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GMDSTs are relevant to inter
onne
t opti-mization in VLSI physi
al design [2, 3℄. How-ever in this appli
ation the total length of thespanning tree is also important.In the most eÆ
ient known algorithm, Ho etal. [5℄ use O(n3) time to generate a GMDSTof n points in the plane. In a generalized ver-sion of the problem, the input is a graph that
onsists of n verti
es and m weighted edges.The graph version is relevant to the design of
ommuni
ation networks. We must 
omputea minimum diameter spanning tree (MDST)of the graph. Camerini, Galbiati and MaÆ-oli [1℄ and Hassin and Tamir [4℄ show that theproblem of generating a MDST of a weightedgraph is redu
ible to the absolute 1-
enter prob-lem on a graph. This problem is 
omputablewithin O(mn + n2 log n) time [7℄. Note thatthe time bound degenerates to O(n3) when theinput graph is the 
omplete graph indu
ed byn points in the plane.The 
ubi
 time bound on GMDST genera-tion may be too large to be pra
ti
al for someappli
ations. In this paper, we des
ribe an al-gorithm that generates a spanning tree whosediameter is no more than (1 + �) times thelength of a GMDST, for any 0 < �. For any
onstant �, the time requirement of our algo-rithm is linear with respe
t to n.In the next se
tion we present several severalknown properties of GMDSTs. In se
tions 3and 4, we solve restri
ted versions of the prob-lem where the points are grid-aligned and theGMDST is restri
ted to also be aligned withthe grid. Se
tion 5 presents our approximationalgorithm where we show how to redu
e the1



p p
1 2

Figure 1: A 2-star GMDST for whi
h 
on-ne
ting ea
h point to the 
loser internal vertexwould produ
e a spanning tree of greater diam-eter. This tree satis�es the stability 
ondition,sin
e neither 
ir
le 
ontains all points.problem to several of the restri
ted versions wesolved in se
tion 4. We 
on
lude with se
tion6.2 PreliminariesA geometri
 graph is a graph that is 
omposedof a set of points, and a set of edges. Ea
h edge
an be represented by a line segment betweentwo points. The weight of an edge is the Eu-
lidean, straight-line distan
e between its end-points. The diameter of a graph is the sum ofthe edge-weights of the longest path throughthe graph.Given a point set P , a k-star, 1 � k � nfor P is a spanning tree of the 
omplete Eu-
lidean graph on P whi
h has k internal nodes.Ho et al. [5℄ show that every point set admitsa GMDST that is either a 1-star or a 2-star,by a ni
e geometri
 appli
ation of the triangleinequality.For a given spanning tree of a point setP , T (P ), let jT (P )j denote the diameter ofT (P ). For a path p1p2 : : : pk through a tree,let jp1p2 : : : pkj denote the length of the path.It is tempting to 
onje
ture that one mayform a minimum diameter 2-star with internal

verti
es p1 and p2 by simply joining every otherpoint to the 
loser of p1 or p2. Figure 1 showsthat this is not suÆ
ient, but illustrates a 
on-dition of Jones[6℄ for how the remaining pointsin P 
an be 
onne
ted to the given interior ver-ti
es of a 2-star.Lemma 2.1 [6℄ Suppose that points p1; p2 2 Pform a horizontal line p1p2 from left to right.There exists a verti
al line L su
h that 
on-ne
ting points left of L to p1 and right of L top2 produ
es a minimum diameter spanning treeamong all spanning trees with interior verti
esp1 and p2.Ho et al. [5℄ also establish a stability 
ondi-tion for 2-stars, whi
h 
an also be illustratedin Figure 1. Let Pi � P n fp1; p2g denote thepoints joined to interior vertex pi.Lemma 2.2 [5℄ The diameter of a 2-star isdetermined by a three-edge path if, for i 2f1; 2g, some point not joined to pi is fartherthan all points joined to pi. That is,maxq2Pi jpiqj < maxq02P3�i jpiq0j:We de�ne a (1+�)-approximation of an opti-mal GMDST as a spanning tree whose diameteris no more than (1+ �) times the diameter of aGMDST. We 
all an algorithm that produ
essu
h a tree, a (1 + �)-approximation algorithm.A uniform grid is a grid 
omposed of an in�-nite number of horizontal and verti
al lines inthe plane, su
h that adja
ent lines are pla
ed atuniform intervals. The grid breaks up the planeinto square regions that we 
all grid-squares.The 
enter of a grid-square is the point in themiddle of the square that lies equidistant fromall four 
orners of the grid-square. De�ne agrid-aligned point set as a set of points in theplane, su
h that points lie only at the 
enters ofgrid-squares, with respe
t to some underlyinggrid.2



