
Low complexity algorithms for a consumer
partial covering in the plane

Shimon Abravaya∗ Michael Segal†

October 29, 2007

Abstract. This paper considers a model for locating a consumer within a bounded re-

gion in the plane with respect to a set of n existing pull-push suppliers. The objective is

to maximize the difference of total profits and costs incurred due to the partial covering

of the consumer by the suppliers pull and push influence areas. We develop efficient

polynomial time algorithms for the resulting problems in the rectilinear and the Euclid-

ean planes where the bounded region is either a rectangle or a constant size polygon,

respectively. Based on these solutions, we develop algorithms for evaluating efficiently

the objective function at any possible location of the consumer inside the bounded region.

We also employ the algorithms for the Euclidean optimization problem and the rectilin-

ear query computation to solve efficiently their corresponding dynamic versions, where

an appearance of a new supplier or an absence of an existing one occurs. Being easy to

implement due to the extensive use of simple data structures, such as the balanced and

binary segment tree, and the employment of standard mechanisms, such as the sweep

line, the Voronoi diagram and the circular ray shooting, our solutions potentially have

wide usability.

Keywords. Operation Research, Computational Geometry, pull-push criteria, semi-

obnoxious, partial covering.

1 Introduction

1.1 Model and results

Let S be the set {p1, . . . , pn} of pull-push points enclosed in a bounded region Q ⊂ R2,

such that each point pi ∈ S is associated with a positive profit c′i, a positive cost c′′i , and

two positive constants K ′
i and K ′′

i . In the rectilinear model, Q is a rectangle and each

∗Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
†Department of Communication System Engineering, Ben-Gurion University of the Negev, Beer-Sheva

84105, Israel. Partially supported by INTEL and REMON consortium.

1

point pi ∈ S has two positive pull weights w′
i and v′i, and two positive push weights w′′

i

and v′′i . For any point c ∈ Q, we denote by dx(c, pi) and dy(c, pi) the distances between

the x coordinates and the distances between the y coordinates, respectively, of c and

pi, 1 ≤ i ≤ n, and define the following two sets:

(i.) S ′
c = {pi ∈ S : max (w′

idx(c, pi), v
′
idy(c, pi)) < K ′

i},

(ii.) S ′′
c = {pi ∈ S : max (w′′

i dx(c, pi), v
′′
i dy(c, pi)) < K ′′

i }.

In the Euclidean model, Q is a constant size polygon and each point pi ∈ S has a positive

pull weight w′
i and a positive push weight w′′

i . For any point c ∈ Q, we denote by d(c, pi)

the Euclidean distance between c and pi, 1 ≤ i ≤ n, and define S ′
c and S ′′

c as follows:

(i.) S ′
c = {pi ∈ S : w′

id(c, pi) < K ′
i},

(ii.) S ′′
c = {pi ∈ S : w′′

i d(c, pi) < K ′′
i }.

In both models, S ′
c and S ′′

c contain each of the pull-push points from S with its pull or

push influence area covering c, respectively. Thus, the intersection of these sets may not

be empty. The difference of the total profits and costs incurred due to these influences

at the location c is given by

f(c) =
∑
pi∈S′c

c′i −
∑

pi∈S′′c

c′′i . (1)

The following problems hold for both models:

(i.) Optimal coverage. Find a point c ∈ Q maximizing f .

(ii.) Dynamic optimal coverage. Upon an addition of a new pull-push point to S or

a removal of an existing one from S, find a point c ∈ Q maximizing f efficiently

(without re-computing the whole solution).

(iii.) Query point computation. Given c ∈ Q, compute f(c) efficiently.

(iv.) Dynamic query point computation. Upon an addition of a new pull-push point to

S or a removal of an existing one from S, compute f(c), for any given c ∈ Q,

efficiently (without re-executing a preprocessing algorithm).

