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Abstract

Given a set P of points in the plane, a
geometric minimum-diameter spanning tree
(GMDST) of P is a spanning tree of P such
that the longest path through the tree is min-
imized. The most efficient known algorithm
generates a GMDST of n points using O(n?)
time. In this paper, we present an approxi-
mation algorithm that generates a tree whose
diameter is no more than (14¢€) times that of a
GMDST, for any € > 0. Our algorithm reduces
the problem to several grid-aligned versions of
the problem and runs within time O(e™ + n)
and space O(n).

1 Introduction

Given a set P of points in the plane, define
the weight of an edge between two points of
P as the Euclidean (Ls) distance between the
points. Compute a spanning tree of P such that
the longest path through the tree between any
two points is minimized. This tree is known as
a geometric minimum diameter spanning tree
(GMDST) of the point set.
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GMDSTs are relevant to interconnect opti-
mization in VLSI physical design [2, 3]. How-
ever in this application the total length of the
spanning tree is also important.

In the most efficient known algorithm, Ho et
al. [5] use O(n?) time to generate a GMDST
of n points in the plane. In a generalized ver-
sion of the problem, the input is a graph that
consists of n vertices and m weighted edges.
The graph version is relevant to the design of
communication networks. We must compute
a minimum diameter spanning tree (MDST)
of the graph. Camerini, Galbiati and Maffi-
oli [1] and Hassin and Tamir [4] show that the
problem of generating a MDST of a weighted
graph is reducible to the absolute 1-center prob-
lem on a graph. This problem is computable
within O(mn + n?logn) time [7]. Note that
the time bound degenerates to O(n?) when the
input graph is the complete graph induced by
n points in the plane.

The cubic time bound on GMDST genera-
tion may be too large to be practical for some
applications. In this paper, we describe an al-
gorithm that generates a spanning tree whose
diameter is no more than (1 + €) times the
length of a GMDST, for any 0 < e. For any
constant €, the time requirement of our algo-
rithm is linear with respect to n.

In the next section we present several several
known properties of GMDSTs. In sections 3
and 4, we solve restricted versions of the prob-
lem where the points are grid-aligned and the
GMDST is restricted to also be aligned with
the grid. Section 5 presents our approximation
algorithm where we show how to reduce the



Figure 1: A 2-star GMDST for which con-
necting each point to the closer internal vertex
would produce a spanning tree of greater diam-
eter. This tree satisfies the stability condition,
since neither circle contains all points.

problem to several of the restricted versions we
solved in section 4. We conclude with section
6.

2 Preliminaries

A geometric graph is a graph that is composed
of a set of points, and a set of edges. Each edge
can be represented by a line segment between
two points. The weight of an edge is the Eu-
clidean, straight-line distance between its end-
points. The diameter of a graph is the sum of
the edge-weights of the longest path through
the graph.

Given a point set P, a k-star, 1 < k < n
for P is a spanning tree of the complete Eu-
clidean graph on P which has k internal nodes.
Ho et al. [5] show that every point set admits
a GMDST that is either a 1-star or a 2-star,
by a nice geometric application of the triangle
inequality.

For a given spanning tree of a point set
P, T(P), let |T(P)| denote the diameter of
T(P). For a path pips...pi through a tree,
let |p1p2 ... pk| denote the length of the path.

It is tempting to conjecture that one may
form a minimum diameter 2-star with internal

vertices p; and py by simply joining every other
point to the closer of p; or ps. Figure 1 shows
that this is not sufficient, but illustrates a con-
dition of Jones[6] for how the remaining points
in P can be connected to the given interior ver-
tices of a 2-star.

Lemma 2.1 [6] Suppose that points p1,p2 € P
form a horizontal line p1ps from left to right.
There exists a vertical line L such that con-
necting points left of L to p1 and right of L to
po produces a minimum diameter spanning tree
among all spanning trees with interior vertices

p1 and ps.

Ho et al. [5] also establish a stability condi-
tion for 2-stars, which can also be illustrated
in Figure 1. Let P, C P\ {p1,p2} denote the
points joined to interior vertex p;.

