for A. The split operation split(A; i), des
ribed in [13℄, takes TA andi and returns two balan
ed binary sear
h trees: TA1 for all members of A that are smaller than i,and TA2 for all members of A that are greater than i. In our 
ase, i stands for the right endpoint ein the des
ription of the algorithms for insertion and deletion. The 
ost of Tarjan's split operationis O(log n). Moreover, within the same time bound we 
an update the values lw wherever needed.2.2 Approximate maintenan
eWe now show how to maintain a pier
ing set P 0 for S, where S is as above, su
h thatjP 0j � (1 + ")
(S), for any �xed 0 < " � 1. The amortized 
ost per update is �O( log n" ), for anysequen
e of insertions and deletions, whi
h begins immediately after a prepro
essing stage in whi
hthe right-to-left (minimum) pier
ing set P, jPj = 
0, for S is 
omputed and some additional work,6



that does not a�e
t the time bound for this stage, is done. (Of 
ourse, we 
ontinue to assume thatat any time jSj � n.)The key idea is to avoid long 
as
ades by �xing stopping points, whi
h are points in P 0, su
hthat, a 
as
ade 
annot 
ontinue beyond a stopping point. Initially, we set P 0 = P = (p1; : : : ; p
0),and p1; p1+d 2" e; p1+2d 2" e; : : : are the stopping points. The stopping points partition the sequen
e ofpier
ing points into at most d "2
0e groups, ea
h of size at most d2"e. (The �rst group begins withp
0 and ends with the �rst stopping point from the right, the se
ond group begins with the pointimmediately to the left of this stopping point and ends with the se
ond stopping point from theright, and so on.) Roughly, at any time, ea
h of the groups 
onsists of the right-to-left pier
ing setfor the subset of intervals asso
iated with the points in the group. An insertion or a deletion ofan interval 
an only a�e
t a single group, whi
h now has to adapt to the 
hange in the subset ofintervals asso
iated with its points.A stopping point is never deleted (in between 
lean-up stages, see below), even if it is not neededas a pier
ing point any more. One 
an think of a stopping point as a degenerate (dummy) interval.But, whenever the size of a group rea
hes twi
e its initial size, i.e. 2d2"e, it is split into two, bymaking the point in position d2"e in the group a new stopping point. This guarantees an update
ost of �O( log n" ) time.In this way, we 
an ensure for a while that P 0 is a (1 + ")-approximation. However, afterperforming a sequen
e of "4
0 insertions and deletions, we need to perform a 
lean-up stage (seebelow), in whi
h we reset P 0 to the 
urrent right-to-left pier
ing set of S. This stage requiresO(
0 log n) time, whi
h is divided among the updates in the sequen
e. Below, we des
ribe theinsertion and deletion operations and then analyze our approximation s
heme.2.2.1 InsertionLet s = [sl; sr℄ be a new interval to be added to S. We 
he
k in O(log n) time whether s is alreadypier
ed by a point in P 0. If yes, we insert s in O(logn) time, asso
iating it with the rightmostpoint in P 0 that lies in it, as in the exa
t s
heme. If not, we add sl as a new pier
ing point to P 0,and begin the iterative pro
ess (whi
h we 
all a 
as
ade) that was des
ribed in Se
tion 2.1.1. Thispro
ess 
an either end naturally, before the group's stopping point is en
ountered, or arti�
ially,upon rea
hing this stopping point. The number of points in the group may in
rease by 1, and if ithas rea
hed 2d2"e, we split it into two equal size groups by making the point in position d2"e in thegroup a new stopping point. The length of the 
as
ade is thus less than 2d2"e, and therefore the
ost of an insertion is O( log n" ).2.2.2 DeletionLet s = [sl; sr℄ be an interval to be deleted from S, and let p be the rightmost point in P 0 thatlies in s. If p 6= sl, we simply remove the segment s in O(log n) time from p's tree, as in the exa
ts
heme. If, however, p = sl, we begin the iterative pro
ess des
ribed in Se
tion 2.1.2, whi
h eitherstops naturally, or when the group's stopping point is en
ountered. The 
ost of a deletion is thusO( log n" ). In both 
ases, if p is a stopping point, we simply remove s without repla
ing or deletingp, even if p's tree is empty.2.2.3 The 
lean-up stageIn order to ensure that we remain with a (1 + ")-approximation after ea
h update, we need toperform a 
lean-up stage following a sequen
e of "4
0 updates. The 
lean-up stage brings us ba
kto the initial state, where P 0 is the right-to-left pier
ing set for S, and the stopping points are7