3 A Simpler ProblemInstead of a general point set, we �rst 
onsidera grid-aligned point set P 
ontained in an mrow and m 
olumn bounding box. We also re-stri
t the spanning tree to be either a 1-star,or a 2-star su
h that both interior verti
es liein a single row of the grid. We 
all this spe
ialversion of the GMDST a restri
ted geometri
minimum diameter spanning tree (RGMDST).Suppose further that we have been given, forea
h row j of the m rows, two 
andidate pointspj1; pj2 2 P su
h that (a) if the RGMDST is a1-star, then the interior vertex is pja for some1 � j � m and a 2 f1; 2g, and (b) if theRGMDST of P is a 2-star then the interior ver-ti
es are pj1 and pj2 for some 1 � j � m. Wenow show how how we 
an eÆ
iently exa
tlysolve the RGMDST problem when we are giventhe 
andidate interior verti
es. To do this we�rst �nd the optimal 1-star, then �nd the op-timal 2-star and take the minimum of the two.Lemma 3.1 Let P be a grid-aligned set of npoints 
ontained in an m � m bounding box.Given two 
andidate interior verti
es pj1pj2 2P in ea
h row j, 1 � j � m, su
h that the op-timal interior vertex is among the 
andidates,then the minimum diameter 1-star of P 
an befound in O(m logm + n) time and O(m + n)spa
e.Proof: The optimal interior vertex 
andidatewill minimize the sum of the distan
e toits furthest neighbor and its se
ond furthestneighbor. The potential furthest and se
ondfurthest neighbors are the top and bottomtwo points of P in ea
h 
olumn. Ho et al. [5℄show how the se
ond order furthest-neighborVoronoi diagram of these 4m points 
an be
omputed in O(m logm) time. Using pointlo
ation in this diagram, ea
h of the 2m
andidate monopoles 
an be evaluated inO(logm) time. 2We now turn to 2-stars.

Lemma 3.2 Let P be a grid-aligned set of npoints 
ontained in an m row and m 
olumnbounding box. Given 
andidate interior verti
espj1pj2 2 P in ea
h row j, 1 � j � m, su
hthat the optimal horizontally restri
ted 2-starhas interior verti
es among the 
andidate pairs,then the optimal 2-star RGMDST of P 
an befound in O(m2 + n) time and O(m+ n) spa
e.Proof: Assume that pj1 is left of pj2 for allgrid-rows j. By lemma 2.1 we know that aminimum diameter 2-star with interior verti
espj1 and pj2 
an be found by joining the pointsleft of some verti
al line to pj1 and the remain-ing points to pj2. Sin
e we do not know inadvan
e whi
h verti
al line is appropriate, weuse a sweepline to examine all possibilities.To evaluate a parti
ular position of thesweepline we need to know the furthest neigh-bor of pj1 left of the sweepline and the furthestneighbor of pj2 right of the sweepline. Thepotential furthest neighbors are the top andbottom points in ea
h 
olumn. These extremepoints 
an be pre
omputed in O(m + n) timeand spa
e.Let us now �x our attention to a parti
u-lar row j. The sweep begins with the verti-
al sweepline left of the grid-aligned boundingbox B. We note that there is no furthest pointfrom pj1 left of the sweepline. We then movethe sweep line to the right one grid-
olumn at atime. After ea
h move we 
ompute the furthestneighbor of pj1 that is left of the sweepline.This furthest neighbor will either be the highestor lowest point of Pnfpj1; pj2g in the 
olumnjust left of the sweepline, or it will be the pre-vious furthest neighbor from before the move.We re
ord for ea
h 
olumn k the distan
e fromthe furthest left neighbor, l1(k), whi
h is thedistan
e from the element of Pnfpj1; pj2g leftof or in 
olumn k that is furthest from pj1. Ifthere is no su
h furthest left neighbor l1(k) iszero. Ea
h l1(k) is 
omputed in 
onstant time.We 
an likewise sweep a verti
al line from theright and 
ompute r1(k), the distan
e from the3



