
Geographic Quorum Systems Approximations

Paz Carmi∗ Shlomi Dolev† Sariel Har-Peled‡ Matthew J. Katz§

Michael Segal¶

November 30, 2003

Abstract

Quorum systems are a mechanism for obtaining fault-tolerance and efficient dis-
tributed systems. We consider geographic quorum systems; a geographic quorum sys-
tem is a partitioning of a set X of points in the plane (representing servers) into
quorums (i.e. clusters) of size k. The distance between a point p and a cluster C is the
Euclidean distance between p and the farthest point in C.

We present a near linear time constant-factor approximation algorithm for parti-
tioning X into clusters, such that, the maximal distance between a point in the under-
lying region and its closest cluster is minimized. Next, we describe a data-structure
for answering (approximately) nearest-neighbor queries on such a clustering.

Finally, we describe constant-factor approximation algorithms that associate regions
of equal area to the servers in a given set of servers. Two cost measures are considered:
the maximum distance of a point to its corresponding server, and the sum of average
distances to the servers.

1 Introduction

A quorum system is an important abstraction used in distributed systems for achieving fault-
tolerance, availability and load balancing, see [Her87, NW98, PW95, MR98, SP99, DGL+03].

∗Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel,
carmip@cs.bgu.ac.il. Partially supported by grant no. 2000160 from the U.S.-Israel Binational Science
Foundation, and by a Kreitman Foundation doctoral fellowship.

†Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel,
dolev@cs.bgu.ac.il. Partially supported by IBM faculty award, NSF grant, the Israeli ministry of de-
fense, the Israeli Ministry of Industry and Trade (STRIMM consortium), and Rita Altura trust chair in
computer sciences.

‡Department of Computer Science, DCL 2111; University of Illinois; 1304 West Springfield Ave.; Urbana,
IL 61801; USA; http://www.uiuc.edu/~sariel/; sariel@uiuc.edu. Work on this paper was partially
supported by a NSF CAREER award CCR-0132901.

§Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel,
matya@cs.bgu.ac.il. Partially supported by grant no. 2000160 from the U.S.-Israel Binational Science
Foundation, and by the MAGNET program of the Israel Ministry of Industry and Trade (LSRT consor-
tium).

¶Department of Communication Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva
84105, Israel, segal@cse.bgu.ac.il.

1

A quorum system is a collection of possibly intersecting subsets of servers, called here quo-
rums or clusters ([Her87, DGL+03]). The fault tolerance or availability of a quorum system
is related to the number of server failures that it can tolerate. E.g., there must remain at
least one cluster without faulty servers, for each type of operation. The load of a quorum
system is usually determined by the number of clusters a server belongs to. We suggest an
additional new measure for quorum systems, namely the communication cost of accessing a
cluster, which is an important aspect in the design of distributed quorum systems. In the
context of mobile computing, the new communication cost measure raises several problems
in computational geometry, that are of significant interest independent of the quorum system
application.

The settings considered here are related to subdivisions of the plane [DGL+03], such that
the cluster that is used by a wondering client is determined by the region in which the client is
located. A cluster in our problems always consists of exactly k servers. We seek an optimal
partition of the servers into clusters according to a certain cost measure. For example,
the partition should imply low energy transmission of a mobile wondering ad hoc host, see
[NI97, DSW02, DGL+03]. Roughly speaking we would like to have a (geographically) close
enough cluster for every point in the plane.

Once a partition into clusters is defined, a mobile host can write a value to the servers
of a near-by cluster, knowing that a later read operation must access a representative of
each cluster and thus, access a server in the particular cluster that the mobile host used for
the write operation. The question of whether to use a near-by cluster for writing and an
intersecting set of servers for reading, or vice versa, may depend on the frequency of the
write and read operations (see [DGL+03]).

Our results. In this paper we introduce several new problems concerning geographic quo-
rum systems. Besides their obvious relevance to the study of quorum systems, these problems
are also interesting as purely geometric problems. The first problem deals with the issue of
constructing a good quorum system for a given set of servers and a service region R.

Geographic quorum partition. The task we address is to partition the set of n servers
(represented by a set X of n points in the plane) into quorums (i.e., clusters), each of size
k, such that, the cost associated with the partitioning is minimal. The cost µ(Q) associated
with a partitioning Q is maxp∈R dQ(p), where dQ(p) is the distance between p and the cluster
of Q that is the closest to p, and the distance between p and a cluster C of Q is the maximum
(Euclidean) distance between p and a point in C (see Figure 1).

We present a 3-approximation for this problem. More precisely, we construct a quorum
system Q (i.e., a partitioning as above), in O(n(k + log2 n)) time, such that, for any point
p ∈ R, we have dQ(p) ≤ 3dQ′(p), where Q′ is any quorum partition of X . In particular, we
have µ(Q) ≤ 3µ(Qopt), where Qopt is the optimal quorum system. If one is satisfied with a
(3 + ε)-approximation, the running time improves to O

(

n log2 n + n/(kε3) log2(1/ε)
)

.
To facilitate this, we present a fast implementation of the incremental greedy algorithm,

which repeatedly picks the smallest disc that contains k input points, and continues with
the remaining points. Our algorithm has near linear running time if one is satisfied with a
(1 + ε)-approximation of the smallest disc at each iteration, and might be of independent
interest.

