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GMDSTs are relevant to interonnet opti-mization in VLSI physial design [2, 3℄. How-ever in this appliation the total length of thespanning tree is also important.In the most eÆient known algorithm, Ho etal. [5℄ use O(n3) time to generate a GMDSTof n points in the plane. In a generalized ver-sion of the problem, the input is a graph thatonsists of n verties and m weighted edges.The graph version is relevant to the design ofommuniation networks. We must omputea minimum diameter spanning tree (MDST)of the graph. Camerini, Galbiati and MaÆ-oli [1℄ and Hassin and Tamir [4℄ show that theproblem of generating a MDST of a weightedgraph is reduible to the absolute 1-enter prob-lem on a graph. This problem is omputablewithin O(mn + n2 log n) time [7℄. Note thatthe time bound degenerates to O(n3) when theinput graph is the omplete graph indued byn points in the plane.The ubi time bound on GMDST genera-tion may be too large to be pratial for someappliations. In this paper, we desribe an al-gorithm that generates a spanning tree whosediameter is no more than (1 + �) times thelength of a GMDST, for any 0 < �. For anyonstant �, the time requirement of our algo-rithm is linear with respet to n.In the next setion we present several severalknown properties of GMDSTs. In setions 3and 4, we solve restrited versions of the prob-lem where the points are grid-aligned and theGMDST is restrited to also be aligned withthe grid. Setion 5 presents our approximationalgorithm where we show how to redue the1
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Figure 1: A 2-star GMDST for whih on-neting eah point to the loser internal vertexwould produe a spanning tree of greater diam-eter. This tree satis�es the stability ondition,sine neither irle ontains all points.problem to several of the restrited versions wesolved in setion 4. We onlude with setion6.2 PreliminariesA geometri graph is a graph that is omposedof a set of points, and a set of edges. Eah edgean be represented by a line segment betweentwo points. The weight of an edge is the Eu-lidean, straight-line distane between its end-points. The diameter of a graph is the sum ofthe edge-weights of the longest path throughthe graph.Given a point set P , a k-star, 1 � k � nfor P is a spanning tree of the omplete Eu-lidean graph on P whih has k internal nodes.Ho et al. [5℄ show that every point set admitsa GMDST that is either a 1-star or a 2-star,by a nie geometri appliation of the triangleinequality.For a given spanning tree of a point setP , T (P ), let jT (P )j denote the diameter ofT (P ). For a path p1p2 : : : pk through a tree,let jp1p2 : : : pkj denote the length of the path.It is tempting to onjeture that one mayform a minimum diameter 2-star with internal

verties p1 and p2 by simply joining every otherpoint to the loser of p1 or p2. Figure 1 showsthat this is not suÆient, but illustrates a on-dition of Jones[6℄ for how the remaining pointsin P an be onneted to the given interior ver-ties of a 2-star.Lemma 2.1 [6℄ Suppose that points p1; p2 2 Pform a horizontal line p1p2 from left to right.There exists a vertial line L suh that on-neting points left of L to p1 and right of L top2 produes a minimum diameter spanning treeamong all spanning trees with interior vertiesp1 and p2.Ho et al. [5℄ also establish a stability ondi-tion for 2-stars, whih an also be illustratedin Figure 1. Let Pi � P n fp1; p2g denote thepoints joined to interior vertex pi.Lemma 2.2 [5℄ The diameter of a 2-star isdetermined by a three-edge path if, for i 2f1; 2g, some point not joined to pi is fartherthan all points joined to pi. That is,maxq2Pi jpiqj < maxq02P3�i jpiq0j:We de�ne a (1+�)-approximation of an opti-mal GMDST as a spanning tree whose diameteris no more than (1+ �) times the diameter of aGMDST. We all an algorithm that produessuh a tree, a (1 + �)-approximation algorithm.A uniform grid is a grid omposed of an in�-nite number of horizontal and vertial lines inthe plane, suh that adjaent lines are plaed atuniform intervals. The grid breaks up the planeinto square regions that we all grid-squares.The enter of a grid-square is the point in themiddle of the square that lies equidistant fromall four orners of the grid-square. De�ne agrid-aligned point set as a set of points in theplane, suh that points lie only at the enters ofgrid-squares, with respet to some underlyinggrid.2



