
EÆient algorithms for enters and medians in interval andirular-ar graphsS. Bespamyatnikh1, B. Bhattaharya2, J. Mark Keil3, D. Kirkpatrik1, and M. Segal11 Department of Computer Siene, University of British Columbia, Vanouver, B.C. Canada V6T 1Z4fbesp, kirk, segalg�s.ub.a2 Shool of Computing Siene, Simon Fraser University, Burnaby, B.C. Canada, V5A 1S6binay�s.sfu.a3 Dept. of Computer Siene, University of Saskathewan, 57 Campus Dr., Saskatoon, Sask., Canada, S7N 5A9keil�s.usask.aAbstrat. The p-enter problem is to loate p failities on a network so as to minimize the largestdistane between the n demand points and p failities. The p-median problem is to loate p failitieson a network so as to minimize the average distane from one of the n demand points to one of thep failities. We onsider the p-enter and p-median problems when the network an be viewed as aninterval or irular-ar graph. We provide, given the interval model of an n vertex interval graph, anO(n) time algorithm for the 1-median problem on the interval graph. We also show how to solve thep-median problem, for arbitrary p, on an interval graph in O(pn log n) time and on an irular-argraph in O(pn2 log n) time. Other than for trees, no polynomial time algorithm for p-median problemhas been reported for any large lass of graphs. We also show how to solve the p-enter problem onan irular-ar graph in O(np) time, assuming that the endpoint of the given ars are sorted. Thealgorithm is based on the spring model of omputation.1 IntrodutionThe p-enter problem is to loate p failities on a network so as to minimize the largest distanebetween the n demand points and p failities. In the p-median problem we endeavour to loate pfailities on a network so as to minimize the average distane from one of n demand points to oneof the p failities. These problems are entral to the �eld of loation theory and has been researhedextensively [3, 7, 10, 14, 15, 17, 20, 21℄. Appliations inlude the loation of industrial plants, ware-houses, and publi servie failities on transportation networks as well as the loation of variousservie failities in teleommuniation networks [3, 10, 15, 17, 21℄.We model the network with a graph G = (V;E) on n verties and assume that the demandpoints oinide with the verties. We also restrit the failities to verties as Hakimi [10℄ has shownthat for the p-median problem the possible sites for the failities an always be restrited to the setof verties without inreasing the ost. The p-median problem then beomes that of �nding a setX � V suh that jXj = p and for whih Pni=1 d(vi;X) is minimum.If p = 1 the problem is known as the 1-median problem and Hakimi [10℄ optimally solved itin a general network in O(n3) time. In a tree network Goldman [8℄ and Kariv and Hakimi [14℄derive O(n) time algorithms for the 1-median problem. One an also �nd the 2-median of a generalnetwork in O(n3) time by onsidering all possible pairs of verties as medians. For tree networksGavish and Sridhar present an O(n log n) time algorithm [7℄.For general p, Kariv and Hakimi [14℄ showed that the p-median problem is NP-omplete. Theywere, however, able to produe an O(p2n2) time algorithm for the ase of tree networks [14℄. Thetree network algorithm was reently improved to O(pn2) by Tamir [20℄. Other than for trees, nopolynomial time algorithm for the p-median has been reported for any large lass of graphs. In thispaper we provide algorithms for the p-median problem on interval graphs.