2

R

p

C1:

C2:

C3:

d(p, C1)

d(p, C2)

d(p) = d(p, C3)

Figure 1: A partitioning into 3 clusters (c1, c2, c3) of size 4, and the distance between point
p and each of the clusters.

Nearest quorum queries. Given a quorum system Q, we present a data-structure that
answers queries of the form: which is the cluster that is closest (using the definition above) to
the query location q ∈ IR2. The natural data structure for such queries is the Voronoi diagram
of the quorums; however, this diagram is too complex. We describe how to construct, in
O

(

n log k + n
kε2 log 1

ε
log n

ε

)

time, a data structure of size O(n/(kε2) log(1/ε)) that supports
such queries in O(log(n/ε)) time per query, where ε > 0 is a prespecified parameter. The
distance between q and the cluster returned is at most (1 + ε)dQ(q).

Load balancing. We suggest a complimentary research venue, in which the geographic
quorum partition is given, and the goal is to balance the load among the clusters (and hence
the servers).

Load balancing has been considered in the context of quorum systems; here however,
we use geographic partitions and therefore, under the near-by quorum selection policy, the
load may be distributed in an unbalanced manner. We note that the quorum partition that
minimizes the cost may differ significantly from partitions that also attempt to balance the
load. Moreover, when load balance is the concern it might be necessary at times to deviate
from the near-by selection policy.

More precisely, under the near-by quorum selection policy, some of the quorums may be
over utilized, while others may be under utilized. This happens when the region in which
a quorum C is selected (i.e., its Voronoi cell) is either especially large or especially small
(assuming uniform distribution of the customers in the region R.) It is therefore natural
to consider the following problem. Divide the region R into m (where m is the number
of clusters) connected subregions R1, . . . , Rm, each of area equal to area(R)/m, such that
all requests initiated by customers in Ri are served by the ith cluster, and the cost of the
division is minimal.

We study two versions of this problem, where each cluster Ci is represented by a single
point pi. In the first version (the min-max version), µ(pi) is defined to be the maximum dis-
tance between pi and a point in Ri, and the cost of the division is maxi µ(pi). In the second
version (the min-sum version), µ(pi) is defined to be the average distance between pi and a
point in Ri, and the cost of the division is

∑

i µ(pi). We are not aware of any previous results
concerning this natural facility location problem. We present efficient constant-factor ap-
proximation algorithms for both versions. For example, for the min-max version we describe

3

an O(n1.5 log n) algorithm that computes a division that is a (1+ 3
2

√
2π)-approximation, i.e.,

a division such that the ratio between its cost and the cost of the corresponding optimal
division is at most 1+ 3

2

√
2π, and for the min-sum version we describe an O(n2+ǫ) algorithm

that computes a (5 + 3
√

2π)-approximation. (If, instead of the region R, we are given a
discrete set of customers, then both versions can be solved in time polynomial in m and the
number of customers; the min-sum version is a special case of the transportation problem.)

The rest of the paper is organized as follows. The geographic quorum partition problem
is studied in Section 2. A fast algorithm for computing the quorum partition is presented
in Section 3. A data structure supporting approximate nearest quorum queries for a given
partition is described in Section 4. Section 5 addresses the case in which load balancing is
required for a given partition.

2 Geographic Quorum Partition

In this section we study the problem of partitioning the set of servers into clusters, each
of size k, so as to minimize the cost of the partitioning. Let X be a set of points in the
plane representing the servers. Let R be the region for which the servers are required to
provide service. We assume R is a simple, closed and connected region (e.g., an axis-parallel
rectangle).

The distance between a point p in R and a cluster C ⊆ X is defined as the maximum
(Euclidean) distance between p and a point of C (see Figure 1). That is

d(p, C) = max
c∈C

‖pc‖ ,

where ‖pc‖ is the Euclidean distance between p and c.
Let n denote the number of points in X and assume n = km, where k ≥ 2 and m ≥ 2

are integers. Let Q be a partitioning of X into m clusters, each of size k. The cost of Q,
denoted by µ(Q), is a positive real number that is defined as follows. For each point p ∈ R,
let dQ(p) be the distance between p and the cluster of Q that is the closest to p (according
to the distance defined above). Then µ(Q) = maxp∈R dQ(p).

We wish to compute a partitioning of X into k-clusters (i.e., clusters of size k) with
minimum cost. We define a specific partitioning (called mec) of X into k-clusters, and prove
that it is a 3-approximation; that is, its cost is at most three times the cost of an optimal
partitioning, and it can be computed in polynomial time. Actually, we prove a stronger
claim stating that for any point q ∈ R, dmec(q) is at most 3 times dopt(q) in opt, where opt
is any partitioning of minimal cost.

We now define the partitioning mec. Among all subsets of X of size k, let C be the subset
whose smallest enclosing circle is minimal. We take C as our first cluster and repeat for the
set X \ C of remaining points, until we are left with an empty set of points.

Lemma 2.1 Let opt be a partitioning of X into k-clusters with minimum cost and let mec

be the partitioning defined above. Then µ(mec) ≤ 3µ(opt). Moreover, for any point q ∈ R,
we have dmec(q) ≤ 3dQ(q), where Q is any quorum partition of X .