3 A Simpler ProblemInstead of a general point set, we �rst onsidera grid-aligned point set P ontained in an mrow and m olumn bounding box. We also re-strit the spanning tree to be either a 1-star,or a 2-star suh that both interior verties liein a single row of the grid. We all this speialversion of the GMDST a restrited geometriminimum diameter spanning tree (RGMDST).Suppose further that we have been given, foreah row j of the m rows, two andidate pointspj1; pj2 2 P suh that (a) if the RGMDST is a1-star, then the interior vertex is pja for some1 � j � m and a 2 f1; 2g, and (b) if theRGMDST of P is a 2-star then the interior ver-ties are pj1 and pj2 for some 1 � j � m. Wenow show how how we an eÆiently exatlysolve the RGMDST problem when we are giventhe andidate interior verties. To do this we�rst �nd the optimal 1-star, then �nd the op-timal 2-star and take the minimum of the two.Lemma 3.1 Let P be a grid-aligned set of npoints ontained in an m � m bounding box.Given two andidate interior verties pj1pj2 2P in eah row j, 1 � j � m, suh that the op-timal interior vertex is among the andidates,then the minimum diameter 1-star of P an befound in O(m logm + n) time and O(m + n)spae.Proof: The optimal interior vertex andidatewill minimize the sum of the distane toits furthest neighbor and its seond furthestneighbor. The potential furthest and seondfurthest neighbors are the top and bottomtwo points of P in eah olumn. Ho et al. [5℄show how the seond order furthest-neighborVoronoi diagram of these 4m points an beomputed in O(m logm) time. Using pointloation in this diagram, eah of the 2mandidate monopoles an be evaluated inO(logm) time. 2We now turn to 2-stars.

Lemma 3.2 Let P be a grid-aligned set of npoints ontained in an m row and m olumnbounding box. Given andidate interior vertiespj1pj2 2 P in eah row j, 1 � j � m, suhthat the optimal horizontally restrited 2-starhas interior verties among the andidate pairs,then the optimal 2-star RGMDST of P an befound in O(m2 + n) time and O(m+ n) spae.Proof: Assume that pj1 is left of pj2 for allgrid-rows j. By lemma 2.1 we know that aminimum diameter 2-star with interior vertiespj1 and pj2 an be found by joining the pointsleft of some vertial line to pj1 and the remain-ing points to pj2. Sine we do not know inadvane whih vertial line is appropriate, weuse a sweepline to examine all possibilities.To evaluate a partiular position of thesweepline we need to know the furthest neigh-bor of pj1 left of the sweepline and the furthestneighbor of pj2 right of the sweepline. Thepotential furthest neighbors are the top andbottom points in eah olumn. These extremepoints an be preomputed in O(m + n) timeand spae.Let us now �x our attention to a partiu-lar row j. The sweep begins with the verti-al sweepline left of the grid-aligned boundingbox B. We note that there is no furthest pointfrom pj1 left of the sweepline. We then movethe sweep line to the right one grid-olumn at atime. After eah move we ompute the furthestneighbor of pj1 that is left of the sweepline.This furthest neighbor will either be the highestor lowest point of Pnfpj1; pj2g in the olumnjust left of the sweepline, or it will be the pre-vious furthest neighbor from before the move.We reord for eah olumn k the distane fromthe furthest left neighbor, l1(k), whih is thedistane from the element of Pnfpj1; pj2g leftof or in olumn k that is furthest from pj1. Ifthere is no suh furthest left neighbor l1(k) iszero. Eah l1(k) is omputed in onstant time.We an likewise sweep a vertial line from theright and ompute r1(k), the distane from the3



