Efficient algorithms for centers and medians in interval and
circular-arc graphs

S. Bespamyatnikh!, B. Bhattacharya?, J. Mark Keil®, D. Kirkpatrick!, and M. Segal®

! Department of Computer Science, University of British Columbia, Vancouver, B.C. Canada V6T 1Z4
{besp, kirk, segal}@cs.ubc.ca
2 School of Computing Science, Simon Fraser University, Burnaby, B.C. Canada, V5A 156
binay@cs.sfu.ca
3 Dept. of Computer Science, University of Saskatchewan, 57 Campus Dr., Saskatoon, Sask., Canada, STN 5A9
keil@cs.usask.ca

Abstract. The p-center problem is to locate p facilities on a network so as to minimize the largest
distance between the n demand points and p facilities. The p-median problem is to locate p facilities
on a network so as to minimize the average distance from one of the n demand points to one of the
p facilities. We consider the p-center and p-median problems when the network can be viewed as an
interval or circular-arc graph. We provide, given the interval model of an n vertex interval graph, an
O(n) time algorithm for the 1-median problem on the interval graph. We also show how to solve the
p-median problem, for arbitrary p, on an interval graph in O(pnlogn) time and on an circular-arc
graph in O(pn?log n) time. Other than for trees, no polynomial time algorithm for p-median problem
has been reported for any large class of graphs. We also show how to solve the p-center problem on
an circular-arc graph in O(np) time, assuming that the endpoint of the given arcs are sorted. The
algorithm is based on the spring model of computation.

1 Introduction

The p-center problem is to locate p facilities on a network so as to minimize the largest distance
between the n demand points and p facilities. In the p-median problem we endeavour to locate p
facilities on a network so as to minimize the average distance from one of n demand points to one
of the p facilities. These problems are central to the field of location theory and has been researched
extensively [3,7,10,14,15,17,20, 21]. Applications include the location of industrial plants, ware-
houses, and public service facilities on transportation networks as well as the location of various
service facilities in telecommunication networks [3, 10, 15,17, 21].

We model the network with a graph G = (V, E) on n vertices and assume that the demand
points coincide with the vertices. We also restrict the facilities to vertices as Hakimi [10] has shown
that for the p-median problem the possible sites for the facilities can always be restricted to the set
of vertices without increasing the cost. The p-median problem then becomes that of finding a set
X C V such that |X| = p and for which " | d(v;, X) is minimum.

If p = 1 the problem is known as the 1-median problem and Hakimi [10] optimally solved it
in a general network in O(n?) time. In a tree network Goldman [8] and Kariv and Hakimi [14]
derive O(n) time algorithms for the 1-median problem. One can also find the 2-median of a general
network in O(n?) time by considering all possible pairs of vertices as medians. For tree networks
Gavish and Sridhar present an O(nlogn) time algorithm [7].

For general p, Kariv and Hakimi [14] showed that the p-median problem is NP-complete. They
were, however, able to produce an O(p?n?) time algorithm for the case of tree networks [14]. The
tree network algorithm was recently improved to O(pn?) by Tamir [20]. Other than for trees, no
polynomial time algorithm for the p-median has been reported for any large class of graphs. In this
paper we provide algorithms for the p-median problem on interval graphs.

The p-center problem for a given graph G = (V, E) (restricting the facilities to be a subset of
V) is to find a set C' C V such that |C| = p and max]_, d(v;, C) is minimized. Regarding this
problem Olariu provides a linear time algorithm for locating a single central facility that minimizes
the maximum distance to a demand point [19]. Frederickson [5] showed how to solve this problem
for trees in optimal linear time (not necessary restricting the facilities to be the vertices of the
tree) using parametric search. The work of Kariv and Hakimi [13] presents several results for
general graphs; however since the problem is known to be NP-complete they were able to give only
O(n?*Llogn/(p — 1)!) runtime algorithm. Some work also has been done for approximating the
p-center solution, see e.g, [1].