the points of P 0 in position 1; 1 + d2"e; 1 + 2d2"e; : : : The 
lean-up requires only O(
0 logn) time(unlike the initial prepro
essing stage whi
h requires O(n logn) time), so if we divide it over thelast sequen
e of updates, we obtain the 
laimed �O( log n" ) amortized 
ost per update.The situation just before the 
lean-up is that ea
h interval is stored with the rightmost point inP 0 that lies in it. However, there may be pier
ing points (among the stoppers) whose 
orrespondingset of intervals is empty, and there may be pier
ing points (among the stoppers) for whi
h the valuelroot at the root of their tree is di�erent from the pier
ing point itself.In the 
lean-up stage we perform a right-to-left traversal, beginning at the rightmost stopperin P 0. During the traversal the various 
ases whi
h are des
ribed in Se
tion 2.1.1 o

ur, and wehandle them a

ordingly.If p is of the �rst type above, then we delete it, and jump to the next stopper q. Otherwise, letp0 be the value stored at the root of p's tree. If p0 = p, then we jump to q, and if p0 6= p, then wepro
eed as follows. If p0 is to the left of r, the point immediately to the left of p, then we transferthe intervals in p's tree to r's tree, delete p, and jump to q. Otherwise, we repla
e p with p0, andstart a 
as
ade as in Se
tion 2.1.1. We then jump to the �rst stopper following the 
as
ade.At the end of this pro
ess P 0 is again the right-to-left minimum pier
ing set for S and we updatethe value of 
0. The whole pro
ess requires only O(
0 log n) time.2.2.4 The analysisWe have to show that P 0 is a (1 + ")-approximation after ea
h update. At time t (i.e., after thet'th update), the size 
t of the minimum pier
ing set and the size 
0t of P 0 are surely in between
0 � "4
0 and 
0 + "4
0. Thus, even in the worst 
ase, where 
t is equal to the minimum value and
0t is equal to the maximum value, we have
0t = (1 + "4)
0 � (1 + 3"4 � "24 )
0 = (1 + ")
t ;so P 0 is indeed a (1 + ")-approximation.We obtain the following theorem:Theorem 3 For any 0 < " � 1, we 
an maintain a (1 + ")-approximation of a minimum pier
ingset for S in amortized update time �O( log n" ).As a 
orollary, we obtain the following theorem 
on
erning the size b(S) of a maximum inde-pendent subset of S.Theorem 4 For any 0 < " � 1, we 
an maintain a (1 + ")-approximation of the size b(S) of amaximum independent subset of S in amortized update time �O( log n" ). (That is, at time t, 
0t1+" �b(S) � 
0t.)3 Appli
ationsIn this se
tion we present the three appli
ations that were mentioned in Se
tion 1. See Se
tion 1for a survey of related previous results.
8



