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Abstract. In this paper we consider several variants of the discrete 2-
center problem. The problem is: Given a set S of n demand points and
a set C of m supply points, find two “minimal” axis-parallel squares (or
rectangles) centered at the points of C' that cover all the points of S. We
present efficient solutions for both the static and dynamic versions of the
problem (i.e. points of S are allowed to be inserted or deleted) and also
consider the problem in fixed d,d > 3 dimensional space. For the static
version in the plane we give an optimal algorithm.

1 Introduction

In this paper we consider the following problem: Given a set .S of n demand points
and a set C' of m supply points, find two axis-parallel squares (or rectangles)
that cover all the points of S and centered at the points of C' such that that
size of largest square (rectangle) is minimized. The measure of size is an area
or perimeter of the square (rectangle). If C' = S then the squares (rectangles)
called discrete or constrained.

The problems above continue a list of optimization problems that deal with
covering a set of points in the plane by two “minimal” identical geometric objects.
We mention some of them: the two center problem, solved in time O(nlog9 n)
by Sharir [21] and recently in time O(nlog®n) by Eppstein [10], employing
a randomized algorithm; the constrained two center problem, solved in time
O(né log® n) by Agarwal et al.[1]; the two line-center problem, solved in time
0(71210g2 n) by Jaromczyk et al.[16] (see also [18,12]); the two square-center
problem, where the squares are with mutually parallel sides solved in time O(n?)
by Jaromczyk et al.[14]. Hershberger and Suri [13] and Glozman et al.[12] con-
sidered the problem of covering the set S by two axis-parallel rectangles such
that the size of the larger rectangle is minimized. They present an O(nlogn)
algorithm for this problem. In [22,19,20] several algorithms are presented that
deal with a number of squares (rather than 2) that are not constrained. A re-
cent paper of Katz et al. [17] presents three algorithms for various versions of
the discrete two square problem. In the first version, the squares are axis par-
allel (O(nlog®n) time algorithm is presented), in the second, the squares are



allowed to rotate, but remain mutually parallel (O(n”log*n) time algorithm)
and in the third the squares are allowed to rotate independently (O(n3 log? n)
time algorithm).

We present an optimal algorithm for discrete 2-center problem with O((n +
m) log(n + m)) running time. The algorithm is quite simple and uses direct
method.

For our problem we generalize the definition of constrained objects. We con-
sider a dynamic version when the points of S are allowed to be inserted or
deleted. We show that if m = o(n), then we obtain the algorithm with the
sublinear (of the number of points in S) time query for a dynamic version of
the problem. Qur algorithms work for any d-dimensional space. We implicitly
use Frederickson and Johnson technique of sorted matrices [11], i.e. we embed
this technique into the decision algorithm in order to speed up the running
time. This is crucial for the dynamic version of our algorithm, because stan-
dard use of this technique may lead to additional factors of O(n), in the case of
squares, and O(n?), in the case of rectangles, to the running time. We obtain an
O(max(nlogn, mlogn(logn + logm))) runtime algorithm for the squares case
and an O(mnlogmlogn) runtime algorithm for the rectangle case. As for the
dynamic versions the runtimes for update operations for both algorithms are
polylogarithmic in n for any values of m.

This paper is organized as follows. In the next section we present our algo-
rithm for the case of squares and also describe the generalization to the dynamic
and high dimensional versions. Section 3 deals with the case of rectangles. We
conclude in Section 4.

2 Squares

2.1 Initial approach

We consider the following problem: Given a set S of n demand points and set ('
of m supply points in d-dimensional space (d > 2), find two axis-parallel squares
that cover all the points of S and which are centered at the points of C', such that
the size of the larger square 1s minimized. Let us call the solution of this problem
minimal cover. Some variation of this problem was considered by [17], where they
take C' = S in the plane and obtain an O(nlog® n) time and O(nlogn) space
solution. From now we will call a square (rectangle) discrete or constrained if
their center lies on some point of C'. The main idea of the algorithm of Katz et
al. [17] was to solve first the decision problem and then apply the sorted matrices
technique [11] as the optimization scheme. Their decision problem was: Given a
set S of n points, are there two axis-parallel discrete squares with a given area
A whose union covers S. To solve the decision problem, they put on each point
of S an axis-parallel square of size A, thus, obtaining a set P of n squares. The
decision problem was transformed to answering whether there are two points of
S which intersect each square of P.