4

Proof: Let q be a point in R and let A be the cluster of mec that is the closest to q.
That is, dmec(q) = d(q,A). Let C be the cluster of opt that is the closest to q. Then we have
d(q, C) ≥ rC, where rC is the radius of the smallest enclosing circle of C.

Assume that C is not one of the clusters of mec (since otherwise dmec(q) is at most
dopt(q) and we are done). Consider the (at most k) clusters of mec that have a non-empty
intersection with C. For at least one of them, A′, we must have rA′ ≤ rC, since otherwise, C
would have been created during the construction of mec. Let x be a point in C ∩ A′. Let x′

be the point in A′ that is the farthest from q. Then

d(q,A) ≤ d(q,A′) = ‖qx′‖ ,

and
‖qx′‖ ≤ ‖qx‖ + ‖xx′‖ ≤ d(q, C) + 2rA′ ,

and since rA′ ≤ d(q, C), we obtain that

d(q,A) ≤ 3d(q, C).

In particular, if q is the point that determines µ(mec), then we have µ(mec) = d(q,A) ≤
3d(q, C) ≤ 3µ(opt).

The partitioning mec, for k > 2, can be computed by, e.g., repeatedly applying the recent
algorithm of Har-Peled and Mazumdar for computing a smallest enclosing circle containing
k points [HM03]. Their algorithm uses O(n + k2) space and its expected running time is
O(nk). For k = 2 the partitioning mec is computed by simply picking, at each iteration,
the closest pair of points from the remaining points. This matching can be computed in
O(n log n) time. The following theorem summarizes our results.

Theorem 2.2 One can compute a partitioning Q of X into k-clusters, such that, for any
point q ∈ R, we have dQ(q) ≤ 3dopt(q). For k > 2, Q can be computed in expected time
O(n2) using O(n + k2) space. For k = 2, Q can be computed in time O(n log n) using linear
space.

3 A faster clustering algorithm

Let T be a compressed quadtree computed over a set X of n points in the plane, which can
be computed in O(n log n) time [AMN+98]. We trim T by removing all nodes v, such that
the parent of v has less than c · k points in its associated cell, where c > 1 is a constant to
be specified shortly. A point x ∈ X is stored in a leaf v of T , if x ∈ rv, where rv is the cell
associated with v.

Let us assume, that we are “lucky”, and the smallest enclosing disc that contains k points
is fully contained in one of the leaves of T . Clearly, every leaf v of T contains |Pv| = O(k)
points, and as such, we can in O(|Pv|) time compute a constant factor approximation to the
smallest disc that contains k points of Pv [HM03]. Applying this minimal disc computation
to all the leaves of T , in advance, takes O(n) time overall.

Let D1 be the smallest disc that contains k points that is precomputed in one of the
leaves of T . If we are lucky then D1 is a constant factor approximation to the smallest disc

5

that contains k points of X , and as such, we set the k points covered by D1, denoted by C1,
to be the first cluster.

We continue with the remaining points X2 = X \C1. To this end, we update T by deleting
from it the points of C1, and performing trimming if needed, so that T becomes legal again.

Since all the points of C1 lie in a single leaf of T , all we need to do, is to climb up in T ,
till we reach a node of T that its parent has at least ck points in its cell. Since every time
we go one level up in T , the cardinality of the set in the associated cell increases by at least
one, it follows that we need to climb at most O(k) levels to reach this node w (clearly, we
need to trim all the children of w from T , as they contain too few points of X2 to be active).

To facilitate this, we will maintain an external data-structure of orthogonal range search-
ing with deletions. Such that, at every node, we simply perform a range searching query to
decide how many points are in the cell associated with this node. This takes O(log2 n) per
query and update [Aga97]. Thus, after O(k log2 n) work, we found the node w, we trimmed
its children, and we recomputed (approximately) the smallest disc that contains k of its
points. The compressed quadtree T is now updated, and we can continue to the extraction
of the next cluster.

If we are lucky again, and the smallest disc containing k points of X2 is completely
contained in the cell of one of the leaves of T , then we can again extract a constant approx-
imation to it as described above, and repeat. Thus, assuming (unreasonably) that we are
lucky throughout the execution of the algorithm, we get a clustering which is constant factor
competitive in O(n log2 n) time.

Let us first consider the case where the current disc Di (which is, say, an α-approximation
to the smallest disc covering k points of Xi) and the associated cluster Ci is given to us, and
we would like to update T by removing the points of Ci from it.

Observe that Di intersects at most a constant number of leaves of T . Indeed, let L be
the set of leaves of T that intersect Di. Since the parent of every node of L contains at least
ck points of Xi, it follows that its side length must be at least

√
2c radius(Di)/α, otherwise

Di would not be a α-approximation to the smallest disc that covers k points of Xi (indeed,
such a node v contains a disc of radius SideLen(rv)/

√
2c that contains k points). Thus, let

L′ be the set of parents of nodes of L. Clearly, the regions that correspond to cells of nodes
of L′ are disjoint, and it follows that |L′| = O(1) as they are all relatively large compared to
Di, and they all intersect Di. Since every node of L′ has a constant number of children, it
follows that |L| = O(1).

Thus, applying the algorithm described above for updating T to every leaf in L, implies
that given Ci and Di, we can update T to be the (trimmed) compressed quadtree of Xi+1

in O(k log2 n) time. Thus, we can maintain a trimmed quadtree throughout the clustering
extraction process in O(n log2 n) time.

