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Rectilinear Static and Dynamic Discrete2-center ProblemsSergei Bespamyatnikh1 and Michael Segal21 University of British Columbia, Vancouver, B.C. Canada V6T 1Z4,besp@cs.ubc.ca, http://www.cs.ubc.ca/spider/besp2 Ben-Gurion University of the Negev, Beer-Sheva 84105, Israelsegal@cs.bgu.ac.il, http://www.cs.bgu.ac.il/~segalAbstract. In this paper we consider several variants of the discrete 2-center problem. The problem is: Given a set S of n demand points anda set C of m supply points, �nd two \minimal" axis-parallel squares (orrectangles) centered at the points of C that cover all the points of S. Wepresent e�cient solutions for both the static and dynamic versions of theproblem (i.e. points of S are allowed to be inserted or deleted) and alsoconsider the problem in �xed d; d � 3 dimensional space. For the staticversion in the plane we give an optimal algorithm.1 IntroductionIn this paper we consider the following problem:Given a set S of n demand pointsand a set C of m supply points, �nd two axis-parallel squares (or rectangles)that cover all the points of S and centered at the points of C such that thatsize of largest square (rectangle) is minimized. The measure of size is an areaor perimeter of the square (rectangle). If C = S then the squares (rectangles)called discrete or constrained.The problems above continue a list of optimization problems that deal withcovering a set of points in the plane by two \minimal" identical geometric objects.We mention some of them: the two center problem, solved in time O(n log9 n)by Sharir [21] and recently in time O(n log2 n) by Eppstein [10], employinga randomized algorithm; the constrained two center problem, solved in timeO(n 43 log5 n) by Agarwal et al.[1]; the two line-center problem, solved in timeO(n2 log2 n) by Jaromczyk et al.[16] (see also [18,12]); the two square-centerproblem, where the squares are with mutually parallel sides solved in time O(n2)by Jaromczyk et al.[14]. Hershberger and Suri [13] and Glozman et al.[12] con-sidered the problem of covering the set S by two axis-parallel rectangles suchthat the size of the larger rectangle is minimized. They present an O(n logn)algorithm for this problem. In [22, 19, 20] several algorithms are presented thatdeal with a number of squares (rather than 2) that are not constrained. A re-cent paper of Katz et al. [17] presents three algorithms for various versions ofthe discrete two square problem. In the �rst version, the squares are axis par-allel (O(n log2 n) time algorithm is presented), in the second, the squares are



allowed to rotate, but remain mutually parallel (O(n2 log4 n) time algorithm)and in the third the squares are allowed to rotate independently (O(n3 log2 n)time algorithm).We present an optimal algorithm for discrete 2-center problem with O((n+m) log(n + m)) running time. The algorithm is quite simple and uses directmethod.For our problem we generalize the de�nition of constrained objects. We con-sider a dynamic version when the points of S are allowed to be inserted ordeleted. We show that if m = o(n), then we obtain the algorithm with thesublinear (of the number of points in S) time query for a dynamic version ofthe problem. Our algorithms work for any d-dimensional space. We implicitlyuse Frederickson and Johnson technique of sorted matrices [11], i.e. we embedthis technique into the decision algorithm in order to speed up the runningtime. This is crucial for the dynamic version of our algorithm, because stan-dard use of this technique may lead to additional factors of O(n), in the case ofsquares, and O(n2), in the case of rectangles, to the running time. We obtain anO(max(n logn; m logn(logn + logm))) runtime algorithm for the squares caseand an O(mn logm logn) runtime algorithm for the rectangle case. As for thedynamic versions the runtimes for update operations for both algorithms arepolylogarithmic in n for any values of m.This paper is organized as follows. In the next section we present our algo-rithm for the case of squares and also describe the generalization to the dynamicand high dimensional versions. Section 3 deals with the case of rectangles. Weconclude in Section 4.2 Squares2.1 Initial approachWe consider the following problem: Given a set S of n demand points and set Cof m supply points in d-dimensional space (d � 2), �nd two