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aAbstra
t. The p-
enter problem is to lo
ate p fa
ilities on a network so as to minimize the largestdistan
e between the n demand points and p fa
ilities. The p-median problem is to lo
ate p fa
ilitieson a network so as to minimize the average distan
e from one of the n demand points to one of thep fa
ilities. We 
onsider the p-
enter and p-median problems when the network 
an be viewed as aninterval or 
ir
ular-ar
 graph. We provide, given the interval model of an n vertex interval graph, anO(n) time algorithm for the 1-median problem on the interval graph. We also show how to solve thep-median problem, for arbitrary p, on an interval graph in O(pn log n) time and on an 
ir
ular-ar
graph in O(pn2 log n) time. Other than for trees, no polynomial time algorithm for p-median problemhas been reported for any large 
lass of graphs. We also show how to solve the p-
enter problem onan 
ir
ular-ar
 graph in O(np) time, assuming that the endpoint of the given ar
s are sorted. Thealgorithm is based on the spring model of 
omputation.1 Introdu
tionThe p-
enter problem is to lo
ate p fa
ilities on a network so as to minimize the largest distan
ebetween the n demand points and p fa
ilities. In the p-median problem we endeavour to lo
ate pfa
ilities on a network so as to minimize the average distan
e from one of n demand points to oneof the p fa
ilities. These problems are 
entral to the �eld of lo
ation theory and has been resear
hedextensively [3, 7, 10, 14, 15, 17, 20, 21℄. Appli
ations in
lude the lo
ation of industrial plants, ware-houses, and publi
 servi
e fa
ilities on transportation networks as well as the lo
ation of variousservi
e fa
ilities in tele
ommuni
ation networks [3, 10, 15, 17, 21℄.We model the network with a graph G = (V;E) on n verti
es and assume that the demandpoints 
oin
ide with the verti
es. We also restri
t the fa
ilities to verti
es as Hakimi [10℄ has shownthat for the p-median problem the possible sites for the fa
ilities 
an always be restri
ted to the setof verti
es without in
reasing the 
ost. The p-median problem then be
omes that of �nding a setX � V su
h that jXj = p and for whi
h Pni=1 d(vi;X) is minimum.If p = 1 the problem is known as the 1-median problem and Hakimi [10℄ optimally solved itin a general network in O(n3) time. In a tree network Goldman [8℄ and Kariv and Hakimi [14℄derive O(n) time algorithms for the 1-median problem. One 
an also �nd the 2-median of a generalnetwork in O(n3) time by 
onsidering all possible pairs of verti
es as medians. For tree networksGavish and Sridhar present an O(n log n) time algorithm [7℄.For general p, Kariv and Hakimi [14℄ showed that the p-median problem is NP-
omplete. Theywere, however, able to produ
e an O(p2n2) time algorithm for the 
ase of tree networks [14℄. Thetree network algorithm was re
ently improved to O(pn2) by Tamir [20℄. Other than for trees, nopolynomial time algorithm for the p-median has been reported for any large 
lass of graphs. In thispaper we provide algorithms for the p-median problem on interval graphs.