We are still left with the task of guaranteeing that luck is on our side. A natural approach,
would be to use several quadtrees, and to observe that it is sufficient to be lucky in one of
them. In particular, one can generate such a set of compressed quadtrees by using random
translations for the location of the starting bounding square of the quadtree. But in fact,
no randomization is necessary, as a deterministic scheme is known. Indeed, assume that the
point set is contained in the cube C = [0, 1/

√
d]d (this can be easily guaranteed by scaling

the point set), and that the square used to compute the quadtree is S = [−1, 1]d, then the

6

analysis of Chan [Cha98, Lemma 3.3] implies the following:

Lemma 3.1 Assume d is even, and let vi =
(

i
d+1

, . . . , i
d+1

)

for i = 0, . . . , d, X be a set of n

points in IRd contained inside C = [0, 1/
√

d]d, and T0, . . . , Td be the quadtrees of X having
v0 + [−1, 1]d, . . . , vd + [−1, 1]d as the starting region for their root, respectively.

Then, for any point p ∈ C, and r ≤ 1, such that ball(p, r) contains a point of X , there
exists a cell R in one of those d+1 quadtrees, such that ball(p, r) ⊆ R, and furthermore, the
side length of R is bounded by 4(d + 1)r.

This lemma implies that we can maintain 3 quadtrees (since d = 2 in our settings), and
we are guaranteed to be lucky in one of them. Indeed, if the disc Di, of radius ri, is an α-
approximation to the smallest disc that contains k points of Xi, then by a packing argument,
the cell that contains Di in its interior, contains at most ⌈(4(d + 1)ri)

2/(ri/α)2⌉ k = O(k)
points of Xi (otherwise, there would be a disc of radius smaller than ri/α that contains k
points of Xi). Thus, setting c = ⌈16(d + 1)2α2⌉, we are guaranteed to be lucky at one of the
3 quadtrees that we are maintaining. Thus, we just proved the following:

Lemma 3.2 Given a set point X in the plane and a parameter k, one can compute, in
O(n log2 n) time, a constant factor competitive quorum clustering of X .

Computing exactly the smallest enclosing disc of k points, given O(k) points, takes O(k2)
time. Also, given an ε > 0, one can compute a (1 + ε)-approximation to the smallest disc
containing k points, when given O(k) points, in O

(

k + (1/ε3) log2(1/ε)
)

time. Plugging this
into the above algorithm we get the following:

Theorem 3.3 Given a set point X in the plane and a parameters k and ε > 0, one can
compute:

1. In O(n(k + log2 n)) time, a 3-competitive quorum clustering of X .

2. In O
(

n log2 n + n
kε3 log2 1

ε

)

time, a (3 + ε)-competitive quorum clustering of X .

Note, that the result of Theorem 3.3, can be further improved by using a better auxiliary
data-structure for orthogonal range searching, or avoiding it all together. Since this only
results in a minor improvement in the running time of the algorithm and substentially
complicates the description of the algorithm, we did not persue this minor improvement.

4 Nearest Quorum Queries

Assume we already have a partitioning Q of a point set X into k-clusters (i.e., quorums).
We now consider the following problem. Construct a data structure, so that given a query
point q ∈ IR2 (representing an ad-hoc client) one can quickly find the cluster (i.e., quorum)
C∗ of Q that is closest to q. (Recall that the distance d(q, C) between q and a cluster C is
the maximum (Euclidean) distance between q and a point of C.)

Given a prescribed parameter ε > 0, we show in this section, how to preprocess Q, such
that given any query point q in the plane, one can quickly decide what is (approximately)
the nearest cluster of Q to q.

7

Assume that Q partitions X into the clusters C1, . . . , Cm, and recall that dQ(q) = minCi∈Q d(q, Ci).
Thus, the function dQ(q) can be interpreted as a minimization diagram of the maximization
diagrams of the clusters. This min of max structure makes finding the nearest neighbor
cumbersome, and our first task is to replace the maximization by minimization. Namely,
we want to replace the furthest neighbor Voronoi diagram of each cluster by a “regular”
minimization Voronoi diagram.

Definition 4.1 A pair S = (S, w) is a weighted set of points if S = {p1, . . . , pm} is a finite
set of points in IRd, and w(·) is a function assigning non-negative weights to the points of
S. We define the distance of a point p from the point pi to be V(pi,w(pi))(p) = ‖ppi‖ + w(pi).
We define VS(p) = minm

i=1 V(pi,w(pi))(p). The function VS(p) induces a natural subdivision VS

of IRd into cells, known as the (additive) weighted Voronoi diagram of S, such that the ith
cell is the locus of all points closest to pi in this distance function. As is well known, in
the planar case, VS has complexity O(m), and it can be computed in O(m log m) time (see
[For87]).

Lemma 4.2 ([Har99]) Any furthest neighbor Voronoi diagram of points in IRd, can be ε-
approximated by a (nearest neighbor) weighted Voronoi diagram, having O((1/εd) log (1/ε))
sites.