element of Pnfpj1; pj2g right of or in 
olumnk that is furthest from pj1. Finally, we also
ompute l2(k) and r2(k), as the 
orrespondingdistan
es to pivot pj2.After this is done we 
an 
ompute the diam-eter of the 2-star with interior verti
es pj1 andpj2 asDj = mink fl1(k) + d(pj1; pj2) + r2(k + 1)g (1)where the minimum is taken over all 
olumnsfor whi
h the stability 
onditions l1(k) < r1(k+1) and r2(k + 1) < l2(k) both hold. If one ofthe two 
onditions does not hold then the 
om-putation of equation 1 underestimates the a
-tual diameter determined by the two furthestpoints from one of the two interior verti
es.Sin
e there are m 
olumns, altogether O(m)time and spa
e is expended in 
omputing andstoring the li(k) and ri(k) values for the row j.Testing stability 
onditions and 
omputing theresult, Dj, then requires a further O(m) timeusing equation 1.We repeat this pro
ess for ea
h of the mrows. Altogether O(m2) time and O(m) spa
eis expended in 
omputing all the Dj . Thediameter of the optimal 2-star with interiorverti
es pj1 and pj2, for all grid-rows, 
an thenbe 
omputed in a further O(m) time. 24 Solving the RGMDST prob-lemIn this se
tion we show how to 
ompute 
an-didate interior verti
es so that the RGMDSTproblem of a grid-aligned point set P 
an beredu
ed to the simpler problem of se
tion 3.4.1 AnalysisImagine a 1-star of a planar point set. With-out 
hanging the stru
ture of the graph, movethe interior vertex to the left and to the rightalong a horizontal line. How does moving the
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2Figure 2: The diameter of a 1-star is non-de
reasing about the optimum.interior vertex in this manner a�e
t the diam-eter of the 1-star? As we show in the followinglemma, there is an optimum region where thediameter of the tree is minimum. As we moveaway from this region, the diameter of the treedoes not de
rease, i.e. there are no points of\lo
al optimum" along the line.Lemma 4.1 Given a point set P , and three
ollinear points p1; p2; p3, su
h that p2 lies be-tween p1 and p3, the diameter of the 1-star ofP in whi
h p2 is the interior vertex is smallerthan the maximum of the diameter of the 1-starwith interior vertex p1, and the diameter of the1-star with interior vertex p3.Proof: Let points q1; q2 2 P be the furthesttwo points from p2 in P . The longest paththrough the tree in whi
h p2 is the interior ver-tex is q1p2q2. The longest path through the 1-star in whi
h p1 is the interior vertex must beat least as large as the path q1p1q2. Likewisethe longest path through the 1-star in whi
h p3is the interior vertex must be at least as largeas the path q1p3q2 .Suppose, for the moment, that q1 and q2 lieon opposite sides of the line through p1, p2 andp3, as is shown in Figure 2. The shortest path4