A graph G(S) = (V,E) (G(A) = (V, E)) is an interval (circular-arc) graph if there exists a set
S (A) of intervals (arcs) on the real line (unit circle) such that there is a one-to-one correspondence
between vertices v; € V and intervals (arcs) I; € S such that an edge (v;,v;) € F if and only if
IiNI; # 0. The set S (A) is called the interval (circular-arc) model for G. Interval and circular-arc
graphs are important tools in many application areas, including scheduling and VLSI layout [9, 18].

The problem of recognizing interval and circular-arc graphs is known to be solved in O(|V |+|E|)
time (see e.g, [2], and we assume an interval (circular-arc) model S (\A) for G is available.

In the next section we review some relevant results on interval and circular-arc graphs. Section
3 provides an O(n) time algorithm for the 1-median problem in interval graph. In Section 4 we
generalize the result for arbitrary p and give an O(pnlogn) time algorithm. We show how to apply
this result in order to solve the p-median problem in circular-arc graphs in Section 5. Section 6
presents an O(np) runtime solution for the p-center problem.

2 Preliminaries

Let S (A) be the set of n intervals (arcs) in the interval (circular-arc) model for G. Without loss of
generality, we assume that all the interval (arc) endpoints are distinct. We define each interval (arc)
I; € S (I; € A) by its left endpoint a; and its right endpoint b;. Once the endpoints are sorted we
can replace the real value of an endpoint by its rank in the sorted order. Thus we use the integers
from 1 to 2n as coordinates for the endpoints of the intervals (arcs) in S (A). That is, each integer
j €[1...2n]is a; (or b;) for some interval (arc) I; € S (I; € A).

From the sorted list of interval endpoints, in O(n) time, we compute the numbers of a’s and
b’s left or right of every point ¢. In particular, let #aL(q) (likewise #bL(q)) be the number of left
(likewise right) endpoints of intervals in S that lie to the left of integer ¢, for ¢ € [1...2n]. Similarly
define #aR(q) (and #bR(q)) to be the number of left (or right) endpoints of intervals in S that
lie to the right of q. We use these quantities to quickly compute some of the structure of S. For
example, the number of intervals left of interval I; is #bL(a;).

Chen et al [4] define a successor function on intervals (arcs) in their paper on solving the all
pairs shortest path problem on interval and circular-arc graphs. We use their idea to define a
right successor and a left successor of an integer q. We say RSUC(q) = I; € S if and only if
b; = maxz{b;|I; contains ¢} and LSUC(q) = I; € S if and only if a; = min{a;|I; contains ¢}. For
an interval I;, RSUC(I;) = RSUC(b;), and LSUC(I;) = LSUC/(a;).

We also define the ith iterated right successor of an integer ¢ RSUC/(q, i) to be RSUC(RSUC(
...RSUC(q,1))) where RSUC appears i times. Define RSUC(q,0) to be ¢. Similarly we define
LSUC(q,1).

Using a tree data structure based on the successor function, Chen et al. were able to compute
iterated successors in constant time [4] (the same holds for the circular arcs as well).

Lemma 1. After O(n) time preprocessing, given integers q € [1...2n] andi € [1...n] RSUC(q,1)
or LSUC(q,i) can be computed in constant time.

Chen et al. [4] make further use of their tree structure to attain the following.

Lemma 2. After O(n) time preprocessing, given two intervals (arcs) I € S and J € S (I € A and
J € A) the distance between I and J in G can be computed in constant time.

3 1-Median

We will first consider the problem of locating one facility at a vertex (interval) of an interval graph
to minimize the sum of the distances to the remaining vertices. For a candidate median interval I,
cost(I) = jeqd(l,J).

We say an interval in S is maximal if it is not contained within any other interval in S. We need
not consider a non-maximal interval I; as a candidate for a median as any interval I; containing I;
can replace I; as median without increasing the cost.