We shortly outline how to compute this approximation, for a point set U , and its furthest
neighbor Voronoi diagram FU : (i) Find a point x for which the value of the furthest Voronoi
diagram of U is minimal. This can be easily done by computing the smallest disc that
contains U . (ii) Let l = FU(x) be the distance of the furthest neighbor of x in U . Given l
and x, the locations of the approximation sites are now determined, and let S be this set of
O(1/ε2 log 1/ε) sites. Next, we compute the furthest neighbor Voronoi diagram of U , and for
each point s of S, we compute its weight FU(s), by performing a point-location query in the
furthest neighbor Voronoi diagram of FU (i.e., w(s) is set to FU(s)). The resulting weighted
additive Voronoi diagram (S, w) is the required approximation. We summarize this in the
following lemma:

Lemma 4.3 Given a cluster C of k points in the plane and a parameter ε > 0, one can
compute, in O(k log k + (log k)/ε2 log 1/ε) time, an additive weighted Voronoi diagram VC,
with O(1/ε2 log(1/ε)) sites, such that VC is a (1 + ε) approximation to the furthest neighbor
Voronoi diagram FC. Formally, for any point x ∈ IR2, we have FC(x) ≤ VC(x) ≤ (1 +
ε)FC(x).

Let us apply Lemma 4.3 to each cluster Ci in Q, and let Vi be the resulting weighted
additive Voronoi diagram and Si be the weighted set that induces it, for i = 1, . . . , m.
Clearly, an approximate nearest neighbor query q ∈ IR2 in the quorum clustering Q, can be
resolved by finding the i that realizes

min
i

Vi(q) = min
i

min
(s,w)∈Si

(‖sq‖ + w) = min
(s,w)∈

⋃

i Si

(‖sq‖ + w) ,

but this is exactly the value of the weighted additive Voronoi diagram of S = ∪iSi at the point
q. Thus, if we precompute the diagram VS , then answering approximate nearest neighbor

8

queries on Q, is equivalent to performing a point-location query in VS . We summarize the
result:

Theorem 4.4 Let ε > 0 be a parameter, and Q be a given quorum clustering of a set
X of n points in the plane, where each cluster is of cardinality k. One can preprocess Q
in O

(

n log k + n
kε2 log 1

ε
log n

ε

)

time and O(n/(kε2) log(1/ε)) space, such that given a query
point q, one can decide in O(log(n/ε)) time what is the (1+ ε)-approximate nearest neighbor
cluster to q among the clusters of Q.

Proof: We just verify the time and space bounds. Computing the approximation to each
cluster takes O(k log k + (log k)/ε2 log 1/ε) time. Once this approximation is computed, we
have to compute the additive Voronoi diagram of all the approximations together. Since
there are O(n/(kε2) log(1/ε)) sites, this takes O

(

n log k + n
kε2 log 1

ε
log n

kε

)

time. Thus, the
overall running time is

O

(

n

k

(

k log k +
log k

ε2
log

1

ε

)

+
n

kε2
log

1

ε
log

n

kε

)

= O

(

n log k +
n

kε2
log

1

ε
log

n

ε

)

.

As for the space, we build a point-location data structure for O(n/(kε2) log(1/ε)) sites,
and this is the amount of space needed for such a data structure.

5 Load Balancing

In this section we consider a different aspect of geographic quorum systems, namely balancing
the load among clusters. Given a partitioning into k-clusters, one would like to divide the
load among the clusters, while keeping the total cost low. In other words we wish to divide
the region R into m connected subregions R1, . . . , Rm, each of area area(R)/m, such that all
requests initiated by clients in Ri are served by the ith cluster, and the total cost is minimal.

Let us re-formulate the problem more precisely. We assume that the number m of clusters
is equal to l2, for some integer l ≥ 2, and that each quorum Ci is represented by a single point
pi (e.g., the center of the smallest enclosing circle of Ci). Put P = {p1, . . . , pm}. We also
assume (for convenience only) that the underlying region R is a square. (This assumption
is not necessary; all subsequent results hold for any rectangle R that can be divided into
m squares of equal size. Thus the aspect ratio of R can be as large as m.) We study the
following problem. Divide R into m connected regions R1, . . . , Rm, each of area area(R)/m,
such that region Ri is associated with point pi, and the total cost is minimal.

We consider two cost measures. In the first measure, µ(pi) is defined to be the maximum
distance between pi and a point in Ri, and the cost of the division is maxi µ(pi). In the
second measure, µ(pi) is defined to be the average distance between pi and a point in Ri,
and the cost of the division is

∑

i µ(pi).
For each of the two versions, we describe a simple algorithm that divides R into m

subregions and associates them with the representative points in P. We call the division
obtained for the min-max version (using the first cost measure) grid-min-max, and the
division obtained for the min-sum version (using the second cost measure) grid-min-sum.
We then prove that grid-min-max is a (1 +

√
2π)-approximation, meaning that the ratio

9

between the cost of grid-min-max and the cost of an optimal division for the min-max
version is at most (1+

√
2π). And that grid-min-sum is a (5+ 3

2

√
2π)-approximation, under

the assumption that the subregions must be convex. The running time of our algorithm for
the min-max versions is O(n2.5

√
log n), and the running time for the min-sum version is

O(n3).
Both algorithms divide R into m = l2 squares of equal size, and associate the squares

with the points in P. Let S denote the set of squares. Let G = (P,S; E) be the complete
bipartite graph with vertex sets P and S. We now associate weights with the edges in E.
In the min-max version, the weight of the edge (p, σ), for p ∈ P and σ ∈ S, is the maximum
distance between p and a point in σ. This distance is clearly determined by one of the corners
of σ. In the min-sum version, the weight of the edge (p, σ) is the average distance between
p and the points in σ. In the min-max version we associate the squares in S with the points
in P by computing a bottleneck matching in G, i.e., a matching in which the weight of the
heaviest edge is minimal. Using the algorithm of Gabow and Tarjan et al. [GT88] this can
be done in O(n2.5

√
log n) time. In the min-sum version we associate the squares with the

points by computing a minimum-weight matching in G, i.e., a matching for which the sum
of the weights (of the m edges defining the matching) is minimal. Using the algorithm of
Kuhn [Kuh95] this can be done in O(n3) time.