The problem we solve below is very similar to that of [17] and differs just
by the fact that the centers of the squares are constrained to be in C' instead



of S. Our runtime is comparable as well, but our algorithm is simpler and can
be easily extended to a dynamic version of the problem, where points in S may
be added or deleted, and to higher dimensional space. Below we present our
algorithm for the planar case. As in [17], we solve the decision problem and then
show how we apply two optimization schemes.

We start with some notations and observations. Given a set of points 5, the
bounding box of S, denoted by B(S), is the smallest axis-parallel rectangle that
contains S. The bounding box of S is determined by the four points, two from
each axis : leftmost (smallest coordinate) and rightmost (largest coordinate)
points in each of the axes, which we denote by [;,l,, r;, ry. We call these points
the determinators of B(S). Denote by Xs (Yg) the sorted list of the points in S
according to # (y) axis.

The decision algorithm Let s; be a square of area A. In the decision algorithm
we go over all the points of C' as a center of s;. At each step check whether we
can cover the rest of the points of S (which are not covered by s1) by a second
constrained square s of size 4. Denote by K the set of points which is not
covered by s;. Denote by s,, and s,, two vertical lines that go through the left
and right side of sy, respectively. Similarly, sp, and sp, are two horizontal lines
that go through the bottom and the top sides of sy, respectively. For sy, (sy,) we
compute (by a binary search) the nearest point p (¢) in Xg from the left (right)
of sy, (8y,). For sy, (sn,) we compute the nearest point p’ (¢') in Ys that is below
(above) of sp, (sh,).

Let S! (S;) be the set that contains all the points of S with the z-coordinate
that less or equal (equal or larger) to the z-coordinate of ith point (jth point)
in the list Xg. Similarly, let S? (S%.) be the set that contains all the points of S
with the y-coordinate that less or equal (equal or larger) to the y-coordinate of
kth point (mth point) in the list Ys.

Observation 1 The determinators of B(K) are defined by the determinators
of B(SY), B(S}), B(S%), B(SL,). More precisely, the determinators of B(K) are
the leftmost, rightmost, lowest bottom and highest top points of the set StU Si U
Sbu st .

This observation provides a way to solve the decision problem. For each point
in C' as the center for the first square s; we do the following:

1. Find B(K). If B(K) has a side of length greater than v/.A, then the answer
to the decision problem 1s “no”.

2. Otherwise define the search region R’ which is the locus of all points of L,
distance at most @ from all four sides of B(K) and search for a point of
C'in R'. As was pointed in [17] R’ is an axis-parallel rectangle.

As in [17] we perform orthogonal range searching [7] to determine whether
there is a point of C' in R'. If there is at least one point the answer is “yes”;
otherwise it i1s “no”. It remains to explain how we compute efficiently the de-
terminators of B(S!), B(S7), B(S%), B(5,). A bounding box might be empty or



degenerate, in which case we compute the rest of determinators for this bounding
box. We explain the algorithm for B(S!).

The rightmost point p of S! has been computed. The leftmost point of S! is
the leftmost point of S. Thus, it remains to find the lowest and highest points of
the set S!. These values can be precomputed for i = 1,...,n. For the dynamic
version of the problem maintaining these values will be too costly. Therefore we
maintain a balanced binary search tree T' as follows. The nodes of T" contain the
z-coordinates of the points of 5. As we create the tree we maintain at each inner
node the maximum of the y-coordinates of the points in the subtree rooted at
this node. Thus, given the point p, the highest and lowest points of B(S!) can
be found in O(logn) time. Similarly we do for B(S7), B(S%), B(SE,).