For a candidate median (maximal interval) I;, the cost of servicing the other intervals can be
broken down into two parts according to whether the right endpoint b; of an interval I; € S lies left
of b; or right of b;. Thus Cost(I;) = LSUM (b;) + RSU M (b;) where for an endpoint ¢ of a maximal
interval I; we define LSUM (i) = lees|bj<i d(I;,1;) and RSUM (i) = lees|bj>i d(1;,1;)

Then to compute the 1-median it suffices to compute LSU M (i), and RSU M () for each endpoint
i of a maximal interval and let the median be the maximal interval I for which LSUM (b;) +
RSU M (by) is minimum.

Let us turn to the problem of computing LSUM (i) for each maximal interval endpoint 4. If
#bL(i) = 0 then LSUM (i) = 0. In general, once the LSU M values of all maximal interval endpoints
left of i are computed, LSUM (i) is computed in constant time using the formula in the following
lemma.

Lemma 3. If endpoint i is the left endpoint of a mazximal interval I; then
LSUM (i) = LSUM (arsvc()) + #bL(arsuce) + 2 * (#bL(1) — #bLarsuc))-
If 1 is the right endpoint of mazimal interval I; then LSUM (1) = LSUM (a;) + #bL (i) — #bL(a;).

Proof: To prove the first part we note that the contribution to LSU M (i) of intervals whose right end-
points are left of the left endpoint of the maximal interval LSUC(i) is given by LSUM (arsvc(iy) +
#bL(arsyc(iy). The intervals whose right endpoints lie between ar g7y and i each contribute 2
to LSUM (4).

To prove the second part, notice that the intervals whose right endpoints lie in I; contribute 1
to LSUM (i), and the contribution of other intervals is captured by LSUM (a;). B

Similarly RSUM (i) can be computed in constant time once the RSUM values of maximal
interval endpoints right of ¢ have been computed. The following lemma, gives the formula.

Lemma 4. Ifi is the left endpoint of interval I; then RSUM (i) = RSUM (b;)+#bL(b;) —#bL(a;).
If i is the right endpoint of interval I; then RSUM (i) = RSUM (bgpsyc(;)) + #bR(i) + #aR(i) —
#bR(brsuc())-

Proof:

1. The sum of the distances between I; and intervals whose right endpoints lie right of b; is captured
by RSU M (b;). The intervals whose right endpoints lie in I; are all at distance one from I;. There
are #bL(b;) — #bL(a;) such intervals.

2. Intervals which contribute to RSUM (i) can be partitioned into three disjoint subsets A,B and
C as follows. I; € A if and only if b; > brsyc(r,), I; € B if and only if [; contains b; and
I; € C if and only if b; < a; < bj < brsyc(r;)- The definition of RSUC ensures that Irspc() is
maximal and thus A, B and C are disjoint. The contribution to RSUM (i) of intervals in A is
RSUM (brsuc(s)) +#0R(brsuc(iy)- The contribution to RSUM (i) of intervals in B is #bR(i) —
#aR(i) and the contribution to RSUM (i) by intervals in C'is 2 * {(#aR (i) — #bR(brsvc(iy))-
Adding the contributions of A, B and C yields the formula in the lemma. B

The formulae in the previous lemmas allow the computation of RSUM (i) and LSUM/(7) for
all ¢ such that 7 is an endpoint of a maximal interval in O(n) time. The 1-median is the maximal
interval I; € S for which RSUM (b;) + LSU M (b;) is minimum. Thus

Theorem 1. The 1-median of a set of intervals whose endpoints have been sorted can be computed
in O(n) time.

4 p-median in interval graphs

In this section we consider how best to locate p facilities in intervals to minimize the total distance
from the remaining intervals to their nearest facility. When locating more than one median we need
to be able to quickly determine the nearest median for an interval.

If there are no more than p maximal intervals in S the required set of p medians will consist of
the maximal intervals in S plus an arbitrary selection of the remaining required number of intervals.
Thus in the following we assume that there are more than p maximal intervals in S and we can
also again restrict our candidate medians to maximal intervals.