Lemma 2.2 [5] The diameter of a 2-star is
determined by a three-edge path if, for i €
{1,2}, some point not joined to p; is farther
than all points joined to p;. That 1is,

iq| < q'|.
max piq| Jnax Ipiq'|

We define a (1+ €)-approzimation of an opti-
mal GMDST as a spanning tree whose diameter
is no more than (1 + €) times the diameter of a
GMDST. We call an algorithm that produces
such a tree, a (1 4 €)-approzimation algorithm.

A uniform grid is a grid composed of an infi-
nite number of horizontal and vertical lines in
the plane, such that adjacent lines are placed at
uniform intervals. The grid breaks up the plane
into square regions that we call grid-squares.
The center of a grid-square is the point in the
middle of the square that lies equidistant from
all four corners of the grid-square. Define a
grid-aligned point set as a set of points in the
plane, such that points lie only at the centers of
grid-squares, with respect to some underlying
grid.



3 A Simpler Problem

Instead of a general point set, we first consider
a grid-aligned point set P contained in an m
row and m column bounding box. We also re-
strict the spanning tree to be either a 1-star,
or a 2-star such that both interior vertices lie
in a single row of the grid. We call this special
version of the GMDST a restricted geometric
minimum diameter spanning tree (RGMDST).

Suppose further that we have been given, for
each row j of the m rows, two candidate points
pj1,pj2 € P such that (a) if the RGMDST is a
1-star, then the interior vertex is p;, for some
1 <j <manda € {1,2}, and (b) if the
RGMDST of P is a 2-star then the interior ver-
tices are pj; and pjs for some 1 < 5 < m. We
now show how how we can efficiently exactly
solve the RGMDST problem when we are given
the candidate interior vertices. To do this we
first find the optimal 1-star, then find the op-
timal 2-star and take the minimum of the two.

Lemma 3.1 Let P be a grid-aligned set of n
points contained in an m X m bounding boz.
Given two candidate interior vertices pjipje €
P in each row 7, 1 < j5 < m, such that the op-
timal interior vertex is among the candidates,
then the minimum diameter 1-star of P can be
found in O(mlogm + n) time and O(m + n)
space.

Proof: 'The optimal interior vertex candidate
will minimize the sum of the distance to
its furthest neighbor and its second furthest
neighbor. The potential furthest and second
furthest neighbors are the top and bottom
two points of P in each column. Ho et al. [5]
show how the second order furthest-neighbor
Voronoi diagram of these 4m points can be
computed in O(mlogm) time. Using point
location in this diagram, each of the 2m
candidate monopoles can be evaluated in
O(logm) time. O

We now turn to 2-stars.

Lemma 3.2 Let P be a grid-aligned set of n
points contained in an m row and m column
bounding box. Given candidate interior vertices
pj1pj2 € P in each row j, 1 < 5 < m, such
that the optimal horizontally restricted 2-star
has interior vertices among the candidate pairs,
then the optimal 2-star RGMDST of P can be
found in O(m? +n) time and O(m +n) space.

Proof: ~ Assume that pj; is left of p;s for all
grid-rows j. By lemma 2.1 we know that a
minimum diameter 2-star with interior vertices
pj1 and pje can be found by joining the points
left of some vertical line to p;; and the remain-
ing points to pj2. Since we do not know in
advance which vertical line is appropriate, we
use a sweepline to examine all possibilities.

To evaluate a particular position of the
sweepline we need to know the furthest neigh-
bor of p;; left of the sweepline and the furthest
neighbor of pjo right of the sweepline. The
potential furthest neighbors are the top and
bottom points in each column. These extreme
points can be precomputed in O(m + n) time
and space.