Considering the time complexity of the whole algorithm. We spend O(n logn)
to sort all the points of S and build 7. For each point in C' as a center for s;
we compute the determinators of B(S!), B(S7), B(S%), B(St)) in total O(logn)
time. Checking the search region R’ for a point of C' takes O(logm) time using
a standard orthogonal range tree with fractional cascading [7]. We have shown:

Theorem 2. Given a set S of n demand pownts and a set C' of m center points

in the plane, one can find whether there exist two axis-parallel squares of area A,
centered at points of C, that cover all the points of S in time O(max(n logn, m(log n+
logm))) using O(n + mlogm) space.

Optimization If we generalize the observation in [17], we obtain that each
rectilinear (# or y) distance between the points of C' and the points of S (multi-
plied by 2 and squared) can be a potential area solution. Thus there are O(mn)
potential areas. One possibility for the optimization step is to use Frederickson
and Johnson algorithm for sorted matrices [11]. For example all the potential
size solutions defined by # distances can by represented as shown below. Define
a matrix M as following : consider Xg the sorted x order of points of S and
also X¢ the sorted # order of points of C. Entry (i,7),1 <i<m, 1 <j<n

Z»S — l‘]C where J:ZS 1s the z coordinate of the

point with index ¢ in Xg and l‘]C is the x coordinate of the point with index j
in X¢. The matrix M is sorted, but some of the potential area values appear
in matrix with negative sign. To overcome this difficulty, we split M into two
matrices M1 and M?. The positive entries of M* are equal to M except that the
negative entries are switched to be 0. In My the negative entries of M become
positive and the positive entries of M are switched to 0. Clearly, M and Af?
are sorted matrices and they represent the set of all possible areas according
to z-coordinates. Similar procedure works for the y-coordinates, and thus, we
obtain four sorted matrices that represent all the possible solutions. This tech-
nique works fine in our case, but still has two disadvantages. First disadvantage
is that 1t leads to some additive factor to the runtime of the optimization scheme
(O(mlog(2n/m))) and second is that we need to maintain these matrices under
deletions and insertions for the dynamic version of our problem.

Denote by T, the runtime of the decision algorithm after the preprocessing
step (which is O(nlogn 4+ mlogm)). Instead of representing all the distances by

in the matrix M stores the value z



sorted matrices, we perform a search of the square size for each point ¢ € C' as
a center for s;. The search is for each axis and in each direction (left, right, up,
down). Below we describe the algorithm for axis z, center ¢ of s; and the right
direction. The size of s1 (and also s3) is defined as follows:

1. Let the number of points of S that lie to the right of ¢ be 0 < k < n. We

denote the z-sorted set of these points by S _, = {pn—k41,---,Pn}-

2. Perform a binary search on the size of s;. This size is defined by ¢ and some

of .S} 11 Namely we perform the following actions.
(i) Find a median point Pnoki1 in the set ST _, ..

(ii) Compute the z-distance between ¢ and Ppoky1-

(iii) This distance multiplied by 2 and squared defines the size A.

(iv) Run the decision algorithm for A. If the answer to the decision problem
1s “yes”, then set k = % and return to step (ii). If the answer to the
decision problem is “no”, then set k = k + % and return to step (ii).

3. Repeat the above procedure for the remaining directions.

The smallest size for which the decision algorithm answers “yes” after running
it for each axis and in each direction is the solution to the optimization problem.
Clearly, the described algorithm takes O(nlogn + Ty logn) time. Thus, we have

Theorem 3. Given a set S of n demand points and a set C' of m center points
in the plane, one can find a minimal cover in time O(max(nlogn, mlogn(logn+
logm))) using O(n + mlogm) space.

A related lower bound We prove a lower bound to the following (closely
related to our) problem: Given an integer A and a set .S of n demand points and
a set C' of m center points on the line, find two segments of length A centered at
points of C' that cover the largest possible number of points of S. An £2(nlogn)
lower bound under the linear decision tree model i1s achieved by a reduction
from the set element uniqueness problem as in [3]. We set C' = S and asking the
question for a limit A = 0. The answer is 2 if and only if the elements of the set
are disjoint.