The p-enter problem for a given graph G = (V;E) (restriting the failities to be a subset ofV ) is to �nd a set C � V suh that jCj = p and maxni=1 d(vi; C) is minimized. Regarding thisproblem Olariu provides a linear time algorithm for loating a single entral faility that minimizesthe maximum distane to a demand point [19℄. Frederikson [5℄ showed how to solve this problemfor trees in optimal linear time (not neessary restriting the failities to be the verties of thetree) using parametri searh. The work of Kariv and Hakimi [13℄ presents several results forgeneral graphs; however sine the problem is known to be NP-omplete they were able to give onlyO(n2p+1 log n=(p � 1)!) runtime algorithm. Some work also has been done for approximating thep-enter solution, see e.g, [1℄.A graph G(S) = (V;E) (G(A) = (V;E)) is an interval (irular-ar) graph if there exists a setS (A) of intervals (ars) on the real line (unit irle) suh that there is a one-to-one orrespondenebetween verties vi 2 V and intervals (ars) Ii 2 S suh that an edge (vi; vj) 2 E if and only ifIi \ Ij 6= ;. The set S (A) is alled the interval (irular-ar) model for G. Interval and irular-argraphs are important tools in many appliation areas, inluding sheduling and VLSI layout [9, 18℄.The problem of reognizing interval and irular-ar graphs is known to be solved in O(jV j+jEj)time (see e.g, [2℄, and we assume an interval (irular-ar) model S (A) for G is available.In the next setion we review some relevant results on interval and irular-ar graphs. Setion3 provides an O(n) time algorithm for the 1-median problem in interval graph. In Setion 4 wegeneralize the result for arbitrary p and give an O(pn logn) time algorithm. We show how to applythis result in order to solve the p-median problem in irular-ar graphs in Setion 5. Setion 6presents an O(np) runtime solution for the p-enter problem.2 PreliminariesLet S (A) be the set of n intervals (ars) in the interval (irular-ar) model for G. Without loss ofgenerality, we assume that all the interval (ar) endpoints are distint. We de�ne eah interval (ar)Ii 2 S (Ii 2 A) by its left endpoint ai and its right endpoint bi. One the endpoints are sorted wean replae the real value of an endpoint by its rank in the sorted order. Thus we use the integersfrom 1 to 2n as oordinates for the endpoints of the intervals (ars) in S (A). That is, eah integerj 2 [1 : : : 2n℄ is ai (or bi) for some interval (ar) Ii 2 S (Ii 2 A).From the sorted list of interval endpoints, in O(n) time, we ompute the numbers of a's andb's left or right of every point q. In partiular, let #aL(q) (likewise #bL(q)) be the number of left(likewise right) endpoints of intervals in S that lie to the left of integer q, for q 2 [1 : : : 2n℄. Similarlyde�ne #aR(q) (and #bR(q)) to be the number of left (or right) endpoints of intervals in S thatlie to the right of q. We use these quantities to quikly ompute some of the struture of S. Forexample, the number of intervals left of interval Ii is #bL(ai).Chen et al [4℄ de�ne a suessor funtion on intervals (ars) in their paper on solving the allpairs shortest path problem on interval and irular-ar graphs. We use their idea to de�ne aright suessor and a left suessor of an integer q. We say RSUC(q) = Ii 2 S if and only ifbi = maxfbj jIj ontains qg and LSUC(q) = Ii 2 S if and only if ai = minfaj jIj ontains qg. Foran interval Ii, RSUC(Ii) = RSUC(bi), and LSUC(Ii) = LSUC(ai).We also de�ne the ith iterated right suessor of an integer q RSUC(q; i) to be RSUC(RSUC(: : : RSUC(q; i))) where RSUC appears i times. De�ne RSUC(q; 0) to be q. Similarly we de�neLSUC(q; i).Using a tree data struture based on the suessor funtion, Chen et al. were able to omputeiterated suessors in onstant time [4℄ (the same holds for the irular ars as well).



