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ABSTRACT
Security-sensitive applications, such as patient health moni-
toring and credit card transactions, are increasingly utilizing
wireless communication systems, RFIDs, wireless sensor net-
works, and other wireless communication systems. The use
of interference-emitting jammers to protect these sensitive
communications has been recently explored in the literature,
and has shown high potential. In this paper we consider op-
timization problems relating to the temporal distributions
of jammers’ activity, and the suitable coding regimes used
for communication. Solving the joint problem optimally en-
ables comprehensive security in space, at a low power con-
sumption and low communication overhead. The joint opti-
mization of jamming in space and time is driven by a new
framework that uses the bit-error probability as a measure
of communication quality. Under this framework, we show
how to guarantee information-theoretic security within a ge-
ographic region, and with increased flexibility to tailor the
coding regime to the problem’s geometry. We present ef-
ficient algorithms for different settings, and provide simu-
lations for various scenarios using the bit-error probability
functions. These simulations demonstrate the efficiency of
the scheme. We believe that our scheme can lead to practi-
cal, economical and scalable solutions for providing another
layer of protection of sensitive data, in cases where encryp-
tion schemes are limited or impractical.
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1. INTRODUCTION
More and more, highly sensitive and private information is

being transfered via wireless communication. Example sys-
tems include contactless smart cards [7], military sensor net-
works [1], emergency response systems employing wireless
networks [12], and ambient living-assistance systems [15];
these systems use wireless communication to transmit bank-
ing/financial data, military intelligence, sensory patient health
data, and other private information. The open nature of the
wireless medium mandates that precautions be taken to pro-
tect the privacy of information, e.g., from potential eaves-
dropping. Unprotected communication, e.g. within sensor
networks, also opens the door for various types of attacks
on the network, such as sensor impersonation, sybil attacks
and wormhole attacks.

Communication devices, such as RFID devices in smart
cards, have limited computational capabilities, making cryp-
tographic techniques impossible. Further limitations may
come from application constraints, in which, e.g., emergency
personnel are unable to enter passwords or use authentica-
tion methods to secure data transfer. To make the situation
more complex, there may be multiple types of communi-
cation nodes, utilizing different frequencies, and the nodes
may be changing over time, as nodes are removed or added
or become mobile; thus, we are motivated to pursue security
techniques that are impervious to variations in the structure
of the system or the network.

Wireless jamming has been explored as a means of achiev-
ing security from eavesdroppers through the selective intro-
duction of artificial noise [14,24]. In addition to making sure
the eavesdropper’s channel quality is degraded sufficiently,
the quality of legitimate channels must not be compromised.
This additional constraint marks a contrast between friendly
jamming and traditional offensive jamming.

Sensitive communication may be on single or multiple fre-
quencies and it is often imperative to secure all frequencies.
In such scenarios, channel degradation at eavesdroppers may



be achieved through several jamming techniques [18]. Some
examples are barrage jamming, which transmits noise on
all frequencies continuously, narrowband jamming, which is
restricted to a single frequency, and pulse jamming, which
sends periodic bursts of noise.

In many cases, legitimate communication is restricted to
within a geographic region such as a warehouse, hospital
or bank and must be protected from eavesdroppers out-
side this region. The communication inside the region may
be highly dynamic, i.e., nodes may be mobile or may be
added/removed and thus, jammers may only use minimal
information about the communication taking place in order
to intelligently configure themselves. In addition, the ex-
istence of only minimal information implies that jammers
must be proactive rather than reactive, i.e., they cannot
synchronize themselves with legitimate transmissions, nor
with each other. Moreover, jammers do not need to have a
(common) clock, and synchronization is not required. These
assumptions render a collections of such jammers highly dy-
namic and easily adaptable to changes in the environment
they protect. However, we do assume (and actually take
advantage of) that jammers could produce noise for some
portion of the time (affecting only a subset of the bits in a
transmitted message), and burst distributions could be con-
trolled by the user. These temporal jammers fall under the
category of pulse jammers in [18].

We argue that temporal jamming has multiple advantages
over continuous jamming in eavesdropping mitigation:

1. Energy savings: Guaranteed jamming can be achieved
with low operation duty cycles.

2. Simplicity: Jammers can be fixed-power, and flexibly
placed in space.

3. Spatial separation: A single-radio jammer can be ac-
tive on different frequencies at different times, thus
being able to secure multi-frequency communications.

4. Robustness: Temporal jamming is significantly more
difficult to cancel at the eavesdropper’s receiver, due
to their bursty nature.

5. Feasibility There are examples where successful jam-
ming that provides full privacy (in the formal mean-
ing defined below) does not exist with a given set of
continuous jammers, yet random temporal jamming is
possible.

A central benefit of temporal jamming we explore in this
paper is the possibility to employ advanced unconditionally
secure coding techniques. Operating the jammers in the
time domain allows us to reason about their effect on the
most fundamental information unit: a single bit. Therefore,
existing jamming optimization techniques can be comple-
mented by coding performed on the transmitted informa-
tion. When designed together, coding and geometric jam-
mer layout can simultaneously provide reliable communi-
cation for legitimate nodes and unconditional privacy from
eavesdropping.

Problem Statement. In this paper, we adopt the above
approach and consider the combined problem: How should
one select the fractions of time in which temporal jammers
are active sending noise to secure the communication, and at
which coding regime information needs to be communicated.
The solution to this problem relies upon three important el-
ements: a new framework for modeling temporal jamming
using bit-error probabilities, a geometric optimization algo-
rithm, and information theoretic definitions of reliable and

secure communication. The geometric optimization prob-
lem aims at minimizing the total jamming power required
to achieve reliability and secrecy constraints given the prob-
lem’s geometry. It is important to note that the output of
this optimization is some set of minimal activity fractions
for all jammers, whose deployment does not require coordi-
nation between jammers on when to transmit.