The dynamic version In the dynamic version of the problem above points
may be inserted to or deleted from S. Our algorithm for static version can be
extended to support dynamic updates and queries.

The sorted order of the points of S according to = and y coordinates is
maintained in 7" as following. When we delete from or insert to 7" some point
we should update all the maximum y-values stored at the inner nodes on the
updating path from the corresponding leaf to the root. In addition, for each node
v in T we store the information about the number of nodes that are in the left
and right subtrees of the tree rooted at v. This information is useful to compute
the median for optimization step (2.i) and to find the set S, _, ., by a binary
search in T'in O(log n) time. Storing this information does not affect the running
time of the insertion or deletion, since we can update while walking on the same
updating path. The update of the tree T takes O(logn) time [5]. When we have a



query “What is the minimal cover?”, we can run our decision algorithm together
with the embeded optimization scheme using 7" in order to get the answer. Using
the result from the section 2.1.2 we can conclude by theorem.

Theorem 4. Given a set S of n demand pownts and a set C' of m center points
wn the plane, where the pownts of S are allowed to be inserted or deleted, we can
answer the query “What is the minimal cover?” in O(mlogn(logn + logm))
time. The update time is O(logn) for the points of S. The preprocessing time is
O(nlogn + mlogm).

Higher dimensions Our algorithm can be generalized to work in any (fixed)
d-dimensional space, d > 3. The changes we need to perform in order to allow
this are following;:

1. For the points of C' we use d-dimensional orthogonal range tree [6] with a
query time O(logd_1 m) for the static version.

2. We maintain d balanced binary search trees 7;, ¢ = 1,...,d for the points
of S, one for each axis. But now each node contains the d — 1 maximal and
minimal values of the other coordinates. The update scheme of T; is done in

time O(d logn).
The rest follows immediately.

Theorem 5. Given a set S of n demand points and a set C' of m center points
in the d-dimensional space, d > 3, one can find a minimal cover (d-dimensional)
m

O(max(n logn, mlog n(logn + log*~' m)))

time.

Theorem 6. Given a set S of n demand points and a set C' of m center points in
the d-dimensional space, d > 3, where the points of S are allowed to be inserted or
deleted, we can answer the query “What is the minimal (d-dimensional) cover?”
in O(mlogn(logn +log™' m)) time The update time is O(logn) for the points
of S. The preprocessing time is O(nlogn + mlog?? m).

2.2 An optimal decision algorithm

In this part we show that the static version of the discrete 2-center problem in
the plane can be solved in O((n—+m) log(n+m)) time. Recall our problem. Given
a set S of n points and a set (' of m points in the plane, find whether exist two
squares of area A centered at some points of C that cover the set S. We show how
to solve the decision problem in linear time. After this we apply the optimization
technique described in Section 2.1.2 in order to get O((n 4+ m) log(n + m)) time
algorithm.

Let s; and s be two required squares. We assume that the s; is left of s
(z-coordinate of the center of s; is at most the one of s5). We also assume that
the s; is below of sz (another case is similar). Let p = \/Z/Q Consider the



bounding box B(S) = [, 7s] X [ly, 7y]. It is clear that the center of s; belongs
the region Ry =]— o0, +p] X [—o0,l, 4+ p]. In fact we can assume that it belongs
to the set of maxima of C'N Ry, 1.e. the set

{(z,y) eCNRy |V(z,y) ECNRy,2’ <zory <y}

Let L denote the list of these points sorted by z-coordinate. It can be extracted
from the sorted points of C'in O(m) time. Similarly the center of the square s;
belongs to the list Ly of points of minimaof {(z,y) € C' |2 > ro —p,y > vy — p}
which can be obtained in linear time. If one of the lists Ly or Ls is empty, there
are no required squares such that the center of one square (s3) dominates to
other one (s1).