Lemma 1. After O(n) time preproessing, given integers q 2 [1 : : : 2n℄ and i 2 [1 : : : n℄ RSUC(q; i)or LSUC(q; i) an be omputed in onstant time.Chen et al. [4℄ make further use of their tree struture to attain the following.Lemma 2. After O(n) time preproessing, given two intervals (ars) I 2 S and J 2 S (I 2 A andJ 2 A) the distane between I and J in G an be omputed in onstant time.3 1-MedianWe will �rst onsider the problem of loating one faility at a vertex (interval) of an interval graphto minimize the sum of the distanes to the remaining verties. For a andidate median interval I,ost(I) =PJ2S d(I; J).We say an interval in S is maximal if it is not ontained within any other interval in S. We neednot onsider a non-maximal interval Ii as a andidate for a median as any interval Ij ontaining Iian replae Ii as median without inreasing the ost.For a andidate median (maximal interval) Ii, the ost of serviing the other intervals an bebroken down into two parts aording to whether the right endpoint bj of an interval Ij 2 S lies leftof bi or right of bi. Thus Cost(Ii) = LSUM(bi) +RSUM(bi) where for an endpoint i of a maximalinterval Ii we de�ne LSUM(i) =PIj2Sjbj<i d(Ij ; Ii) and RSUM(i) =PIj2Sjbj>i d(Ij ; Ii)Then to ompute the 1-median it suÆes to ompute LSUM(i), andRSUM(i) for eah endpointi of a maximal interval and let the median be the maximal interval Ik for whih LSUM(bk) +RSUM(bk) is minimum.Let us turn to the problem of omputing LSUM(i) for eah maximal interval endpoint i. If#bL(i) = 0 then LSUM(i) = 0. In general, one the LSUM values of all maximal interval endpointsleft of i are omputed, LSUM(i) is omputed in onstant time using the formula in the followinglemma.Lemma 3. If endpoint i is the left endpoint of a maximal interval Ii thenLSUM(i) = LSUM(aLSUC(i)) + #bL(aLSUC(i)) + 2 � (#bL(i)�#bLaLSUC(i)):If i is the right endpoint of maximal interval Ii then LSUM(i) = LSUM(ai) +#bL(i)�#bL(ai):Proof: To prove the �rst part we note that the ontribution to LSUM(i) of intervals whose right end-points are left of the left endpoint of the maximal interval LSUC(i) is given by LSUM(aLSUC(i))+#bL(aLSUC(i)). The intervals whose right endpoints lie between aLSUC(i) and i eah ontribute 2to LSUM(i).To prove the seond part, notie that the intervals whose right endpoints lie in Ii ontribute 1to LSUM(i), and the ontribution of other intervals is aptured by LSUM(ai). �Similarly RSUM(i) an be omputed in onstant time one the RSUM values of maximalinterval endpoints right of i have been omputed. The following lemma gives the formula.Lemma 4. If i is the left endpoint of interval Ii then RSUM(i) = RSUM(bi)+#bL(bi)�#bL(ai):If i is the right endpoint of interval Ii then RSUM(i) = RSUM(bRSUC(i)) + #bR(i) + #aR(i) �#bR(bRSUC(i)):



Proof:1. The sum of the distanes between Ii and intervals whose right endpoints lie right of bi is apturedby RSUM(bi). The intervals whose right endpoints lie in Ii are all at distane one from Ii. Thereare #bL(bi)�#bL(ai) suh intervals.2. Intervals whih ontribute to RSUM(i) an be partitioned into three disjoint subsets A,B andC as follows. Ij 2 A if and only if bj > bRSUC(Ii), Ij 2 B if and only if Ij ontains bi andIj 2 C if and only if bi < aj < bj < bRSUC(Ii). The de�nition of RSUC ensures that IRSUC(i) ismaximal and thus A, B and C are disjoint. The ontribution to RSUM(i) of intervals in A isRSUM(bRSUC(i))+#bR(bRSUC(i)). The ontribution to RSUM(i) of intervals in B is #bR(i)�#aR(i) and the ontribution to RSUM(i) by intervals in C is 2 � f(#aR(i)�#bR(bRSUC(i))).Adding the ontributions of A, B and C yields the formula in the lemma. �The formulae in the previous lemmas allow the omputation of RSUM(i) and LSUM(i) forall i suh that i is an endpoint of a maximal interval in O(n) time. The 1-median is the maximalinterval Ii 2 S for whih RSUM(bi) + LSUM(bi) is minimum. ThusTheorem 1. The 1-median of a set of intervals whose endpoints have been sorted an be omputedin O(n) time.4 p-median in interval graphsIn this setion we onsider how best to loate p failities in intervals to minimize the total distanefrom the remaining intervals to their nearest faility. When loating more than one median we needto be able to quikly determine the nearest median for an interval.If there are no more than p maximal intervals in S the required set of p medians will onsist ofthe maximal intervals in S plus an arbitrary seletion of the remaining required number of intervals.Thus in the following we assume that there are more than p maximal intervals in S and we analso again restrit our andidate medians to maximal intervals.Consider two andidate nonadjaent mediansM1 andM2 in a possible solution to the p-medianproblem, p � 2 suh that b1 < b2 and no other median Ii in the andidate solution exists suh thatb1 < bi < b2. For an interval Ij suh that a1 < aj and bj < b2, we want to determine whether Ijwill be servied by M1 or M2. How we do this depends upon the distane between M1 and M2.[Even Case℄ First we onsider the ase where the distane d between M1 and M2 is even. Seethe example in the �gure 1. Let p0 be the left endpoint of LSUC(M2; d2 � 1).