3.1 Shooter lo
ation problemIn the Shooter Lo
ation Problem (SLP for short), we are given a set S = fs1; : : : ; sng of n disjointsegments in the plane, and we seek a point p from whi
h the number of shots needed to hit allsegments in S is minimal, where a shot is a ray emanating from p.A (1+")-approximation. Let L be the set of O(n2) lines de�ned by the endpoints of the segmentsin S. Consider any 
ell f of the arrangement A(L), and let p be a point in the interior of f . Thenumber of shots from p needed to hit all segments in S is equal to the size of a minimum pier
ingset for the set of 
ir
ular ar
s obtained by proje
ting ea
h of the segments in S on a 
ir
le en
losingall the segments in S and 
entered at p. For any other point p0 in the interior of f , the numberof shots from p0 is equal to the number of shots from p, sin
e the 
ir
ular-ar
 graphs for p and forp0 are identi
al. Moving from one 
ell of A(L) to an adja
ent 
ell 
orresponds to a swap in thelo
ations of two adja
ent ar
 endpoints.We traverse the arrangement A(L), dynami
ally maintaining an approximation of the minimumnumber of rays required to interse
t all the segments from a point in the 
urrent 
ell. At ea
h 
ellof A(L), we shoot a verti
al ray dire
ted upwards, allowing us to deal with the interval graphobtained by unrolling the 
ell's 
ir
ular-ar
 graph (after removing the ar
s that are interse
ted bythe verti
al ray). We use the data stru
ture of Se
tion 2.2 to maintain in amortized time �O( log n" )a (1+ ")-approximation of the size of the minimum pier
ing set for this interval graph. At the end,we 
hoose the 
ell for whi
h the number 
omputed is the smallest. (A
tually, this s
heme will alsowork for segments that are not ne
essarily disjoint.)Theorem 5 For any �xed 0 < " � 1, a (1 + ")-approximation (with possibly one extra shot) forthe shooter lo
ation problem 
an be found in O(1"n4 log n) time.Towards an exa
t solution. We showed how to obtain a (1 + ")-approximation, that is, howto �nd a number r su
h that r� � r � (1 + ")r� + 1, where r� is the optimal number of shots.Therefore, if "r� < 1, we obtain a lo
ation for whi
h the number of rays is either optimal or optimalplus one. Sin
e we need to 
hoose " < 1r� without knowing r�, we �rst run the algorithm with,say, " = 1, and obtain a number of rays r� � r0 � 2r� + 1. Then we 
hoose " = 1r0 < 1r� andrun the algorithm to obtain the optimal, or optimal with one extra shot, solution in O(n4r� logn)output-sensitive time (single bootstrapping).Theorem 6 The optimal number of shots r� (with possibly one extra shot) of the shooter lo
ationproblem 
an be 
omputed in O(n4r� logn) time.Avoiding the 
omplete arrangement traversal. We now des
ribe another method for obtain-ing a (1+ ")-approximation, whi
h is often more eÆ
ient than the method des
ribed above. Let L0be a 1
 -
utting of L (see [2℄). That is, L0 is a set of O(
) lines, and ea
h 
ell of the (verti
al de
om-position of the) arrangement A(L0) is 
ut by at most jLj
 � 2n2
 lines of L. For ea
h of these linesl, we dynami
ally 
ompute a (1 + Æ)-approximation for a shooter moving along l (in the originalenvironment S). The total 
omputation time is O(n2
 log nÆ ). Let rmin be the best s
ore obtainedduring the 
omputation. We have r� � rmin � (1 + Æ)(r� + 2n2
 ). (The right inequality holds sin
eif C 2 A(L) is the 
ell from whi
h only r� shots are needed, then there exists a 
ell C 0 2 A(L) thatis supported by a line in L0, su
h that, C 
an be rea
hed from C 0 by passing through at most 2n2

ells of A(L).) By setting 
 = 2n2
r� , for some 0 < 
 < 1, we obtain r� � rmin � (1 + Æ)(1 + 
)r� inO( 1Æ
 n4 log nr� ) time. We 
hoose Æ = 
 = "3 to ensure a (1 + ")-approximation s
heme in O( 1"2 n4 log nr� )time. 9