We assume that the lists L; and L are non-empty. For each point p of the
list L1, the algorithm detects whether a point ¢ in the list Lo exists such that
the square s, with center p = (ps, py) and the square s» with center ¢ = (¢4, ¢y)
cover the set S. Let U(p) denote the set of points of S whose y-coordinate are
greater than p, + p. Let R(p) denote the set of points of S whose z-coordinate
are greater than p, + p. The set of points outside the square s; is the union of
the sets U(p) and R(p). The set U(p) is changing by insertions of points of S
when the point p steps down the list L. Hence we can compute the leftmost
points of the sets U(p) for all points p of the list L;. It takes O(n + m) time.
Similarly the bottommost points of the sets U(p) can be computed by walking
through L, from left to right. The set R(p) is updating by insertions only if we
walk through L; from right to left. So the leftmost and bottommost points of
the set R(p) can be computed in linear time.

The square ss covers the points outside the square s; if and only if g, — p
is at most z-coordinate of the leftmost point of U(p) U R(p) and ¢, — p is at
most y-coordinate of the bottommost point of U(p) U R(p). The points ¢ of
the list Ly = {ay,...,ax} such that ¢, — p is at most z-coordinate of leftmost
point of U(p) form a sublist {a1,...,a,(p)} (a(p) = 0 if the sublist is empty).
Note that «(p) is non-increasing sequence. We compute a(p) simultaneously with
computing the leftmost points of U(p). It can be done in linear time. The points
q of the list L, such that ¢, — p is at most y-coordinate of the bottommost point
of U(p) form a sublist {ag(p),...,ar} (8(p) = k+1 if the sublist is empty). The
sequence 3(p) is non-decreasing and it can be computed simultaneously with
computing the bottommost points of U(p) in linear time.

Walking through Lq from right to left, in linear time we can compute indexes
o'(p) and B'(p) that relate to the set R(p). A pair of points p and ¢ = a; form
the solution if and only if max(a(p), o/ (p)) < ¢ < min(B(p), &' (p)). Such a pair
can be found in linear time if the indexes «(p), &'(p)), B(p) and §'(p)) are known.
We have shown:

Theorem 7. Given a set S of n demand pownts and a set C' of m center points
i the plane, one can find whether there exist two axis-parallel squares of area
A, centered at points of C, that cover all the points of S in O(m + n) time.



Remark: Unfortunately, we did not find a way for dynamizing the decision
algorithm above. Any success in this direction will lead immediately to the better
results for the dynamic version of the problem.

3 Rectangles

We consider first the planar version: Given a set S of n demand points and
set C' of m center points in d-dimensional space (d > 2), find two axis-parallel
rectangles that cover all the points of S and are centered at the points of ' and
size of the larger rectangle is minimized. Let us call the solution of this problem
minimal rectangular cover. Here we consider the size as a perimeter. Hershberger
and Suri [13], Glozman et al. [12] and Bespamyatnikh and Segal [4] consider a
similar problem, but without constraining the centers of the rectangles to be in
C'. They present an algorithm which runs in time O(n logn). Our algorithm runs
in time O(mnlogmlogn).

3.1 The decision algorithm

Assume we are given a rectangle perimeter A. The general idea is very similar
to the one used for the squares: we go over all the points in C' as a center for the
first constrained rectangle r, and at each step we check whether the rest of the
points can be covered by a second discrete rectangle r5. The difference is that we
do not know the form of r; and rs. In order to solve this problem our decision
algorithm tries all possible placements of 71 on points of C' and checks whether
the set of points not covered by r; can be covered by a constrained rectangle
ro. We demonstrate our algorithm for a point ¢ € C'. Four lines [y, 15, l3,l4 with
slopes —1,1,—1,1 in quadrants in clockwise direction, starting with a positive
z and y quadrant, respectively, define the locus of all rectangles with a given
perimeter A, centered at O. The lines have to construct a 45° tilted square
Q. Assume for a moment that ¢ = O. Consider the S C S that contains all
the points of S which are inside of intersection @) of the halfplanes defined by
lines I, 15,13,14 and containing c. Each point s € 5" defines two rectangles with
center ¢ and the given perimeter: where s either determines the width of the
rectangle; or its height. For the time being we look at the rectangle whose width
is determined by s. Let s be the point that determines the widest rectangle rq
and assume w.l.o.g. that s 1s to the left of ¢.