Related Work. The wire-tap channel [31] has been con-
sidered within information theory [11, 14, 24, 29]: a single
eavesdropper attempts to listen in on a legitimate commu-
nication between a pair of nodes. It is shown that perfect
secrecy is possible when the eavesdropper’s channel is worse
than the legitimate channel. Prior work has considered the
use of jammers to degrade the eavesdroppers’ channel and
has analyzed the channel capacity under various scenarios,
such as cooperating or independent jammers, multiple eaves-
droppers, etc. Within this same model of eavesdroppers,
game-theoretic approaches for optimizing power consump-
tion of jammers have been studied [6], as has the problem of
designating regions where eavesdroppers cannot be located.
Most of these prior works do not explore the geometry of the
problem and are primarily of theoretical interest because of
the simple scenarios considered.

Jamming has been considered as a possible security mea-
sure [8, 9, 16], designed to address the fact that RFID de-
vices are extremely limited in power, making the use of
cryptography difficult. Most works address the security of
only a single RFID tag. Wireless sensor networks are an-
other example of systems with low-capability devices; while,
in many cases, cryptography is possible here [17], the fo-
cus has been on symmetric key cryptography due to the
more resource-intensive nature of asymmetric key cryptog-
raphy. Here, the primary problem occurs during the key
distribution phase [23], where eavesdropping is still possi-
ble. It is, thus, viable to consider physical layer techniques
in the context of sensor networks. On an interesting side
note, [13] presents a method for securing against imperson-
ation attacks in sensor networks by jamming nodes that are
sent impersonated packets, in order to prevent receipt of the
packets.

Only a few works consider the geography/geometry of the
environment for security purposes. The model upon which
this paper is based is presented in [19], where the authors
present primarily theoretical results on power optimization
and jammer placement. In addition, several other related
works where the objective is to protect geographically re-
stricted communication exist. Sheth et al. [22] present a
method using directional antennas together with coding pack-
ets across multiple transmitters in order to define a secure
region of coverage. Here, the region of coverage is restricted
to the intersection of the ranges of the antennas. Tiwari
holds a patent [26] for a method in which jammers are placed
around a wireless network to secure it. However, security is
achieved through active jamming and, thus, requires coordi-
nation between transmitters and jammers. In contrast, our
methods do not require any coordination between jammers
and legitimate nodes. Finally, using a model very similar to
the one in this paper, Kim et al. [10] present an experimental
study on how to create a secure zone around an access point
using multiple friendly jammers. Tippenhauer et al. [25]
show that the impact of friendly jamming can be eliminated
using (carefully placed) multiple antennae; a potential ad-



vantage of our approach is to make such countermeasures
less effective.

Gollakota et al. [4] have also used such a well-coordinated
communication between source and jammers. These meth-
ods have significant advantages, but require reactive jam-
mers (i.e., jammers synchronized with other jammers) and
a flexible physical layer. None of these assumptions are re-
quired for our work.

Vilela and Barros [28] showed that without any assump-
tions on jammers and eavesdroppers’ location, one could still
use other nodes as friendly jammers, as long as they avoid
co-transmitting with the legitimate transmitter and in the
vicinity of a common destination. The authors show how to
abstract this setting as a graph, and how to find an optimal
subset of nodes using ILP. In [30] the authors study asymp-
totic behaviour in a stochastic setting in which jammers and
eavesdroppers are at randomly distributed locations. In par-
ticular they study the concept of Secure Throughput, which
is based on the probability that a message is successfully
received only by the legitimate receivers.

Recently [21] suggested an elegant method for establishing
friendly jamming where friendly nodes are able to commu-
nicate while enemy nodes are prevented from doing so. The
idea is that a signal generated according to a secret key
could appear as noise when key is not known. Gollakota
et al. [4] have also used such a well-coordinated communi-
cation between source and jammers. These methods have
significant advantages, but requires reactive jammers (that
is, jammers synchronized with other jammers) and a flexible
physical layer. None of theses assumptions are required for
our work.

Finally, [2] studied schemes similar to our assumptions.
They showed that allocating (optimally) equal-power jam-
mers is an NP-hard problem and provided a PTAS for this
problem. They have also provided an efficient scheme for
pruning significant portions of the fence (see definitions be-
low) so that various optimization problems can be addressed
more efficiently.

Contributions. We measure the effect of jamming by mod-
eling channel quality using the bit-error probability (BEP),
which is a fundamental measure able to capture any specific
scenario governing the physical layer. This new character-
ization of the jamming signals allows to improve the jam-
ming quality via information-security codes tailored for the
specific geometric setup. In particular, we present an algo-
rithm that given a geometric and physical-layer setup finds
the coding parameters that guarantee private reliable com-
munication. To the best of our knowledge, this is the first
time in jammer optimization where the optimal code param-
eters are found jointly with the assignment of the jammers’
activity. The BEP framework is introduced in Section 2,
and further developed in Section 3. In Section 4 we show
that given the problem geometry it is possible to translate
infeasible jamming specifications to a feasible specification
by changing the coding parameters, without loss of secu-
rity, reliability or communication rate. We then translate
this possibility to efficient polynomial-time algorithms for
computing optimal jammer parameters to meet the specifi-
cations, while minimizing energy requirements. The validity
and efficiency of our scheme is shown through simulations
in Section 5.

2. MODELS AND TOOLS
In this section we detail the settings within which the pa-

per’s results are obtained. We first introduce the models
and tools pertaining to the geometric setup, then the com-
munications model that drives the new temporal-jamming
framework. The geometric model we use is essentially the
same as considered in [19], with some adaptations. Using
an established geometric model is a convenient choice, given
that the key novelty of this paper lies in the tailoring of
a wieldy communications model to practical geometric set-
tings.