Consider two candidate nonadjacent medians My and M> in a possible solution to the p-median
problem, p > 2 such that b; < by and no other median I; in the candidate solution exists such that
by < b; < by. For an interval I; such that a; < a; and b; < by, we want to determine whether I;
will be serviced by M; or My. How we do this depends upon the distance between M; and M,.

[Even Case] First we consider the case where the distance d between M; and My is even. See
the example in the figure 1. Let p’ be the left endpoint of LSUC (M, % —1).

M1 M2

Fig. 1. The distance between M; and M> is even (six)

Claim (R,R split). Any interval with right endpoint right of p’ is as close to My as M; and any
interval with right endpoint left of p’ is as close to My as M.

All intervals with right endpoint right of p’ are at distance % or less from Ms. They are at
distance % or more from M, or the fact that d is the minimum distance from M; to Ms would be
contradicted. Likewise all intervals with right endpoint left of p’ are at distance at least % + 1 from

My and at distance at most % + 1 from M;.

[Odd Case| Now we consider the case where the distance between M; and My is odd and equal
to d + 1. See the example in figure 2. For this case let p be the right endpoint of RSUC (M, %) .
The following claim can be proven analogously to the corresponding claim in the even case.

M1 M2

Fig. 2. The distance between M; and M> is odd (seven)

Claim (R,R split). Any interval with right endpoint left of p is as close to My as My and any
interval with right endpoint right of p is as close to My as M.

We have then that the set of intervals to be serviced by one median I of a group of p medians
can be determined by the proximity of the right endpoints of the intervals with respect to I. In
order to account for the costs of these intervals to a solution we generalize LSUM and RSUM as
follows.

For an endpoint j of a maximal interval I; and another maximal endpoint 7 such that i < 7,
define LSUM (i,j) = >_p, esji<p,<j @k, ;). Likewise for endpoint i of maximal interval I; and
another maximal endpoint j such that ¢ < j, define RSUM (i, j) = Zlkes|z’<bk§j d(I;, Iy).

To be able to efficiently compute LSUM (i,j) and RSUM(i,7) we relate these quantities to
LSUM(j) and RSUM (7).

Lemma 5. Let i and j, i < j, be endpoints of maximal intervals I; and I; respectively. Let I, be
the leftmost left iterated successor of I; whose left endpoint ap lies right of i, then

LSUM(i,j) = LSUM(j) — LSUM (ap) — #bL(ay) * d(I,, I;)
+(#bL(ap) — #bL(3)) * (2 + d(Ip, I))

Proof: To compute LSUM (4, j) the sum of the distances to I; of the intervals whose right endpoints
liein [4, j), we start with LSUM (j) (the sum of the distances to I; for intervals whose right endpoints
lie left of j). Next we subtract away the contributions of intervals lying left of a,, finally we add
back in the contributions of intervals whose right endpoints lie in [z, p).

The following lemma gives the analogously derived formula for RSUM (i, 7).

Lemma 6. Let i and j, i < j, be endpoints of maximal intervals I; and I; respectively. Let I, be
the rightmost right iterated successor of I; whose right endpoint b, lies left of j, then

RSUM (i,5) = RSUM (i) — RSUM (b,) — #bR(b,) * d(1;, I))
+(2+d(I;, 1)) * { The # of intervals contained in
+(1+d(I;, 1)) * { The # of intervals containing point b, but not
point j which is #bL(j) — #bL(b,) — #In[by, j]}.

All of the needed quantities can be easily computed except #In[p,p'], the number of intervals
contained in the interval [p,p’]. The interval [p,p] is not an interval in S and we need to be able
to quickly compute the number of intervals of S contained in a query interval such as [p, p']. To do
this we represent the intervals in S as points in the plane where interval I; is represented by point
(aj,b;). Then intervals in [p, p'] have the x coordinates of their corresponding points in the interval
[p, p'] and the y coordinate of their corresponding points in the interval [0, p]. Thus the number of
intervals of S contained in [p,p'] can be computed by range search counting query using McCreight
priority search tree in O(logn) query time [16].