We shrink the width of the rectangle, keeping its corners on the corresponding
lines until an event happens. An event is when a point of S is added to or deleted
from the rectangle during the width shrinking. We check if the rest of points of
S is covered by rs. If it does then we are done; otherwise we continue to shrink
the rectangle until the next event. We perform the same actions for the height
as well.

In order to speed up this algorithm we define four dynamic subsets U, D,
R, L of S’ corresponding to the halfplanes that bound r;. R is the set of all
the points of S’ that contained in the halfplane to the right of the left side of



r1. Similarly, L (U, D) is the set of points of S’ that contained in the halfplane
to the left (up, down) of the right (upper, lower) side of the rectangle r;. We
define p,(p;) to be the point z-closest to ry in R (L) and py(pq) to be the point
y-closest to ry in U (D). Assume that we are shrinking 71 in z direction until
the next event. Assume that the z-closest neighbor of p,(p;) in R(L) is p”(p)
and the y-closest neighbor of py(pq) in U(D) is pl, (pY). Thus, our event is when
one of p’;,pf or py,py enters or leaves the rectangle ry. If the next event is a
point from R or L, then the number of points uncovered by r; increases by 1,
otherwise decreases by 1. We update p,, pi, pu, pa (and also the subsets U, D, R,
L). We check whether ra can cover the rest of points K C S that are uncovered
by r1 by following algorithm.

We first find the determinators of the bounding box B(K). For the static
version of this problem, we can precompute for each set S¢, S7, Sh, St the
minimal and maximal values. If the length of some side of B(K) is larger than
A then the answer to the decision problem is “no”. Otherwise we find a search
region R’ for the center of ro. It can be done as following. We make a rectangle
re with a perimeter A and a minimal height such that ra covers B(K) and its
left lower corner of 7y coincides with the left lower corner of B(K). We slide 7,
up keeping in touch the left sides of rqy and B(K) till the left upper corners of
r1 and B(K) coincide. Then we continue sliding rs to the right keeping in touch
the upper sides of r5 and B(K), then up while touching right sides and finally to
the left while touching down sides till we reach the initial position of r2. We look
onto segments on which the center of the 75 lies during the sliding motion of the
square. This defines a rectangular search region R’ where can be found the center
of the ry that covers B(K), but only for this form of ro. Generally, 75 can have
an infinite number of forms. But, as was observed in [13], all the rectangles 7,
with the same perimeter and the same lower left, have their upper right corner
on particular curve I'. In this case of perimeter " is a segment with slope —1.
Thus we should compute R’ as before for all the forms of r» and then take their
union, thus obtaining the final search region R”. The region R” has a form of
axis-parallel rectangle rotated to 90°. In order to find whether R’ contains any
point of C' we perform a standard orthogonal range searching algorithm but only
for coordinate axes rotated to 90°.

After preprocessing O(nlogn) time, the algorithm above runs in O(nlogm)
time for one point ¢; € C if the values of B(S!), B(S}), B(S%), B(St,) are pre-
computed before. This is because we can carry each step of the algorithm in
constant time (except of orthogonal range searching) after computing the first
time boundaries of the rectangle ry.

Thus, we have

Theorem 8. Given a set S of n demand points and a set C' of m center points in
the plane, one can find whether exist two axis-parallel rectangles of perimeter A
centered at the points of C that cover all the points of S in O(max(n logn, mnlogm))
time.