The p-
enter problem for a given graph G = (V;E) (restri
ting the fa
ilities to be a subset ofV ) is to �nd a set C � V su
h that jCj = p and maxni=1 d(vi; C) is minimized. Regarding thisproblem Olariu provides a linear time algorithm for lo
ating a single 
entral fa
ility that minimizesthe maximum distan
e to a demand point [19℄. Frederi
kson [5℄ showed how to solve this problemfor trees in optimal linear time (not ne
essary restri
ting the fa
ilities to be the verti
es of thetree) using parametri
 sear
h. The work of Kariv and Hakimi [13℄ presents several results forgeneral graphs; however sin
e the problem is known to be NP-
omplete they were able to give onlyO(n2p+1 log n=(p � 1)!) runtime algorithm. Some work also has been done for approximating thep-
enter solution, see e.g, [1℄.A graph G(S) = (V;E) (G(A) = (V;E)) is an interval (
ir
ular-ar
) graph if there exists a setS (A) of intervals (ar
s) on the real line (unit 
ir
le) su
h that there is a one-to-one 
orresponden
ebetween verti
es vi 2 V and intervals (ar
s) Ii 2 S su
h that an edge (vi; vj) 2 E if and only ifIi \ Ij 6= ;. The set S (A) is 
alled the interval (
ir
ular-ar
) model for G. Interval and 
ir
ular-ar
graphs are important tools in many appli
ation areas, in
luding s
heduling and VLSI layout [9, 18℄.The problem of re
ognizing interval and 
ir
ular-ar
 graphs is known to be solved in O(jV j+jEj)time (see e.g, [2℄, and we assume an interval (
ir
ular-ar
) model S (A) for G is available.In the next se
tion we review some relevant results on interval and 
ir
ular-ar
 graphs. Se
tion3 provides an O(n) time algorithm for the 1-median problem in interval graph. In Se
tion 4 wegeneralize the result for arbitrary p and give an O(pn logn) time algorithm. We show how to applythis result in order to solve the p-median problem in 
ir
ular-ar
 graphs in Se
tion 5. Se
tion 6presents an O(np) runtime solution for the p-
enter problem.2 PreliminariesLet S (A) be the set of n intervals (ar
s) in the interval (
ir
ular-ar
) model for G. Without loss ofgenerality, we assume that all the interval (ar
) endpoints are distin
t. We de�ne ea
h interval (ar
)Ii 2 S (Ii 2 A) by its left endpoint ai and its right endpoint bi. On
e the endpoints are sorted we
an repla
e the real value of an endpoint by its rank in the sorted order. Thus we use the integersfrom 1 to 2n as 
oordinates for the endpoints of the intervals (ar
s) in S (A). That is, ea
h integerj 2 [1 : : : 2n℄ is ai (or bi) for some interval (ar
) Ii 2 S (Ii 2 A).From the sorted list of interval endpoints, in O(n) time, we 
ompute the numbers of a's andb's left or right of every point q. In parti
ular, let #aL(q) (likewise #bL(q)) be the number of left(likewise right) endpoints of intervals in S that lie to the left of integer q, for q 2 [1 : : : 2n℄. Similarlyde�ne #aR(q) (and #bR(q)) to be the number of left (or right) endpoints of intervals in S thatlie to the right of q. We use these quantities to qui
kly 
ompute some of the stru
ture of S. Forexample, the number of intervals left of interval Ii is #bL(ai).Chen et al [4℄ de�ne a su

essor fun
tion on intervals (ar
s) in their paper on solving the allpairs shortest path problem on interval and 
ir
ular-ar
 graphs. We use their idea to de�ne aright su

essor and a left su

essor of an integer q. We say RSUC(q) = Ii 2 S if and only ifbi = maxfbj jIj 
ontains qg and LSUC(q) = Ii 2 S if and only if ai = minfaj jIj 
ontains qg. Foran interval Ii, RSUC(Ii) = RSUC(bi), and LSUC(Ii) = LSUC(ai).We also de�ne the ith iterated right su

essor of an integer q RSUC(q; i) to be RSUC(RSUC(: : : RSUC(q; i))) where RSUC appears i times. De�ne RSUC(q; 0) to be q. Similarly we de�neLSUC(q; i).Using a tree data stru
ture based on the su

essor fun
tion, Chen et al. were able to 
omputeiterated su

essors in 
onstant time [4℄ (the same holds for the 
ir
ular ar
s as well).