axis-parallel squaresthat cover all the points of S and which are centered at the points of C, such thatthe size of the larger square is minimized. Let us call the solution of this problemminimal cover. Some variation of this problem was considered by [17], where theytake C = S in the plane and obtain an O(n log2 n) time and O(n logn) spacesolution. From now we will call a square (rectangle) discrete or constrained iftheir center lies on some point of C. The main idea of the algorithm of Katz etal. [17] was to solve �rst the decision problem and then apply the sorted matricestechnique [11] as the optimization scheme. Their decision problem was: Given aset S of n points, are there two axis-parallel discrete squares with a given areaA whose union covers S. To solve the decision problem, they put on each pointof S an axis-parallel square of size A, thus, obtaining a set P of n squares. Thedecision problem was transformed to answering whether there are two points ofS which intersect each square of P .The problem we solve below is very similar to that of [17] and di�ers justby the fact that the centers of the squares are constrained to be in C instead



of S. Our runtime is comparable as well, but our algorithm is simpler and canbe easily extended to a dynamic version of the problem, where points in S maybe added or deleted, and to higher dimensional space. Below we present ouralgorithm for the planar case. As in [17], we solve the decision problem and thenshow how we apply two optimization schemes.We start with some notations and observations. Given a set of points S, thebounding box of S, denoted by B(S), is the smallest axis-parallel rectangle thatcontains S. The bounding box of S is determined by the four points, two fromeach axis : leftmost (smallest coordinate) and rightmost (largest coordinate)points in each of the axes, which we denote by lx; ly; rx; ry. We call these pointsthe determinators of B(S). Denote by XS (YS ) the sorted list of the points in Saccording to x (y) axis.The decision algorithm Let s1 be a square of area A. In the decision algorithmwe go over all the points of C as a center of s1. At each step check whether wecan cover the rest of the points of S (which are not covered by s1) by a secondconstrained square s2 of size A. Denote by K the set of points which is notcovered by s1. Denote by sv1 and sv2 two vertical lines that go through the leftand right side of s1, respectively. Similarly, sh1 and sh2 are two horizontal linesthat go through the bottom and the top sides of s1, respectively. For sv1 (sv2) wecompute (by a binary search) the nearest point p (q) in XS from the left (right)of sv1(sv2 ). For sh1 (sh2 ) we compute the nearest point p0 (q0) in YS that is below(above) of sh1 (sh2 ).Let Sli (Srj ) be the set that contains all the points of S with the x-coordinatethat less or equal (equal or larger) to the x-coordinate of ith point (jth point)in the list XS . Similarly, let Sbk (Stm) be the set that contains all the points of Swith the y-coordinate that less or equal (equal or larger) to the y-coordinate ofkth point (mth point) in the list YS .Observation 1 The determinators of B(K) are de�ned by the determinatorsof B(Sli), B(Srj ), B(Sbk), B(Stm). More precisely, the determinators of B(K) arethe leftmost, rightmost, lowest bottom and highest top points of the set Sli [Srj [Sbk [ Stm.This observation provides a way to solve the decision problem. For each pointin C as the center for the �rst square s1 we do the following:1. Find B(K). If B(K) has a side of length greater than pA, then the answerto the decision problem is \no".2. Otherwise de�ne the search region R0 which is the locus of all points of L1distance at most pA2 from all four sides of B(K) and search for a point ofC in R0. As was pointed in [17] R0 is an axis-parallel rectangle.As in [17] we perform orthogonal range searching [7] to determine whetherthere is a point of C in R0. If there is at least one point the answer is \yes";otherwise it is \no". It remains to explain how we compute e�ciently the de-terminators of B(Sli ); B(Srj ); B(Sbk); B(Stm). A bounding box might be empty or