However, we do not know r�, the size of the optimal solution, beforehand. We are going toapproximate it by r0 as follows. We �rst demonstrate the method for the spe
ial 
ase where a4-approximation is desired, and then present it for the general 
ase.For a 4-approximation, assume Æ = 
 = 14 , and set r0  n2 . Let 
 = 2n2
r0 = 16n, and, as above,�rst 
ompute a 1
 -
utting of L and then, for ea
h of the O(
) lines in the 
utting, 
ompute a (1+Æ)-approximation for a shooter moving along the line. The total 
omputation time is O(n3 logn). Bytaking the minimum s
ore rmin along the lines of the 
utting, we have r� � rmin � (1+ 14)(r�+ n8 ).Therefore, if rmin � n2 , then r� � 11n40 � n4 and we return rmin and stop. This gives rminr� � nn=4 = 4.Otherwise, we set r0  r02 and repeat. We 
ontinue halving r0 until at some stage rmin � r0 (andrmin < 2r0). At this stage we have r� � 11r020 � r02 , and rminr� � 2r0r0=2 = 4. The overall 
ost of thisalgorithm is bounded by O(n4 logn)Pr0 1r0 with r0 = n2i for i � log nr� . Thus we end up with a4-approximation in O(n4 log nr� ) time.For the general 
ase, where a (1+")-approximation is desired, we set r0 = �n, for an appropriate0 < � < 1, as our 
urrent estimate of r�, and let 
 = 2n2
r0 = 2n2
�n . After 
omputing a 1
 -
utting andrmin as before, we haver� � rmin � (1 + Æ)(r� + 2n2
 ) = (1 + Æ)(r� + 
�n) :Now, if rmin � r0 (i.e., if rmin � �n), then (1 + Æ)(r� + 
�n) � �n, whi
h implies thatr� � �n(1� (1 + Æ)
)1 + Æ :Thus, rminr� � 1 + Æ�(1� (1 + Æ)
) ; (�)sin
e rmin � n.If, however, rmin < r0, we set r0  �r0, and repeat until at some stage rmin � r0. At this stagewe have �in � rmin < �i�1n, for some i � 2, and the ratio between rmin and r� is as in the �rststage (Equation (�)), this time using rmin < �i�1n.Therefore, we must pi
k Æ; 
 and � su
h that1 + Æ�(1� (1 + Æ)
) � 1 + " : (��)The running time is n4 logn
Æ �i 1�in ;with i ranging from 1 to log 1� nr� . That is,n3 logn
Æ log 1� nr�Xi=1 ( 1� )i :But Plog 1� nr�i=1 ( 1� )i is less than n(1��)r� . Therefore the running time for a (1 + ")-approximation isO( n4 log nÆ
(1��)r� ). It is easy to verify that by pi
king 
 = Æ = "5 and � = 1� "5 , Equation (��) is satis�ed(assuming " � 1), and thus the running time be
omes O( 1"3 n4 log nr� ).Comparing this method with the �rst method, we see that this method is more eÆ
ient thanthe �rst method whenever r� � 1"2 . 10



Theorem 7 A (1+")-approximation for the shooter lo
ation problem 
an be found in O( 1"3 n4 log nr� )time.3.2 Minimum pier
ing set for 
ir
ular ar
sLet A = fa1; : : : ; ang be a set of n ar
s on the unit 
ir
le C 
entered at the origin. Our goal is to
ompute a minimum pier
ing set P � C for A.Let 
 denote the size of a minimum pier
ing set for A, and let b denote the maximum size ofan independent subset of A, that is, a subset of A whose ar
s are pairwise disjoint. Clearly 
 � b,sin
e we need b pier
ing points in order to pier
e all ar
s in a maximum independent subset of A.For a set S of intervals on a line, it is easy to see ([11℄) that b(S) pier
ing points are also suÆ
ientin order to pier
e all intervals in S. In our 
ase, however, b pier
ing points may not be enough. Forexample, if A 
onsists of three ar
s obtained by 
utting the 
ir
le C into three parts, then b = 1while 
 = 2. It is easy to see though that the di�eren
e between b and 
 