Lemma 1. After O(n) time prepro
essing, given integers q 2 [1 : : : 2n℄ and i 2 [1 : : : n℄ RSUC(q; i)or LSUC(q; i) 
an be 
omputed in 
onstant time.Chen et al. [4℄ make further use of their tree stru
ture to attain the following.Lemma 2. After O(n) time prepro
essing, given two intervals (ar
s) I 2 S and J 2 S (I 2 A andJ 2 A) the distan
e between I and J in G 
an be 
omputed in 
onstant time.3 1-MedianWe will �rst 
onsider the problem of lo
ating one fa
ility at a vertex (interval) of an interval graphto minimize the sum of the distan
es to the remaining verti
es. For a 
andidate median interval I,
ost(I) =PJ2S d(I; J).We say an interval in S is maximal if it is not 
ontained within any other interval in S. We neednot 
onsider a non-maximal interval Ii as a 
andidate for a median as any interval Ij 
ontaining Ii
an repla
e Ii as median without in
reasing the 
ost.For a 
andidate median (maximal interval) Ii, the 
ost of servi
ing the other intervals 
an bebroken down into two parts a

ording to whether the right endpoint bj of an interval Ij 2 S lies leftof bi or right of bi. Thus Cost(Ii) = LSUM(bi) +RSUM(bi) where for an endpoint i of a maximalinterval Ii we de�ne LSUM(i) =PIj2Sjbj<i d(Ij ; Ii) and RSUM(i) =PIj2Sjbj>i d(Ij ; Ii)Then to 
ompute the 1-median it suÆ
es to 
ompute LSUM(i), andRSUM(i) for ea
h endpointi of a maximal interval and let the median be the maximal interval Ik for whi
h LSUM(bk) +RSUM(bk) is minimum.Let us turn to the problem of 
omputing LSUM(i) for ea
h maximal interval endpoint i. If#bL(i) = 0 then LSUM(i) = 0. In general, on
e the LSUM values of all maximal interval endpointsleft of i are 
omputed, LSUM(i) is 
omputed in 
onstant time using the formula in the followinglemma.Lemma 3. If endpoint i is the left endpoint of a maximal interval Ii thenLSUM(i) = LSUM(aLSUC(i)) + #bL(aLSUC(i)) + 2 � (#bL(i)�#bLaLSUC(i)):If i is the right endpoint of maximal interval Ii then LSUM(i) = LSUM(ai) +#bL(i)�#bL(ai):Proof: To prove the �rst part we note that the 
ontribution to LSUM(i) of intervals whose right end-points are left of the left endpoint of the maximal interval LSUC(i) is given by LSUM(aLSUC(i))+#bL(aLSUC(i)). The intervals whose right endpoints lie between aLSUC(i) and i ea
h 
ontribute 2to LSUM(i).To prove the se
ond part, noti
e that the intervals whose right endpoints lie in Ii 
ontribute 1to LSUM(i), and the 
ontribution of other intervals is 
aptured by LSUM(ai). �Similarly RSUM(i) 
an be 
omputed in 
onstant time on
e the RSUM values of maximalinterval endpoints right of i have been 
omputed. The following lemma gives the formula.Lemma 4. If i is the left endpoint of interval Ii then RSUM(i) = RSUM(bi)+#bL(bi)�#bL(ai):If i is the right endpoint of interval Ii then RSUM(i) = RSUM(bRSUC(i)) + #bR(i) + #aR(i) �#bR(bRSUC(i)):