2.1 Geometric model and tools
Modeling communication in geographically restricted lo-

cations, we consider a Storage/Fence environment model,
similar to the one in [19]. A depiction of this model is given
in Fig. 1:
• We partition the region of interest into two (not neces-

sarily connected) regions: the controlled region, C, and
its complement, the uncontrolled region, U . Eaves-
droppers may exist in U but not in C. A polygonal
fence F separates U from C.
• Legitimate communication is enclosed within a polyg-

onal region, or a set of polygonal regions, S ⊂ C, called
the storage. The reader may wish to think of the stor-
age as a warehouse containing items emitting sensitive
information, e.g. RFID tags, sensors etc. Legitimate
receivers and transmitters may be located at any point
within S. Note that S is in the controlled region.
• A set J of friendly jammers are placed in the region

A = C \ S, termed the allowable region. Note that
jammers are not placed outside of the controlled area,
since they could be destroyed physically, and they can-
not be placed inside the storage S, since they might
interfere with legitimate communications.

Storage S

Controlled region C

Uncontrolled region U

Fence F

Eavesdropper Jammer

Witness point

Figure 1. An example scenario with a storage (dark gray)
containing the communicating nodes, and surrounded by a
fence (dotted). Jammers are placed within the controlled
regions prevent eavesdroppers outside the fence from listen-
ing.1

We believe that this model is applicable to multiple sce-
narios at which some geographic buffer zone separates the
transmitting nodes from the potential eavesdroppers.

With a slight abuse of notation, we identify a node (re-
ceiver/jammer/eavesdropper) by its location p in R2. Con-



sider a potential eavesdropper located at a point p in the
uncontrolled region U . Note that if any point q ∈ S may
contain a transmitter, then for any communication model
where reception quality is inversely proportional to distance,
the highest risk of information leak heard by p is from the
transmitter located at the nearest point to p from all storage
point. Let us denote this point as s(p). That is, ‖p−s(p)‖ ≤
‖p− q‖, ∀q ∈ S, where ‖a− b‖ is the Euclidean distance be-
tween the two points a, b. Also assume that a set of jammers
J is placed in A.
Witness points. A major component in our toolbox is
the discretization obtained by assigning only a polynomial
relatively small number of witness points with the property
that if required lower (resp. upper) bounds on jamming
intensity are satisfied at these points, then the required con-
ditions also hold for any point inside the storage (resp. out-
side the fence). It is clear that the number of these wit-
ness points we consider in lieu of the entire regions of inter-
est affects the performance of the optimization algorithms
dramatically. The operator can specify a tuning parame-
ter ε > 0 trading accuracy vs. number of witness points
and algorithmic efficiency. Given a parameter ε, we seek
a set W = {w1 . . . wm} of witness points in U such that
for every point p ∈ U , there is a witness point wi ∈ W
satisfying ‖p − s(p)‖ ≤ (1 + ε)‖wi − s(wi)‖. Moreover,
‖p−j‖ ≤ (1+ε)‖wi−j‖ for every jammer location j ∈ J . In
other words, for every potential eavesdropper p ∈ U (within
the continuous domain), there is a witness point w ∈ W such
that the distances from either p or w to the nearest legiti-
mate transmitter are nearly equal. An analogous condition
holds for a set of witness points within the storage, whose
distances to the jammers are nearly equal to the distances
between the legitimate receivers and the jammers. As shown
in [19], such sets of witness points can be found with sizes
equal to {(n+ |J |) log(d)}2 where d is the ration between
diam(F) and the minimum distance between storage and
fence. Such polynomial-size sets of witness points imply the
possibility to run jammer optimization algorithms on these
sets with jamming guarantees on the true locations of re-
ceivers and eavesdroppers, for any jamming function that is
“well behaved”, e.g. inverse proportional to a polynomial of
distance r) in small intervals (r, r(1 + ε)). We note that all
the jamming functions we consider in this paper indeed have
this smoothness property.

2.2 Comm. model: temporal jamming
In this sub-section we introduce the temporal jamming

model driving the jamming optimization results that follow.
Temporal jamming refers to the ability of jammers to trans-
mit the jamming signal intermittently, in fine time resolution
of a single bit. This is in contrast with the more common
complete-duration jammers, whose signals are set to be con-
stant in time. We note from the outset that the benefits
of temporal jamming shown later in the paper do not as-
sume coordination between jammers, neither between jam-
mers and transmitters. Rather, we only assume that each
jammer is able to set its activity in time to a static value
that is determined by the environment’s geometry. To link
the temporal-jamming model with the main thread of ex-
isting work, we first review the complete-duration jamming
model.

Complete-Duration Jamming. When a jammer trans-
mits a continuous signal at a certain power, it is convenient

to formulate the jamming optimization in terms of Signal
to Interference Ratios (SIR) at locations within the environ-
ment’s geometry. Successful jamming is achieved if the SIR
observed at all potential eavesdropper locations are below
some specified threshold.
Formally, we express the signal decay due to path loss as
follows: for an eavesdropper pe listening to a transmitter
ps ∈ S, the received power is P̃‖ps − pe‖−γ , where P̃ is the
transmitter’s signal power and γ is the path-loss exponent.
A similar formulation can be made for the received power
at legitimate nodes, and for received jamming signal power.
Recalling that for an eavesdropper pe the nearest point on
the storage is denoted s(pe), we have

SIR(J , pe) =
P̃‖s(pe)− pe‖−γ

maxj∈J P̂‖j − pe‖−γ
,

where P̂ is the jammer transmit power, and neglecting noise
and the interference from the non-nearest jammers. An anal-
ogous (but slightly different) expression can be given for the
SIR at legitimate-receiver locations.