The previous two lemmas allow us to conclude that LSUM (i, j) and RSUM/(i,j) can be effi-
ciently computed.

Lemma 7. Fori < j and i and j endpoints of mazimal intervals, LSUM (i,j) or RSUM((i,j) can
be computed in O(logn) time.

With SUM (i, 7) and RSUM (i, 7) available we now turn to the dynamic programming approach
of Hassin and Tamir [11] for computing medians of points on the real line.

For j the endpoint of a maximal interval in S and 1 < ¢ < p we define F'7(j) to be the size of
the optimal q median solution where each of the ¢ medians must have at least one endpoint left of
or equal to 7 and the intervals to be serviced have right endpoints less than or equal to j.

For j the right endpoint of a maximal interval in § and 1 < ¢ < p we define G4(j) to be the
size of the solution of the same subproblem that defines F(j) except that the interval I;, one of
whose endpoints is 7, is included in the solution as one of the ¢ medians.

Let R be the set of right endpoints of maximal intervals in & and let M be the set of all
endpoints of maximal intervals in §. Then for each endpoint j of a maximal interval

Fi(j) = mingicj|iery{G?(i) + RSUM (i, 5) } (1)
and for each right endpoint j of a maximal interval
G(j) = mingi<; | iean{F? (i) + LSUM(i, j)} (2)
with boundary conditions F(1) = 0 and G'(j) = LSUM(1, 7).
Hassin and Tamir [11] exploit the quadrangle inequality in order to apply the fast dynamic

programming algorithms of [6,12] to solve recurrences similar to F'?(j) and G?(j). Here we have
the quadrangle inequality for LSUM (i,j) and RSUM (i,).

Lemma 8. Let 7, k, | and m be endpoints of mazimal intervals such that 1 < 7 <k <1 < m.
Furthermore restrict | and m to be right endpoints of maximal intervals. Then

LSUM(j,m) — LSUM(j,1) > LSUM (k,m) — LSUM (k,1)

Proof: Let M = LSUM (j,m) — LSUM (k,m). Then M = 3", cg; <y, < A(It, Im). Let JK ={I; €
Slj < b < k}. Then M = ¥, i d(I, Inm). Tet L = LSUM(j,1) — LSUM (k,1). Then I =
ZItEJK d(I;, I;). Since m and [are right endpoints of maximal intervals and 1 < j < k <[< m,
we have that M > L and the lemma follows.

We can similarly show that the quadrangle inequality holds for RSU M (i, j).

Lemma 9. Let 7, k, | and m be endpoints of mazimal intervals such that 1 < 7 <k <1 < m.
Furthermore restrict j and k to be right endpoints of maximal intervals. Then

RSUM (j,m) — RSUM(5,1) > RSUM (k,m) — RSUM (k,1)

If LSUM(i,7) and RSUM (i, 7) could be computed in constant time, the quadrangle inequality
would allow us to follow Hassin and Tamir [11] in applying the fast dynamic programming algo-
rithms in [6,12] and use equations (1) and (2) to compute G%(j) and Fi(j) for all 1 < g < p
and all relevant j (j an endpoint of a maximal interval for F9(j) and j the right endpoint of a
maximal interval for G9(j)) in O(pn) total time. However the best time we have for computing
each LSUM (i, j) or RSUM(i,j) from lemma 4.5 is O(logn). Thus we conclude

Theorem 2. The p-median problem for a given interval graph can be computed in O(pnlogn)
time.

5 p-median in Circular Arc Graphs

Recall that we are given a set A = {I1, ..., I;,} of n arcs on the unit circle centered at the origin. For
a given circular arc graph G(A) we wish to find a set M of p nodes (medians) such that the sum
of the distances from all nodes in G(A) to the nearest node in M is minimized. We show how to
use the algorithm for finding p medians for an interval graphs in order to solve the same problem
for the circular arc graphs. Denote by T; the running time of the algorithm that solves p-median.
The main result can be stated as the following theorem.