M1 M2p0Fig. 1. The distane between M1 and M2 is even (six)Claim (R,R split). Any interval with right endpoint right of p0 is as lose to M2 as M1 and anyinterval with right endpoint left of p0 is as lose to M1 as M2.



All intervals with right endpoint right of p0 are at distane d2 or less from M2. They are atdistane d2 or more from M1, or the fat that d is the minimum distane from M1 to M2 would beontradited. Likewise all intervals with right endpoint left of p0 are at distane at least d2 +1 fromM2 and at distane at most d2 + 1 from M1.[Odd Case℄ Now we onsider the ase where the distane between M1 andM2 is odd and equalto d + 1. See the example in �gure 2. For this ase let p be the right endpoint of RSUC(M; d2) .The following laim an be proven analogously to the orresponding laim in the even ase.
M1 M2p

Fig. 2. The distane between M1 and M2 is odd (seven)Claim (R,R split). Any interval with right endpoint left of p is as lose to M1 as M2 and anyinterval with right endpoint right of p is as lose to M2 as M1.We have then that the set of intervals to be servied by one median I of a group of p mediansan be determined by the proximity of the right endpoints of the intervals with respet to I. Inorder to aount for the osts of these intervals to a solution we generalize LSUM and RSUM asfollows.For an endpoint j of a maximal interval Ij and another maximal endpoint i suh that i < j,de�ne LSUM(i; j) = PIk2Sji�bk<j d(Ik; Ij). Likewise for endpoint i of maximal interval Ii andanother maximal endpoint j suh that i < j, de�ne RSUM(i; j) =PIk2Sji<bk�j d(Ii; Ik).To be able to eÆiently ompute LSUM(i; j) and RSUM(i; j) we relate these quantities toLSUM(j) and RSUM(i).Lemma 5. Let i and j, i < j, be endpoints of maximal intervals Ii and Ij respetively. Let Ip bethe leftmost left iterated suessor of Ij whose left endpoint ap lies right of i, thenLSUM(i; j) = LSUM(j) � LSUM(ap)�#bL(ap) � d(Ip; Ij)+(#bL(ap)�#bL(i)) � (2 + d(Ip; Ij))Proof: To ompute LSUM(i; j) the sum of the distanes to Ij of the intervals whose right endpointslie in [i; j), we start with LSUM(j) (the sum of the distanes to Ij for intervals whose right endpointslie left of j). Next we subtrat away the ontributions of intervals lying left of ap, �nally we addbak in the ontributions of intervals whose right endpoints lie in [i; p).The following lemma gives the analogously derived formula for RSUM(i; j).Lemma 6. Let i and j, i < j, be endpoints of maximal intervals Ii and Ij respetively. Let Ip bethe rightmost right iterated suessor of Ii whose right endpoint bp lies left of j, then



RSUM(i; j) = RSUM(i)�RSUM(bp)�#bR(bp) � d(Ii; Ip)+(2 + d(Ii; Ip)) � f The # of intervals ontained in[p; j) = #In[p; j℄g+(1 + d(Ii; Ip)) � f The # of intervals ontaining point bp but notpoint j whih is #bL(j)�#bL(bp)�#In[bp; j℄g.All of the needed quantities an be easily omputed exept #In[p; p0℄, the number of intervalsontained in the interval [p; p0℄. The interval [p; p0℄ is not an interval in S and we need to be ableto quikly ompute the number of intervals of S ontained in a query interval suh as [p; p0℄. To dothis we represent the intervals in S as points in the plane where interval Ii is represented by point(ai; bi). Then intervals in [p; p0℄ have the x oordinates of their orresponding points in the interval[p; p0℄ and the y oordinate of their orresponding points in the interval [0; p0℄. Thus the number ofintervals of S ontained in [p; p0℄ an be omputed by range searh ounting query using MCreightpriority searh tree in O(log n) query time [16℄.The previous two lemmas allow us to onlude that LSUM(i; j) and RSUM(i; j) an be eÆ-iently