element of Pnfpj1; pj2g right of or in olumnk that is furthest from pj1. Finally, we alsoompute l2(k) and r2(k), as the orrespondingdistanes to pivot pj2.After this is done we an ompute the diam-eter of the 2-star with interior verties pj1 andpj2 asDj = mink fl1(k) + d(pj1; pj2) + r2(k + 1)g (1)where the minimum is taken over all olumnsfor whih the stability onditions l1(k) < r1(k+1) and r2(k + 1) < l2(k) both hold. If one ofthe two onditions does not hold then the om-putation of equation 1 underestimates the a-tual diameter determined by the two furthestpoints from one of the two interior verties.Sine there are m olumns, altogether O(m)time and spae is expended in omputing andstoring the li(k) and ri(k) values for the row j.Testing stability onditions and omputing theresult, Dj, then requires a further O(m) timeusing equation 1.We repeat this proess for eah of the mrows. Altogether O(m2) time and O(m) spaeis expended in omputing all the Dj . Thediameter of the optimal 2-star with interiorverties pj1 and pj2, for all grid-rows, an thenbe omputed in a further O(m) time. 24 Solving the RGMDST prob-lemIn this setion we show how to ompute an-didate interior verties so that the RGMDSTproblem of a grid-aligned point set P an beredued to the simpler problem of setion 3.4.1 AnalysisImagine a 1-star of a planar point set. With-out hanging the struture of the graph, movethe interior vertex to the left and to the rightalong a horizontal line. How does moving the
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2Figure 2: The diameter of a 1-star is non-dereasing about the optimum.interior vertex in this manner a�et the diam-eter of the 1-star? As we show in the followinglemma, there is an optimum region where thediameter of the tree is minimum. As we moveaway from this region, the diameter of the treedoes not derease, i.e. there are no points of\loal optimum" along the line.Lemma 4.1 Given a point set P , and threeollinear points p1; p2; p3, suh that p2 lies be-tween p1 and p3, the diameter of the 1-star ofP in whih p2 is the interior vertex is smallerthan the maximum of the diameter of the 1-starwith interior vertex p1, and the diameter of the1-star with interior vertex p3.Proof: Let points q1; q2 2 P be the furthesttwo points from p2 in P . The longest paththrough the tree in whih p2 is the interior ver-tex is q1p2q2. The longest path through the 1-star in whih p1 is the interior vertex must beat least as large as the path q1p1q2. Likewisethe longest path through the 1-star in whih p3is the interior vertex must be at least as largeas the path q1p3q2 .Suppose, for the moment, that q1 and q2 lieon opposite sides of the line through p1, p2 andp3, as is shown in Figure 2. The shortest path4