with endpoints q1 and q2 is the straight linesegment between q1 and q2. The more a pathdeviates from the straight line, the longer it is.Clearly, q1p2q2 deviates less than at least one ofq1p1q2, or q1p3q2. Hen
e, the diameter of the1-star with interior vertex p2 is less than themaximum of the diameter of the 1-star withinterior vertex p1, and, the diameter of the 1-star with interior vertex p3.A similar argument 
an be made for thesituation in whi
h q1 and q2 lie on the sameside of the line through p1, p2 and p3, therebyproving the lemma. 2For a given line l and point set P , a Steinermonopole of l and P is a point s 2 l su
h thatthe diameter of the 1-star of P [ fsg with in-terior vertex s is minimum, among su
h treeswith interior Steiner verti
es on l. Note thats is not ne
essarily an element of P . Whenwe speak of a Steiner monopole of a parti
ulargrid-row, we refer to the Steiner monopole thatlies on the line that passes through the 
entersof every grid-square in the grid-row.The following lemma des
ribes a useful rela-tionship between the optimal Steiner monopolealong a given grid-line, and the optimal pair ofinterior verti
es of a 2-star that is restri
ted tolie on that grid-line.Lemma 4.2 Let P be a grid-aligned point setand let r be a grid-row 
ontaining points of P .Let �r(P ) be the minimum diameter spanningtree of P whi
h is restri
ted to be either a 1-starwith interior vertex in row r, or a 2-star withboth interior verti
es in row r. If �r(P ) is a2-star then no point of P lies on the horizontalline segment between the two interior verti
es,p1 and p2, and the Steiner monopole s of thegrid-row r must lie between p1 and p2.Proof: Assume that there exists no 1-star�r(P ). Then �r(P ) is 2-star with interior ver-ti
es p1 and p2, p1 to the left of p2.Suppose that there exists a point p 2 P onthe horizontal line segment between p1 and p2.
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Figure 3: Improving a 2-star spanning tree.Let Pi be the points of Pnfp1; p2; pg 
onne
tedto pi in �r(P ), i = 1; 2. If the furthest pointfrom p in P lies in P1, then generate a new 2-star with interior verti
es p1 and p. In Figure 3,the furthest point from p is labeled q. In thenew tree, add an edge between p1 to p, addedges between p1 and every other point (besidesitself and p) in P1, and add edges between p andevery other point in P2 (these edges are showndashed in Figure 3.Sin
e the furthest point from p lies in P1, thelongest path through the new tree will eitherrun (1) from a point in P1, to p1, and to anotherpoint in P1, or else (2) from a point in P1, top1, to p, and �nally to some point in P2. Ineither 
ase, it is easy to see that by the triangleinequality, the diameter of the new tree 
annotbe larger than the diameter of �r(P ).Therefore, if �r(P ) must be a 2-star thereexists a �r(P ) su
h that no point of P lies onthe horizontal line segment between the interiorverti
es.We must now show that, if there exists onlya 2-star �r(P ), then the Steiner monopole onthe horizontal line through the interior verti
es,lies between the interior verti
es. Assume tothe 
ontrary that Steiner monopole s of grid-row r lies to the right of p2. The 
ase that itlies left of p1 is symmetri
.Let q1 and q2 2 P be the two furthest pointsfrom p2. For the moment, let us suppose thatq1 and q2 lie on opposite sides of the horizontalline through the interior verti
es. This situa-tion is depi
ted in Figure 4.The line through q1 and q2 must interse
tthe horizontal line through interior verti
es p15
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Figure 4: The Steiner monopole s on line l 
an-not lie to the right of the optimal interior ver-ti
es p1 and p2.and p2 to the right of p2. If this were not the
ase, then the 1-star with interior vertex at p2would have a diameter smaller than that of theSteiner monopolar tree. The diameter of the1-star with interior vertex p2 is jq1p2q2j. A 2-star with interior verti
es p1 and p2 must haveat least this diameter 
ontradi
ting our initialassumption that �r(P ) is not a 1-star.The 
ase that q1 and q2 reside on the sameside of the horizontal line through the dipolesis similar. If a 2-star �r(P ) exists in whi
hthe Steiner monopole in the same grid-rowas the interior verti
es does not lie betweenthe interior verti
es, then there exists a 1-star�r(P ). 24.2 Computing 
andidate interiorverti
esWe now show how to 
ompute, for ea
h grid-row in the bounding box of P , the Steinermonopole of that row. From this informa-tion, we 
an 
ompute a set of 
andidate inte-rior verti
es in ea
h row. These are the twopoints of ea
h row, that are nearest the Steinermonopole, su
h that one lies left of the Steinermonopole, and the other lies to the right, byLemma 4.2.As in the proof of lemma 3.1, the se
ond or-