The natural way to identify successful jamming is through
an upper threshold, δ1, on SIR for eavesdroppers, and a
lower threshold, δ2, on SIR for legitimate receivers. Thresh-
olds on SIR are the widely accepted “physical model” de-
scribed in [5]. Formally, any set of complete-duration jam-
mers J needs to satisfy the following constraints

SIR(J , pe) ≤ δ1, ∀pe ∈ U and (1)

SIR(J , ps) ≥ δ2, ∀ps ∈ S. (2)

Temporal Jamming. Moving from complete-duration to
temporal jammers, it is clear that we can no longer use the
SIR measure, as it carries no notion of temporal activity.
To capture the temporal activity, we will work with the
most fundamental communication unit: a bit, and its corre-
sponding measure of equivocation: the bit-error probability1.
Since jammers’ activity is characterized as being on/off at
a single-bit resolution, it is natural to measure the jamming
quality by the bit-error probability induced upon an eaves-
dropper. Given a jammer active at some bit instant, the
probability that it flips a bit at an eavsdropper location will
be calculated based on a physical model considering signal
and propagation characteristics. Later, this error probabil-
ity will also include the randomness of whether a jammer is
on or off at a given bit instant, assuming jammer activity
epochs are drawn at random by each jammer independently.
Formally, we denote by BEP(p) the bit-error probability at
point p induced by a set of active jammers. We empha-
size that the BEP(p) function captures the raw physical er-
rors observed by the receivers, before any coding is con-
sidered, but after factoring in all the assumptions on the
physical layer (modulation, antenna type, receiver sensitiv-
ity, etc). Clearly the function BEP(p) will depend on the
number of active jammers and their position with respect
to p. A detailed discussion of the functions BEP(p) is given
in Section 3. When the bit-error probability considers ran-
dom jammer activity in addition to the randomness of the
communication medium, we denote it by TBEP(p). As an
example, consider a single jammer that induces a bit-error
probability of BEP(p) at point p when it is active. If this

1The same model extends readily from a bit to a higher-
order symbol without fundamental changes.



jammer is active at bit instants i.i.d. with probability η,
then the effective bit-error probability at point p will be
TBEP(p) = ηBEP(p). In a similar way we can incorporate
random partial-activity jamming into more involved scenar-
ios with more than one jammer.

3. BIT-ERROR PROBABILITY
In the temporal jamming communications model that we

described above, we wish to induce a high bit-error proba-
bility at eavesdropper locations, while keeping a low enough
bit-error probability within the storage. To this end we de-
fined the bit-error probability at point p using the abstract
function BEP(p). In this section we further develop the
model to discuss the properties of BEP(p) functions. The
properties of a BEP(p) function will depend on whether p is
in S or in U , and on the number of jammers affecting the bit
reception at p. Bit errors result from both the decay of the
signal in space, and from the incidence of the jamming signal
at the receiver. For points in S we assume below that signal
decay is negligible, but this assumption is for convenience
rather than necessity. For points in U , which have larger
distance from the transmitters in S, the BEP(p) functions
will incorporate both jamming and signal decay.

We now describe the BEP(p) functions from the simplest
scenario of no jammers (only signal decay), followed by the
single-jammer and multiple-jammers scenarios.

No Jammers. In the absence of jamming activity, bit er-
rors are caused by the decay of communication signals in
space. For legitimate receivers within S, since we assume
that the decay is negligible, the bit-error probability with-
out jamming is identically zero. (We reemphasize that this
assumption is only for ease of exposition, and not an essen-
tial one for the schemes to work.) For an eavesdropper at
location pe ∈ U , a message is received with bit-error prob-
ability that depends on its distance to the transmitter. For
the transmitter location we take the point in S closest to
pe, which is denoted s(pe). Then we write the jamming-free
bit-error probability at pe as

BEPfree(pe) = fF (‖s(pe)− pe‖), (3)

where fF (·) is a monotone non-decreasing function. fF (·),
as all the bit-error probability functions in the paper, admits
values in [0, 0.5]. Bit-error probabilities above 0.5 are clearly
not practically interesting.

A Single Jammer. At times when a jammer is active in lo-
cation pj , the noise it emits introduces bit-error events in
addition to errors due to signal decay. The bit-error proba-
bility at location pe ∈ U is in this case a function combining
the two sources of bit errors

BEP(pe) = f(‖s(pe)− pe‖; ‖pj − pe‖), (4)

where f(·; ·) is monotone non-decreasing in its left argument
and monotone non-increasing in its right argument.
For legitimate receivers within S we assume negligible signal
decay, so for these locations the bit-error probability is a
function of jamming interference only

BEP(ps) = fI(‖pj − ps‖), (5)

where fI(d) can be regarded as a special case taking f(0; d).

Multiple Jammers. For the case of multiple jammers ac-
tive at the same bit instant, a bit-error event may be caused
by any of the jammers, as well as by signal decay. To accom-
modate for multiple jammers, we extend the function f(·; ·)
in (4) to have multiple right arguments

BEP(pe) = f(‖s(pe)− pe‖; ‖pj1 − pe‖, ‖pj2 − pe‖, . . .). (6)

We mainly consider in this paper the case where f is sym-
metric in its right arguments, i.e., the bit-error probability
depends on the jammers only through their distances to pe
(or ps). This assumption is equivalent to equal-power jam-
mers in the SIR model. At this point it is instructive to
explain how the functions fF , fI , f are obtained in practice.
There are different ways to do it, and the choice depends on
the design stage at which the functions are needed. For the
initial design of the system, one may use common communi-
cations models (power-decay with AWGN noise, fading etc.)
to come up with estimates on these functions given some
reasonable assumptions on the physical layer and commu-
nication medium. At a later stage when jammer activity
assignments actually need to be decided, the exact system
specifications are known, and so real measurements can yield
fF , fI and f with good precision. In both cases we get an ac-
curate characterization of the fundamental communication
reliability that is better than known coarse characterizations
such as SIRs. In Section 4.1 we give an example of natural
parameterized functions for fF , fI , for which the modelling
and measurement techniques mentioned above could be used
to find the values of a small number of parameters per each
system.