Let us now fix our attention to a particu-
lar row j. The sweep begins with the verti-
cal sweepline left of the grid-aligned bounding
box B. We note that there is no furthest point
from pj; left of the sweepline. We then move
the sweep line to the right one grid-column at a
time. After each move we compute the furthest
neighbor of p;; that is left of the sweepline.
This furthest neighbor will either be the highest
or lowest point of P\{p;i,pj2} in the column
just left of the sweepline, or it will be the pre-
vious furthest neighbor from before the move.
We record for each column k the distance from
the furthest left neighbor, [y (k), which is the
distance from the element of P\{p;i,pj2} left
of or in column £ that is furthest from p;;. If
there is no such furthest left neighbor [y (k) is
zero. Each [y (k) is computed in constant time.
We can likewise sweep a vertical line from the
right and compute 1 (k), the distance from the



element of P\{p;i,pj2} right of or in column
k that is furthest from pj;. Finally, we also
compute ls(k) and ro(k), as the corresponding
distances to pivot pjs.

After this is done we can compute the diam-
eter of the 2-star with interior vertices p;; and

Ppj2 as

D; = n%in{h(k) +d(pj1,pj2) +r2(k + 1)} (1)

where the minimum is taken over all columns
for which the stability conditions I1(k) < ry (k+
1) and ro(k + 1) < la(k) both hold. If one of
the two conditions does not hold then the com-
putation of equation 1 underestimates the ac-
tual diameter determined by the two furthest
points from one of the two interior vertices.
Since there are m columns, altogether O(m)
time and space is expended in computing and
storing the [;(k) and r;(k) values for the row j.
Testing stability conditions and computing the
result, Dj, then requires a further O(m) time
using equation 1.

We repeat this process for each of the m
rows. Altogether O(m?) time and O(m) space
is expended in computing all the D;. The
diameter of the optimal 2-star with interior
vertices pj; and pjo, for all grid-rows, can then
be computed in a further O(m) time. O

4 Solving the RGMDST prob-
lem

In this section we show how to compute can-
didate interior vertices so that the RGMDST
problem of a grid-aligned point set P can be
reduced to the simpler problem of section 3.

4.1 Analysis

Imagine a 1-star of a planar point set. With-
out changing the structure of the graph, move
the interior vertex to the left and to the right
along a horizontal line. How does moving the
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Figure 2: The diameter of a 1-star is non-
decreasing about the optimum.

interior vertex in this manner affect the diam-
eter of the 1-star? As we show in the following
lemma, there is an optimum region where the
diameter of the tree is minimum. As we move
away from this region, the diameter of the tree
does not decrease, i.e. there are no points of
“local optimum” along the line.

Lemma 4.1 Given a point set P, and three
collinear points p1,po,ps, such that py lies be-
tween p1 and ps, the diameter of the 1-star of
P in which po is the interior vertex is smaller
than the mazimum of the diameter of the 1-star
with interior vertex p1, and the diameter of the
1-star with interior vertezr ps.

Proof:  Let points q1,q2 € P be the furthest
two points from po in P. The longest path
through the tree in which ps is the interior ver-
tex is q1p2g2. The longest path through the 1-
star in which p; is the interior vertex must be
at least as large as the path qip1qe. Likewise
the longest path through the 1-star in which p3
is the interior vertex must be at least as large
as the path qip3qs .

Suppose, for the moment, that ¢; and ¢o lie
on opposite sides of the line through pq, p» and
ps3, as is shown in Figure 2. The shortest path



with endpoints ¢; and ¢o is the straight line
segment between ¢; and gs. The more a path
deviates from the straight line, the longer it is.
Clearly, q1p2g2 deviates less than at least one of
q1p1q2, or q1p3qge. Hence, the diameter of the
1-star with interior vertex ps is less than the
maximum of the diameter of the 1-star with
interior vertex pi, and, the diameter of the 1-
star with interior vertex ps.

A similar argument can be made for the
situation in which ¢; and g9 lie on the same
side of the line through p;, ps and ps3, thereby
proving the lemma. O

For a given line | and point set P, a Steiner
monopole of [ and P is a point s € [ such that
the diameter of the 1-star of P U {s} with in-
terior vertex s is minimum, among such trees
with interior Steiner vertices on [. Note that
s is not necessarily an element of P. When
we speak of a Steiner monopole of a particular
grid-row, we refer to the Steiner monopole that
lies on the line that passes through the centers
of every grid-square in the grid-row.