Remark 1 For ease of presentation and to improve this paper clearness and readability,

we supply solutions for the above stated problems in the special case where p1, . . . , pk are

pull points with push weights and costs that are equal to 0, and pk+1 . . . pn are push points

with pull weights and profits that are equal to 0. We show that each of these solutions,

forms, with only slight variations, a similar runtime solution for its equivalent problem

in the general case where each pi ∈ S is a pull-push point. The precise definitions of a

pull, a push and a pull-push point and the discussion about their differences are given at

Section 1.2. Remark 2 and Remark 3 define the adjustments required for these solutions

generalizations in the rectilinear and Euclidean models, respectively.

2

We present solutions for the optimal coverage problem in both the rectilinear and

Euclidean models, and use the one for the Euclidean case as a preprocessing for the

algorithm solving the corresponding dynamic problem. Based on these solutions, we

develop algorithms for the query point computation problem in both models, and for its

dynamic version in the rectilinear case. The results are summarized at the two theorems

bellow.

Theorem 1 The optimal coverage problem can be solved in O(n log n) time in the recti-

linear model, and in O(n2 log n) time in the Euclidean model . Moreover, the algorithm for

the Euclidean optimal coverage problem enables, once terminated, solving the Euclidean

dynamic optimal coverage problem in O(n log n) amortized time.

Theorem 2 The value of f at any given query point c ∈ Q can be computed in the recti-

linear model in O(log n) time after an O(n2) time preprocessing, or in O(log2 n) time af-

ter an O(n log2 n) time preprocessing. Moreover, the second algorithm enables, with slight

variations, dynamic computation of the value of f at query points in O(log2 n) amortized

time. In the Euclidean model, dynamic computation of f can be done in O(log n) time

after an O(n3 log n) time preprocessing algorithm is executed.

1.2 Previous related work

A semi-obnoxious supplier is a supplier that incorporates both attractive and noxious

aspects. On one hand, it is necessary for the development of its service consumers due

to its positive external effects. On the other hand however, it poses some by-product

negative external effects to those consumers. These positive and negative external effects

are regarded as pulling and pushing forces (also as attracting and repelling forces), and

are conflict in the sense that no single location can serve as an optimal one under both

forces considerations simultaneously. Each of the consumers is regarded as a pull-push

element as the supplier is to be located with respect to these already existing consumers.

The problem of locating a single semi-obnoxious supplier in the plane with respect to a

set of existing pull-push consumers, which employs a maximin, a minimax and a minisum

criteria for modeling the pulling and pushing forces, has been extensively acknowledged

in the literature [5, 7, 10, 12, 19, 23, 24].

While full-covering location problems require that all the customers will be served by

the supplier, their partial-covering formulations allow neglecting some of the customers.

Previous researches deal with the location of pure desirable suppliers, where some un-

served customers are permitted [8, 11], and with the location of pure undesirable suppli-

ers, where the exposure of some customers to the suppliers negative effects is permitted

[3, 12, 13, 17, 21]. Plastria [25] supplies an exhaustive overview of continuous pull-push

covering location problems, their models and their yielding motivations, with respect

to several possible familiar distances including the rectilinear and Euclidean distances.

3

Ohasawa et al. [22] introduce a bicriteria model for locating a semi-obnoxious supplier

within a convex polygon, such that a given number of closest and farthest customers are

neglected. Thus, by moving out some negatively affected customers and withholding the

supplier service from others simultaneously, they lessen opposition of affected minority

groups. Gordillo et al. [15] solve the problem of locating a semi-obnoxious supplier in

the plane where two groups of customers are to be considered. The first is a group of

individual customers whose demands must be satisfied by the supplier, and the second is

a group of convex polygons areas that have to be protected from the negative external

effects of the supplier.