degenerate, in which case we compute the rest of determinators for this boundingbox. We explain the algorithm for B(Sli ).The rightmost point p of Sli has been computed. The leftmost point of Sli isthe leftmost point of S. Thus, it remains to �nd the lowest and highest points ofthe set Sli . These values can be precomputed for i = 1; : : : ; n. For the dynamicversion of the problem maintaining these values will be too costly. Therefore wemaintain a balanced binary search tree T as follows. The nodes of T contain thex-coordinates of the points of S. As we create the tree we maintain at each innernode the maximum of the y-coordinates of the points in the subtree rooted atthis node. Thus, given the point p, the highest and lowest points of B(Sli ) canbe found in O(logn) time. Similarly we do for B(Srj ), B(Sbk), B(Stm).Considering the time complexity of the whole algorithm.We spend O(n logn)to sort all the points of S and build T . For each point in C as a center for s1we compute the determinators of B(Sli); B(Srj ); B(Sbk); B(Stm) in total O(logn)time. Checking the search region R0 for a point of C takes O(logm) time usinga standard orthogonal range tree with fractional cascading [7]. We have shown:Theorem 2. Given a set S of n demand points and a set C of m center pointsin the plane, one can �nd whether there exist two axis-parallel squares of area A,centered at points of C, that cover all the points of S in time O(max(n logn;m(logn+logm))) using O(n+m logm) space.Optimization If we generalize the observation in [17], we obtain that eachrectilinear (x or y) distance between the points of C and the points of S (multi-plied by 2 and squared) can be a potential area solution. Thus there are O(mn)potential areas. One possibility for the optimization step is to use Fredericksonand Johnson algorithm for sorted matrices [11]. For example all the potentialsize solutions de�ned by x distances can by represented as shown below. De�nea matrix M as following : consider XS the sorted x order of points of S andalso XC the sorted x order of points of C. Entry (i; j); 1 � i � m; 1 � j � nin the matrix M stores the value xSi � xCj where xSi is the x coordinate of thepoint with index i in XS and xCj is the x coordinate of the point with index jin XC . The matrix M is sorted, but some of the potential area values appearin matrix with negative sign. To overcome this di�culty, we split M into twomatricesM1 andM2. The positive entries ofM1 are equal to M except that thenegative entries are switched to be 0. In M2 the negative entries of M becomepositive and the positive entries of M are switched to 0. Clearly, M1 and M2are sorted matrices and they represent the set of all possible areas accordingto x-coordinates. Similar procedure works for the y-coordinates, and thus, weobtain four sorted matrices that represent all the possible solutions. This tech-nique works �ne in our case, but still has two disadvantages. First disadvantageis that it leads to some additive factor to the runtime of the optimization scheme(O(m log(2n=m))) and second is that we need to maintain these matrices underdeletions and insertions for the dynamic version of our problem.Denote by Td the runtime of the decision algorithm after the preprocessingstep (which is O(n logn+m logm)). Instead of representing all the distances by



sorted matrices, we perform a search of the square size for each point c 2 C asa center for s1. The search is for each axis and in each direction (left, right, up,down). Below we describe the algorithm for axis x, center c of s1 and the rightdirection. The size of s1 (and also s2) is de�ned as follows:1. Let the number of points of S that lie to the right of c be 0 � k � n. Wedenote the x-sorted set of these points by Srn�k+1 = fpn�k+1; : : : ; png.2. Perform a binary search on the size of s1. This size is de�ned by c and someof Srn�k+1. Namely we perform the following actions.(i) Find a median point pn� k2+1 in the set Srn�k+1.(ii) Compute the x-distance between c and pn� k2+1.(iii) This distance multiplied by 2 and squared de�nes the size A.(iv) Run the decision algorithm for A. If the answer to the decision problemis \yes", then set k = k2 and return to step (ii). If the answer to thedecision problem is \no", then set k = k + k2 and return to step (ii).3. Repeat the above procedure for the remaining directions.The smallest size for which the decision algorithm answers \yes" after runningit for each axis and in each direction is the solution to the optimization problem.Clearly, the described algorithm takes O(n logn+ Td logn) time. Thus, we haveTheorem 3. Given a set S of n demand points and a set C of m center pointsin the plane, one can �nd a minimal cover in time O(max(n logn; m logn(logn+logm))) using O(n+m logm) space.A related lower bound We prove a lower bound to the following (closelyrelated to our) problem: Given an integer A and a set S of n demand points anda set C of m center points on the line, �nd two segments of length A centered atpoints of C that cover the largest possible number of points of S. An 