We now prove that the divisions that were obtained (i.e., grid-min-max and grid-min-

sum) are constant-factor approximations.

5.1 grid-min-max is a constant-factor approximation

Let opt1 denote an optimal division for the min-max version (where region Ri is associated
with point pi). We use opt1 to obtain a new division, grid1, that is also based on the squares
in S. We then show that grid1 is a (1 +

√
2π)-approximation, immediately implying that

grid-min-max is also a (1 +
√

2π)-approximation, since grid-min-max is the best division
among those based on the squares in S.

Define a bipartite graph G = (S,P; E), where there is an edge between σi ∈ S and
pj ∈ P if σi ∩ Rj 6= ∅. Hall’s matching theorem [Wes01] gives a necessary and sufficient
condition for G to contain a perfect matching. According to Hall’s theorem, G contains a
perfect matching if and only if for any subset S ′ of S we have |N(S ′)| ≥ |S ′|, where N(S ′)
is the set of points in P that are connected by an edge to a square in S ′. However, this
condition trivially holds in our case, since we need at least |S ′| regions of R in order to cover
a region of area |S ′|area(R)/m. We thus associate the squares in S with the points in P to
obtain the division grid1 by computing any perfect matching in G.

Let pi ∈ P and let σj ∈ S be the square that was assigned to pi by grid1. Recall
that the region assigned to pi by opt1 is Ri. Let q ∈ σj ∩ Ri. Assume w.l.o.g. that
area(σj) = area(Ri) = 1, then the diameter of Ri is at least 2/

√
π (see Figure 2). Therefore,

µopt1(pi) is, on the one hand, at least 1/
√

π, and, on the other hand, at least ‖piq‖. As to
µgrid1(pi) we have µ(pi) ≤ ‖piq‖+

√
2. Now, if ‖piq‖ ≤ 1/

√
π, then using the first inequality

for µopt1(pi) we obtain that

µgrid1(pi)

µopt1(pi)
≤ ‖piq‖ +

√
2

1/
√

π
≤ 1 +

√
2π,

10

Ri
σj

≥ 2/
√

π

≤
√

2

area(Ri) = area(σj) = 1

q

Figure 2: grid1 (alternatively grid2) is a constant-factor approximation.

and, if ‖piq‖ > 1/
√

π, then using the second inequality for µopt1(pi) we obtain that

µgrid1(pi)

µopt1(pi)
≤ ‖piq‖ +

√
2

‖piq‖
≤ 1 +

√
2π.

We conclude that in both cases the ratio µgrid1(pi)/µopt1(pi) ≤ 1 +
√

2π, for any 1 ≤ i ≤ m,
and therefore grid1 is a (1 +

√
2π)-approximation. (Let pk ∈ P be the point that determines

the cost of grid1. Then µ(grid1)/µ(opt1) ≤ µgrid1(pk)/µopt1(pk).) Finally, since the cost
of grid-min-max is at most µ(grid1), we conclude that grid-min-max is a (1 +

√
2π)-

approximation.
Notice that if we restrict the regions of opt1 to be axis-parallel rectangles, then the

diameter of Ri is at least
√

2, and grid-min-max becomes a 3-approximation.

Theorem 5.1 A division of R that is a (1 +
√

2π)-approximation can be computed in
O(n2.5

√
log n) time.

Consider the complete bipartite graph G = (P,S; E) in which we compute a bottleneck
matching to obtain the division grid-min-max. By modifying the definition of the weight of
an edge (p, σ) ∈ E, we are able to reduce the running time of our algorithm to O(n1.5 log n),
without increasing the approximation factor too much. We define the weight of (p, σ) to
be the distance between p and the center of σ. Now, the graph G is actually the complete
bipartite graph induced by two point sets in the plane, and we can apply to it the algorithm of
Efrat et al. [EIK01] that computes a bottleneck matching in such graphs in time O(n1.5 log n).

It remains to bound the approximation factor of the division grid-min-max’ that is
obtained. Let r (resp. r′) be the weight of the heaviest edge in the bottleneck matching
defining grid-min-max (resp. grid-min-max’). Clearly, r′ ≤ r. The cost of grid-min-

max’ is less than or equal to the cost of grid-min-max plus
√

2/2, since the cost of grid-

min-max’ is at most r′ +
√

2/2 (and the cost of grid-min-max is r). Therefore, using the
fact that the cost of opt1 is at least 1/

√
π, we obtain that grid-min-max’ is a (1 + 3

2

√
2π)-

approximation.

Corollary 5.2 A division of R that is (1+3
2

√
2π)-approximation can be computed in O(n1.5 log n)

time.

