
Enumerating Longest In
reasing Subsequen
esandPatien
e SortingSergei Bespamyatnikh and Mi
hael Segal1Department of Computer S
ien
e, University of British Columbia, Van
ouver,B.C. Canada V6T 1Z4Abstra
tIn this paper we present three algorithms that solve three 
ombinatorial optimiza-tion problems related to ea
h other. One of them is the patien
e sorting game,invented as a pra
ti
al method of sorting real de
ks of 
ards. The se
ond problemis 
omputing the longest monotone in
reasing subsequen
e of the given sequen
e ofn positive integers in the range 1; : : : ; n. The third problem is to enumerate all thelongest monotone in
reasing subsequen
es of the given permutation.Key words: Algorithms, longest in
reasing subsequen
e, van Emde Boas tree
1 Introdu
tionIn this paper we 
onsider the following three related problems:Longest in
reasing subsequen
e of permutation. Given an arbitrarypermutation � of f1; 2; 3; : : : ; ng, an in
reasing subsequen
e < s1; s2; : : : ; sk >of � is a subsequen
e satisfyings1 < s2 < : : : < sk; �(s1) < �(s2) < : : : < �(sk)The goal is to �nd the longest in
reasing subsequen
e of a permutation �.1 Work by Mi
haelSegal has been supported by the Pa
i�
 Institute for Mathemat-i
al Studies, CanadaPreprint submitted to Elsevier Preprint



Enumerating all in
reasing subsequen
es of permutation. Given anarbitrary permutation � of f1; 2; 3; : : : ; ng, �nd all longest in
reasing subse-quen
es of a permutation.Patien
e sorting. Take a de
k of 
ards labeled 1; 2; 3; : : : ; n. The de
k isshu�ed, 
ards are turned up one at a time and dealt into piles on the table,a

ording to the rule : A 
ard with a low index may be pla
ed on a 
ard witha higher index, or may be put into a new pile to the right of the existing piles.At ea
h stage we see the top 
ard on ea
h pile. If the turned up 
ard is higherthan the 
ards showing, then it must be put into a new pile to the right of theothers.The target of the game is to �nish with as few piles as possible.There are a lot of papers that deal with the longest in
reasing subsequen
esand patien
e sorting problems. The patien
e sorting problem was dis
overedby Mallows [7℄ who a
tually proposed it as a way for manually sorting 
ards.In the same paper Mallows show that the number of piles in patien
e sortingrelates to the Young tableaux that was invented by S
hensted [8℄ in orderto study the length of the longest in
reasing subsequen
e l(�). Floyd [4℄ de-s
ribed the patien
e sorting in letters between him and Knuth [6℄ who gavean O(n logn)-time algorithm for 
omputing longest in
reasing subsequen
efor an arbitrary sequen
e of n numbers. In a very re
ent paper, Aldous andDia
onis [1℄ proved several interesting results related to this problem. In par-ti
ular, they proved that the greedy strategy (that is, to always pla
e a 
ardon the leftmost possible pile) is optimal and, moreover, the number of pilesthe greedy strategy ends with is equal to l(�). The brute-for
e approa
h in[1℄ requires O(n2) 
omparisons. They [1℄ pointed out that a

ording to thepaper by Fredman [3℄ the algorithm to �nd l(�) (and, thus, patien
e sorting)must perform 
(n logn) 
omparisons. Nevertheless, Hunt and Szymanski [5℄gave an O(n log logn) runtime algorithm for 
omputing the longest in
reas-ing subsequen
e for a given permutation. Their algorithm a
tually solves themore general problem of 
omputing the longest 
ommon subsequen
e of twosequen
es. As a result this algorithm applied to the longest in
reasing sub-sequen
e problem is rather 
ompli
ated and requires redundant extra spa
e(although remains O(n)).We will present a dire
t, simple algorithm with O(n log logn) runtime in orderto solve the longest in
reasing subsequen
e problem whi
h 
an be used toreport all su
h subsequen
es in optimal time. The previous approa
h [5℄ doesnot allow to do this. Moreover, we show how to extend our approa
h to solvepatien
e sorting problem.We present our algorithm for 
omputing longest in
reasing subsequen
e andenumerating all the subsequen
es in the next Se
tion. In Se
tion 3 we des
ribehow to 
hange this algorithm in order to solve the patien
e sorting problem.2