(n logn)lower bound under the linear decision tree model is achieved by a reductionfrom the set element uniqueness problem as in [3]. We set C = S and asking thequestion for a limit A = 0. The answer is 2 if and only if the elements of the setare disjoint.The dynamic version In the dynamic version of the problem above pointsmay be inserted to or deleted from S. Our algorithm for static version can beextended to support dynamic updates and queries.The sorted order of the points of S according to x and y coordinates ismaintained in T as following. When we delete from or insert to T some pointwe should update all the maximum y-values stored at the inner nodes on theupdating path from the corresponding leaf to the root. In addition, for each nodev in T we store the information about the number of nodes that are in the leftand right subtrees of the tree rooted at v. This information is useful to computethe median for optimization step (2.i) and to �nd the set Srn�k+1 by a binarysearch in T in O(logn) time. Storing this information does not a�ect the runningtime of the insertion or deletion, since we can update while walking on the sameupdating path. The update of the tree T takes O(logn) time [5]. When we have a



query \What is the minimal cover?", we can run our decision algorithm togetherwith the embeded optimization scheme using T in order to get the answer. Usingthe result from the section 2.1.2 we can conclude by theorem.Theorem 4. Given a set S of n demand points and a set C of m center pointsin the plane, where the points of S are allowed to be inserted or deleted, we cananswer the query \What is the minimal cover?" in O(m logn(logn + logm))time. The update time is O(logn) for the points of S. The preprocessing time isO(n logn+m logm).Higher dimensions Our algorithm can be generalized to work in any (�xed)d-dimensional space, d � 3. The changes we need to perform in order to allowthis are following:1. For the points of C we use d-dimensional orthogonal range tree [6] with aquery time O(logd�1m) for the static version.2. We maintain d balanced binary search trees Ti, i = 1; : : : ; d for the pointsof S, one for each axis. But now each node contains the d� 1 maximal andminimal values of the other coordinates. The update scheme of Ti is done intime O(d logn).The rest follows immediately.Theorem 5. Given a set S of n demand points and a set C of m center pointsin the d-dimensional space, d � 3, one can �nd a minimal cover (d-dimensional)in O(max(n logn;m logn(logn+ logd�1m)))time.Theorem 6. Given a set S of n demand points and a set C of m center points inthe d-dimensional space, d � 3, where the points of S are allowed to be inserted ordeleted, we can answer the query \What is the minimal (d-dimensional) cover?"in O(m logn(logn+ logd�1m)) time The update time is O(logn) for the pointsof S. The preprocessing time is O(n logn+m logd�1m).2.2 An optimal decision algorithmIn this part we show that the static version of the discrete 2-center problem inthe plane can be solved in O((n+m) log(n+m)) time. Recall our problem. Givena set S of n points and a set C of m points in the plane, �nd whether exist twosquares of area A centered at some points of C that cover the set S. We show howto solve the decision problem in linear time. After this we apply the optimizationtechnique described in Section 2.1.2 in order to get O((n+m) log(n+m)) timealgorithm.Let s1 and s2 be two required squares. We assume that the s1 is left of s2(x-coordinate of the center of s1 is at most the one of s2). We also assume thatthe s1 is below of s2 (another case is similar). Let � = pA=2. Consider the