with endpoints q1 and q2 is the straight linesegment between q1 and q2. The more a pathdeviates from the straight line, the longer it is.Clearly, q1p2q2 deviates less than at least one ofq1p1q2, or q1p3q2. Hene, the diameter of the1-star with interior vertex p2 is less than themaximum of the diameter of the 1-star withinterior vertex p1, and, the diameter of the 1-star with interior vertex p3.A similar argument an be made for thesituation in whih q1 and q2 lie on the sameside of the line through p1, p2 and p3, therebyproving the lemma. 2For a given line l and point set P , a Steinermonopole of l and P is a point s 2 l suh thatthe diameter of the 1-star of P [ fsg with in-terior vertex s is minimum, among suh treeswith interior Steiner verties on l. Note thats is not neessarily an element of P . Whenwe speak of a Steiner monopole of a partiulargrid-row, we refer to the Steiner monopole thatlies on the line that passes through the entersof every grid-square in the grid-row.The following lemma desribes a useful rela-tionship between the optimal Steiner monopolealong a given grid-line, and the optimal pair ofinterior verties of a 2-star that is restrited tolie on that grid-line.Lemma 4.2 Let P be a grid-aligned point setand let r be a grid-row ontaining points of P .Let �r(P ) be the minimum diameter spanningtree of P whih is restrited to be either a 1-starwith interior vertex in row r, or a 2-star withboth interior verties in row r. If �r(P ) is a2-star then no point of P lies on the horizontalline segment between the two interior verties,p1 and p2, and the Steiner monopole s of thegrid-row r must lie between p1 and p2.Proof: Assume that there exists no 1-star�r(P ). Then �r(P ) is 2-star with interior ver-ties p1 and p2, p1 to the left of p2.Suppose that there exists a point p 2 P onthe horizontal line segment between p1 and p2.
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Figure 3: Improving a 2-star spanning tree.Let Pi be the points of Pnfp1; p2; pg onnetedto pi in �r(P ), i = 1; 2. If the furthest pointfrom p in P lies in P1, then generate a new 2-star with interior verties p1 and p. In Figure 3,the furthest point from p is labeled q. In thenew tree, add an edge between p1 to p, addedges between p1 and every other point (besidesitself and p) in P1, and add edges between p andevery other point in P2 (these edges are showndashed in Figure 3.Sine the furthest point from p lies in P1, thelongest path through the new tree will eitherrun (1) from a point in P1, to p1, and to anotherpoint in P1, or else (2) from a point in P1, top1, to p, and �nally to some point in P2. Ineither ase, it is easy to see that by the triangleinequality, the diameter of the new tree annotbe larger than the diameter of �r(P ).Therefore, if �r(P ) must be a 2-star thereexists a �r(P ) suh that no point of P lies onthe horizontal line segment between the interiorverties.We must now show that, if there exists onlya 2-star �r(P ), then the Steiner monopole onthe horizontal line through the interior verties,lies between the interior verties. Assume tothe ontrary that Steiner monopole s of grid-row r lies to the right of p2. The ase that itlies left of p1 is symmetri.Let q1 and q2 2 P be the two furthest pointsfrom p2. For the moment, let us suppose thatq1 and q2 lie on opposite sides of the horizontalline through the interior verties. This situa-tion is depited in Figure 4.The line through q1 and q2 must intersetthe horizontal line through interior verties p15
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Figure 4: The Steiner monopole s on line l an-not lie to the right of the optimal interior ver-ties p1 and p2.and p2 to the right of p2. If this were not thease, then the 1-star with interior vertex at p2would have a diameter smaller than that of theSteiner monopolar tree. The diameter of the1-star with interior vertex p2 is jq1p2q2j. A 2-star with interior verties p1 and p2 must haveat least this diameter ontraditing our initialassumption that �r(P ) is not a 1-star.The ase that q1 and q2 reside on the sameside of the horizontal line through the dipolesis similar. If a 2-star �r(P ) exists in whihthe Steiner monopole in the same grid-rowas the interior verties does not lie betweenthe interior verties, then there exists a 1-star�r(P ). 24.2 Computing andidate interiorvertiesWe now show how to ompute, for eah grid-row in the bounding box of P , the Steinermonopole of that row. From this informa-tion, we an ompute a set of andidate inte-rior verties in eah row. These are the twopoints of eah row, that are nearest the Steinermonopole, suh that one lies left of the Steinermonopole, and the other lies to the right, byLemma 4.2.As in the proof of lemma 3.1, the seond or-

der furthest point Voronoi Diagram of P anbe omputed in O(m logm) time. One thisdiagram is omputed, the furthest two pointsfrom any point p are those two points orre-sponding with the Voronoi ell that ontainsp. For eah row of the grid, we an omputethe furthest two points from every grid-alignedpoint in that row in an additionalO(m) time bytraversing Voronoi ells, from a ell to an adja-ent ell, along the line that passes through thepoints in the row. One we know the furthesttwo points from a point p, in onstant time wean ompute the diameter of the 1-star with in-terior vertex p. There arem rows, and so it willtake a total of O(m2) time to proess all rowsin this manner. This gives us the best possi-ble grid-aligned Steiner monopole and its ostin O(m2) time. The andidate interior vertiesof eah row an be omputed in an additionalO(m) time per row.We now present the main result of this se-tion.Theorem 4.1 Given a set P of n pointsaligned with a grid G and ontained withina bounding box of m � m grid-squares, thereis an O(m2)-time algorithm that generates aRGMDST of P .Proof: One we determine the best andidateinterior verties in eah grid-row, in O(m) timeper row, this redues the problem to the sim-pler problem of setion 3. Lemmas 3.1 and 3.2omplete the proof. 25 The approximation algo-rithmIn order to approximate an optimum GMDSTof a general point set, we transform the prob-lem to several instanes of the RGMDST prob-lem. Let P be an arbitrary set of points in theplane with a GMDST �(P ).Suppose that �(P ) is a 2-star. We seek tooverlay the plane with a grid G, with grid-square edges of length �, so that that the two6
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φ/2Figure 5: The line through p1 and p2, loselyaligned with the horizontal grid-lines of two o�-set grids.interior verties of �(P ), p1 and p2, lie in a sin-gle grid-row. Intuitively, the angle between theline that passes through the two interior ver-ties of �(P ) and the orientation of the "hori-zontal" grid lines of G should be small. Let Ddenote the distane between the furthest twopoints of P . Therefore, jp1p2j � D. Let � de-note the smaller angle between the line throughp1 and p2, and the horizontal grid-lines of G.Using trigonometry, we �nd that ifsin � < �D (2)then p1 and p2 an reside in a single grid-rowof a grid oriented like G. By insisting thatsin � < �=2D = �2D (3)we need onsider only two suh grids, o�setfrom one another by a vertial distane of �2 .Figure 5 shows that if � is small enough thesegment joining the interior verties. will lie inone of the two grids whose horizontal grid linesare o�set by �2In order to aount for all possible orienta-tions of the line through p1 and p2, several ori-entations of grids are used.Lemma 5.1 The number of orientations ofgrids an be bounded by,�arsin(�=2D) = O�D� � (4)