The following lemma describes a useful rela-
tionship between the optimal Steiner monopole
along a given grid-line, and the optimal pair of
interior vertices of a 2-star that is restricted to
lie on that grid-line.

Lemma 4.2 Let P be a grid-aligned point set
and let v be a grid-row containing points of P.
Let A, (P) be the minimum diameter spanning
tree of P which is restricted to be either a 1-star
with interior verter in row T, or a 2-star with
both interior vertices in row r. If A.(P) is a
2-star then no point of P lies on the horizontal
line segment between the two interior vertices,
p1 and po, and the Steiner monopole s of the
grid-row r must lie between p1 and po.

Proof: ~ Assume that there exists no 1-star
A, (P). Then A,(P) is 2-star with interior ver-
tices p1 and po, p1 to the left of po.

Suppose that there exists a point p € P on
the horizontal line segment between p; and po.

Figure 3: Improving a 2-star spanning tree.

Let P; be the points of P\{p1,p2,p} connected
to p; in A, (P), i = 1,2. If the furthest point
from p in P lies in P;, then generate a new 2-
star with interior vertices p; and p. In Figure 3,
the furthest point from p is labeled ¢. In the
new tree, add an edge between p; to p, add
edges between p; and every other point (besides
itself and p) in P;, and add edges between p and
every other point in P» (these edges are shown
dashed in Figure 3.

Since the furthest point from p lies in Py, the
longest path through the new tree will either
run (1) from a point in Py, to py, and to another
point in P;, or else (2) from a point in Pj, to
p1, to p, and finally to some point in Py. In
either case, it is easy to see that by the triangle
inequality, the diameter of the new tree cannot
be larger than the diameter of A, (P).

Therefore, if A,(P) must be a 2-star there
exists a A, (P) such that no point of P lies on
the horizontal line segment between the interior
vertices.

We must now show that, if there exists only
a 2-star A,(P), then the Steiner monopole on
the horizontal line through the interior vertices,
lies between the interior vertices. Assume to
the contrary that Steiner monopole s of grid-
row 7 lies to the right of ps. The case that it
lies left of p; is symmetric.

Let ¢; and g9 € P be the two furthest points
from po. For the moment, let us suppose that
q1 and ¢ lie on opposite sides of the horizontal
line through the interior vertices. This situa-
tion is depicted in Figure 4.

The line through ¢; and ¢ must intersect
the horizontal line through interior vertices p;
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Figure 4: The Steiner monopole s on line / can-
not lie to the right of the optimal interior ver-
tices p1 and po.

and p2 to the right of ps. If this were not the
case, then the 1-star with interior vertex at po
would have a diameter smaller than that of the
Steiner monopolar tree. The diameter of the
1-star with interior vertex po is |qipaga|. A 2-
star with interior vertices p; and po must have
at least this diameter contradicting our initial
assumption that A,(P) is not a 1-star.

The case that ¢; and ¢o reside on the same
side of the horizontal line through the dipoles
is similar. If a 2-star A,(P) exists in which
the Steiner monopole in the same grid-row
as the interior vertices does not lie between
the interior vertices, then there exists a 1-star
A, (P). O

4.2 Computing candidate interior

vertices

We now show how to compute, for each grid-
row in the bounding box of P, the Steiner
monopole of that row. From this informa-
tion, we can compute a set of candidate inte-
rior vertices in each row. These are the two
points of each row, that are nearest the Steiner
monopole, such that one lies left of the Steiner
monopole, and the other lies to the right, by
Lemma 4.2.