We 
on
lude in Se
tion 4.2 Longest In
reasing Subsequen
eWe re
all that the input of our problem is some permutation � of n numbers.For ea
h element �(i), 1 � i � n the algorithm 
omputes the length of thelongest in
reasing subsequen
e that ends on �(i). We keep all these values inan array L. In other words, L[�(i)℄ is the length of the longest in
reasing sub-sequen
e that ends on �(i). The main idea of the algorithm is to maintain alist T su
h that j-th element of this list is the smallest element of permutation� that in
reasing subsequen
e of length j ends with. To implement T we usethe data stru
ture invented by van Emde Boas [9℄ (see also [2℄) that allows tomaintain the sorted list of integers in the range 1; : : : ; n in O(log logn) timeper insertion and deletion.The data stru
ture T allows the following list operations:� insert(i) - insert the number i into S,� delete(i) - delete the number i from S,� next(i) - get the su

essor of i in S, if it does not exist return nil (takesO(1) time provided i is already inserted into S),� prev(i) - get the prede
essor of i in S, if it does not exist return nil (takesO(1) time provided i is already inserted into S).First StageAt the �rst stage we pro
eed from the left to the right of the permutation�. Consider the moment when the i-th element �(i) is pro
essed. We need todetermine the length L[�(i)℄ of the longest in
reasing subsequen
e that endson �(i). This length is de�ned by longest in
reasing subsequen
e that ends onsome element of � that is smaller than �(i) and has been 
onsidered before. Inorder to do this we insert the number �(i) in the list T . The length L[�(i)℄ isequal to 1 plus the length asso
iated with the prede
essor of �(i) in the list T ,i.e. L[�(i)℄ = 1 + L[prev(�(i))℄. If there is no prede
essor we set L[�(i)℄ = 1.If the su

essor of �(i) in the list T has the same asso
iated length, then wedelete the su

essor of �(i) from T . If there is no su

essor of �(i) we are doneand pro
eed to the next step.Se
ond StageAt the se
ond stage we have �lled array L. It turns out that L 
ontains enoughinformation to 
onstru
t the longest in
reasing subsequen
e of � in linear3



time. Indeed, the length k = l(�) of this subsequen
e �l = < s1; s2; : : : ; sk > isdetermined by the largest value that is stored in L. This subsequen
e �l satis�esthe following property:L[�(s1)℄ = 1; L[�(s2)℄ = 2; : : : ; L[�(sk)℄ = l(�):The index �(sk) of the 
ell that stores the largest value in L is equal to the lastelement of the list T . We 
an �nd it either in the list T or by simple s
anningthe array L.To �nd the remaining elements of the subsequen
e the algorithm goes fromthe sk-th element of permutation to the �rst one. As was mentioned abovej-th element of this subsequen
e �l is the �rst index i su
h that L[�(i)℄ = j.
We give below the formal des
ription of the algorithm (the output is thesequen
e < s1; s2; : : : ; sl(�) >).Longest In
reasing Subsequen
e1. T = ;;First Stage2. for i = 1 to n do3. m = �(i);4. insert(m)5. if prev(m) 6= nil then6. L[m℄ = L[prev(m)℄ + 1;7. else L[m℄ = 1;8. if next(m) 6= nil then9. if L[next(m)℄ == L[m℄ then10. delete(next(m));Se
ond Stage11. k = L[1℄; index = 1;12. for i = 2 to n do13. if L[i℄ > k then14. k = L[i℄; index = i;15. sk = index; j = k � 1;16. for i = index to 1 do17. if L[�(i)℄ = j then18. sj = i; j = j � 1;Theorem 2.1 The algorithm above 
orre
tly �nd the longest in
reasing sub-sequen
e of a given permutation and has O(n log logn) running time.4