This paper, opposite to previous works, deals with locating a single consumer with

respect to already existing semi-obnoxious suppliers, and hence regards each of these

suppliers as a pull-push element. Throughout this paper, we regard a supplier that has

only positive external effects as a pull supplier, a supplier that has only negative external

effects as a push supplier, and a supplier that may have both these effects as a pull-push

one. Thus, a pull-push supplier might be only a pull or a push supplier, or both of them

simultaneously. The ambivalence reflected by the suppliers pulling and pushing forces

yields that the optimal location for the consumer may be a point that can not be served

properly by all the suppliers (namely, this point may not be covered by all the suppliers

pull influence areas). This, in turn, forms the context in which partial-covering is brought

into play in this paper.

Some studies in operations research and computational geometry deal with variants of

the optimal coverage problem in both the rectilinear and the Euclidean models. Consider

the following related problem: Given a network G = (V, E) with n weighted nodes and

m edges of given lengths and given a number R > 0, find a point c on the network G

which minimizes the number of nodes v such that wvdist(c, v) ≤ R. Berman et al. [2]

supplies an O(mn log n) time algorithm for this problem. Plastria and Carrizosa [9]

consider the problems of placing a supplier in the plane or on a planar network, such

that the total number of points lying within the influence radius from the supplier should

be minimized. They present O(log n) time solutions for both problems considering any

given radius R, after an initial O(n3 log n) time preprocessing. Clearly, our algorithm for

the Euclidean optimal coverage problem enables solving in O(n2 log n) time their planar

problem. Moreover, while the solution in [9] has the advantage of enabling the execution

of an interactive procedure over the values of R in real time, our solution supports queries

computation and enables solving the corresponding dynamic problem efficiently. Segal

[26] supplies an O(n log2 n) time and an O(n7/5polylogn) time algorithms for the special

cases of unweighted complete rectilinear and Euclidean networks, respectively, when the

supplier must be placed at one of the nodes. We can solve the weighted versions of these

problems, for any given general rectilinear or Euclidean network, using our solutions

for the rectilinear and Euclidean query point computation problems, respectively. We

4

first execute the corresponding preprocessing algorithm and then compute the value at

each node as a query point. Thus, our solution for the weighted rectilinear version

requires O(n log2 n) time and for the weighted Euclidean version requires O(n3 log n)

time. In fact, our query computation algorithms enable solving the discrete versions of

the optimal coverage problems on rectilinear and Euclidean networks, when the supplier

must be placed at one of the nodes. This, in turn, emphasizes the need for efficient query

computation mechanisms.

1.3 Motivations

Our interest in the rectilinear case arises from the physical design process of electronic

circuits [18], where an electronic board with several already placed components is given

and a new component is to be located. The performance of the circuit is measured by the

delay incurred due to the components functioning and the rectilinear connections between

them. Thus, locating the new component at a point that is as close as possible to these

pull components is required. However, some components produce heat that spread along

their connections and may damage the new component. Hence, the location of the new

component should be as far as possible from these push components.

Consider a rectangular board R with components p1, . . . , pn already placed, such that

the first k are pull components and the last n − k are push components. For each

1 ≤ i ≤ k, let αi be the maximal delay allowed between pi and the new component, and

1/w′
i be the speed of the electric signal that pi produces. Given a point c ∈ R, we denote

by t1 the number of pull components with w′
id(c, pi) < αi. For each k + 1 ≤ i ≤ n, let

δi be the amount of heat that pi produces, and w′′
i be the linear rate of heat decrease

along the rectilinear connections starting at pi. Let β be the maximal permitted heat at

the location of the new component, then for any point x ∈ R, the value δi − w′′
i d(pi, x)

is the amount of heat caused by pi, k + 1 ≤ i ≤ n, at x. Given c ∈ R, we denote by t2

the number of push components with δi − w′′
i d(pi, c) > β. Clearly, the required location

for the new component is a point c ∈ R maximizing t1 − t2. Transforming the system

into L1 metric distances, we get a special case of the general rectilinear optimal coverage

problem with the following data. For each pi, 1 ≤ i ≤ k, we have K ′
i = αi, v′i = w′

i, c′i = 1,

v′′i = w′′
i = 0, c′′i = 0, and for each pi, k+1 ≤ i ≤ n, we have K ′′

i = δi−β, v′′i = w′′
i , c′′i = 1,

v′i = w′
i = 0, c′i = 0. Note that the rectilinear model is not applicable for this problem as

the resulting feasible region (board) is not an axis-parallel rectangle anymore. However,

many applications deal with a given huge board with numerous components placed on,

and thus the problem must be restricted to a local subset of the given components.