As in the proof of lemma 3.1, the second or-

der furthest point Voronoi Diagram of P can
be computed in O(mlogm) time. Once this
diagram is computed, the furthest two points
from any point p are those two points corre-
sponding with the Voronoi cell that contains
p. For each row of the grid, we can compute
the furthest two points from every grid-aligned
point in that row in an additional O(m) time by
traversing Voronoi cells, from a cell to an adja-
cent cell, along the line that passes through the
points in the row. Once we know the furthest
two points from a point p, in constant time we
can compute the diameter of the 1-star with in-
terior vertex p. There are m rows, and so it will
take a total of O(m?) time to process all rows
in this manner. This gives us the best possi-
ble grid-aligned Steiner monopole and its cost
in O(m?) time. The candidate interior vertices
of each row can be computed in an additional
O(m) time per row.

We now present the main result of this sec-
tion.

Theorem 4.1 Given a set P of n points
aligned with a grid G and contained within
a bounding box of m x m grid-squares, there
is an O(m?)-time algorithm that generates a

RGMDST of P.

Proof: Once we determine the best candidate
interior vertices in each grid-row, in O(m) time
per row, this reduces the problem to the sim-
pler problem of section 3. Lemmas 3.1 and 3.2
complete the proof. O

5 The
rithm

approximation algo-

In order to approximate an optimum GMDST
of a general point set, we transform the prob-
lem to several instances of the RGMDST prob-
lem. Let P be an arbitrary set of points in the
plane with a GMDST A(P).

Suppose that A(P) is a 2-star. We seek to
overlay the plane with a grid G, with grid-
square edges of length ¢, so that that the two
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Figure 5: The line through p; and po, closely
aligned with the horizontal grid-lines of two off-
set grids.

interior vertices of A(P), p; and po, lie in a sin-
gle grid-row. Intuitively, the angle between the
line that passes through the two interior ver-
tices of A(P) and the orientation of the "hori-
zontal” grid lines of G should be small. Let D
denote the distance between the furthest two
points of P. Therefore, |pips| < D. Let 6 de-
note the smaller angle between the line through
p1 and po, and the horizontal grid-lines of G.
Using trigonometry, we find that if

(2)

then p; and ps can reside in a single grid-row
of a grid oriented like G. By insisting that

o2 _ 9 3)
D 2D
we need consider only two such grids, offset
from one another by a vertical distance of %
Figure 5 shows that if 8 is small enough the
segment joining the interior vertices. will lie in
one of the two grids whose horizontal grid lines
are offset by %
In order to account for all possible orienta-
tions of the line through p; and ps, several ori-
entations of grids are used.

. ¢
sinf < D

sinf <

Lemma 5.1 The number of orientations of
grids can be bounded by,

s ~C(g) @

5.1 Grid transformation

One of the O(%) oriented grids will contain the
two interior vertices of an optimal 2-star of P in
a single grid-row. For each such grid, we need
to generate a grid-aligned point set P’ from
P and analyze how the gridding changes the
GMDST. If any point p € P lies on the bound-
ary of two or more grid-squares, the point is
moved a negligible distance in some direction
until it no longer lies on a boundary. We gen-
erate the grid-aligned point set P’ as follows.
For each grid-square in G, if the grid-square
contains a single point of P, then add a sin-
gle point in the center of the grid-square to P’.
If two or more points of P reside in the grid-
square, then add exactly two points to P’, such
that both points lie at the center of the grid-
square. Notice that set P’ is aligned with grid
G. Below, we show how a GMDST of P’ can
be converted to a spanning tree of P, such that
the diameter of this spanning tree is close to
optimum.

Let A(P') be a GMDST of P'. Generate a
spanning tree of P, T(P), as follows. If A(P’)
is a 1-star or a 2-star with both interior vertices
in the same grid-square, then make 7(P) a 1-
star such that the interior vertex of 7 (P) is any
point p € P that lies in the same grid-square
as does the interior vertex of A(P’).

Otherwise A(P’) is a 2-star with interior ver-
tices p} and p), in different grid-squares. Choose
two interior vertices py,p2 € P such that p; lies
in the same grid-square as p) and py lies in the
same grid-square as ph. In 7 (P), generate an
edge between p; and py. For every point p € P,
where p # p; for i € {1,2}, such that p resides
in the same grid-square as p;, add edge pp; to
T(P).