Theorem 3. The p-median problem for the circular arc graphs can be solved in O(nT(n)) time,
where T'(n) is the running time of an algorithm that solves p-median problem for an interval graph
with n nodes.

Proof. Starting from the left endpoint of some arc I; € A we sort all the arcs in clockwise order of
their left endpoints. We assume that the indices of arcs in A already correspond to the sorted order
of arcs. As before we allow to use any integer values for indices of arcs using modulo n computation.
Consider the set M = {I;,, I;,,...,I;,} of arcs that presents an optimal solution. Let C be a set of
arcs with their left endpoints between i; and 75 in clockwise order. Note that C is equal to A for
p=1. A set C is divided into two disjoint subsets C1 and C5 such that all the nearest median for
all the arcs in C; (Cy) is I, (Ii,. In the case of the equal distance from some arc in C to I;, and I;,
we associate this arc with C;. If p = 1 instead of considering distances to I;, and I;, we consider
distances computed in clockwise and counterclockwise directions. Obviously, the indices of the arcs
in C} (C5) form a consecutive sequence of integers starting at 7; (ending at i2). Let I be the arc
with the largest index in C;. We shoot a ray which passes through Iy (to the left of left endpoint
of I;;+1) in order to unroll the circle and obtain collection of intervals, see Figure 3. Each arc from
C that intersected by a shooting ray is divided into two intervals. We discard the left intervals as
depicted in Figure 3 by cross. The optimal solution for an obtained interval graph corresponds to
the optimal solution for G(A). Thus, in order to solve p-median problem for a given circular arc
graph G(A) we apply n times algorithm for an interval arc graph obtained by unrolling G(.A) using
a ray through every endpoint.

(a) (b)

Fig. 3. (a) The initial circular arc graph; (b) unrolling circular arc graph into an interval graph, k = 2.

The following corollary follows immediately from the theorem.

Corollary 1. The p-median problem for a given circular arc graph with n nodes can be solved in
O(pn?logn) time.

6 p-center in Circular Arc Graphs

We wish to find a set M of p nodes (centers) in G(A) such that the maximum distance from the
nodes of graph to the nearest node in M is minimized.

The algorithm below is based on spring model of computation. We first describe the idea of the
algorithm and then provide all the details.

6.1 Spring model

Starting from the left endpoint of some arc I; € A we sort all the arcs in clockwise order of their
left endpoints. We assume that the indices of arcs in A already correspond to the sorted order
of arcs. We allow to use any integer values for indices of arcs using modulo n computation. For
example, Iy = I1_, = In41 = Izpq1 = For each pair of arcs I;, I}, € A we define a set T} of
arcs such that their left endpoints are between a; and aj in clockwise order. This set T} can be
divided into two subsets Tj{k and Tj%k, such that the distance from every arc in Tj{k (Tﬁk) to I is
smaller or equal (greater) than the distance to I. At any execution time we maintain a temporary
set C'= {I;;,...,I;,} of p centers such that 1 < iy < iy <... <1, < n. For a sake of clarity we use
C to denote centers in G(A) and corresponding arcs as well. Initially, C = {I;,...,I,}. For each
arc I;; € C' we define two spring forces, left force and right force as following.

— Left force LFORCE(i;) is the largest distance from arcs in T%,_hij.
— Right force RFORCE(i;) is the largest distance from arcs in Tli -

41"

In order to obtain a new set of centers we find some center I;; in the current set C' and change it
to I;; 1, see Figure 4. Note, that the centers in C always move in clockwise order. However, not
all the centers are allowed to move in the current moment. Let C’ C C be a set of centers that are
allowed to move. The set C’ is defined by the following rules.

Fig. 4. For the 2-center problem the arcs I; and I with the enpoints numbered 1 and 4, respectively, are the current
centers. According to the definition LFORCE(1) = RFORCE(1) = LFORCE(2) =1 and RFORCE(2) = 2. The
arc I» is moved to be the arc with the endpoint numbered at 5.