3.1 Decompositions and bounds for the BEP
functions

For some optimization tasks, we would want to decom-
pose the function f from (6) to separable functions in f ’s
arguments. The main advantage of separability is in making
f easier to measure and estimate in a deployed system. It is
much easier to obtain the bit-error probability as a function
of a single variable (e.g. distance to a single jammer) than
as a complex function of multiple distances. When it is too
complex to separate the effects of the multiple arguments,
we use separable functions that give upper and lower bounds
on f . The upper bounds allow to guarantee low enough error
probabilities for legitimate receivers, and the lower bounds
guarantee high enough error probabilities at eavesdropper
locations.

When the bit-error probability is caused by a single active
jammer, we use the interference-only function from (5)

BEPjam(pe) = fI(‖pj − pe‖),

where we recall that fI(·) is a monotone non-increasing func-
tion admitting values in [0, 0.5]. Now we wish to com-
bine the single-jammer interference-only bit-error probabil-
ity with that from signal decay given in (3). In order for
a bit to be received in error, it needs to be flipped by ei-
ther signal decay or by jamming interference, but not both.
Assuming independence between the two error mechanisms,
the resulting bit-error probability is

BEP(pe) = fF (1− fI) + fI(1− fF ) = fF + fI − 2fF fI , (7)

where fF and fI are short notations for fF (‖s(pe) − pe‖)
and fI(‖pj − pe‖), respectively. Since for any fF , fI ≤ 0.5



we have fF +fI −2fF fI ≥ max[fF , fI ], we get the following
lower bound on the error probability

BEP(pe) ≥ max [fF (‖s(pe)− pe‖), fI(‖pj − pe‖)] . (8)

In addition to its simplicity, the max lower bound of (8)
has the advantage that it is not specific to the independent
bit flipping error model assumed in (7), but can rather be
justified for other physical error sources.
Similarly, we can use the max function to combine the bit-
error probabilities from multiple jammers, yielding the lower
bound

BEPjam(pe) ≥ max
j∈J

fI(‖pj − pe‖). (9)

The multi-jammer error probability can again be combined
with the decay error probability, obtaining the lower bound

BEP(pe) ≥ max

[
fF (‖s(pe)− pe‖),max

j∈J
fI(‖pj − pe‖)

]
. (10)

For eavesdropper locations we are interested in bounding
the combined error probability from below, such that a jam-
mer assignment guarantees no less than a certain amount
of equivocation. Hence the right-hand side of (10) can re-
place the true bit-error probability requirement without loss
of correctness. In contrast, for legitimate-receiver locations
we look to bound the error probability from above, such that
the actual error probability observed by legitimate clients is
not worse than some guaranteed value. Consequently, for a
legitimate-receiver location ps ∈ S we may choose the sum
combining, which is an obvious upper bound on the true
combined error probability

BEP(ps) = BEPjam(ps) ≤
∑
j∈J

fI(‖pj − ps‖). (11)

Here the right-hand side of (11) can replace, without loss
of correctness, the true bit-error probability requirement for
legitimate receivers.

3.2 Partial-activity jammers
Now that we have set the basic formal infrastructure for

calculating and bounding bit-error probabilities given a jam-
mer setup, we move to treat partial-activity jammers, which
are the key component of the temporal-jamming framework.
A partial-activity jammer j transmits its jamming signal for
an ηj ∈ [0, 1] fraction of the time. In the remaining 1 − ηj
fraction of time, the jammer is idle and does not contribute
to the equivocation of the eavesdroppers and legitimate re-
ceivers. In the simplest case we assume that the jammer’s
activity on bit instants is drawn as i.i.d Bernoulli random
variables with probability ηj . Consequently, a jammer is
added as a right-argument to f(·; ·) at bit instants when it
is drawn active, and excluded at other time instants. An
example of activity instants of two jammers is given in the
figure on the right, where Jammers 1 and 2 actively trans-
mit for the duration of two bits at different times during the
transmission of a message.

The design problem at hand

Time

Jammer 1

Jammer 2

Message

1 2 3 4 5 6 7 80

is to set the activity fractions
ηj of the deployed jammers
to meet the privacy require-

ments induced by the system’s geometry. Note that the
random selection of activity instants simplifies the system
operation, and in particular, no coordination is required be-
tween jammers.

The Two Nearest Jammer (2NJ) model. For solving var-
ious optimization problems addressed in this paper, we use
either the NJ model (nearest jammer) or the 2NJ model (two
nearest jammers). In 2NJ, the jamming impact of the third
jammer and beyond on a point p could be neglected. This
assumption is justified by the rapid decay of power with dis-
tance. Define ds(p) , ‖s(p) − p‖, i.e., the distance from p
to the nearest point on S. The combined bit-error proba-
bility from two partial-activity jammers j1, j2 affecting p is
calculated as

TBEP(p, j1, j2) =

(1− ηj1)(1− ηj2) · fF (ds(p)) (12)

+ηj1(1− ηj2) · f(ds(p); ‖pj1 − p‖) (13)

+ηj2(1− ηj1) · f(ds(p); ‖pj2 − p‖) (14)

+ηj1ηj2 · f(ds(p); ‖pj1 − p‖, ‖pj2 − p‖). (15)

Note that the expressions in (12)–(15) correspond to disjoint
time instants within the transmission block. Hence combin-
ing with a sum is without loss of correctness. When p = ps
is a location in the storage, we have ds(ps) = 0, and the
left argument of each of the f functions in (13)–(15) is not
applied while (12) is identically zero.
The motivation to stop at two nearest jammers, besides
the decay of received power, is the decreasing probability
ηj1ηj2ηj3 · · · to have a large number of simultaneous active
jammers.