bounding box B(S) = [lx; rx] � [ly; ry]. It is clear that the center of s1 belongsthe region R1 =]�1; lx+�]� [�1; ly+�]. In fact we can assume that it belongsto the set of maxima of C \R1, i.e. the setf(x; y) 2 C \R1 j 8(x0; y0) 2 C \R1; x0 < x or y0 < yg:Let L1 denote the list of these points sorted by x-coordinate. It can be extractedfrom the sorted points of C in O(m) time. Similarly the center of the square s2belongs to the list L2 of points of minima of f(x; y) 2 C j x � rx��; y � ry��gwhich can be obtained in linear time. If one of the lists L1 or L2 is empty, thereare no required squares such that the center of one square (s2) dominates toother one (s1).We assume that the lists L1 and L2 are non-empty. For each point p of thelist L1, the algorithm detects whether a point q in the list L2 exists such thatthe square s1 with center p = (px; py) and the square s2 with center q = (qx; qy)cover the set S. Let U (p) denote the set of points of S whose y-coordinate aregreater than py + �. Let R(p) denote the set of points of S whose x-coordinateare greater than px + �. The set of points outside the square s1 is the union ofthe sets U (p) and R(p). The set U (p) is changing by insertions of points of Swhen the point p steps down the list L1. Hence we can compute the leftmostpoints of the sets U (p) for all points p of the list L1. It takes O(n + m) time.Similarly the bottommost points of the sets U (p) can be computed by walkingthrough L1 from left to right. The set R(p) is updating by insertions only if wewalk through L1 from right to left. So the leftmost and bottommost points ofthe set R(p) can be computed in linear time.The square s2 covers the points outside the square s1 if and only if qx � �is at most x-coordinate of the leftmost point of U (p) [ R(p) and qy � � is atmost y-coordinate of the bottommost point of U (p) [ R(p). The points q ofthe list L2 = fa1; : : : ; akg such that qx � � is at most x-coordinate of leftmostpoint of U (p) form a sublist fa1; : : : ; a�(p)g (�(p) = 0 if the sublist is empty).Note that �(p) is non-increasing sequence. We compute �(p) simultaneously withcomputing the leftmost points of U (p). It can be done in linear time. The pointsq of the list L2 such that qy�� is at most y-coordinate of the bottommost pointof U (p) form a sublist fa�(p); : : : ; akg (�(p) = k+1 if the sublist is empty). Thesequence �(p) is non-decreasing and it can be computed simultaneously withcomputing the bottommost points of U (p) in linear time.Walking through L1 from right to left, in linear time we can compute indexes�0(p) and �0(p) that relate to the set R(p). A pair of points p and q = ai formthe solution if and only if max(�(p); �0(p)) � i � min(�(p); �0(p)). Such a paircan be found in linear time if the indexes �(p); �0(p)); �(p) and �0(p)) are known.We have shown:Theorem 7. Given a set S of n demand points and a set C of m center pointsin the plane, one can �nd whether there exist two axis-parallel squares of areaA, centered at points of C, that cover all the points of S in O(m + n) time.



Remark: Unfortunately, we did not �nd a way for dynamizing the decisionalgorithmabove. Any success in this direction will lead immediately to the betterresults for the dynamic version of the problem.3 RectanglesWe consider �rst the planar version: Given a set S of n demand points andset C of m center points in d-dimensional space (d � 2), �nd two axis-parallelrectangles that cover all the points of S and are centered at the points of C andsize of the larger rectangle is minimized. Let us call the solution of this problemminimal rectangular cover. Here we consider the size as a perimeter. Hershbergerand Suri [13], Glozman et al. [12] and Bespamyatnikh and Segal [4] consider asimilar problem, but without constraining the centers of the rectangles to be inC. They present an algorithmwhich runs in time O(n logn). Our algorithm runsin time O(mn logm logn).3.1 The decision algorithmAssume we are given a rectangle perimeter A. The general idea is very similarto the one used for the squares: we go over all the points in C as a center for the�rst constrained rectangle r1, and at each step we check whether the rest of thepoints can be covered by a second discrete rectangle r2. The di�erence is that wedo not know the form of r1 and r2. In order to solve this problem our decisionalgorithm tries all possible placements of r1 on points of C and checks whetherthe set of points not covered by r1 can be covered by a constrained rectangler2. We demonstrate our algorithm for a point c 2 C. Four lines l1; l2; l3; l4 withslopes �1; 1;�1; 1 in quadrants in clockwise direction, starting with a positivex and y quadrant, respectively, de�ne the