In this case, the designers may also omit the given board assuming that the required

location, with respect to the sub-problem, lies within the board. Our solution for the

rectilinear optimal coverage problem uses the rectangles resulting by the reductions of

the components pull and push influence areas to the given rectangle Q. Omitting these

5

reductions, we get a solution for the rectilinear optimal coverage problem in the plane,

which is employable for solving the electronic circuits physical design problem in the above

stated case. Alternatively, the solution for the Euclidean optimal coverage problem can

be employed by simply considering the rectangular influence areas of the components

instead of the circular influence areas considered throughout the Euclidean algorithm,

and assigning to Q the resulting feasible region. Obviously, when solving the electronic

circuits physical design problem by the second alternative instead of the first one, the

running time slightly deteriorates. Note that many of the physical design methods are

iterative and hence relocations of some already placed components are possible. Thus,

an effective mechanism for computing queries may also be required.

The Euclidean case is strongly motivated by the wide usage of the following two

antennas systems (e.g., cellular networks). The first system consists of n−k transmitters

that produce dangerous electric waves, and k receivers that don’t produce such waves

and getting closer to them improves the system performance. Thus, each transmitter is

considered as push element and each receiver is considered as a pull one. The second

system consists of n antennas, such that each serves as a transmitter and a receiver

simultaneously, and therefore considered as a pull-push element. Clearly, the Euclidean

model can be easily adapted to design and solve a matching optimal coverage problem

for each of these two systems. Efficient solutions for the corresponding dynamic problems

are most required in case of a new antenna to locate or in case of an antenna fault. A

corresponding query point computation mechanism is most useful as the applying object

might be a movable one, such as a customer in a cellular network.

This paper is organized as follows. In Section 2 and Section 3 we supply the solutions

for the resulting optimal coverage and query point computation problems in the rectilinear

and Euclidean models, respectively. Base on these solutions, we also design in Section

2 an algorithm for the dynamic query point computation problem, and in Section 3 an

algorithm for the dynamic optimal coverage problem. Finally, we conclude and state

some possible future research at Section 4.

2 The rectilinear model

Throughout this paper we assume that the points are in general position, i.e. there are

no three collinear points and there are no four coplanar points. Degenerate cases can be

handled by symbolic perturbation [14]. The formulation of the problem implies that each

pull point pi, 1 ≤ i ≤ k, defines a pull rectangular region

Pi =
{
x ∈ R2|w′

idx(x, pi) < K ′
i, v′idy(x, pi) < K ′

i

}
, (2)

6

where c should better reside, and each push point pi, k + 1 ≤ i ≤ n, defines a push

rectangular region

Pi =
{
x ∈ R2|w′′

i dx(x, pi) < K ′′
i , v′′i dy(x, pi) < K ′′

i

}
, (3)

where c better not reside. Let Ri = Pi ∩Q, 1 ≤ i ≤ n, be the rectangles resulting by the

reductions of the Pi’s to Q. For any point r ∈ R2 (alternatively, any segment r ⊂ R2) and

any rectangle Ri, 1 ≤ i ≤ n, we say that Ri covers r if r ∈ Ri (alternatively, if r ⊂ Ri).