an never ex
eed 1. Pla
ea pier
ing point p anywhere on the 
ir
le C and remove all ar
s that are pier
ed by p. We 
anthink of the remaining ar
s as intervals on a line. The size of a maximum independent subset ofthese intervals is either b or b�1. Thus, in view of the remark above 
on
erning intervals on a line,either 
 = b+ 1, or 
 = b. Therefore, we have:Claim 8 b � 
 � b+ 1, and there exists sets of ar
s that require b+ 1 pier
ing points.For an ar
 a 2 A, let f(a) be the number of ar
 endpoints that lie in a, in
luding a's twoendpoints. Let a� be an ar
 in A su
h that f(a�) � f(a) for any other ar
 a 2 A. Clearlyf(a�) � b2nb 
, by the pigeon hole prin
iple. We 
an �nd a� in O(n log n) time: After sorting theendpoints by their polar angle, one 
an determine the number of endpoints lying in an ar
 a inO(log n) time.The endpoints that lie in the interior of a� together with a�'s two endpoints divide a� intoO(n=b) subar
s. Sin
e a� must be pier
ed, we traverse a� from end to end moving from one subar
to an adja
ent subar
. For ea
h of these subar
s, we pla
e in it a pier
ing point p, and 
ompute aminimum pier
ing set for the remaining set of ar
s that are not pier
ed by p (whi
h 
an be viewed asa set of intervals on a line). The subar
 whose 
orresponding minimum pier
ing set is the smallest,is then 
hosen as the subar
 in whi
h p is eventually pla
ed, and the �nal pier
ing set is 
omposedof p and the pier
ing set that was 
omputed for this subar
. (Of 
ourse, if there exists a point ofC that is not 
overed by A, then we 
an simply treat the set A as a set of intervals on the line.)During the traversal, when moving from one subar
 to an adja
ent subar
 we either enter orleave an ar
 of A. We 
an therefore use our data stru
ture for maintaining a minimum pier
ing setfor a set S of intervals on a line (see Se
tion 2.1). Initially S is obtained from the ar
s in A thatare not pier
ed by a point lying in the �rst subar
 of a�. We 
onstru
t our data stru
ture for S inO(n log n) time. When moving from one subar
 to an adja
ent subar
, an interval is either insertedor deleted to/from S. For any subar
 of a�, the number of intervals in S is at most n� 1, the sizeof the minimum pier
ing set that is 
omputed is at most b+ 1 (by Claim 8), and the 
omputationtime is O(b logn). Sin
e there are O(n=b) subar
s, we 
on
lude that the total running time of ouralgorithm (for 
omputing a minimum pier
ing set for A) is O(n log n).Theorem 9 Let A be a set of n ar
s on a 
ir
le. It is possible to 
ompute a minimum pier
ing setfor S in O(n log n) time.Remark: We 
an apply the approximation s
heme of Se
tion 2.2 in order to maintain a smallpier
ing set for A, under insertions and deletions of ar
s to/from A. Let p0 be any point on the11




ir
le C. We maintain a (1 + ") approximation for the set of intervals 
orresponding to the ar
s inA that are not pier
ed by p0. Thus, if 
(A) is the pier
ing number of A, then we 
an maintain apier
ing set for A of size at most (1 + ")
(A) + 1 in amortized �O( log n" ) time per update.3.3 Maintenan
e of a box 
overLet Q be a set of n points in d-spa
e. We wish to 
ompute a minimum 
over for Q, 
onsistingof unit (axis-parallel) hyper
ubes. Dually, we wish to 
ompute a minimum pier
ing set for a setQ� of n d-dimensional unit hyper
ubes. These problems are referred to in the literature as theBOX COVERING and BOX PIERCING problems. For d � 2, these problems were shown to be NP-
omplete by Fowler et al. [4℄. We 
onsider the BOX PIERCING problem for arbitrary (axis-parallel)boxes and in a dynami
 setting, where from time to time boxes are inserted and deleted from Q�.We begin with a simple observation, and then dynamize an approximation s
heme presented in [11℄.Let S = fB1; :::; Bng be a set of n boxes (i.e., hyperre
tangles) in d-spa
e, where ea
h boxis represented as the ordered Cartesian produ
t Bi = Qdj=1[xij ;Xij ℄. Let P�j denote a minimumpier
ing set for the interval set Sj = f(xij ;Xij)j i 2 [1::n℄ g. Clearly P = Qdj=1 P�j is a pier
ing setfor S. Let 
� be the size of a minimum pier
ing set for S. Sin
e jP�j j � 
�, for j = 1; : : : ; d, we
on
lude that jPj � (
�)d. Therefore, by dynami
ally maintaining a pier
ing set for ea
h of the setsSj independently, we 
an maintain a pier
ing set for S of size at most (
�)d. The 
ost of an updateis O(d
� logn). Alternatively, we 
an maintain in �O(d log n� ) amortized time per update a pier
ingset for S of size at most (1 + ")d(
�)d.A divide-and-
onquer s
heme proposed in [11℄ 
onsists of �nding the median x of the endpointsof the intervals in S1, and partitioning the set S into three subsets: (1) S 0 = fS \ (x1 = x)g, i.e.,the set of (d � 1)-dimensional boxes obtained from the boxes in S that are 
ut by the hyperplanex1 = x, (2) Sl, the boxes in S that are fully 
ontained in the half-spa
e x1 < x, and (3) Sr, theboxes in S that are fully 
ontained in the half spa
e x1 > x. Now, a pier
ing set P for S is obtainedby re
ursively 
omputing pier
ing sets Pl;Pr;P 0 for the sets Sl;Sr;S 0, respe
tively, and by settingP = Pl [Pr [P 0 (after 
onverting the points in P 0 to d-dimensional points by adding a 
oordinateat the front whose value is x). (The 1-dimensional 
ase is solved exa
tly in �(n logn)-time.) It 
anbe shown that jPj � (1 + log2 n)d�1
� for arbitrary boxes, and jPj � 2d�1
� for 
ongruent boxes;see [11℄ for proof and other bounds/tradeo�s.The above s
heme 
an be dynamized in a straightforward way, using our exa
t and approx-imate solutions for intervals. Indeed, whenever a box is inserted or deleted from S, the medianmight 
hange, but only lo
ally (i.e., the new median is either the 
urrent median, or the end-point immediately to the left/right of the 
urrent median), and thus the sets Sl;Sr, and S 0 
anbe easily maintained by adding and removing a 
onstant number of boxes. Now, if S 0 
onsists of1-dimensional boxes (i.e., intervals), we update the appropriate (exa
t or approximate) dynami
data stru
ture, and pro
eed to handle the sets Sl and Sr re
ursively. Otherwise, we handle all threesets re
ursively.We 
an view the whole pro
ess as a d-dimensional binary tree. At the root of the main tree westore the d-dimensional set S, and the median x of the endpoints of the intervals in S1. The left
hild of the root stores the set Sl, and the right 
hild stores Sr. In addition, the root points to the(d � 1)-dimensional binary tree whose root stores the set S 0. For ea
h of the 1-dimensional sets,we 
onstru
t our exa
t (alternatively, approximate) dynami
 pier
ing data stru
ture for intervals.We observe that the depth of the main tree is O(log n), that the sets stored in the nodes of itsk'th level are pairwise separable, and, therefore, the sum of the sizes of all minimum (alternatively,nearly minimum) pier
ing sets 
omputed by their des
endant pier
ing stru
tures is at most 
�(alternatively, (1 + ")
�). 12