locus of all rectangles with a givenperimeter A, centered at O. The lines have to construct a 45� tilted squareQ. Assume for a moment that c = O. Consider the S0 � S that contains allthe points of S which are inside of intersection Q of the halfplanes de�ned bylines l1; l2; l3; l4 and containing c. Each point s 2 S0 de�nes two rectangles withcenter c and the given perimeter: where s either determines the width of therectangle, or its height. For the time being we look at the rectangle whose widthis determined by s. Let s be the point that determines the widest rectangle r1and assume w.l.o.g. that s is to the left of c.We shrink the width of the rectangle, keeping its corners on the correspondinglines until an event happens. An event is when a point of S is added to or deletedfrom the rectangle during the width shrinking. We check if the rest of points ofS is covered by r2. If it does then we are done; otherwise we continue to shrinkthe rectangle until the next event. We perform the same actions for the heightas well.In order to speed up this algorithm we de�ne four dynamic subsets U , D,R, L of S0 corresponding to the halfplanes that bound r1. R is the set of allthe points of S0 that contained in the halfplane to the right of the left side of



r1. Similarly, L (U;D) is the set of points of S0 that contained in the halfplaneto the left (up, down) of the right (upper, lower) side of the rectangle r1. Wede�ne pr(pl) to be the point x-closest to r1 in R (L) and pu(pd) to be the pointy-closest to r1 in U (D). Assume that we are shrinking r1 in x direction untilthe next event. Assume that the x-closest neighbor of pr(pl) in R(L) is phr (phl )and the y-closest neighbor of pu(pd) in U (D) is pvu(pvd). Thus, our event is whenone of phr ; phl or pvu; pvd enters or leaves the rectangle r1. If the next event is apoint from R or L, then the number of points uncovered by r1 increases by 1,otherwise decreases by 1. We update pr; pl; pu; pd (and also the subsets U , D, R,L). We check whether r2 can cover the rest of points K � S that are uncoveredby r1 by following algorithm.We �rst �nd the determinators of the bounding box B(K). For the staticversion of this problem, we can precompute for each set Sli , Srj , Sbk, Stm theminimal and maximal values. If the length of some side of B(K) is larger thanA then the answer to the decision problem is \no". Otherwise we �nd a searchregion R0 for the center of r2. It can be done as following. We make a rectangler2 with a perimeter A and a minimal height such that r2 covers B(K) and itsleft lower corner of r2 coincides with the left lower corner of B(K). We slide r2up keeping in touch the left sides of r2 and B(K) till the left upper corners ofr1 and B(K) coincide. Then we continue sliding r2 to the right keeping in touchthe upper sides of r2 and B(K), then up while touching right sides and �nally tothe left while touching down sides till we reach the initial position of r2. We lookonto segments on which the center of the r2 lies during the sliding motion of thesquare. This de�nes a rectangular search region R0 where can be found the centerof the r2 that covers B(K), but only for this form of r2. Generally, r2 can havean in�nite number of forms. But, as was observed in [13], all the rectangles r2,with the same perimeter and the same lower left, have their upper right corneron particular curve � . In this case of perimeter � is a segment with slope �1.Thus we should compute R0 as before for all the forms of r2 and then take theirunion, thus obtaining the �nal search region R00. The region R00 has a form ofaxis-parallel rectangle rotated to 90�. In order to �nd whether R00 contains anypoint of C we perform a standard orthogonal range searching algorithm but onlyfor coordinate axes rotated to 90�.After preprocessing O(n logn) time, the algorithm above runs in O(n logm)time for one point ci 2 C if the values of B(Sli); B(Srj ); B(Sbk); B(Stm) are pre-computed before. This is because we can carry each step of the algorithm inconstant time (except of orthogonal range searching) after computing the �rsttime boundaries of the rectangle r1.Thus, we haveTheorem 8. Given a set S of n demand points and a set C of m center points inthe plane, one can �nd whether exist two axis-parallel rectangles of perimeter Acentered at the points of C that cover all the points of S in O(max(n logn;mn logm))time.