der furthest point Voronoi Diagram of P 
anbe 
omputed in O(m logm) time. On
e thisdiagram is 
omputed, the furthest two pointsfrom any point p are those two points 
orre-sponding with the Voronoi 
ell that 
ontainsp. For ea
h row of the grid, we 
an 
omputethe furthest two points from every grid-alignedpoint in that row in an additionalO(m) time bytraversing Voronoi 
ells, from a 
ell to an adja-
ent 
ell, along the line that passes through thepoints in the row. On
e we know the furthesttwo points from a point p, in 
onstant time we
an 
ompute the diameter of the 1-star with in-terior vertex p. There arem rows, and so it willtake a total of O(m2) time to pro
ess all rowsin this manner. This gives us the best possi-ble grid-aligned Steiner monopole and its 
ostin O(m2) time. The 
andidate interior verti
esof ea
h row 
an be 
omputed in an additionalO(m) time per row.We now present the main result of this se
-tion.Theorem 4.1 Given a set P of n pointsaligned with a grid G and 
ontained withina bounding box of m � m grid-squares, thereis an O(m2)-time algorithm that generates aRGMDST of P .Proof: On
e we determine the best 
andidateinterior verti
es in ea
h grid-row, in O(m) timeper row, this redu
es the problem to the sim-pler problem of se
tion 3. Lemmas 3.1 and 3.2
omplete the proof. 25 The approximation algo-rithmIn order to approximate an optimum GMDSTof a general point set, we transform the prob-lem to several instan
es of the RGMDST prob-lem. Let P be an arbitrary set of points in theplane with a GMDST �(P ).Suppose that �(P ) is a 2-star. We seek tooverlay the plane with a grid G, with grid-square edges of length �, so that that the two6
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φ/2Figure 5: The line through p1 and p2, 
loselyaligned with the horizontal grid-lines of two o�-set grids.interior verti
es of �(P ), p1 and p2, lie in a sin-gle grid-row. Intuitively, the angle between theline that passes through the two interior ver-ti
es of �(P ) and the orientation of the "hori-zontal" grid lines of G should be small. Let Ddenote the distan
e between the furthest twopoints of P . Therefore, jp1p2j � D. Let � de-note the smaller angle between the line throughp1 and p2, and the horizontal grid-lines of G.Using trigonometry, we �nd that ifsin � < �D (2)then p1 and p2 
an reside in a single grid-rowof a grid oriented like G. By insisting thatsin � < �=2D = �2D (3)we need 
onsider only two su
h grids, o�setfrom one another by a verti
al distan
e of �2 .Figure 5 shows that if � is small enough thesegment joining the interior verti
es. will lie inone of the two grids whose horizontal grid linesare o�set by �2In order to a

ount for all possible orienta-tions of the line through p1 and p2, several ori-entations of grids are used.Lemma 5.1 The number of orientations ofgrids 
an be bounded by,�ar
sin(�=2D) = O�D� � (4)

5.1 Grid transformationOne of the O(D� ) oriented grids will 
ontain thetwo interior verti
es of an optimal 2-star of P ina single grid-row. For ea
h su
h grid, we needto generate a grid-aligned point set P 0 fromP and analyze how the gridding 
hanges theGMDST. If any point p 2 P lies on the bound-ary of two or more grid-squares, the point ismoved a negligible distan
e in some dire
tionuntil it no longer lies on a boundary. We gen-erate the grid-aligned point set P 0 as follows.For ea
h grid-square in G, if the grid-square
ontains a single point of P , then add a sin-gle point in the 
enter of the grid-square to P 0.If two or more points of P reside in the grid-square, then add exa
tly two points to P 0, su
hthat both points lie at the 
enter of the grid-square. Noti
e that set P 0 is aligned with gridG. Below, we show how a GMDST of P 0 
anbe 
onverted to a spanning tree of P , su
h thatthe diameter of this spanning tree is 
lose tooptimum.Let �(P 0) be a GMDST of P 0. Generate aspanning tree of P , T (P ), as follows. If �(P 0)is a 1-star or a 2-star with both interior verti
esin the same grid-square, then make T (P ) a 1-star su
h that the interior vertex of T (P ) is anypoint p 2 P that lies in the same grid-squareas does the interior vertex of �(P 0).Otherwise �(P 0) is a 2-star with interior ver-ti
es p01 and p02 in di�erent grid-squares. Choosetwo interior verti
es p1; p2 2 P su
h that p1 liesin the same grid-square as p01 and p2 lies in thesame grid-square as p02. In T (P ), generate anedge between p1 and p2. For every point p 2 P ,where p 6= pi for i 2 f1; 2g, su
h that p residesin the same grid-square as pi, add edge ppi toT (P ).For any grid-square that 
ontains at leastone point of P 0, if one or both of these pointsare linked by an edge to vertex p01 in �(P 0),then for ea
h point p 2 P that resides in thegrid-square add edge p1p to T (P ). Otherwise,7