Insertions and deletions are handled similarly. We start at the root of the main tree, with theoriginal update instru
tion (i.e., insert/delete some d-dimensional box B). At the 
urrent nodev storing a k-dimensional set: If k > 1, we �rst update the set and median that are stored withv, a

ording to the update instru
tion. Next, for ea
h of the 
hildren of v and for the root ofv's (k � 1)-dimensional substru
ture, we issue an appropriate update instru
tion and treat ea
h ofthem re
ursively. If k = 1, we update the pier
ing data stru
ture asso
iated with v, a

ording tothe update instru
tion.Using the exa
t interval pier
ing data stru
ture, we obtain:Theorem 10 We 
an maintain a pier
ing set of size 
 for a set S, jSj � n, of arbitrary (axis-parallel) d-dimensional boxes in O(
 log n)-time per update, where 
 � (1 + log2 n)d�1
�. For 
ubeswe have 
 � 2d�1
�.As a 
orollary, we 
an maintain an approximation of the size b(S) of a maximum independentsubset of S (that is a maximum subset of S 
onsisting of pairwise disjoint boxes), sin
e 
(1+log n)d�1 �b(S) � 
.4 Con
lusionWe developed a data stru
ture for maintaining a minimum (or nearly minimum) pier
ing set fora set of intervals on a line. The eÆ
ien
y of our maintenan
e s
hemes was demonstrated in theimproved (approximate) solutions that were obtained to the shooter lo
ation problem. We alsoapplied these maintenan
e s
hemes to obtain (
on
eptually) simpler algorithms for 
omputing aminimum (or nearly minimum) pier
ing set for a set of ar
s on a 
ir
le, and for maintaining a smallpier
ing set for a set of d-dimensional boxes. A natural question is whether or not it is possible tomaintain a minimum pier
ing set for intervals in O(log n) time (rather than O(
 log n) time) perupdate. It would also be ni
e to be able to maintain in O(
 log n) time per update a minimum(rather than minimum plus possibly 1) pier
ing set for ar
s on a 
ir
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