Proof. The 
orre
tness of the algorithm follows from the dis
ussion above. Thesteps 15{18 form an output sequen
e < s1; s2; : : : ; sl(�) >.It is easy to evaluate the running time. All steps from 3 to 10 take 
onstanttime ex
ept steps 4 and 10. Steps 4 and 10 are a

omplished at most n timesspending O(log logn) time. Clearly, the se
ond stage takes linear time. So thetotal running time is O(n log logn).
2.1 Reporting all subsequen
esThe array L obtained by the previous algorithm 
ontains suÆ
ient informationto enumerate all longest in
reasing subsequen
es of �.Theorem 2.2 All longest in
reasing subsequen
es of a given permutation 
anbe reported in optimal O(n + Kl(�)) time and optimal O(n) spa
e, where Kis the number of su
h subsequen
es.Proof. We �rst des
ribe our algorithm and then prove its 
orre
tness and run-ning time. Re
all that L[�(j)℄ is the length of the longest subsequen
e with�(j) as the last element.Observation: Consider the indi
es i1 < i2 < : : : < im, su
h that L[i1℄ =L[i2℄ = : : : = L[im℄. Then, the sequen
e < �(i1); �(i2); : : : ; �(im) > is de
reas-ing.For ea
h element j, 1 � j � n, we store two additional indi
es left1 andleft2. They are de�ned as follows. The value of left1(j) is the largest indexi, su
h that L[i℄ = L[j℄, i < j. If su
h i does not exist, we set left1(j) = nil.The value of left2(j) is the largest index i, su
h that L[i℄ = L[j℄� 1, i < j. Ifsu
h i does not exist, we set left2(j) = nil. We 
an 
ompute all the values ofleft1 and left2 in linear time by s
anning the array L.Our algorithm is based on a re
ursive pro
edure Enumerate whi
h on input zreports all longest in
reasing subsequen
es with z as the last element. It usesan auxiliary array Out for storing the subsequen
e whi
h is 
urrently being
onstru
ted. The array Out is �lled in the reverse order. The length of thisarray is equal to l(�). The initial 
all of Enumerate is done with parameterz = �(sk), where index sk was 
omputed at the se
ond stage of the previous5



algorithm.Reporting all subsequen
esEnumerate(sk);Pro
edure Enumerate(z)// Outputs all the subsequen
es that ends by z.1. if ((L[z℄ = l(�)) or (z < Out[L[z℄ + 1℄) then2. Out[L[z℄℄ = z; // z is the 
urrent element of subsequen
e.3. else return;4. z1 = left2(z); // z1 is the prede
essor of z in subsequen
e.5. if z1 = nil then6. print(Out); // Out is already �lled.7. else Enumerate(z1); // 
ontinue to �ll Out.8. while left1(z1) 6= nil do9. Enumerate(left1(z1)); // start a new subsequen
e.It is easy to see that the above algorithm requires linear spa
e and runsin time O(n + Kl(�)), where where K is a number of the longest mono-tone in
reasing subsequen
es. To show the 
orre
tness we observe that in fa
tour algorithm simulates the depth �rst sear
h strategy. During ea
h step ofour algorithm we know the tail of the 
urrent longest subsequen
e, namelyOut[L[z℄℄; Out[L[z℄ + 1℄; : : : ; Out[l(�)℄. The algorithm tries to in
rease the tailof the 
urrent subsequen
e by looking on all possible values for the (L[z℄�1)-thposition. Our observation above provides an eÆ
ient way to �nd these valuesusing pointers left1 and left2, 
utting the sear
h at line 1.3 Patien
e SortingA permutation � of f1; 2; 3; : : : ; ng 
an be identi�ed with an arrangement ofn-
ard de
k, by spe
ifying that �(i) is the index of the 
ard at position i. Thealgorithm of Aldous and Dia
onis [1℄ applied the following greedy strategy: a
ard is always pla
ed on the leftmost possible pile.Let P be an array that stores the top 
ards of piles. To store informationabout the 
ards in piles we use an array 
ards of length n de�ned as follows:
ards[i℄ is the index of the 
ard that lies below the 
ard with index i. Let S bethe data stru
ture of van Emde Boas [9℄ that represents the list of top 
ards.Consider the moment when the i-th 
ard with index �(i) is turned up. Notethat the top 
ards in the piles form an in
reasing sequen
e of integers. Weneed to �nd the leftmost pile with a top 
ard whose index j is greater than6