3.2 Optimization

As in the case of squares we embed the optimization step into the decision al-
gorithm. Similar to the squares algorithm, the explicit use of sorted matrix may
lead to the additional additive factor O(n?) to the runtime for the optimization
algorithm. We would like to avoid the explicit use of sorted matrices for the
dynamic version of this problem by embedding the search into the decision algo-
rithm. In our case we obtain that each pair containing one rectilinear z-distance
and one y-distance between the points of S and the same point in C' (multiplied
by 4 and summarized) can be a potential perimeter solution. The optimization
scheme is very similar to previous one, but instead of performing a binary search
for each one of the directions, we define a sorted matrix M whose rows contain
the sorted z-distances from ¢; € C' to the points of S and whose columns contain
the sorted y-distances from ¢; € C' to the points of S. Note that the number of
elements in M is n?. Denote by T? the running time of the rectangles decision
algorithm for point ¢; as a center of r1. (Thus the total number of potential
perimeter solution is mn?.) Then we can perform a binary search on the ele-
ments of the matrix M, making only a constant number of calls to the decision
algorithm for point ¢; per iteration. As was shown in [11] the overall runtime
consumed by the algorithm is O(X T logn + n). We obtain

Theorem 9. Given a set S of n demand pownts and a set C' of m center points
in the plane, one can find a minimal rectangular cover in O(mnlogmlogn) time.

3.3 The dynamic version

For dynamization of the decision algorithm for rectangles we use the same up-
dating scheme as for the decision algorithm for squares. The update and query
operations the points of S remain the same. We use the same data structures as
in the dynamic version of the algorithm for squares. For the optimization step
we also have to take care of maintaining the sorted matrix for every point of
C'. It can be easily done while maintaining dynamically the sorted order of the
points of S according to their  and y-coordinates. The difference form the static
version is using a balanced binary search trees in the decision algorithm. Thus,
we have

Theorem 10. Given a set S of n demand points and a set C' of m center points
wn the plane, where the pownts of S are allowed to be inserted or deleted, we can
answer the query “What is the minimal rectangular cover?” in O(mn log n(log n+
logm)) time. The update time is O(logn) for the points of S. The preprocessing
time is O(nlogn + mlogm).

3.4 Higher Dimensions

Similarly to the case of squares, our algorithm can be generalized to work in
any (fixed) d-dimensional space, d > 3. The changes are exactly as in the d-
dimensional algorithm for the squares; which include maintaining d-dimensional



orthogonal range tree for the points of C, d balanced binary search trees, d sorted
orders of points. In addition, we perform the d-dimensional decision algorithm
by fixing one dimension and applying recursively d — 1-dimensional decision
algorithm. For the optimization step the number of potential perimeters is mn?.
We can represent them as m sorted matrices, each one of the dimension d.
Each sorted matrix is obtained by cartesian product of d 1-dimensional arrays,
identically to the plane case. If we denote by 7'¢ running time of the optimization
algorithm (static or dynamic) in d-dimensional space, d > 3, then we can be
easily verify that T¢ = O(nT9~1).

Theorem 11. Guven a set S of n demand points and a set C' of m center points
wn the d-dvmensional space, d > 3, one can find a minimal rectangular cover in
O(mn4=1log* ! mlogn) time.

Theorem 12. Guven a set S of n demand points and a set C' of m center points
wn the d-dimensional space, d > 3, where the points of S are allowed to be inserted
or deleted, we can answer the query “What is the minimal rectangular cover?”
in O(mn®'logn(logn + log™' m)) time. The update time is O(logn) for the
points of S and O(logd m) time for the points of C'. The preprocessing time is
O(nlogn + mlog®=! m).

4 Conclusions

In this paper we have presented efficient algorithms for solving static and dy-
namic discrete 2-center problems. We generalize them to the case of rectangles
and higher dimensional space. It would be interesting to consider polygons or
disks as covering objects instead of squares and rectangles. The problem of find-
ing an efficient algorithm for dynamic discrete p-center problem, general, but
fixed p, also remains open.

One of the directions of our future work is to improve the running time of
the discrete 2-center algorithms in the higher dimensions using direct method of
the optimal algorithm in the plane.
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