11

5.2 grid-min-sum is a constant-factor approximation

Let opt2 denote an optimal division (into convex subregions) for the min-sum version (where
region Ri is associated with point pi). We use opt2 to obtain a new division, grid2, that is
also based on the squares in S. This is done, as in Section 5.1, by defining a bipartite graph
G = (S,P; E), where there is an edge between σi and pj if σi ∩ Rj 6= ∅, and computing a
perfect matching in G. We now show that grid2 is a (5+2

√
2π)-approximation, immediately

implying that grid-min-sum is also a (5 + 2
√

2π)-approximation, since grid-min-sum is
the best division among those based on the squares in S.

Let pi ∈ P and let σj ∈ S be the square that was assigned to pi by grid2. Let q ∈ σj ∩Ri,
where Ri is the region assigned to pi by opt2. Assume w.l.o.g. that area(σj) = area(Ri) = 1,
then the diameter of Ri is at least 2/

√
π. Let zi be a point in the plane for which the

average distance to the points in Ri is minimal. Since Ri is convex, zi is the center of mass
(centroid) of Ri, and davg(zi, Ri) ≥ ∆(Ri)/4 and also davg(zi, Ri) ≥ 2/(3

√
π), where ∆(Ri) is

the diameter of Ri. (The right side of the former inequality is equal to the average distance
between the middle point of a segment of length ∆(Ri) and the points of the segment, and the
right side of the latter inequality is equal to the average distance between the center point of
a disc of radius 1 and the points of the disc.) Let ai ∈ Ri be the closest point to pi (if pi ∈ Ri,
then ai = pi). Then µopt2(pi) is, on the one hand, at least davg(zi, Ri), and, on the other hand,
at least ‖piai‖. As to µgrid2(pi) we have µ(pi) ≤ ‖piai‖+ ‖aiq‖+

√
2 ≤ ‖piai‖+ ∆(Ri) +

√
2.

Now, if ‖piai‖ ≥ davg(zi, Ri), then using the second inequality for µopt2(pi) (and noticing
that in this case ∆(Ri) ≤ 4 ‖piai‖) we obtain that

µgrid2(pi)

µopt2(pi)
≤ ‖piai‖ + ∆(Ri) +

√
2

‖piai‖
≤ 5 ‖piai‖ +

√
2

‖piai‖
≤ 5 +

3

2

√
2π,

and, if ‖piai‖ < davg(zi, Ri), then using the first inequality for µopt2(pi) we obtain that

µgrid2(pi)

µopt2(pi)
≤ ‖piai‖ + ∆(Ri) +

√
2

davg(zi, Ri)
≤ 5davg(zi, Ri) +

√
2

davg(zi, Ri)
≤ 5 +

3

2

√
2π.

We conclude that in both cases the ratio µgrid2(pi)/µopt2(pi) ≤ 5 + 3
2

√
2π, for any 1 ≤ i ≤ m,

and therefore grid2 is a (5 + 3
2

√
2π)-approximation. Finally, since the cost of grid-min-sum

is at most µ(grid2), we conclude that grid-min-sum is a (5 + 3
2

√
2π)-approximation.

Theorem 5.3 A division of R that is a (5+ 3
2

√
2π)-approximation can be computed in O(n3)

time.

Consider the complete bipartite graph G = (P,S; E) in which we compute a minimum
weight matching to obtain the division grid-min-sum. By modifying the definition of the
weight of an edge (p, σ) ∈ E, we can both simplify the computation of the edge weights and
reduce the running time of our algorithm to O(n2+ǫ), without increasing the approximation
factor too much. We define the weight of (p, σ) to be the distance between p and the center
of σ. Now, the graph G is actually the complete bipartite graph induced by two point sets
in the plane, and we can apply to it the algorithm of Agarwal et al. [AES99] that computes
a minimum weight matching in such graphs in time O(n2+ǫ) using O(n1+ǫ) space.

12

It remains to bound the approximation factor of the division grid-min-sum’ that is
obtained. We show that the cost of grid-min-sum’ is at most the cost of grid-min-sum

plus m
√

2, and therefore grid-min-sum’ is a (5+3
√

2π)-approximation (using the inequality
µ(opt2) ≥ 2m/(3

√
π)). Indeed, let M (resp., M ′) be the matching defining grid-min-sum

(resp., grid-min-sum’). Also, for a point pi and a square σj , let qi
j ∈ σj be the closest point

to pi, and let oj be the center of σj . Then

m
√

2 +
∑

(pi,σj)∈M

davg(pi, σj) ≥
m
√

2

2
+

∑

(pi,σj)∈M

(
∥

∥piq
i
j

∥

∥ +

√
2

2
) ≥

m
√

2

2
+

∑

(pi,σj)∈M

‖pioj‖ ≥ m
√

2

2
+

∑

(pi,σj∈M ′

‖pioj‖ =
∑

(pi,σj)∈M ′

(‖pioj‖ +

√
2

2
).

But the first expression in the above sequence of inequalities is the cost of grid-min-sum

plus m
√

2, and the last expression is greater or equal than the cost of grid-min-sum’.

Corollary 5.4 A division of R that is (5+3
√

2π)-approximation can be computed in O(n2+ǫ)
time.