To achieve successful jamming, we need to satisfy the fol-
lowing constraints simultaneously

TBEP(pe, j1(pe), j2(pe)) ≥ τ1, ∀pe ∈ U , (16)

TBEP(ps, j1(ps), j2(ps)) ≤ τ2, ∀ps ∈ S, (17)

where j1(p), j2(p) are the two nearest jammers to p, and τ1
(resp. τ2) is the lower (resp. upper) threshold of bit-error
probability in U (resp. S) locations. The solution should be
given as an assignment to η1, . . . , η|J | satisfying (16)–(17),

with minimal total activity
∑|J |
j=1 ηj .

4. ALGORITHMS FOR JAMMER ACTIV-
ITY ASSIGNMENT

The purpose of this section is to provide constructive tools
to find jammer activity assignments that satisfy the require-
ments of (16)–(17). The first such tool is called threshold
shifting, which allows choosing ”the best” pair of thresholds
τ1, τ2 from all pairs that are equivalent in terms of the com-
munication rate. The second tool are algorithms to solve the
activity assignment problem for the NJ and the 2NJ models.

4.1 Threshold shifting through information-
theoretic security

The principal benefit of working with the bit-error proba-
bility measure is its fundamental relations with information
theory. These relations allow to cleverly employ information
coding to aid the feasibility and efficiency of friendly jam-
ming in a given geometric setup. In the sequel we show that
geometric setups that do not admit a feasible assignment of
ηj activity values to jammers, may be solved by shifting the
lower and upper thresholds τ1, τ2 to values that are more fa-
vorable in terms of the geometric setup. Building on coding
techniques, we are able to perform such a shift while allow-
ing the same communication rate between legitimate nodes
in the storage.



To see how coding fits in the solution, we examine the
bit-error probability constraints in (16)–(17). While the left-
hand side TBEP functions in the constraint inequalities are
governed by the geometric setup of the problem, the right-
hand side thresholds τ1, τ2 originate from informational –
and not physical – features of reliable communication. In
other words, the claim that τ1 and τ2 are sufficient thresh-
olds must be backed by a code that provably guarantees that
legitimate nodes can communicate reliably, while eavesdrop-
pers gain no information from their received signals. As a
corollary to that, it is possible to change the thresholds τ1, τ2
by changing the code used for communications. We call this
operation threshold shifting. Suppose we have a code that
gives the correct guarantees given a threshold pair τ1, τ2.
Then we run an optimization algorithm to find ηj ’s that
satisfy these thresholds. It may be the case that there is
no feasible assignment to ηj ’s given τ1, τ2. Then we may
look for an alternate pair τ ′1, τ

′
2, for which a different code

with the same rate exists, and solve a different optimization
problem, with better success this time.

We briefly sketch the information-theoretic principles un-
derlying threshold shifting and the associated code design
problem. A detailed constructive treatment is deferred to
future work. In information-theoretic terminology, commu-
nication between a transmitter and a legitimate receiver in
location ps in the storage is done over a binary symmetric
channel (BSC) with parameter TBEP(ps) given in (5). A
BSC with parameter γ flips any bit i.i.d. with probability γ.
Similarly, the communication between a transmitter and an
eavesdropper in location pe is done over a BSC with param-
eter TBEP(pe) given in (6). The BSC is the most fundamen-
tal channel model, and a heavily studied one in information
theory. For a BSC with parameter γ, it is known [20] that a
communication rate of 1 − h(γ) is achievable using coding,
and also optimal, where h(·) is the binary entropy function.
This limiting rate 1−h(γ) is called the capacity of the BSC.
The scenario of a legitimate receiver communicating over
one BSC with an eavesdropper communicating over another
(worse) BSC is also a well studied problem in information
theory called the wire-tap channel [31]. It is well known [27]
that it is possible to communicate reliably with a legitimate
receiver, while leaving the eavesdropper in complete equiv-
ocation, at a rate that is at most the difference

∆ = Capacity(TBEP(ps))− Capacity(TBEP(pe)). (18)

In other words, we can change the bit-error probabilities of
the legitimate receiver and the eavesdropper, and maintain
the same communication rate so long as the difference be-
tween the respective channel capacities is maintained. Since
both bit-error probabilities go in the same direction (either
both upward or both downward), we refer to this operation
as threshold shifting. To fit this into the jammer-activity op-
timization problem, we replace the individual TBEP values
in (18) with the thresholds τ1 (for pe), and τ2 (for ps). The
following example shows the potential of threshold shifting.

Example. Assume a simple configuration of a single legit-
imate node (denoted s), a single jammer (denoted j), and
a single eavesdropper (denoted e) given in the Fig. 2. The
distance between s and j is d1, and the distance between j
and e is d2. Suppose the f functions governing the bit-error
probabilities are given as follows. Bit error-probability due

d1 d2

d3s

j

e

Figure 2. The geometric layout of the legitimate node (s),
the jammer (j), and the eavesdropper (e) in the example.

to signal decay at distance x from the source is given by

fF (x) =
1

2

[
1− e−αF x

γF
]
.