for ea
h point p 2 P that resides in the grid-square, add edge p2p to T (P ).We 
all the above pro
edure of 
onvertingP to P 0, and then using a GMDST of P 0 togenerate a spanning tree of P , the grid trans-formation.Lemma 5.2 Given a set P of points in theplane with GMDST �(P ), and some value � >0, the grid transformation generates a spanningtree of P , T (P ), su
h thatjT (P )j � j�(P )j+ 6p2� (5)Proof: Ea
h point of P 0 lies at the 
enter of agrid-square, while ea
h point of P may lie any-where in the plane. Given points p 2 P andp0 2 P 0 su
h that both points lie in the samegrid-square, the distan
e between the pointswill not ex
eed p2�=2, i.e. half of the distan
ebetween two furthest 
orners of the grid-square.Let �(P ) be a GMDST of P . The longestpath from one point of P to another through�(P ) will 
onsist of at most three edges. LetG be the underlying grid of P 0. Suppose thatwe move ea
h point of P to the 
enter of thegrid-square of G in whi
h it is 
ontained. Asthe points are moved, ea
h edge of �(P ) isstret
hed by at most length p2�. Sin
e thelongest path through �(P ) 
onsists of threeedges, the diameter of the stret
hed version of�(P ) is no longer than j�(P )j+ 3p2�.Let �(P 0) be a GMDST of P 0. A spanningtree of P 0 
an be 
onstru
ted from the abovestret
hed version of �(P ) by removing all butat most two of the points (and those edges 
on-ne
ted to these points) from ea
h grid-square ofG. Noti
e that this operation does not in
reasethe diameter of the spanning tree. Hen
e,j�(P 0)j � j�(P )j+ 3p2� (6)Given �(P 0), the grid transformation de-s
ribes how to 
onvert this spanning tree to aspanning tree of P , T (P ). Consider the longest

path between two points of P through T (P ).Imagine that all the points of P are moved intothe 
enters of the grid-squares of G without al-tering the edges of T (P ). Sin
e the longestpath through T (P ) 
onsists of at most threeedges, this path is no longer than the longestpath through the stret
hed version, plus 3p2�.To 
onvert the stret
hed version of T (P ) ba
kto P 0, we must remove some of the points (andatta
hed edges) su
h that there are only twopoints in ea
h grid-square of G. This is doneby removing leaves. Sin
e there remain up totwo points in ea
h grid-square, this removal ofpoints does not shorten the diameter of thestret
hed tree.Therefore,jT (P )j � j�(P 0)j+ 3p2� (7)Combining Equation 6 with Equation 7, itfollows that,jT (P )j � j�(P )j+ 6p2� (8)25.2 Putting it all togetherIn this subse
tion, we 
ombine results of thepre
eding subse
tions to form an approxima-tion algorithm for the problem of GMDST gen-eration. The following is a useful lower boundon the diameter of a GMDST.Lemma 5.3 Given a set P of points in theplane su
h that D is the largest distan
e be-tween any two points of P , any GMDST of Pmust be of size D or larger.We now present our main result.Theorem 5.1 Given a set P of n points in theplane, there exists an algorithm su
h that, forany 0 < �, the algorithm generates a (1 + �)-approximate GMDST of P within time O(��3+n) and spa
e O(n).8



Proof: If � < 1n then we use the exa
t algo-rithm of Ho et al. [5℄ whi
h runs in O(n3) �O(��3) time and O(n) spa
e. Otherwise wepro
eed using the grid transformation. If nis larger than the number of nonempty gridsquares then it will be too 
ostly to repeat-edly pla
e all n points on ea
h of the orientedgrids. Instead we apply an initial grid trans-formation to redu
e the number of points andthen repeatedly apply the grid transformationto these initially gridded points to move themto the variously oriented grids. Using the gridtransformation twi
e in this way will double theadditive error of lemma 5.2.Re
all that D is the furthest distan
e be-tween two points in the input set P . for ea
hgrid transformation let � be the edge-length ofthe grid-squares. Set � su
h that,� = D�12p2 (9)Let �(P ) be a GMDST of P . By apply-ing the grid transformation twi
e the problemof generating a spanning tree that is no largerthan j�(P )j + 12p2� 
an be transformed toseveral instan
es of the GMDST on a grid-aligned point set. For at least one of theseinstan
es a RGMDST will serve as an approxi-mation. For the 
orre
t orientation of grid withour 
hosen value of �,j�(P )j+ 12p2�j�(P )j � 1+ 12p2j�(P )j � D�12p2 � (1+�)(10)sin
e, by Lemma 5.3, D � j�(P )j.Therefore, our algorithm 
omputes a (1+ �)-approximate GMDST of P . We now examinethe 
omplexity of this algorithm.Consider the 
onversion of P to ea
h grid-aligned set P 0. Before this 
onversion 
an o
-
ur, we must 
ompute the size of the grid-squares, �, using � and D. We know �, butmust 
ompute D from P . We 
an approximatethe de�ned value of D by setting D equal to themaximum of (1) the largest verti
al distan
ebetween two points of P , and (2) the largest