For any grid-square that contains at least
one point of P, if one or both of these points
are linked by an edge to vertex p} in A(P’),
then for each point p € P that resides in the
grid-square add edge pip to T(P). Otherwise,



for each point p € P that resides in the grid-
square, add edge pop to T (P).

We call the above procedure of converting
P to P', and then using a GMDST of P’ to
generate a spanning tree of P, the grid trans-
formation.

Lemma 5.2 Given a set P of points in the
plane with GMDST A(P), and some value ¢ >
0, the grid transformation generates a spanning

tree of P, T(P), such that

IT(P)| < |A(P)| +6v2¢ (5)

Proof: Each point of P’ lies at the center of a
grid-square, while each point of P may lie any-
where in the plane. Given points p € P and
p' € P’ such that both points lie in the same
grid-square, the distance between the points
will not exceed v/2¢/2, i.e. half of the distance
between two furthest corners of the grid-square.

Let A(P) be a GMDST of P. The longest
path from one point of P to another through
A(P) will consist of at most three edges. Let
G be the underlying grid of P’. Suppose that
we move each point of P to the center of the
grid-square of G in which it is contained. As
the points are moved, each edge of A(P) is
stretched by at most length v/2¢. Since the
longest path through A(P) consists of three
edges, the diameter of the stretched version of
A(P) is no longer than |A(P)| + 3v/2¢.

Let A(P') be a GMDST of P'. A spanning
tree of P' can be constructed from the above
stretched version of A(P) by removing all but
at most two of the points (and those edges con-
nected to these points) from each grid-square of
G. Notice that this operation does not increase
the diameter of the spanning tree. Hence,

AP < JA(P)] +3V2¢ (6)

Given A(P’), the grid transformation de-
scribes how to convert this spanning tree to a
spanning tree of P, T (P). Consider the longest

path between two points of P through 7 (P).
Imagine that all the points of P are moved into
the centers of the grid-squares of G without al-
tering the edges of T (P). Since the longest
path through 7 (P) consists of at most three
edges, this path is no longer than the longest
path through the stretched version, plus 3v/2¢.
To convert the stretched version of 7 (P) back
to P', we must remove some of the points (and
attached edges) such that there are only two
points in each grid-square of G. This is done
by removing leaves. Since there remain up to
two points in each grid-square, this removal of
points does not shorten the diameter of the
stretched tree.

Therefore,

IT(P)| < |A(P")] +3V2¢ (7)

Combining Equation 6 with Equation 7, it

follows that,

IT(P) < |A(P)| +6v2¢ (8)

a

5.2 Putting it all together

In this subsection, we combine results of the
preceding subsections to form an approxima-
tion algorithm for the problem of GMDST gen-
eration. The following is a useful lower bound
on the diameter of a GMDST.

Lemma 5.3 Given a set P of points in the
plane such that D is the largest distance be-
tween any two points of P, any GMDST of P
must be of size D or larger.

We now present our main result.

Theorem 5.1 Given a set P of n points in the
plane, there exists an algorithm such that, for
any 0 < €, the algorithm generates a (1 + €)-
approzimate GMDST of P within time O(e 3+
n) and space O(n).



Proof: 1If € < % then we use the exact algo-
rithm of Ho et al. [5] which runs in O(n3) C
O(e~3) time and O(n) space. Otherwise we
proceed using the grid transformation. If n
is larger than the number of nonempty grid
squares then it will be too costly to repeat-
edly place all n points on each of the oriented
grids. Instead we apply an initial grid trans-
formation to reduce the number of points and
then repeatedly apply the grid transformation
to these initially gridded points to move them
to the variously oriented grids. Using the grid
transformation twice in this way will double the
additive error of lemma 5.2.