We define the cover profit of each pull rectangle Ri, 1 ≤ i ≤ k, at r (alternatively, at

each point x ∈ r) to be c′i in case Ri covers r or zero otherwise. Similarly, we define the

cover cost of each push rectangle Ri, k + 1 ≤ i ≤ n, at r (alternatively, at each point

x ∈ r) to be c′′i in case Ri covers r or zero otherwise. We define the total cover value of

r to be the difference of total cover profits and total cover costs of the pull and the push

rectangles, respectively, at r. Denote by tcv(r) the total cover value of r, then

tcv(r) =
∑

Ri covers r
1≤i≤k

c′i −
∑

Ri covers r
k+1≤i≤n

c′′i . (4)

Regarding these definitions it is clear that any point c ∈ Q with the maximal total cover

value forms a solution to the optimal coverage problem. Note that in the special case

where each point is a pull point associated with a profit of value 1, the required location

is a point in Q covered by the maximal number of the resulting pull rectangles, and in

the special case where each point is a push point associated with a cost of value 1, the

required location is a point in Q covered by the minimal number of the resulting push

rectangles.

Bespamyatnikh et al. [4] supply an O(n log n) time algorithm for determining whether

a given rectangular area is fully contained in the union of n given rectangles. In Sec-

tion 2.1 we supply an O(n log n) time algorithm for the optimal coverage problem based

on the solution in [4], and use it to design in Section 2.2 an O(n2) time preprocessing

algorithm which enables the computation of any given query point in O(log n) time. In

Section 2.2 we also supply an O(n log2 n) time preprocessing algorithm which enables the

computation of query points in O(log2 n) time, and extend it to enable such dynamic

computation in O(log2 n) amortized time.

Remark 2 Consider the general case where each point is a pull-push point. For each

pi ∈ S, we define the resulting pull rectangle R′
i associated with its cover profit c′i and

the resulting push rectangle R′′
i associated with its cover cost c′′i , to be the reductions of

the right handsides of (2) and (3) to Q, respectively, as shown above. By the definition

of a pull-push point it is clear that one of its resulting pull and push rectangles may be

empty due to a possible assignment of the point pull or push weight to zero, respectively,

as states Remark 1 (recall that a pull-push point may also be only a pull point or a push

7

point). Let m the total number of the non-empty rectangles out of R′
1, R

′′
1, . . . , R

′
n, R

′′
n,

then n ≤ m ≤ 2n. Applying each of the algorithms presented in Sections 2.1 and 2.2

on these m non-empty rectangles instead of the Ri’s, we obtain a solution with the same

time complexity for each of the equivalent general problems. Furthermore, the constants

associated with the runtime of these derived algorithms remain significantly small.

2.1 Optimal coverage

Denote by L = {x1, . . . , x2n} the x coordinates of the endpoints of the horizontal sides of

R1, . . . , Rn and by M = {y1, . . . , y2n} the y coordinates of the endpoints of the vertical

sides of these rectangles. Assume that each list is sorted in ascending order. The idea

is to use a segment tree [20] in iterative fashion. Let T be such a segment tree, and

the elements of L be the events of T . The leaves of T contain elementary segments

[yj, yj+1), 1 ≤ j ≤ 2n−1, in their range field. The range at each inner node in T contains

the union of the ranges in the nodes of its children. Each node v in T maintains a total

cover profit, a total cover cost, a total cover value and a maximal total cover value in

sub-tree. The first indicates the sum of cover profits of vertical pull rectangle sides that

cover the range of v and don’t cover the range of its parent, and the second indicates the

sum of cover costs of vertical push rectangle sides that cover the range of v and don’t

cover the range of its parent. The third is simply the total cover value of the range of

v. Let Tv be the sub-tree rooted at v, then the fourth field is the maximal total cover

value over all the ranges of leaves in Tv, where the rectangles for computing the total

cover value of each range are those out of R1, . . . , Rn that cover ranges of nodes in Tv

and don’t cover the range of v. Denote these fields by tcp(v), tcc(v), tcv(v) and mtcvs(v),

respectively.