Rule 1. I;; € C cannot move if 7,1 = 1; + L.
Rule 2. If the last center I;, is equal to I, for the second time it is not allowed to move at future.

At any time we have 2p computed forces. The maximal force defines the movement of centers. If the
maximal force is the right force for some center then this center moves to the right. If the maximal
force is the left force for some center then its left neighbor center moves to the right. Formally, the
moving center [;; is defined as an arc in C' with the largest value max (RFORCE(i;), LFORCE(ij1)).
and in the case of tie we can choose any of them. The algorithm stops when C’ = (). At the end of
the algorithm’s execution the last set of centers C is returned.

Theorem 4. The algorithm above correctly computes p centers for a given circular arc graph G(A).

Proof. Let {I.,,...,I.,} be the optimal solution. Assume, by contrary, that our algorithm misses
the correct solution. Let us consider the last step of the algorithm where C' = {I; ,...,I;,} and
i1 < ci,i2 < c2,...,0p < ¢p. The following step of algorithm makes the wrong movement of
center I;;,1 < j < p, which changes to I;;+1. In other words, i; + 1 > ¢;. It follows that
ij = c;. Therefore, Tj, ;.,, € T¢; ¢, and T%,’iHl - Tclj’cjﬂ, Ti?‘,iﬁl - ng,%l We obtain that

max (RFORCE(i;), LFORCE(ij41)) < max (RFORCE(c;), LFORCE(cj1)) and, thus, a set C

presents an optimal solution.

6.2 Implementation

In order to find forces efficiently we use the data structure proposed by Chen et al. [4]. This data
structure can be constructed in O(n) time and O(n) space. Using this data structure the query
on the length of the shortest path between any two arcs can be answered in O(1) time. This data
structure also supports computing iterated right and left successors for a given integer value in
constant time. We use Lemma 1 and Lemma 2 which provide an efficient way to maintain spring
model.

Proof. We distinguish between two cases : even and odd distance d. If d is odd then there is some

arc I, at distance %=1 and % from centers I;; and I; See Figure 5.

2 J+1°

I

Jj+1

Fig. 5. The numbers on the arcs denote the distances to corresponding centers.

Ii; L Lis
3 Ty .3
Fig. 6. The dashed lines show the slab.
We claim that the maximum force is equal to %, i.e. there is no arc at distance greater than

[4] from both I;; and I;_, .
then distance of I; to one of the centers is at most % +1= %. Otherwise, the arc I; is either to
the left of Iy, or to the right. The distance from I; to the corresponding center is less or equal than
the distance from I} to the same center. It contradicts the definition of I;.

Assume, by contrary, that such arc I; exists. If arcs I and I; intersect

It remains to show how to deal with the even case. See Figure 6. The arc Ij is at distance
% from both centers [;; and I;;,,. We define a vertical slab for Iy whose left side passes through
the right endpoint of arc RSUC(ij,d/2 — 1) and right side passes though the left endpoint of arc
LSUC(ij41,d/2 — 1). We claim that the maximum force is equal to d/2 if and only if this slab
contains no arcs. Otherwise the maximum force equals d/2 + 1. Note that all the arcs containing
some point to the left of a slab (including left side of a slab) are at distance at most d/2 from I;;.
Similarly, all the arcs containing some point to the right of a slab (including right side of a slab)
are at distance at most d/2 from I;,_ . Thus, if slab does not contain any arc clearly all arcs are
within a distance d/2 from centers; otherwise the arcs inside of a slab are at distance d/2 + 1 from
each center.

The computation of length between two arcs as well as computation of the right and left iterated
successors can be done in constant time [4]. Determining whether a slab contains any arc can be
done also in constant time using array 1" whose indices corresponds to the left endpoints of the arcs
and for any given index i,1 < i < n, T[i] keeps the rightmost left endpoint of the arcs with right
endpoint less than ¢. This array T can be precomputed in linear time after once the endpoints of
the arcs are sorted. Slab contains some arc if and only if the value of element of T' corresponding
to the right side of slab is larger than the left side of the slab.