omputed.Lemma 7. For i < j and i and j endpoints of maximal intervals, LSUM(i; j) or RSUM(i; j) anbe omputed in O(logn) time.With SUM(i; j) and RSUM(i; j) available we now turn to the dynami programming approahof Hassin and Tamir [11℄ for omputing medians of points on the real line.For j the endpoint of a maximal interval in S and 1 � q � p we de�ne F q(j) to be the size ofthe optimal q median solution where eah of the q medians must have at least one endpoint left ofor equal to j and the intervals to be servied have right endpoints less than or equal to j.For j the right endpoint of a maximal interval in S and 1 � q � p we de�ne Gq(j) to be thesize of the solution of the same subproblem that de�nes F q(j) exept that the interval Ij , one ofwhose endpoints is j, is inluded in the solution as one of the q medians.Let R be the set of right endpoints of maximal intervals in S and let M be the set of allendpoints of maximal intervals in S. Then for eah endpoint j of a maximal intervalF q(j) =minfi<j j i2RgfGq(i) +RSUM(i; j)g (1)and for eah right endpoint j of a maximal intervalGq(j) = minfi<j j i2MgfF q�1(i) + LSUM(i; j)g (2)with boundary onditions F q(1) = 0 and G1(j) = LSUM(1; j).Hassin and Tamir [11℄ exploit the quadrangle inequality in order to apply the fast dynamiprogramming algorithms of [6, 12℄ to solve reurrenes similar to F q(j) and Gq(j). Here we havethe quadrangle inequality for LSUM(i; j) and RSUM(i; j).Lemma 8. Let j, k, l and m be endpoints of maximal intervals suh that 1 � j � k � l � m.Furthermore restrit l and m to be right endpoints of maximal intervals. ThenLSUM(j;m)� LSUM(j; l) � LSUM(k;m)� LSUM(k; l)



Proof: Let M = LSUM(j;m) � LSUM(k;m). Then M =PIt2Sjj�bt<k d(It; Im). Let JK = fIt 2Sjj � bt < kg. Then M = PIt2JK d(It; Im). Let L = LSUM(j; l) � LSUM(k; l). Then L =PIt2JK d(It; Il). Sine m and l are right endpoints of maximal intervals and 1 � j � k � l � m,we have that M � L and the lemma follows. �We an similarly show that the quadrangle inequality holds for RSUM(i; j).Lemma 9. Let j, k, l and m be endpoints of maximal intervals suh that 1 � j � k � l � m.Furthermore restrit j and k to be right endpoints of maximal intervals. ThenRSUM(j;m)�RSUM(j; l) � RSUM(k;m)�RSUM(k; l)If LSUM(i; j) and RSUM(i; j) ould be omputed in onstant time, the quadrangle inequalitywould allow us to follow Hassin and Tamir [11℄ in applying the fast dynami programming algo-rithms in [6, 12℄ and use equations (1) and (2) to ompute Gq(j) and F q(j) for all 1 � q � pand all relevant j (j an endpoint of a maximal interval for F q(j) and j the right endpoint of amaximal interval for Gq(j)) in O(pn) total time. However the best time we have for omputingeah LSUM(i; j) or RSUM(i; j) from lemma 4.5 is O(logn). Thus we onludeTheorem 2. The p-median problem for a given interval graph an be omputed in O(pn logn)time.5 p-median in Cirular Ar GraphsReall that we are given a set A = fI1; :::; Ing of n ars on the unit irle entered at the origin. Fora given irular ar graph G(A) we wish to �nd a set M of p nodes (medians) suh that the sumof the distanes from all nodes in G(A) to the nearest node in M is minimized. We show how touse the algorithm for �nding p medians for an interval graphs in order to solve the same problemfor the irular ar graphs. Denote by Ti the running time of the algorithm that solves p-median.The main result an be stated as the following theorem.Theorem 3. The p-median problem for the irular ar graphs an be solved in O(nT (n)) time,where T (n) is the running time of an algorithm that solves p-median problem for an interval graphwith n nodes.Proof. Starting from