Observation 1 For any v ∈ T , let Av be the set of all its ancestors. Then,

tcv(v) =
∑

u∈Av∪{v}

tcp(u)−
∑

u∈Av∪{v}

tcc(u).

For any inner node v ∈ T , let Pv be the set of all paths of the form v1, . . . , vt in T such

that v1 is a son of v, the node vi, 1 ≤ i ≤ t− 1 is the parent of vi+1, and vt is a leaf.

Observation 2 For any inner node v ∈ T

mtcvs(v) = max
p∈Pv

 ∑
u∈V (p)

tcp(u)−
∑

u∈V (p)

tcc(u)

 .

A vertical line is swept over the plane from left to right stopping at each event of T .

At each event x, either a rectangle Ri, 1 ≤ i ≤ n, is added to the rectangles cover or it

is deleted from it. Using a recursive scan (starting at the root of T), the vertical side l

8

of Ri is either inserted to T or deleted from it. Note that l is stored in O(log n) nodes

and is equal to the disjoint union of the ranges of these nodes. Denote by Ai the set of

these nodes, then each node v ∈ Ai is a candidate for the global maximum with the value

tcv(v) + mtcvs(v). The update of T by the scan at the event x consists of three phases:

1. The scan “moves” from the root of T towards the nodes in Ai. The scan sums

recursively the total cover profits and the total cover costs of the nodes along each

path from the root of T to each node in Ai (according to Observation 1).

2. At each node v ∈ Ai:

(a) If 1 ≤ i ≤ k, then the scan update tcp(v) = tcp(v) ± c′i. Otherwise, k + 1 ≤
i ≤ n, and the scan update tcc(v) = tcc(v)± c′′i . In both cases, the plus holds

in case l represents the insertion of Ri, and the minus holds in case l represent

the deletion of Ri.

(b) The scan uses the values calculated at the first phase to compute tcv(v) ac-

cording to Observation 1. Then, the scan checks if the value tcv(v) + mtcvs(v)

is bigger than the current global maximum. If so, the scan updates the current

global maximum to be tcv(v) + mtcvs(v).

3. The scan “moves” from each of the nodes in Ai towards the root of T . Let v be

the current node that the scan visits, and u, w be its sibling and its parent it T ,

respectively. The scan updates mtcvs(w) as follows.

mtcvs(w) = max (mtcvs(v) + tcp(v)− tcc(v),mtcvs(u) + tcp(u)− tcc(u)) .

It is easy to show that throughout Phase 1 the scan visits O(log n) nodes, and at

Phase 2 it updates O(log n) nodes. Throughout Phase 3 the scan visits and updates the

same nodes visited throughout Phase 1, and for each of these nodes the scan also examines

its sibling. Since updating each node requires O(1) time, each of the three phases requires

O(log n) time. Applying this observation at each event x ∈ L, we prove Theorem 1 for

the rectilinear case. A closer examination of the scan yields that throughout Phase 1,

the scan visits at most 4 log n nodes. This, in turn, yields that the scan visits at most

8 log n nodes in total. Since there are at most 2n events x ∈ L, the algorithm checks

and updates at most 16n log n nodes of T throughout the whole algorithm. Thus, the

constant associated with the O(n log n) runtime of the algorithm is significantly small,

which arises the practical efficiency of this algorithm.

Example 1 Consider the rectilinear optimal coverage problem with the following four

points. A pull point p1 at (5, 3) with w′
1 = 1/2, v′1 = 1, c′1 = 3, a pull point p2 at

(8, 4) with w′
2 = 2/3, v′2 = 1, c′2 = 5, a push point p3 at (6, 6) with w′′

3 = 3, v′′3 = 3,

c′′3 = 2, and a push point p4 at (10, 5) with w′′
4 = 2, v′′4 = 6/5, c′′4 = 1. For i = 1, 2,

9

we have K ′
i = 2, and for i = 3, 4 we have K ′′

i = 6. For ease of presentation we assume

that Q can be any rectangle containing these rectangles. Figure 1 shows the rectangles

R1, . . . , R4 resulting from p1, . . . , p4 ,respectively, and Figure 2 shows the corresponding

initial segment tree where tcp(v), tcc(v), tcv(v) and mtcvs(v) are assigned to zeros at

each node v ∈ T . Table 1 presents the values of these fields throughout the algorithm.