3.2 OptimizationAs in the case of squares we embed the optimization step into the decision al-gorithm. Similar to the squares algorithm, the explicit use of sorted matrix maylead to the additional additive factor O(n2) to the runtime for the optimizationalgorithm. We would like to avoid the explicit use of sorted matrices for thedynamic version of this problem by embedding the search into the decision algo-rithm. In our case we obtain that each pair containing one rectilinear x-distanceand one y-distance between the points of S and the same point in C (multipliedby 4 and summarized) can be a potential perimeter solution. The optimizationscheme is very similar to previous one, but instead of performing a binary searchfor each one of the directions, we de�ne a sorted matrix M whose rows containthe sorted x-distances from ci 2 C to the points of S and whose columns containthe sorted y-distances from ci 2 C to the points of S. Note that the number ofelements in M is n2. Denote by T id the running time of the rectangles decisionalgorithm for point ci as a center of r1. (Thus the total number of potentialperimeter solution is mn2.) Then we can perform a binary search on the ele-ments of the matrix M , making only a constant number of calls to the decisionalgorithm for point ci per iteration. As was shown in [11] the overall runtimeconsumed by the algorithm is O(�mi=1T id logn+ n). We obtainTheorem 9. Given a set S of n demand points and a set C of m center pointsin the plane, one can �nd a minimal rectangular cover in O(mn logm logn) time.3.3 The dynamic versionFor dynamization of the decision algorithm for rectangles we use the same up-dating scheme as for the decision algorithm for squares. The update and queryoperations the points of S remain the same. We use the same data structures asin the dynamic version of the algorithm for squares. For the optimization stepwe also have to take care of maintaining the sorted matrix for every point ofC. It can be easily done while maintaining dynamically the sorted order of thepoints of S according to their x and y-coordinates. The di�erence form the staticversion is using a balanced binary search trees in the decision algorithm. Thus,we haveTheorem 10. Given a set S of n demand points and a set C of m center pointsin the plane, where the points of S are allowed to be inserted or deleted, we cananswer the query \What is the minimal rectangular cover?" in O(mn logn(logn+logm)) time. The update time is O(logn) for the points of S. The preprocessingtime is O(n logn+m logm).3.4 Higher DimensionsSimilarly to the case of squares, our algorithm can be generalized to work inany (�xed) d-dimensional space, d � 3. The changes are exactly as in the d-dimensional algorithm for the squares, which include maintaining d-dimensional



orthogonal range tree for the points ofC, d balanced binary search trees, d sortedorders of points. In addition, we perform the d-dimensional decision algorithmby �xing one dimension and applying recursively d � 1-dimensional decisionalgorithm. For the optimization step the number of potential perimeters is mnd.We can represent them as m sorted matrices, each one of the dimension d.Each sorted matrix is obtained by cartesian product of d 1-dimensional arrays,identically to the plane case. If we denote by T d running time of the optimizationalgorithm (static or dynamic) in d-dimensional space, d � 3, then we can beeasily verify that T d = O(nT d�1).Theorem 11. Given a set S of n demand points and a set C of m center pointsin the d-dimensional space, d � 3, one can �nd a minimal rectangular cover inO(mnd�1 logd�1m logn) time.Theorem 12. Given a set S of n demand points and a set C of m center pointsin the d-dimensional space, d � 3, where the points of S are allowed to be insertedor deleted, we can answer the query \What is the minimal rectangular cover?"in O(mnd�1 logn(logn + logd�1m)) time. The update time is O(logn) for thepoints of S and O(logdm) time for the points of C. The preprocessing time isO(n logn+m logd�1m).4 ConclusionsIn this paper we have presented e�cient algorithms for solving static and dy-namic discrete 2-center problems. We generalize them to the case of rectanglesand higher dimensional space. It would be interesting to consider polygons ordisks as covering objects instead of squares and rectangles. The problem of �nd-ing an e�cient algorithm for dynamic discrete p-center problem, general, but�xed p, also remains open.One of the directions of our future work is to improve the running time ofthe discrete 2-center algorithms in the higher dimensions using direct method ofthe optimal algorithm in the plane.AcknowledgmentsWe thank Klara Kedem for the helpful remarks and discussions.References1. Agarwal P., Sharir M., Welzl E.: The discrete 2-center problem, Proc. 13th ACMSymp. on Computational Geometry (1997) 147{1552. Agarwal P., Erickson J.: Geometric range searching and its relatives. TR CS-1997-11, Duke University (1997)3. Bajaj C.: Geometric optimization and computational complexity. PhD thesis, TR84-629, Cornell University (1984)
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