Proof:1. The sum of the distan
es between Ii and intervals whose right endpoints lie right of bi is 
apturedby RSUM(bi). The intervals whose right endpoints lie in Ii are all at distan
e one from Ii. Thereare #bL(bi)�#bL(ai) su
h intervals.2. Intervals whi
h 
ontribute to RSUM(i) 
an be partitioned into three disjoint subsets A,B andC as follows. Ij 2 A if and only if bj > bRSUC(Ii), Ij 2 B if and only if Ij 
ontains bi andIj 2 C if and only if bi < aj < bj < bRSUC(Ii). The de�nition of RSUC ensures that IRSUC(i) ismaximal and thus A, B and C are disjoint. The 
ontribution to RSUM(i) of intervals in A isRSUM(bRSUC(i))+#bR(bRSUC(i)). The 
ontribution to RSUM(i) of intervals in B is #bR(i)�#aR(i) and the 
ontribution to RSUM(i) by intervals in C is 2 � f(#aR(i)�#bR(bRSUC(i))).Adding the 
ontributions of A, B and C yields the formula in the lemma. �The formulae in the previous lemmas allow the 
omputation of RSUM(i) and LSUM(i) forall i su
h that i is an endpoint of a maximal interval in O(n) time. The 1-median is the maximalinterval Ii 2 S for whi
h RSUM(bi) + LSUM(bi) is minimum. ThusTheorem 1. The 1-median of a set of intervals whose endpoints have been sorted 
an be 
omputedin O(n) time.4 p-median in interval graphsIn this se
tion we 
onsider how best to lo
ate p fa
ilities in intervals to minimize the total distan
efrom the remaining intervals to their nearest fa
ility. When lo
ating more than one median we needto be able to qui
kly determine the nearest median for an interval.If there are no more than p maximal intervals in S the required set of p medians will 
onsist ofthe maximal intervals in S plus an arbitrary sele
tion of the remaining required number of intervals.Thus in the following we assume that there are more than p maximal intervals in S and we 
analso again restri
t our 
andidate medians to maximal intervals.Consider two 
andidate nonadja
ent mediansM1 andM2 in a possible solution to the p-medianproblem, p � 2 su
h that b1 < b2 and no other median Ii in the 
andidate solution exists su
h thatb1 < bi < b2. For an interval Ij su
h that a1 < aj and bj < b2, we want to determine whether Ijwill be servi
ed by M1 or M2. How we do this depends upon the distan
e between M1 and M2.[Even Case℄ First we 
onsider the 
ase where the distan
e d between M1 and M2 is even. Seethe example in the �gure 1. Let p0 be the left endpoint of LSUC(M2; d2 � 1).
M1 M2p0Fig. 1. The distan
e between M1 and M2 is even (six)Claim (R,R split). Any interval with right endpoint right of p0 is as 
lose to M2 as M1 and anyinterval with right endpoint left of p0 is as 
lose to M1 as M2.



All intervals with right endpoint right of p0 are at distan
e d2 or less from M2. They are atdistan
e d2 or more from M1, or the fa
t that d is the minimum distan
e from M1 to M2 would be
ontradi
ted. Likewise all intervals with right endpoint left of p0 are at distan
e at least d2 +1 fromM2 and at distan
e at most d2 + 1 from M1.[Odd Case℄ Now we 
onsider the 
ase where the distan
e between M1 andM2 is odd and equalto d + 1. See the example in �gure 2. For this 
ase let p be the right endpoint of RSUC(M; d2) .The following 
laim 
an be proven analogously to the 
orresponding 
laim in the even 
ase.
M1 M2p

Fig. 2. The distan
e between M1 and M2 is odd (seven)Claim (R,R split). Any interval with right endpoint left of p is as 
lose to M1 as M2 and anyinterval with right endpoint right of p is as 
lose to M2 as M1.We have then that the set of intervals to be servi
ed by one median I of a group of p medians
an be determined by the proximity of the right endpoints of the intervals with respe
t to I. Inorder to a

ount for the 
osts of these intervals to a solution we generalize LSUM and RSUM asfollows.For an endpoint j of a maximal interval Ij and another maximal endpoint i su
h that i < j,de�ne LSUM(i; j) = PIk2Sji�bk<j d(Ik; Ij). Likewise for endpoint i of maximal interval Ii andanother maximal endpoint j su
h that i < j, de�ne RSUM(i; j) =PIk2Sji<bk�j d(Ii; Ik).To be able to eÆ
iently 
ompute LSUM(i; j) and RSUM(i; j) we relate these quantities toLSUM(j) and RSUM(i).Lemma 5. Let i and j, i < j, be endpoints of maximal intervals Ii and Ij respe
tively. Let Ip bethe leftmost left iterated su

essor of Ij whose left endpoint ap lies right of i, thenLSUM(i; j) = LSUM(j) � LSUM(ap)�#bL(ap) � d(Ip; Ij)+(#bL(ap)�#bL(i)) � (2 + d(Ip; Ij))Proof: To 
ompute LSUM(i; j) the sum of the distan
es to Ij of the intervals whose right endpointslie in [i; j), we start with LSUM(j) (the sum of the distan
es to Ij for intervals whose right endpointslie left of j). Next we subtra
t away the 
ontributions of intervals lying left of ap, �nally we addba
k in the 
ontributions of intervals whose right endpoints lie in [i; p).The following lemma gives the analogously derived formula for RSUM(i; j).Lemma 6. Let i and j, i < j, be endpoints of maximal intervals Ii and Ij respe
tively. Let Ip bethe rightmost right iterated su

essor of Ii whose right endpoint bp lies left of j, then



RSUM(i; j) = RSUM(i)�RSUM(bp)�#bR(bp) � d(Ii; Ip)+(2 + d(Ii; Ip)) � f The # of intervals 
ontained in[p; j) = #In[p; j℄g+(1 + d(Ii; Ip)) � f The # of intervals 
ontaining point bp but notpoint j whi
h is #bL(j)�#bL(bp)�#In[bp; j℄g.All of the needed quantities 
an be easily 
omputed ex
ept #In[p; p0℄, the number of intervals
ontained in the interval [p; p0℄. The interval [p; p0℄ is not an interval in S and we need to be ableto qui
kly 
ompute the number of intervals of S 
ontained in a query interval su
h as [p; p0℄. To dothis we represent the intervals in S as points in the plane where interval Ii is represented by point(ai; bi). Then intervals in [p; p0℄ have the x 
oordinates of their 
orresponding points in the interval[p; p0℄ and the y 
oordinate of their 
orresponding points in the interval [0; p0℄. Thus the number ofintervals of S 
ontained in [p; p0℄ 
an be 
omputed by range sear
h 
ounting query using M
Creightpriority sear
h tree in O(log n) query time [16℄.The previous two lemmas allow us to 
on
lude that LSUM(i; j) and RSUM(i; j) 
an be eÆ-
iently 
omputed.Lemma 7. For i < j and i and j endpoints of maximal intervals, LSUM(i; j) or RSUM(i; j) 
anbe 
omputed in O(logn) time.With SUM(i; j) and RSUM(i; j) available we now turn to the dynami
 programming approa
hof Hassin and Tamir [11℄ for 
omputing medians of points on the real line.For j the endpoint of a maximal interval in S and 1 � q � p we de�ne F q(j) to be the size ofthe optimal q median solution where ea
h of the q medians must have at least one endpoint left ofor equal to j and the intervals to be servi
ed have right endpoints less than or equal to j.For j the right endpoint of a maximal interval in S and 1 � q � p we de�ne Gq(j) to be thesize of the solution of the same subproblem that de�nes F q(j) ex
ept that the interval Ij , one ofwhose endpoints is j, is in
luded in the solution as one of the q medians.Let R be the set of right endpoints of maximal intervals in S and let M be the set of allendpoints of maximal intervals in S. Then for ea
h endpoint j of a maximal intervalF q(j) =minfi<j j i2RgfGq(i) +RSUM(i; j)g (1)and for ea
h right endpoint j of a maximal intervalGq(j) = minfi<j j i2MgfF q�1(i) + LSUM(i; j)g (2)with boundary 
onditions F q(1) = 0 and G1(j) = LSUM(1; j).Hassin and Tamir [11℄ exploit the quadrangle inequality in order to apply the fast dynami
programming algorithms of [6, 12℄ to solve re
urren
es similar to F q(j) and Gq(j). Here we havethe quadrangle inequality for LSUM(i; j) and RSUM(i; j).Lemma 8. Let j, k, l and m be endpoints of maximal intervals su
h that 1 � j � k � l � m.Furthermore restri
t l and m to be right endpoints of maximal intervals. ThenLSUM(j;m)� LSUM(j; l) � LSUM(k;m)� LSUM(k; l)



Proof: Let M = LSUM(j;m) � LSUM(k;m). Then M =PIt2Sjj�bt<k d(It; Im). Let JK = fIt 2Sjj � bt < kg. Then M = PIt2JK d(It; Im). Let L = LSUM(j; l) � LSUM(k; l). Then L =PIt2JK d(It; Il). Sin
e m and l are right endpoints of maximal intervals and 1 � j � k � l � m,we have that M � L and the lemma follows. �We 
an similarly show that the quadrangle inequality holds for RSUM(i; j).Lemma 9. Let j, k, l and m be endpoints of maximal intervals su
h that 1 � j � k � l � m.Furthermore restri
t j and k to be right endpoints of maximal intervals. ThenRSUM(j;m)�RSUM(j; l) � RSUM(k;m)�RSUM(k; l)If LSUM(i; j) and RSUM(i; j) 
ould be 
omputed in 
onstant time, the quadrangle inequalitywould allow us to follow Hassin and Tamir [11℄ in applying the fast dynami
 programming algo-rithms in [6, 12℄ and use equations (1) and (2) to 
ompute Gq(j) and F q(j) for all 1 � q � pand all relevant j (j an endpoint of a maximal interval for F q(j) and j the right endpoint of amaximal interval for Gq(j)) in O(pn) total time. However the best time we have for 
omputingea
h LSUM(i; j) or RSUM(i; j) from lemma 4.5 is O(logn). Thus we 
on
ludeTheorem 2. The p-median problem for a given interval graph 
an be 
omputed in O(pn logn)time.5 p-median in Cir
ular Ar
 GraphsRe
all that we are given a set A = fI1; :::; Ing of n ar
s on the unit 
ir
le 
entered at the origin. Fora given 
ir
ular ar
 graph G(A) we wish to �nd a set M of p nodes (medians) su
h that the sumof the distan
es from all nodes in G(A) to the nearest node in M is minimized. We show how touse the algorithm for �nding p medians for an interval graphs in order to solve the same problemfor the 
ir
ular ar
 graphs. Denote by Ti the running time of the algorithm that solves p-median.The main result 
an be stated as the following theorem.Theorem 3. The p-median problem for the 
ir
ular ar
 graphs 
an be solved in O(nT (n)) time,where T (n) is the running time of an algorithm that solves p-median problem for an interval graphwith n nodes.Proof. Starting from the left endpoint of some ar
 Ij 2 A we sort all the ar
s in 
lo
kwise order oftheir left endpoints. We assume that the indi
es of ar
s in A already 
orrespond to the sorted orderof ar
s. As before we allow to use any integer values for indi
es of ar
s using modulo n 
omputation.Consider the set M = fIi1 ; Ii2 ; : : : ; Iipg of ar
s that presents an optimal solution. Let C be a set ofar
s with their left endpoints between i1 and i2 in 
lo
kwise order. Note that C is equal to A forp = 1. A set C is divided into two disjoint subsets C1 and C2 su
h that all the nearest median forall the ar
s in C1 (C2) is Ii1 (Ii2 . In the 
ase of the equal distan
e from some ar
 in C to Ii1 and Ii2we asso
iate this ar
 with C1. If p = 1 instead of 
onsidering distan
es to Ii1 and Ii2 we 
onsiderdistan
es 
omputed in 
lo
kwise and 
ounter
lo
kwise dire
tions. Obviously, the indi
es of the ar
sin C1 (C2) form a 
onse
utive sequen
e of integers starting at i1 (ending at i2). Let Ik be the ar
with the largest index in C1. We shoot a ray whi
h passes through Ik (to the left of left endpointof Ik+1) in order to unroll the 
ir
le and obtain 
olle
tion of intervals, see Figure 3. Ea
h ar
 fromC that interse
ted by a shooting ray is divided into two intervals. We dis
ard the left intervals asdepi
ted in Figure 3 by 
ross. The optimal solution for an obtained interval graph 
orresponds tothe optimal solution for G(A). Thus, in order to solve p-median problem for a given 
ir
ular ar
graph G(A) we apply n times algorithm for an interval ar
 graph obtained by unrolling G(A) usinga ray through every endpoint.
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Fig. 3. (a) The initial 
ir
ular ar
 graph; (b) unrolling 
ir
ular ar
 graph into an interval graph, k = 2.The following 
orollary follows immediately from the theorem.Corollary 1. The p-median problem for a given 
ir
ular ar
 graph with n nodes 
an be solved inO(pn2 log n) time.6 p-
enter in Cir
ular Ar
 GraphsWe wish to �nd a set M of p nodes (
enters) in G(A) su
h that the maximum distan
e from thenodes of graph to the nearest node in M is minimized.The algorithm below is based on spring model of 
omputation. We �rst des
ribe the idea of thealgorithm and then provide all the details.6.1 Spring modelStarting from the left endpoint of some ar
 Ij 2 A we sort all the ar
s in 
lo
kwise order of theirleft endpoints. We assume that the indi
es of ar
s in A already 
orrespond to the sorted orderof ar
s. We allow to use any integer values for indi
es of ar
s using modulo n 
omputation. Forexample, I1 = I1�n = In+1 = I2n+1 = : : :. For ea
h pair of ar
s Ij; Ik 2 A we de�ne a set Tj;k ofar
s su
h that their left endpoints are between aj and ak in 
lo
kwise order. This set Tj;k 
an bedivided into two subsets T 1j;k and T 2j;k, su
h that the distan
e from every ar
 in T 1j;k (T 2j;k) to Ij issmaller or equal (greater) than the distan
e to Ik. At any exe
ution time we maintain a temporaryset C = fIi1 ; : : : ; Iipg of p 
enters su
h that 1 � i1 < i2 < : : : < ip � n. For a sake of 
larity we useC to denote 
enters in G(A) and 
orresponding ar
s as well. Initially, C = fI1; : : : ; Ipg. For ea
har
 Iij 2 C we de�ne two spring for
es, left for
e and right for
e as following.{ Left for
e LFORCE(ij) is the largest distan
e from ar
s in T 2ij�1;ij .{ Right for
e RFORCE(ij) is the largest distan
e from ar
s in T 1ij ;ij+1 .In order to obtain a new set of 
enters we �nd some 
enter Iij in the 
urrent set C and 
hange itto Iij+1, see Figure 4. Note, that the 
enters in C always move in 
lo
kwise order. However, notall the 
enters are allowed to move in the 
urrent moment. Let C 0 � C be a set of 
enters that areallowed to move. The set C 0 is de�ned by the following rules.
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I1
I2Fig. 4. For the 2-
enter problem the ar
s I1 and I2 with the enpoints numbered 1 and 4, respe
tively, are the 
urrent
enters. A

ording to the de�nition LFORCE(1) = RFORCE(1) = LFORCE(2) = 1 and RFORCE(2) = 2. Thear
 I2 is moved to be the ar
 with the endpoint numbered at 5.Rule 1. Iij 2 C 
annot move if ij+1 = ij + 1.Rule 2. If the last 
enter Iip is equal to Ip for the se
ond time it is not allowed to move at future.At any time we have 2p 
omputed for
es. The maximal for
e de�nes the movement of 
enters. If themaximal for
e is the right for
e for some 
enter then this 
enter moves to the right. If the maximalfor
e is the left for
e for some 
enter then its left neighbor 
enter moves to the right. Formally, themoving 
enter Iij is de�ned as an ar
 inC 0 with the largest value max (RFORCE(ij); LFORCE(ij+1)).and in the 
ase of tie we 
an 
hoose any of them. The algorithm stops when C 0 = ;. At the end ofthe algorithm's exe
ution the last set of 
enters C is returned.Theorem 4. The algorithm above 
orre
tly 
omputes p 
enters for a given 
ir
ular ar
 graph G(A).Proof. Let fI
1 ; : : : ; I
pg be the optimal solution. Assume, by 
ontrary, that our algorithm missesthe 
orre
t solution. Let us 
onsider the last step of the algorithm where C = fIi1 ; : : : ; Iipg andi1 � 
1; i2 � 
2; : : : ; ip � 
p. The following step of algorithm makes the wrong movement of
enter Iij ; 1 � j � p, whi
h 
hanges to Iij+1. In other words, ij + 1 > 
j . It follows thatij = 
j . Therefore, Tij ;ij+1 � T
j ;
j+1 and T 1ij ;ij+1 � T 1
j ;
j+1 , T 2ij ;ij+1 � T 2
j ;
j+1 We obtain thatmax (RFORCE(ij); LFORCE(ij+1)) � max (RFORCE(
j); LFORCE(
j+1)) and, thus, a set Cpresents an optimal solution.6.2 ImplementationIn order to �nd for
es eÆ
iently we use the data stru
ture proposed by Chen et al. [4℄. This datastru
ture 
an be 
onstru
ted in O(n) time and O(n) spa
e. Using this data stru
ture the queryon the length of the shortest path between any two ar
s 
an be answered in O(1) time. This datastru
ture also supports 
omputing iterated right and left su

essors for a given integer value in
onstant time. We use Lemma 1 and Lemma 2 whi
h provide an eÆ
ient way to maintain springmodel.Proof. We distinguish between two 
ases : even and odd distan
e d. If d is odd then there is somear
 Ik at distan
e d�12 and d+12 from 
enters Iij and Iij+1 . See Figure 5.



Iij Iij+11 42 Ik 33 43 3 24 13
Fig. 5. The numbers on the ar
s denote the distan
es to 
orresponding 
enters.Iij Iij+1Ik3 3

Fig. 6. The dashed lines show the slab.We 
laim that the maximum for
e is equal to d+12 , i.e. there is no ar
 at distan
e greater thandd2e from both Iij and Iij+1 . Assume, by 
ontrary, that su
h ar
 Il exists. If ar
s Ik and Il interse
tthen distan
e of Il to one of the 
enters is at most d�12 +1 = d+12 . Otherwise, the ar
 Il is either tothe left of Ik or to the right. The distan
e from Il to the 
orresponding 
enter is less or equal thanthe distan
e from Ik to the same 
enter. It 
ontradi
ts the de�nition of Il.It remains to show how to deal with the even 
ase. See Figure 6. The ar
 Ik is at distan
ed2 from both 
enters Iij and Iij+1 . We de�ne a verti
al slab for Ik whose left side passes throughthe right endpoint of ar
 RSUC(ij; d=2 � 1) and right side passes though the left endpoint of ar
LSUC(ij+1; d=2 � 1). We 
laim that the maximum for
e is equal to d=2 if and only if this slab
ontains no ar
s. Otherwise the maximum for
e equals d=2 + 1. Note that all the ar
s 
ontainingsome point to the left of a slab (in
luding left side of a slab) are at distan
e at most d=2 from Iij .Similarly, all the ar
s 
ontaining some point to the right of a slab (in
luding right side of a slab)are at distan
e at most d=2 from Iij+1 . Thus, if slab does not 
ontain any ar
 
learly all ar
s arewithin a distan
e d=2 from 
enters; otherwise the ar
s inside of a slab are at distan
e d=2 + 1 fromea
h 
enter.The 
omputation of length between two ar
s as well as 
omputation of the right and left iteratedsu

essors 
an be done in 
onstant time [4℄. Determining whether a slab 
ontains any ar
 
an bedone also in 
onstant time using array T whose indi
es 
orresponds to the left endpoints of the ar
sand for any given index i; 1 � i � n, T [i℄ keeps the rightmost left endpoint of the ar
s with rightendpoint less than i. This array T 
an be pre
omputed in linear time after on
e the endpoints ofthe ar
s are sorted. Slab 
ontains some ar
 if and only if the value of element of T 
orrespondingto the right side of slab is larger than the left side of the slab.We 
on
lude by theorem.



Theorem 5. The algorithm 
omputes p 
enters for a given 
ir
ular ar
 graph G(A) in O(np) timeif the endpoints of the ar
s are sorted.Remark. Applying the spring model strategy to the p-median problem in the 
ir
ular-ar
 graphleads to the similar result obtained in Se
tion 5.A
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