the left endpoint of some ar Ij 2 A we sort all the ars in lokwise order oftheir left endpoints. We assume that the indies of ars in A already orrespond to the sorted orderof ars. As before we allow to use any integer values for indies of ars using modulo n omputation.Consider the set M = fIi1 ; Ii2 ; : : : ; Iipg of ars that presents an optimal solution. Let C be a set ofars with their left endpoints between i1 and i2 in lokwise order. Note that C is equal to A forp = 1. A set C is divided into two disjoint subsets C1 and C2 suh that all the nearest median forall the ars in C1 (C2) is Ii1 (Ii2 . In the ase of the equal distane from some ar in C to Ii1 and Ii2we assoiate this ar with C1. If p = 1 instead of onsidering distanes to Ii1 and Ii2 we onsiderdistanes omputed in lokwise and ounterlokwise diretions. Obviously, the indies of the arsin C1 (C2) form a onseutive sequene of integers starting at i1 (ending at i2). Let Ik be the arwith the largest index in C1. We shoot a ray whih passes through Ik (to the left of left endpointof Ik+1) in order to unroll the irle and obtain olletion of intervals, see Figure 3. Eah ar fromC that interseted by a shooting ray is divided into two intervals. We disard the left intervals asdepited in Figure 3 by ross. The optimal solution for an obtained interval graph orresponds tothe optimal solution for G(A). Thus, in order to solve p-median problem for a given irular argraph G(A) we apply n times algorithm for an interval ar graph obtained by unrolling G(A) usinga ray through every endpoint.
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Fig. 3. (a) The initial irular ar graph; (b) unrolling irular ar graph into an interval graph, k = 2.The following orollary follows immediately from the theorem.Corollary 1. The p-median problem for a given irular ar graph with n nodes an be solved inO(pn2 log n) time.6 p-enter in Cirular Ar GraphsWe wish to �nd a set M of p nodes (enters) in G(A) suh that the maximum distane from thenodes of graph to the nearest node in M is minimized.The algorithm below is based on spring model of omputation. We �rst desribe the idea of thealgorithm and then provide all the details.6.1 Spring modelStarting from the left endpoint of some ar Ij 2 A we sort all the ars in lokwise order of theirleft endpoints. We assume that the indies of ars in A already orrespond to the sorted orderof ars. We allow to use any integer values for indies of ars using modulo n omputation. Forexample, I1 = I1�n = In+1 = I2n+1 = : : :. For eah pair of ars Ij; Ik 2 A we de�ne a set Tj;k ofars suh that their left endpoints are between aj and ak in lokwise order. This set Tj;k an bedivided into two subsets T 1j;k and T 2j;k, suh that the distane from every ar in T 1j;k (T 2j;k) to Ij issmaller or equal (greater) than the distane to Ik. At any exeution time we maintain a temporaryset C = fIi1 ; : : : ; Iipg of p enters suh that 1 � i1 < i2 < : : : < ip � n. For a sake of larity we useC to denote enters in G(A) and orresponding ars as well. Initially, C = fI1; : : : ; Ipg. For eahar Iij 2 C we de�ne two spring fores, left fore and right fore as following.{ Left fore LFORCE(ij) is the largest distane from ars in T 2ij�1;ij .{ Right fore RFORCE(ij) is the largest distane from ars in T 1ij ;ij+1 .In order to obtain a new set of enters we �nd some enter Iij in the urrent set C and hange itto Iij+1, see Figure 4. Note, that the enters in C always move in lokwise order. However, notall the enters are allowed to move in the urrent moment. Let C 0 � C be a set of enters that areallowed to move. The set C 0 is de�ned by the following rules.