References

[AES99] P. K. Agarwal, A. Efrat, and M. Sharir. Vertical decomposition of shallow
levels in 3-dimensional arrangements and its applications. SIAM J. Comput.,
29:912–953, 1999.

[Aga97] P. K. Agarwal. Range searching. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 31, pages 575–598.
CRC Press LLC, Boca Raton, FL, 1997.

[AMN+98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An
optimal algorithm for approximate nearest neighbor searching fixed dimensions.
J. Assoc. Comput. Mach., 45(6), 1998.

[Cha98] T. M. Chan. Approximate nearest neighbor queries revisited. Discrete Comput.
Geom., 20:359–373, 1998.

[DGL+03] S. Dolev, S. Gilbert, N. A. Lynch, A. Shvartsman, and J. L. Welch. Geoquorums:
Implementing atomic memory in ad hoc networks. In Proc. of the 17th Int. Symp.
Dist. Comp., 2003.

[DSW02] S. Dolev, E. Schiller, and J. Welch. Walk for self-stabilizing group communication
in ad-hoc networks. In Proc. 21st IEEE Symp. Reliable Dist. Sys., pages 70–79,
2002.

[EIK01] A. Efrat, A. Itai, and M. J. Katz. Geometry helps in bottleneck matching and
related problems. Algorithmica, 31(1):1–28, 2001.

13

[For87] S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–
174, 1987.

[GT88] H. N. Gabow and R. E. Tarjan. Algorithms for two bottleneck optimization
problems. J. Algorithms, 9:411–417, 1988.

[Har99] S. Har-Peled. Constructing approximate shortest path maps in three dimensions.
SIAM J. Comput., 28(4):1182–1197, 1999.

[Her87] M. P. Herlihy. Dynamic quorum adjustment for partitioned data. ACM Trans-
actions on Database Systems, 12(2):170–194, June 1987.

[HM03] S. Har-Peled and S. Mazumdar. Fast algorithms for computing the smallest k-
enclosing disc. In Proc. 11th Annu. European Sympos. Algorithms, volume 2832
of Lect. Notes in Comp. Sci., pages 278–288. Springer-Verlag, 2003.

[Kuh95] H. W. Kuhn. The hungarian method for the assignment problem. Naval Res.
Logist. Quart, pages 83–98, 1995.

[MR98] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203–213, 1998.

[NI97] J. C. Navas and T. Imielinski. GeoCast – geographic addressing and routing.
In Mobile Computing and Networking, pages 66–76, 1997.

[NW98] M. Naor and A. Wool. The load, capacity, and availability of quorum systems.
SIAM J. Comput., 27(2):423–447, 1998.

[PW95] D. Peleg and A. Wool. The availability of quorum systems. Information and
Computation, 123(2):210–223, 1995.

[SP99] I. Stojmenovic and P. E. V. Pena. A scalable quorum based location update
scheme for routing in ad hoc wireless networks. Technical report, Computer
Science, SITE, University of Ottawa, December 1999. TR-99-11.

[Wes01] D. B. West. Intorudction to Graph Theory. Prentice Hall, 2ed edition, 2001.

A Some observations

Lemma A.1 Let P be a convex polygon in the plane, and let D be a disc of radius ∆(P)/6,
where ∆(P) denote the diameter of P . Then, area(P \ D) ≥ area(D)/9.

Proof: Let p, q be the diameterical pair of points of P , and let Q = f(P) be the polygon
resulting from P by shrinking it by a factor of 3, by the transformation f(x, y) = (x/3, y/3).
Place a copy Q1 of Q such that it is contained inside P , and it has a common tangent with
P at the point p, and similarly, place a copy Q2 ⊆ P of Q such that it has a common tangent
with P at q.

14

Clearly, the distance between any pair of points x ∈ Q1 and y ∈ Q2 is at least ∆(P)/3.
In particular, D can not intersect both Q1 and Q2. Assume that it does not intersect Q1.
Thus, we have area(P \ D) ≥ area(Q1) ≥ area(P)/9, as claimed.

For a convex polygon P and y ∈ P , let µP (y) =
∫

x∈P
‖xy‖. Let FWP = arg miny∈P µP (y)

denote the Fermat-Weber center of P . By Lemma A.1, we have that µopt(P) = µP (FWP) ≥
∆(P)/54. This implies that approximating µopt(P) is quite easy. Indeed, spread a grid G
with side length cε2∆(P), where c is an appropriate small constant. Let U be the set of
all grid points that are inside P . Next, associate with each point p of U , the region rp of
P closest to it, and associate the weight wp = area(rp) with p. For a point y ∈ P , let
µU(y) =

∑

p∈U ‖py‖wp. It is now straightfoward to verify the following.

Lemma A.2 For any point y ∈ P , we have (1 − ε)µP (y) ≤ µU(y) ≤ (1 + ε)µP (y).

In particular, finding the point z ∈ U that minimizes µU(·) results in an (1+ε)-approximation
to µopt(P). Since there are O(1/ε4) points in U , it follows:

Lemma A.3 Given a polygon P with n vertices, and a parameter ε, one can compute in
O(n + 1/ε8) time a point p ∈ P , such that µP (p) ≤ (1 + ε)µopt(P).

The dependency on ε in Lemma A.3 can be improved. Since this is not crucial to our
discussion, we omit further detials.

15