Bit error-probability due to interference at distance y from
the jammer is given by fI(y) = 1

2
e−αIy

γI
. The constants αF ,

γF , αI , γI allow fitting the functions to measured values in
the particular system. For any choice of these parameters
we have the desired properties that fF (0) = 0, fI(0) = 0.5,
reflecting, respectively, no errors at the source and complete
equivocation at the jammer. At the limit of distances going
to infinity the behaviors are inverted, where fF is tending to
0.5 and fI is tending to 0. For the legitimate receiver s we
assume to only have bit-error probability contribution from
fI (recall that s is located in a relatively small storage, hence
very proximate to the transmitter). For the eavesdropper lo-
cation e we have contributions from both functions, which
we combine with the max function, as shown in (8). Alto-
gether, assuming a jamming signal active at a η fraction of
time, we have

TBEP(s, j) = ηfI(d1) =
1

2
ηe−αId

γI
1

and

TBEP(e, j) = (1− η)fF (d3) + ηmax [fF (d3), fI(d2)]

= fF (d3) + ηmax [fI(d2)− fF (d3), 0]

=
1

2

[
1− e−αF d

γF
3 + ηmax

[
e−αId

γI
2 + e−αF d

γF
3 − 1, 0

]]
.

Now with the closed-form expressions for TBEP(s, j) and
TBEP(e, j) above, the jammer needs to set the activity fac-
tor η to guarantee that TBEP(e, j) is above some speci-
fied threshold τ1 and TBEP(s, j) is below some specified
threshold τ2. The jammer’s selection of η is best explained
with a concrete numerical example. Suppose the measured
parameters for propagation and jamming are found to be
αF = 0.1, γF = 2, αI = 3, γI = 2. In addition, the dis-
tances of the problem are d1 = 0.8, d2 = 0.6, d3 = 0.9. Then
we can substitute these values into the fI and fF functions,
and obtain in Fig. 3 the values of TBEP(s, j) (solid diagonal
line) and TBEP(e, j) (dashed diagonal line) as a function of
η. Given specified TBEP thresholds

τ1 = 0.1, τ2 = 0.03,

the solid vertical line in Fig. 3 marks the upper boundary
of η values that satisfy TBEP(s, j) ≤ τ2 (these values are
marked by the shaded region on the bottom left). Similarly,
the dashed vertical line marks the lower boundary of η val-
ues that satisfy TBEP(e, j) ≥ τ1 (these values are marked
by the shaded region on the top right). It is clear from the
figure that the intersection between the η values of the left
and right regions is empty, hence there is no η that can sat-
isfy both constraints, and jamming is impossible with these
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Figure 3. TBEP(s, j) (solid) and TBEP(e, j) (dashed) as a
function of η. Shaded regions represent η values that satisfy
TBEP(s, j) ≤ τ2 (bottom-left) and TBEP(e, j) ≥ τ1 (top
right). The intersection between allowed η values is empty.

parameters. Now we show that using the threshold shifting
technique, jamming will become possible without any loss
in information rate. We choose the alternative thresholds
τ ′1 = 0.163, τ ′2 = 0.07 which satisfy

Capacity(τ ′2)− Capacity(τ ′1) = h(τ ′1)− h(τ ′2) = 0.275.

This difference is identical to

Capacity(τ2)− Capacity(τ1) = h(τ1)− h(τ2) = 0.275.

Therefore, the same rate of communication (between legiti-
mate nodes) can be maintained with the alternative thresh-
olds, only changing the code used for communication. As a
result, we repeat in Fig. 4 the same TBEP functions from
Fig. 3, only this time marking the allowed regions specified
by τ ′1 and τ ′2. It can be observed in Fig. 4 that now the
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Figure 4. The same TBEP(s, j) and TBEP(e, j) functions,
now with shaded regions marking η values allowed by the
shifted thresholds τ ′1 and τ ′2. The intersection between al-
lowed η values is non-empty.

bottom-left and top-right shaded regions do intersect on η
values between 0 and 1; hence, jamming is possible with
these shifted thresholds.

This example can, of course, be generalized to much more
complex jamming scenarios, as we see later in Section 5.

4.2 Computing (η1, . . . , η|J |) under the nearest-
jammer model

Given a set of jammers J in specified locations, and a
pair of threshold values τ1, τ2, we wish to set the activity
fractions η1, . . . , η|J | of the jammers to guarantee bit-error
probability of at least τ1 at eavesdropper locations, and at
most τ2 at locations in the storage. In addition to satisfying

the bit-error probability thresholds, to save power we wish
to achieve that with the lowest possible total activity sum∑|J |
j=1 ηj .
First we handle the nearest jammer model. That is, each

point, on the storage or outside the fence, is influenced by
the nearest jammer to the point, while more remote jam-
mers’ impact is neglected. The problem is, as above, to
determine the values ηj for each jammer j ∈ J .

1. Compute the set of witness points W as explained in
Section 2.

2. Compute the Voronoi Diagram of J , in O|J | log |J |)
time (see [3]) .

3. Using the Voronoi Diagram, for each point in W find
the nearest jammer in log |J | time. Denote by Wj ⊆
W the set of witness points whose nearest jammer is
j ∈ J .