5.1 Grid transformationOne of the O(D� ) oriented grids will ontain thetwo interior verties of an optimal 2-star of P ina single grid-row. For eah suh grid, we needto generate a grid-aligned point set P 0 fromP and analyze how the gridding hanges theGMDST. If any point p 2 P lies on the bound-ary of two or more grid-squares, the point ismoved a negligible distane in some diretionuntil it no longer lies on a boundary. We gen-erate the grid-aligned point set P 0 as follows.For eah grid-square in G, if the grid-squareontains a single point of P , then add a sin-gle point in the enter of the grid-square to P 0.If two or more points of P reside in the grid-square, then add exatly two points to P 0, suhthat both points lie at the enter of the grid-square. Notie that set P 0 is aligned with gridG. Below, we show how a GMDST of P 0 anbe onverted to a spanning tree of P , suh thatthe diameter of this spanning tree is lose tooptimum.Let �(P 0) be a GMDST of P 0. Generate aspanning tree of P , T (P ), as follows. If �(P 0)is a 1-star or a 2-star with both interior vertiesin the same grid-square, then make T (P ) a 1-star suh that the interior vertex of T (P ) is anypoint p 2 P that lies in the same grid-squareas does the interior vertex of �(P 0).Otherwise �(P 0) is a 2-star with interior ver-ties p01 and p02 in di�erent grid-squares. Choosetwo interior verties p1; p2 2 P suh that p1 liesin the same grid-square as p01 and p2 lies in thesame grid-square as p02. In T (P ), generate anedge between p1 and p2. For every point p 2 P ,where p 6= pi for i 2 f1; 2g, suh that p residesin the same grid-square as pi, add edge ppi toT (P ).For any grid-square that ontains at leastone point of P 0, if one or both of these pointsare linked by an edge to vertex p01 in �(P 0),then for eah point p 2 P that resides in thegrid-square add edge p1p to T (P ). Otherwise,7



for eah point p 2 P that resides in the grid-square, add edge p2p to T (P ).We all the above proedure of onvertingP to P 0, and then using a GMDST of P 0 togenerate a spanning tree of P , the grid trans-formation.Lemma 5.2 Given a set P of points in theplane with GMDST �(P ), and some value � >0, the grid transformation generates a spanningtree of P , T (P ), suh thatjT (P )j � j�(P )j+ 6p2� (5)Proof: Eah point of P 0 lies at the enter of agrid-square, while eah point of P may lie any-where in the plane. Given points p 2 P andp0 2 P 0 suh that both points lie in the samegrid-square, the distane between the pointswill not exeed p2�=2, i.e. half of the distanebetween two furthest orners of the grid-square.Let �(P ) be a GMDST of P . The longestpath from one point of P to another through�(P ) will onsist of at most three edges. LetG be the underlying grid of P 0. Suppose thatwe move eah point of P to the enter of thegrid-square of G in whih it is ontained. Asthe points are moved, eah edge of �(P ) isstrethed by at most length p2�. Sine thelongest path through �(P ) onsists of threeedges, the diameter of the strethed version of�(P ) is no longer than j�(P )j+ 3p2�.Let �(P 0) be a GMDST of P 0. A spanningtree of P 0 an be onstruted from the abovestrethed version of �(P ) by removing all butat most two of the points (and those edges on-neted to these points) from eah grid-square ofG. Notie that this operation does not inreasethe diameter of the spanning tree. Hene,j�(P 0)j � j�(P )j+ 3p2� (6)Given �(P 0), the grid transformation de-sribes how to onvert this spanning tree to aspanning tree of P , T (P ). Consider the longest