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I1
I2Fig. 4. For the 2-enter problem the ars I1 and I2 with the enpoints numbered 1 and 4, respetively, are the urrententers. Aording to the de�nition LFORCE(1) = RFORCE(1) = LFORCE(2) = 1 and RFORCE(2) = 2. Thear I2 is moved to be the ar with the endpoint numbered at 5.Rule 1. Iij 2 C annot move if ij+1 = ij + 1.Rule 2. If the last enter Iip is equal to Ip for the seond time it is not allowed to move at future.At any time we have 2p omputed fores. The maximal fore de�nes the movement of enters. If themaximal fore is the right fore for some enter then this enter moves to the right. If the maximalfore is the left fore for some enter then its left neighbor enter moves to the right. Formally, themoving enter Iij is de�ned as an ar inC 0 with the largest value max (RFORCE(ij); LFORCE(ij+1)).and in the ase of tie we an hoose any of them. The algorithm stops when C 0 = ;. At the end ofthe algorithm's exeution the last set of enters C is returned.Theorem 4. The algorithm above orretly omputes p enters for a given irular ar graph G(A).Proof. Let fI1 ; : : : ; Ipg be the optimal solution. Assume, by ontrary, that our algorithm missesthe orret solution. Let us onsider the last step of the algorithm where C = fIi1 ; : : : ; Iipg andi1 � 1; i2 � 2; : : : ; ip � p. The following step of algorithm makes the wrong movement ofenter Iij ; 1 � j � p, whih hanges to Iij+1. In other words, ij + 1 > j . It follows thatij = j . Therefore, Tij ;ij+1 � Tj ;j+1 and T 1ij ;ij+1 � T 1j ;j+1 , T 2ij ;ij+1 � T 2j ;j+1 We obtain thatmax (RFORCE(ij); LFORCE(ij+1)) � max (RFORCE(j); LFORCE(j+1)) and, thus, a set Cpresents an optimal solution.6.2 ImplementationIn order to �nd fores eÆiently we use the data struture proposed by Chen et al. [4℄. This datastruture an be onstruted in O(n) time and O(n) spae. Using this data struture the queryon the length of the shortest path between any two ars an be answered in O(1) time. This datastruture also supports omputing iterated right and left suessors for a given integer value inonstant time. We use Lemma 1 and Lemma 2 whih provide an eÆient way to maintain springmodel.Proof. We distinguish between two ases : even and odd distane d. If d is odd then there is somear Ik at distane d�12 and d+12 from enters Iij and Iij+1 . See Figure 5.
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Fig. 5. The numbers on the ars denote the distanes to orresponding enters.Iij Iij+1Ik3 3

Fig. 6. The dashed lines show the slab.We laim that the maximum fore is equal to d+12 , i.e. there is no ar at distane greater thandd2e from both Iij and Iij+1 . Assume, by ontrary, that suh ar Il exists. If ars Ik and Il intersetthen distane of Il to one of the enters is at most d�12 +1 = d+12 . Otherwise, the ar Il is either tothe left of Ik or to the right. The distane from Il to the orresponding enter is less or equal thanthe distane from Ik to the same enter. It ontradits the de�nition of Il.It remains to show how to deal with the even ase. See Figure 6. The ar Ik is at distaned2 from both enters Iij and Iij+1 . We de�ne a vertial slab for Ik whose left side passes throughthe right endpoint of ar RSUC(ij; d=2 � 1) and right side passes though the left endpoint of arLSUC(ij+1; d=2 � 1). We laim that the maximum fore is equal to d=2 if and only if this slabontains no ars. Otherwise the maximum fore equals d=2 + 1. Note that all the ars ontainingsome point to the left of a slab (inluding left side of a slab) are at distane at most d=2 from Iij .Similarly, all the ars ontaining some point to the right of a slab (inluding right side of a slab)are at distane at most d=2 from Iij+1 . Thus, if slab does not ontain any ar learly all ars arewithin a distane d=2 from enters; otherwise the ars inside of a slab are at distane d=2 + 1 fromeah enter.The omputation of length between two ars as well as omputation of the right and left iteratedsuessors an be done in onstant time [4℄. Determining whether a slab ontains any ar an bedone also in onstant time using array T whose indies orresponds to the left endpoints of the arsand for any given index i; 1 � i � n, T [i℄ keeps the rightmost left endpoint of the ars with rightendpoint less than i. This array T an be preomputed in linear time after one the endpoints ofthe ars are sorted. Slab ontains some ar if and only if the value of element of T orrespondingto the right side of slab is larger than the left side of the slab.We onlude by theorem.
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