The table’s rows and columns correspond to the nodes and the events of T , respectively.

The four values at each entry (v, x) are the values of tcp(v), tcc(v), tcv(v) and mtcvs(v),

respectively, resulting by the scan occurred upon the event x.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

R1, 3

R2, 5

R3, 2

R4, 1

Figure 1: The rectangles R1, . . . , R4 resulting from p1, . . . p4, respectively.

��
��

v1
0, 0, 0, 0

[0, 10)�������

XXXXXXX

��
��

v2
0, 0, 0, 0

[0, 5)

��
��

v3
0, 0, 0, 0

[0, 2) ��
��

v6
0, 0, 0, 0

[2, 5)

@
@@

�
��

LL�� LL��

��
��

v9
0, 0, 0, 0

[5, 10)

��
��

v10
0, 0, 0, 0

[5, 8) ��
��

v13
0, 0, 0, 0

[8, 10)

@
@@

�
��

LL��LL��

��
��

v4
0, 0, 0, 0

[0, 1) ��
��

v5
0, 0, 0, 0

[1, 2) ��
��

v7
0, 0, 0, 0

[2, 4) ��
��

v8
0, 0, 0, 0

[4, 5) ��
��

v11
0, 0, 0, 0

[5, 6) ��
��

v12
0, 0, 0, 0

[6, 8) ��
��

v11
0, 0, 0, 0

[8, 10) ��
��

Figure 2: The initial segment tree T

10

1 4 5 7 8 9 11 13

v1 0, 0, 0, 3 0, 0, 0, 3 0, 0, 0, 8 0, 1,−1, 8 0, 1,−1, 8 0, 1,−1, 5 0, 1,−1, 0 0, 0, 0, 0

v2 0, 0, 0, 3 0, 0, 0, 3 0, 0, 0, 8 0, 0, 0, 8 0, 0, 0, 8 0, 0, 0, 5 0, 0, 0, 0 0, 0, 0, 0

v3 0, 0, 0, 3 0, 0, 0, 3 0, 0, 0, 3 0, 0, 0, 3 0, 0, 0, 3 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0

v4 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0

v5 3, 0, 3, 0 3, 0, 3, 0 3, 0, 3, 0 3, 0, 3, 0 3, 0, 3, 0 0, 0,−1, 0 0, 0,−1, 0 0, 0,−1, 0

v6 3, 0, 3, 0 3, 0, 3, 0 8, 0, 8, 0 8, 0, 8, 0 8, 0, 8, 0 5, 0, 4, 0 0, 0,−1, 0 0, 0,−1, 0

v7 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0

v8 0, 0, 0, 0 0, 2, 1, 0 0, 2, 1, 0 0, 2, 1, 0 0, 0, 8, 0 0, 0, 8, 0 0, 0, 8, 0 0, 0, 8, 0

v9 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 3 0, 0, 0, 3 0, 0, 0, 5 0, 0, 0, 5 0, 0, 0, 0 0, 0, 0, 0

v10 0, 0, 0, 0 0, 2,−2, 0 0, 2,−2, 5 0, 2,−2, 5 0, 0,−1, 5 0, 0,−1, 5 0, 0,−1, 0 0, 0,−1, 0

v11 0, 0, 0, 0 0, 0, 0, 0 5, 0, 3, 0 5, 0, 3, 0 5, 0, 3, 0 5, 0, 3, 0 0, 0,−1, 0 0, 0,−1, 0

v12 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0

v13 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0

v14 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0

Table 1: The values of the fields at each v ