
Enumerating Longest Inreasing SubsequenesandPatiene SortingSergei Bespamyatnikh and Mihael Segal1Department of Computer Siene, University of British Columbia, Vanouver,B.C. Canada V6T 1Z4AbstratIn this paper we present three algorithms that solve three ombinatorial optimiza-tion problems related to eah other. One of them is the patiene sorting game,invented as a pratial method of sorting real deks of ards. The seond problemis omputing the longest monotone inreasing subsequene of the given sequene ofn positive integers in the range 1; : : : ; n. The third problem is to enumerate all thelongest monotone inreasing subsequenes of the given permutation.Key words: Algorithms, longest inreasing subsequene, van Emde Boas tree
1 IntrodutionIn this paper we onsider the following three related problems:Longest inreasing subsequene of permutation. Given an arbitrarypermutation � of f1; 2; 3; : : : ; ng, an inreasing subsequene < s1; s2; : : : ; sk >of � is a subsequene satisfyings1 < s2 < : : : < sk; �(s1) < �(s2) < : : : < �(sk)The goal is to �nd the longest inreasing subsequene of a permutation �.1 Work by MihaelSegal has been supported by the Pai� Institute for Mathemat-ial Studies, CanadaPreprint submitted to Elsevier Preprint



Enumerating all inreasing subsequenes of permutation. Given anarbitrary permutation � of f1; 2; 3; : : : ; ng, �nd all longest inreasing subse-quenes of a permutation.Patiene sorting. Take a dek of ards labeled 1; 2; 3; : : : ; n. The dek isshu�ed, ards are turned up one at a time and dealt into piles on the table,aording to the rule : A ard with a low index may be plaed on a ard witha higher index, or may be put into a new pile to the right of the existing piles.At eah stage we see the top ard on eah pile. If the turned up ard is higherthan the ards showing, then it must be put into a new pile to the right of theothers.The target of the game is to �nish with as few piles as possible.There are a lot of papers that deal with the longest inreasing subsequenesand patiene sorting problems. The patiene sorting problem was disoveredby Mallows [7℄ who atually proposed it as a way for manually sorting ards.In the same paper Mallows show that the number of piles in patiene sortingrelates to the Young tableaux that was invented by Shensted [8℄ in orderto study the length of the longest inreasing subsequene l(�). Floyd [4℄ de-sribed the patiene sorting in letters between him and Knuth [6℄ who gavean O(n logn)-time algorithm for omputing longest inreasing subsequenefor an arbitrary sequene of n numbers. In a very reent paper, Aldous andDiaonis [1℄ proved several interesting results related to this problem. In par-tiular, they proved that the greedy strategy (that is, to always plae a ardon the leftmost possible pile) is optimal and, moreover, the number of pilesthe greedy strategy ends with is equal to l(�). The brute-fore approah in[1℄ requires O(n2) omparisons. They [1℄ pointed out that aording to thepaper by Fredman [3℄ the algorithm to �nd l(�) (and, thus, patiene sorting)must perform 
(n logn) omparisons. Nevertheless, Hunt and Szymanski [5℄gave an O(n log logn) runtime algorithm for omputing the longest inreas-ing subsequene for a given permutation. Their algorithm atually solves themore general problem of omputing the longest ommon subsequene of twosequenes. As a result this algorithm applied to the longest inreasing sub-sequene problem is rather ompliated and requires redundant extra spae(although remains O(n)).We will present a diret, simple algorithm with O(n log logn) runtime in orderto solve the longest inreasing subsequene problem whih an be used toreport all suh subsequenes in optimal time. The previous approah [5℄ doesnot allow to do this. Moreover, we show how to extend our approah to solvepatiene sorting problem.We present our algorithm for omputing longest inreasing subsequene andenumerating all the subsequenes in the next Setion. In Setion 3 we desribehow to hange this algorithm in order to solve the patiene sorting problem.2



We onlude in Setion 4.2 Longest Inreasing SubsequeneWe reall that the input of our problem is some permutation � of n numbers.For eah element �(i), 1 � i � n the algorithm omputes the length of thelongest inreasing subsequene that ends on �(i). We keep all these values inan array L. In other words, L[�(i)℄ is the length of the longest inreasing sub-sequene that ends on �(i). The main idea of the algorithm is to maintain alist T suh that j-th element of this list is the smallest element of permutation� that inreasing subsequene of length j ends with. To implement T we usethe data struture invented by van Emde Boas [9℄ (see also [2℄) that allows tomaintain the sorted list of integers in the range 1; : : : ; n in O(log logn) timeper insertion and deletion.The data struture T allows the following list operations:� insert(i) - insert the number i into S,� delete(i) - delete the number i from S,� next(i) - get the suessor of i in S, if it does not exist return nil (takesO(1) time provided i is already inserted into S),� prev(i) - get the predeessor of i in S, if it does not exist return nil (takesO(1) time provided i is already inserted into S).First StageAt the �rst stage we proeed from the left to the right of the permutation�. Consider the moment when the i-th element �(i) is proessed. We need todetermine the length L[�(i)℄ of the longest inreasing subsequene that endson �(i). This length is de�ned by longest inreasing subsequene that ends onsome element of � that is smaller than �(i) and has been onsidered before. Inorder to do this we insert the number �(i) in the list T . The length L[�(i)℄ isequal to 1 plus the length assoiated with the predeessor of �(i) in the list T ,i.e. L[�(i)℄ = 1 + L[prev(�(i))℄. If there is no predeessor we set L[�(i)℄ = 1.If the suessor of �(i) in the list T has the same assoiated length, then wedelete the suessor of �(i) from T . If there is no suessor of �(i) we are doneand proeed to the next step.Seond StageAt the seond stage we have �lled array L. It turns out that L ontains enoughinformation to onstrut the longest inreasing subsequene of � in linear3



time. Indeed, the length k = l(�) of this subsequene �l = < s1; s2; : : : ; sk > isdetermined by the largest value that is stored in L. This subsequene �l satis�esthe following property:L[�(s1)℄ = 1; L[�(s2)℄ = 2; : : : ; L[�(sk)℄ = l(�):The index �(sk) of the ell that stores the largest value in L is equal to the lastelement of the list T . We an �nd it either in the list T or by simple sanningthe array L.To �nd the remaining elements of the subsequene the algorithm goes fromthe sk-th element of permutation to the �rst one. As was mentioned abovej-th element of this subsequene �l is the �rst index i suh that L[�(i)℄ = j.
We give below the formal desription of the algorithm (the output is thesequene < s1; s2; : : : ; sl(�) >).Longest Inreasing Subsequene1. T = ;;First Stage2. for i = 1 to n do3. m = �(i);4. insert(m)5. if prev(m) 6= nil then6. L[m℄ = L[prev(m)℄ + 1;7. else L[m℄ = 1;8. if next(m) 6= nil then9. if L[next(m)℄ == L[m℄ then10. delete(next(m));Seond Stage11. k = L[1℄; index = 1;12. for i = 2 to n do13. if L[i℄ > k then14. k = L[i℄; index = i;15. sk = index; j = k � 1;16. for i = index to 1 do17. if L[�(i)℄ = j then18. sj = i; j = j � 1;Theorem 2.1 The algorithm above orretly �nd the longest inreasing sub-sequene of a given permutation and has O(n log logn) running time.4



Proof. The orretness of the algorithm follows from the disussion above. Thesteps 15{18 form an output sequene < s1; s2; : : : ; sl(�) >.It is easy to evaluate the running time. All steps from 3 to 10 take onstanttime exept steps 4 and 10. Steps 4 and 10 are aomplished at most n timesspending O(log logn) time. Clearly, the seond stage takes linear time. So thetotal running time is O(n log logn).
2.1 Reporting all subsequenesThe array L obtained by the previous algorithm ontains suÆient informationto enumerate all longest inreasing subsequenes of �.Theorem 2.2 All longest inreasing subsequenes of a given permutation anbe reported in optimal O(n + Kl(�)) time and optimal O(n) spae, where Kis the number of suh subsequenes.Proof. We �rst desribe our algorithm and then prove its orretness and run-ning time. Reall that L[�(j)℄ is the length of the longest subsequene with�(j) as the last element.Observation: Consider the indies i1 < i2 < : : : < im, suh that L[i1℄ =L[i2℄ = : : : = L[im℄. Then, the sequene < �(i1); �(i2); : : : ; �(im) > is dereas-ing.For eah element j, 1 � j � n, we store two additional indies left1 andleft2. They are de�ned as follows. The value of left1(j) is the largest indexi, suh that L[i℄ = L[j℄, i < j. If suh i does not exist, we set left1(j) = nil.The value of left2(j) is the largest index i, suh that L[i℄ = L[j℄� 1, i < j. Ifsuh i does not exist, we set left2(j) = nil. We an ompute all the values ofleft1 and left2 in linear time by sanning the array L.Our algorithm is based on a reursive proedure Enumerate whih on input zreports all longest inreasing subsequenes with z as the last element. It usesan auxiliary array Out for storing the subsequene whih is urrently beingonstruted. The array Out is �lled in the reverse order. The length of thisarray is equal to l(�). The initial all of Enumerate is done with parameterz = �(sk), where index sk was omputed at the seond stage of the previous5



algorithm.Reporting all subsequenesEnumerate(sk);Proedure Enumerate(z)// Outputs all the subsequenes that ends by z.1. if ((L[z℄ = l(�)) or (z < Out[L[z℄ + 1℄) then2. Out[L[z℄℄ = z; // z is the urrent element of subsequene.3. else return;4. z1 = left2(z); // z1 is the predeessor of z in subsequene.5. if z1 = nil then6. print(Out); // Out is already �lled.7. else Enumerate(z1); // ontinue to �ll Out.8. while left1(z1) 6= nil do9. Enumerate(left1(z1)); // start a new subsequene.It is easy to see that the above algorithm requires linear spae and runsin time O(n + Kl(�)), where where K is a number of the longest mono-tone inreasing subsequenes. To show the orretness we observe that in fatour algorithm simulates the depth �rst searh strategy. During eah step ofour algorithm we know the tail of the urrent longest subsequene, namelyOut[L[z℄℄; Out[L[z℄ + 1℄; : : : ; Out[l(�)℄. The algorithm tries to inrease the tailof the urrent subsequene by looking on all possible values for the (L[z℄�1)-thposition. Our observation above provides an eÆient way to �nd these valuesusing pointers left1 and left2, utting the searh at line 1.3 Patiene SortingA permutation � of f1; 2; 3; : : : ; ng an be identi�ed with an arrangement ofn-ard dek, by speifying that �(i) is the index of the ard at position i. Thealgorithm of Aldous and Diaonis [1℄ applied the following greedy strategy: aard is always plaed on the leftmost possible pile.Let P be an array that stores the top ards of piles. To store informationabout the ards in piles we use an array ards of length n de�ned as follows:ards[i℄ is the index of the ard that lies below the ard with index i. Let S bethe data struture of van Emde Boas [9℄ that represents the list of top ards.Consider the moment when the i-th ard with index �(i) is turned up. Notethat the top ards in the piles form an inreasing sequene of integers. Weneed to �nd the leftmost pile with a top ard whose index j is greater than6



�(i). In order to do this we insert the number �(i) in the list S of top ards.The number j is the suessor of �(i) in the list S after the insertion of �(i).To reet the plaement of �(i) on j, we set ards[�(i)℄ = j and delete jfrom S. Eventually, we �ll an array P using list S. We give below the formaldesription of the algorithm.Patiene sorting1. S = ;;2. for i = 1 to n do3. P [i℄ = ard[i℄ = 0;4. for i = 1 to n do5. k = �(i);6. insert(k);7. j = next(k);8. if j 6= nil then9. ard[k℄ = j;10. delete(j);11. k = i = 1;12. while k 6= nil do13. P [i℄ = k; k = next(k); i = i+ 1;Theorem 3.1 The algorithm of patiene sorting is orret and has O(n log logn)running time.Proof. The algorithm uses the orret greedy approah [1℄. The Steps 11{13form an output array P ontaining the top ards that are stored in S. Notethat the �rst element of the list S is 1.Consider the running time of the algorithm. All steps exept steps 6 and 10take linear time. Steps 6 and 10 are performed at most n times spendingO(log logn) time whih leads to the total O(n log logn) running time.
4 ConlusionsIn this paper we investigated three related problems and we developed eÆientalgorithms for solving them. The key idea of the algorithms is based on usingvan Emde Boas [9℄ data struture for operations on permutations. We expetthat the same tehnique an be used in order to solve the other permutationproblems. 7



Referenes[1℄ D. Aldous and P. Diaonis, \Longest Inreasing Subsequenes: From PatieneSorting to the Baik-Deift-Johansson", Bull. Amer. Math. So., 36 (1999) pp.413{432.[2℄ G.H. Gonnet and R. Baeza-Yates, \Handbook of Algorithms and DataStrutures in Pasal and C", Addison Wesley, 1991, pp. 216{217.[3℄ M. Fredman, \On omputing the length of the longest inreasing subsequene",Disrete Math., 11 (1975), pp. 29{35.[4℄ B. Floyd, unpublished work, 1964.[5℄ J. Hunt and T. Szymanski \A fast algorithm for omputing longest ommonsubsequenes", Communiations of ACM, 20 (1977), pp. 350{353.[6℄ D. E. Knuth, \Sorting and Searhing", The Art of Computer Programming, 3(1973), Addison-Wesley.[7℄ C. Mallows, \Patiene sorting", Bull. Inst. Math. Appl., 9 (1973), pp. 216{224.[8℄ C. Shensted, \Longest inreasing and dereasing subsequenes", Canad. J.Math., 13 (1961), pp. 179{191.[9℄ P. van Emde Boas, \Preserving order in a forest in less than logarithmi timeand linear spae", Inform. Proess. Lett., 6 (1977), pp. 80{82.

8