We conclude by theorem.

Theorem 5. The algorithm computes p centers for a given circular arc graph G(A) in O(np) time
if the endpoints of the arcs are sorted.

Remark. Applying the spring model strategy to the p-median problem in the circular-arc graph
leads to the similar result obtained in Section 5.

Acknowledgements

The authors acknowledge the financial support received from the Natural Sciences and Engineering
Research Council of Canada.

References

1.

2.

©

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

J. Bar-Ilan and D. Peleg, “Approximation algorithms for selecting network centers”, In Proc. Workshop on
Algorithms and Data Structures’91, 1991, 343-354.

K.S. Booth and G.S. Leuker, “Testing for the consecutive ones property, interval graphs and graph planarity
using PQ-tree algorithms”, Journal of Computer and System Sciences, 13 (1976), 335 — 379.

M.L. Brandeau and S.S. Chiu, “An overview of representative problems in location research” Management Sci-
ence, 35 (1989), 645-674.

D. Chen , D.T. Lee, R. Sridhar and C. Sekharam, “Solving the All-Pair Shortest Path Query Problem on Interval
and Circular-Arc Graphs”, Networks, to appear.

G. Frederickson, “Parametric search and locating supply centers in trees”, In Proc. Workshop on Algorithms and
Data Structures’91, 1991, 299-319.

Z. Galil and K. Park, “A linear-time algorithm for concave one-dimensional dynamic programming”, Information
Processing Letters, 33 (1990), 309-311.

B. Gavish and S. Sridhar, “Computing the 2-Median on Tree Networks in O(nlogn) Time”, Networks, 26 (1995),
305 — 317.

A. J. Goldman, “Optimal center location in simple networks”, Transportation Science, 5 (1971), 212 — 221.
M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.

. S. L. Hakimi, “Optimal locations of switching centers and the absolute centers and medians of a graph”, Opera-

tions Research, 12 (1964), 450 — 459.

R. Hassin and A. Tamir, “Improved complexity bounds for location problems on the real line”, Operations
Research Letters, 10 (1991), 395-402.

M. Klawe, “A simple linear time algorithm for concave one-dimensional dynamic programming”, Technical Report
89-16, University of British Columbia, Vancouver, 1989.

O. Kariv and S. L. Hakimi, “An algorithmic approach to network location problems I: The p-centers”, SIAM
Journal on Applied Mathematics, 37 (1979), 514 — 538.

O. Kariv and S. L. Hakimi, “An algorithmic approach to network location problems II: The p-medians”, STAM
Journal on Applied Mathematics, 37 (1979), 539 — 560.

M. Labbe, D. Peeters and J.F. Thisse, “Location on Networks”, in Handbooks in Operations Research and Man-
agement Science, 8, Ball et al editors, Elsevier Science, 1995.

E. M. McCreight, “Priority Search Trees”, SIAM Journal on Computing, 14 (1985), 257 — 276.

P. Mirchandani, “The p-median problem and generalizations”, in Discrete Location Theory, Mirchandani and
Francis editors, Wiley, 1990, 55 — 117.

R. Mohring, “Graph problems related to gate matrix layout and PLA folding”, Computational Graph Theory,
Tinhofer et al editors, Springer-Verlag, 1990, 17 — 51.

S. Olariu, “A simple linear-time algorithm for computing the center of an interval graph”, International Journal
of Computer Mathematics, 24 (1990), 121-128.

A. Tamir, “An O(pn?) algorithm for the p-median and related problems on tree graphs”, Operations Research
Letters, 19 (1996), 59 — 64.

B.C. Tansel, R. L. Francis and T. J. Lowe, “Location on Networks: A Survey - Part I: The p-center and p-median
problems”, Management Science, 29 (1983), 482 — 497.