Recall that D is the furthest distance be-
tween two points in the input set P. for each
grid transformation let ¢ be the edge-length of
the grid-squares. Set ¢ such that,

De
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Let A(P) be a GMDST of P. By apply-
ing the grid transformation twice the problem
of generating a spanning tree that is no larger
than |A(P)| + 12/2¢ can be transformed to
several instances of the GMDST on a grid-
aligned point set. For at least one of these
instances a RGMDST will serve as an approxi-
mation. For the correct orientation of grid with
our chosen value of ¢,

|A(P)] + 12v/2¢
NG

¢ = (9)

12v/2  De
<A T2ve <19
10)

since, by Lemma 5.3, D < |A(P)].

Therefore, our algorithm computes a (1 + ¢€)-
approximate GMDST of P. We now examine
the complexity of this algorithm.

Consider the conversion of P to each grid-
aligned set P’. Before this conversion can oc-
cur, we must compute the size of the grid-
squares, ¢, using € and D. We know ¢, but
must compute D from P. We can approximate
the defined value of D by setting D equal to the
maximum of (1) the largest vertical distance
between two points of P, and (2) the largest

horizontal distance between two points of P.
We get a value for D such that D < |A(P)].
Further, this value can be computed in linear
time with respect to the number of points in
P.

Since no two points of P lie vertically or
horizontally further apart than distance D,
set P will fit entirely within a grid-aligned,
D x D bounding box, B. These dimensions can
be rewritten in terms of the number of grid-
squares on each side of B as,

DxD D xD
#  (De?/(12v2)

5= O(eH x0(eh)
(11)

Recall that set P’ is generated by adding up
to two points to the center of each grid-square
using the two grid transformations. The first
transformation can be accomplished within
time (and space) O(e ! +n) by using radix sort
and is done only once. The second transfor-
mation can be performed in O(e 2) time and
O(n) space. Once an optimum RGMDST span-
ning tree of P’ is generated the size is recorded.
Only for the grid orientation that allows the
minimum sized RGMDST is the tree converted
to a spanning tree of P within an additional
O(e 2 +n) time. Hence, the grid transforma-
tion runs in a total of O(e~2) time per orienta-
tion plus O(e 2 + n) initial and final costs.

By Lemma 5.1, the number of grid orien-
tations considered for the grid transformation
can be bounded by O(D/¢), where D is the
largest distance between any two points in P.
Therefore, the number of orientations can be
bounded by,

o()-0(8)-0e

For each of these O(e~!) orientations we ex-
pend O(e2) time for the second grid transfor-
mation plus an additional O(e 2) time to solve
the RGMDST problem on the gridded point
set. Overall, our approximation algorithm runs
in O(e=® + n) time and O(n) space. O

(12)



6 Conclusions

The approximation algorithm that we present
in this paper is linear with respect to the size
of the input set. For applications in which an
approximate GMDST will suffice, this is a sig-
nificant improvement over the existing cubic
time algorithms. It remains open as to whether
or not the cubic time bound can be improved
upon by an algorithm that is guaranteed to find
an optimum solution.

Using the algorithm in the paper we obtain
a spanning tree whose diameter d is no more
than (1 + €) times the diameter d* of GMDST,
ie. d* <d < (14 €)d*. We may ask another
question: Given a value ¢, find a spanning tree
whose diameter d is no more than the optimal
diameter d* 4+ 0. In other words, d* < d <
d* + 0. To achieve this with our algorithm we
need ed* < § and therefore € < L% However, we
don’t know d*. To determine the needed ¢ we
first run the algorithm with ¢ = 1 and obtain
d', such that d* < d' < 2d*, then choose € =
2 < £ and run the algorithm with this e. The
running time will be O(e 73 +n) = O(%I_; +n) =
O(d;—g3 +mn). Notice that if all pairwise distances
between points are integers, then by taking § =
% we obtain an exact output sensitive solution
in O(d*?® +n) time.

We expect that the approach used in this
paper can be used to compute approximate
GMDSTs for point sets in higher dimensions.
As we move into d-dimensional space, the uni-
form grids will be composed of d-dimensional
hypercubes. However, as d increases the ex-
ponent on € ! in the complexity bounds will
grow quickly, making the approach impractical
for dimensions above three or four.
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