path between two points of P through T (P ).Imagine that all the points of P are moved intothe enters of the grid-squares of G without al-tering the edges of T (P ). Sine the longestpath through T (P ) onsists of at most threeedges, this path is no longer than the longestpath through the strethed version, plus 3p2�.To onvert the strethed version of T (P ) bakto P 0, we must remove some of the points (andattahed edges) suh that there are only twopoints in eah grid-square of G. This is doneby removing leaves. Sine there remain up totwo points in eah grid-square, this removal ofpoints does not shorten the diameter of thestrethed tree.Therefore,jT (P )j � j�(P 0)j+ 3p2� (7)Combining Equation 6 with Equation 7, itfollows that,jT (P )j � j�(P )j+ 6p2� (8)25.2 Putting it all togetherIn this subsetion, we ombine results of thepreeding subsetions to form an approxima-tion algorithm for the problem of GMDST gen-eration. The following is a useful lower boundon the diameter of a GMDST.Lemma 5.3 Given a set P of points in theplane suh that D is the largest distane be-tween any two points of P , any GMDST of Pmust be of size D or larger.We now present our main result.Theorem 5.1 Given a set P of n points in theplane, there exists an algorithm suh that, forany 0 < �, the algorithm generates a (1 + �)-approximate GMDST of P within time O(��3+n) and spae O(n).8



Proof: If � < 1n then we use the exat algo-rithm of Ho et al. [5℄ whih runs in O(n3) �O(��3) time and O(n) spae. Otherwise weproeed using the grid transformation. If nis larger than the number of nonempty gridsquares then it will be too ostly to repeat-edly plae all n points on eah of the orientedgrids. Instead we apply an initial grid trans-formation to redue the number of points andthen repeatedly apply the grid transformationto these initially gridded points to move themto the variously oriented grids. Using the gridtransformation twie in this way will double theadditive error of lemma 5.2.Reall that D is the furthest distane be-tween two points in the input set P . for eahgrid transformation let � be the edge-length ofthe grid-squares. Set � suh that,� = D�12p2 (9)Let �(P ) be a GMDST of P . By apply-ing the grid transformation twie the problemof generating a spanning tree that is no largerthan j�(P )j + 12p2� an be transformed toseveral instanes of the GMDST on a grid-aligned point set. For at least one of theseinstanes a RGMDST will serve as an approxi-mation. For the orret orientation of grid withour hosen value of �,j�(P )j+ 12p2�j�(P )j � 1+ 12p2j�(P )j � D�12p2 � (1+�)(10)sine, by Lemma 5.3, D � j�(P )j.Therefore, our algorithm omputes a (1+ �)-approximate GMDST of P . We now examinethe omplexity of this algorithm.Consider the onversion of P to eah grid-aligned set P 0. Before this onversion an o-ur, we must ompute the size of the grid-squares, �, using � and D. We know �, butmust ompute D from P . We an approximatethe de�ned value of D by setting D equal to themaximum of (1) the largest vertial distanebetween two points of P , and (2) the largest