�(i). In order to do this we insert the number �(i) in the list S of top 
ards.The number j is the su

essor of �(i) in the list S after the insertion of �(i).To re
e
t the pla
ement of �(i) on j, we set 
ards[�(i)℄ = j and delete jfrom S. Eventually, we �ll an array P using list S. We give below the formaldes
ription of the algorithm.Patien
e sorting1. S = ;;2. for i = 1 to n do3. P [i℄ = 
ard[i℄ = 0;4. for i = 1 to n do5. k = �(i);6. insert(k);7. j = next(k);8. if j 6= nil then9. 
ard[k℄ = j;10. delete(j);11. k = i = 1;12. while k 6= nil do13. P [i℄ = k; k = next(k); i = i+ 1;Theorem 3.1 The algorithm of patien
e sorting is 
orre
t and has O(n log logn)running time.Proof. The algorithm uses the 
orre
t greedy approa
h [1℄. The Steps 11{13form an output array P 
ontaining the top 
ards that are stored in S. Notethat the �rst element of the list S is 1.Consider the running time of the algorithm. All steps ex
ept steps 6 and 10take linear time. Steps 6 and 10 are performed at most n times spendingO(log logn) time whi
h leads to the total O(n log logn) running time.
4 Con
lusionsIn this paper we investigated three related problems and we developed eÆ
ientalgorithms for solving them. The key idea of the algorithms is based on usingvan Emde Boas [9℄ data stru
ture for operations on permutations. We expe
tthat the same te
hnique 
an be used in order to solve the other permutationproblems. 7



Referen
es[1℄ D. Aldous and P. Dia
onis, \Longest In
reasing Subsequen
es: From Patien
eSorting to the Baik-Deift-Johansson", Bull. Amer. Math. So
., 36 (1999) pp.413{432.[2℄ G.H. Gonnet and R. Baeza-Yates, \Handbook of Algorithms and DataStru
tures in Pas
al and C", Addison Wesley, 1991, pp. 216{217.[3℄ M. Fredman, \On 
omputing the length of the longest in
reasing subsequen
e",Dis
rete Math., 11 (1975), pp. 29{35.[4℄ B. Floyd, unpublished work, 1964.[5℄ J. Hunt and T. Szymanski \A fast algorithm for 
omputing longest 
ommonsubsequen
es", Communi
ations of ACM, 20 (1977), pp. 350{353.[6℄ D. E. Knuth, \Sorting and Sear
hing", The Art of Computer Programming, 3(1973), Addison-Wesley.[7℄ C. Mallows, \Patien
e sorting", Bull. Inst. Math. Appl., 9 (1973), pp. 216{224.[8℄ C. S
hensted, \Longest in
reasing and de
reasing subsequen
es", Canad. J.Math., 13 (1961), pp. 179{191.[9℄ P. van Emde Boas, \Preserving order in a forest in less than logarithmi
 timeand linear spa
e", Inform. Pro
ess. Lett., 6 (1977), pp. 80{82.

8