horizontal distan
e between two points of P .We get a value for D su
h that D � j�(P )j.Further, this value 
an be 
omputed in lineartime with respe
t to the number of points inP .Sin
e no two points of P lie verti
ally orhorizontally further apart than distan
e D,set P will �t entirely within a grid-aligned,D�D bounding box, B. These dimensions 
anbe rewritten in terms of the number of grid-squares on ea
h side of B as,D �D�2 = D �D(D�)2=(12p2)2 = O(��1)�O(��1)(11)Re
all that set P 0 is generated by adding upto two points to the 
enter of ea
h grid-squareusing the two grid transformations. The �rsttransformation 
an be a

omplished withintime (and spa
e) O(��1+n) by using radix sortand is done only on
e. The se
ond transfor-mation 
an be performed in O(��2) time andO(n) spa
e. On
e an optimum RGMDST span-ning tree of P 0 is generated the size is re
orded.Only for the grid orientation that allows theminimum sized RGMDST is the tree 
onvertedto a spanning tree of P within an additionalO(��2 + n) time. Hen
e, the grid transforma-tion runs in a total of O(��2) time per orienta-tion plus O(��2 + n) initial and �nal 
osts.By Lemma 5.1, the number of grid orien-tations 
onsidered for the grid transformation
an be bounded by O(D=�), where D is thelargest distan
e between any two points in P .Therefore, the number of orientations 
an bebounded by,O�D� � = O� DD�� = O(��1) (12)For ea
h of these O(��1) orientations we ex-pend O(��2) time for the se
ond grid transfor-mation plus an additional O(��2) time to solvethe RGMDST problem on the gridded pointset. Overall, our approximation algorithm runsin O(��3 + n) time and O(n) spa
e. 29



6 Con
lusionsThe approximation algorithm that we presentin this paper is linear with respe
t to the sizeof the input set. For appli
ations in whi
h anapproximate GMDST will suÆ
e, this is a sig-ni�
ant improvement over the existing 
ubi
time algorithms. It remains open as to whetheror not the 
ubi
 time bound 
an be improvedupon by an algorithm that is guaranteed to �ndan optimum solution.Using the algorithm in the paper we obtaina spanning tree whose diameter d is no morethan (1+ �) times the diameter d� of GMDST,i.e. d� � d � (1 + �)d�. We may ask anotherquestion: Given a value Æ, �nd a spanning treewhose diameter d is no more than the optimaldiameter d� + Æ. In other words, d� � d �d� + Æ. To a
hieve this with our algorithm weneed �d� � Æ and therefore � � Æd� However, wedon't know d�. To determine the needed � we�rst run the algorithm with � = 1 and obtaind0, su
h that d� � d0 � 2d�, then 
hoose � =Æd0 � Æd� and run the algorithm with this �. Therunning time will be O(��3+n) = O(d03Æ3 +n) =O(d�3Æ3 +n). Noti
e that if all pairwise distan
esbetween points are integers, then by taking Æ =12 we obtain an exa
t output sensitive solutionin O(d�3 + n) time.We expe
t that the approa
h used in thispaper 
an be used to 
ompute approximateGMDSTs for point sets in higher dimensions.As we move into d-dimensional spa
e, the uni-form grids will be 
omposed of d-dimensionalhyper
ubes. However, as d in
reases the ex-ponent on ��1 in the 
omplexity bounds willgrow qui
kly, making the approa
h impra
ti
alfor dimensions above three or four.Referen
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