horizontal distane between two points of P .We get a value for D suh that D � j�(P )j.Further, this value an be omputed in lineartime with respet to the number of points inP .Sine no two points of P lie vertially orhorizontally further apart than distane D,set P will �t entirely within a grid-aligned,D�D bounding box, B. These dimensions anbe rewritten in terms of the number of grid-squares on eah side of B as,D �D�2 = D �D(D�)2=(12p2)2 = O(��1)�O(��1)(11)Reall that set P 0 is generated by adding upto two points to the enter of eah grid-squareusing the two grid transformations. The �rsttransformation an be aomplished withintime (and spae) O(��1+n) by using radix sortand is done only one. The seond transfor-mation an be performed in O(��2) time andO(n) spae. One an optimum RGMDST span-ning tree of P 0 is generated the size is reorded.Only for the grid orientation that allows theminimum sized RGMDST is the tree onvertedto a spanning tree of P within an additionalO(��2 + n) time. Hene, the grid transforma-tion runs in a total of O(��2) time per orienta-tion plus O(��2 + n) initial and �nal osts.By Lemma 5.1, the number of grid orien-tations onsidered for the grid transformationan be bounded by O(D=�), where D is thelargest distane between any two points in P .Therefore, the number of orientations an bebounded by,O�D� � = O� DD�� = O(��1) (12)For eah of these O(��1) orientations we ex-pend O(��2) time for the seond grid transfor-mation plus an additional O(��2) time to solvethe RGMDST problem on the gridded pointset. Overall, our approximation algorithm runsin O(��3 + n) time and O(n) spae. 29



6 ConlusionsThe approximation algorithm that we presentin this paper is linear with respet to the sizeof the input set. For appliations in whih anapproximate GMDST will suÆe, this is a sig-ni�ant improvement over the existing ubitime algorithms. It remains open as to whetheror not the ubi time bound an be improvedupon by an algorithm that is guaranteed to �ndan optimum solution.Using the algorithm in the paper we obtaina spanning tree whose diameter d is no morethan (1+ �) times the diameter d� of GMDST,i.e. d� � d � (1 + �)d�. We may ask anotherquestion: Given a value Æ, �nd a spanning treewhose diameter d is no more than the optimaldiameter d� + Æ. In other words, d� � d �d� + Æ. To ahieve this with our algorithm weneed �d� � Æ and therefore � � Æd� However, wedon't know d�. To determine the needed � we�rst run the algorithm with � = 1 and obtaind0, suh that d� � d0 � 2d�, then hoose � =Æd0 � Æd� and run the algorithm with this �. Therunning time will be O(��3+n) = O(d03Æ3 +n) =O(d�3Æ3 +n). Notie that if all pairwise distanesbetween points are integers, then by taking Æ =12 we obtain an exat output sensitive solutionin O(d�3 + n) time.We expet that the approah used in thispaper an be used to ompute approximateGMDSTs for point sets in higher dimensions.As we move into d-dimensional spae, the uni-form grids will be omposed of d-dimensionalhyperubes. However, as d inreases the ex-ponent on ��1 in the omplexity bounds willgrow quikly, making the approah impratialfor dimensions above three or four.Referenes[1℄ P.M. Camerini, G. Galbiati and F. Maf-�oli, Complexity of spanning tree prob-lems I, European J. Oper. Res, 5, 346{352(1980).

[2℄ J. Cong, L. He, C. Koh, and P. Madden,Performane optimization of VLSI inter-onnetion layout, Integration, the VLSIJournal, 21, 1{94 (1996).[3℄ D. Eppstein, Spanning trees and spanners,in Handbook of Computational Geometry,North Holland, ed. Sak and Urrutia, 425{462 (2000).[4℄ R. Hassin and A. Tamir, On the mini-mum diameter spanning tree problem, In-for. Pro. Lett., 53, 109{111 (1995).[5℄ J. Ho and D. Lee and C. Chang and C.Wong, Minimum diameter spanning treesand related problems, SIAM J. on Com-put., 20, 987{997 (1991).[6℄ W. D. Jones, Eulidean CommuniationSpanning Trees, M.S. Thesis, Univ. ofSaskathewan, 1994.[7℄ O. Kariv and S. L. Hakimi, An algorithmiapproah to network loation problems I:the p-enters, SIAM J. Applied Mathe-matis, 37, 513{537 (1979).
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