4. For each j ∈ J , compute Lj , the minimal ηj value that
meets the TBEP ≥ τ1 threshold for all p ∈Wj ∩ U .

5. For each j ∈ J , compute Uj , the maximal ηj value that
meets the TBEP ≤ τ2 threshold for all p ∈Wj ∩ S.

6. If for every j ∈ J , Lj ≤ Uj output ηj = Lj . If not,
output “failure”.

4.3 Computing (η1, . . . , η|J |) under the 2-nearest
jammer model

Let j1(p) (resp., j2(p)) be the first (resp., second) closest
jammer to point p. Hence, {j1(p), j2(p)} = 2NJ(p). Now
we need to satisfy the constraints

TBEP(pe, j1(pe), j2(pe)) ≥ τ1, ∀pe ∈ W
⋂
U , (19)

TBEP(ps, j1(ps), j2(ps)) ≤ τ2, ∀ps ∈ W
⋂
S. (20)

We need to find an assignment to η1, . . . , η|J | satisfying (19)–

(20), with minimum total activity
∑|J |
j=1 ηj . Note that

this model is more involved than the single nearest jam-
mer model, since the values ηj depend on each other. To
overcome the computational difficulty, we use the geometric
structure of the problem as follows. We assume the prob-
lem layout satisfies the circular order assumption (Figure
5): the jammers can be ordered J = (j1, j2, . . .) such that
each TBEP constraint involves either a single jammer ji or
a pair of jammers ji, jk, and furthermore, if a witness point
w ∈ W is influenced by ji (together with possibly another
jammer), then no witness point w′ is influenced by ji1 , ji2 ,
where i1 < i < i2. (Jammer indices wrap around, from |J |
back to 1.) The implication is that once the values of ηi, ηk
are fixed, then the values of ηi+1, . . . ηk−1 (within the [i, k]
interval of indices) can be computed independently from the
values of ηk+1, ηk+2 . . . ηi−1 (outside the [i, k] interval of in-
dices).

In the 2NJ model, the circular assumption amounts to
some very natural topological assumptions on the shapes of
the storage and warehouse, e.g. being simply connected.
With this assumption, the region of influence of ji on S and
U may overlap with the regions of influence of ji−1 and ji+1,
but no other jammers.

Under the circular assumption, the solution can be simpli-
fied greatly with the following dynamic program. Let the η
values be taken from a finite set D. For fixed value of ηi, ηj
let Ii,j(η

′, η′′) be defined as TRUE if for ηi = η′, ηj = η′′

there is an assignment of ηi+1, ηi+2 . . . ηj−1 from D such
that all inequalities that involve these indices are satisfied.
(Recall that indices wrap from |J | back to 1.) Note that
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Figure 5. Left An example of a setting in which the circular as-
sumption holds. Squares indicate the witness points of W. Jammers are
indicated by disks. The portion of the fence and (boundary of) storage in-
fluenced by the orange jammer j2 (resp., green jammer j1) are highlighted
in orange (resp., green). The arrow indicates a fence point influenced by
both jammers. Right The Storage/Fence environment used in the simu-
lations.

Iij(η
′, η′′) = TRUE and Ijk(η′′, η′′′) = TRUE imply that

Iik(η′, η′′′) = TRUE.
The algorithm first computes Ii,i+1(η′, η′′) for all η′, η′′ ∈

D and i = 1, 2, 3 . . . , then merges this data to compute
Ii,i+2(η′, η′′) for i = 1, 3, 5 . . . and so on. In each itera-
tion the number of pairs considered is halved compared to
the preceding iteration. Therefore, the time complexity is
O(|J ||D|2 log |J |). Note that the storage S does not have to
be connected, and could contain several components (S1,S2
in this example),

5. SIMULATION RESULTS
The goal of the following simulation study is to evaluate

the new temporal-jamming framework in complex realistic
jamming scenarios. The results build strongly on the tools
developed in Section 4: they use the efficient algorithms for
finding optimal jamming-activity assignments, and they re-
veal the benefits of the threshold-shifting technique. The
Storage/Fence environment model used in the study is de-
picted in Figure 5. In this model, eleven friendly jammers
are located along the fence (dotted) to protect the communi-
cations of nodes within the storage (gray). In the following,
we use the 2NJ model with the fF and fI functions given in
the example of Section 4.1. We fix three of the propagation
and jamming parameters to γF = γI = 2 and αI = 0.4. The
fourth parameter, αF , is varied to model different scenarios.
A small αF implies slow decay of the information signals,
and thus corresponds to poor separation between the stor-
age and the fence, while a large αF corresponds to better
separation and an “easier” jamming problem. This can be
seen in Fig. 6(a), where, given an upper threshold τ2, a
higher lower threshold τ1 is achieved as αF grows. Fig. 6(b)
shows the delta capacity, which amounts to the achievable
communication rate, as a function of the prescribed τ2 value.
This plot shows that for low αF parameters, it is beneficial
to raise (shift) τ2 sufficiently in order to reach the maxi-
mum rate. Hence, it is seen that threshold shifting may be
beneficial to overcome more challenging jamming scenarios.
Fig. 6(c) and Fig. 6(d) provide information on the η val-
ues assigned by the optimal algorithm for each prescribed
τ2 value. Fig. 6(c) shows the maximum of the ηj values
among the jammer set J , and Fig. 6(d) shows the average
over J . These plots explain why Figs. 6(a,b) flatten out for
large τ2 values: due to saturation of jammer activity values,
it becomes impossible to increase τ1 further, regardless of
the allowable τ2.

6. CONCLUSION
In this paper, we considered the joint optimization prob-

lems arising out of the usage of friendly jammers for securing
communication in a flexible manner, i.e., choosing jamming
parameters optimally based on space as well as time. Our
results are based on a new communication framework using
the bit-error probability as a quality metric.

We first showed the benefits of temporal jamming where
jammers’ activity on individual bit instants are drawn as
i.i.d Bernoulli random variables independent of other jam-
mers. This scheme can be easily extended to the domain
of multiple jamming frequencies. Next, we showed how to
transform infeasible jamming specifications to feasible ones
without any impact to security, reliability and communica-
tion rate by changing the coding parameters. Based on this,
we presented two polynomial time approximation algorithms
for computing jammers’ activity parameters with a (1 + ε)-
approximation of the best achievable energy consumption.
Our results demonstrate the benefits of choosing coding pa-
rameters in conjunction with assigning jammers’ activity to
efficiently manage secure reliable communication.
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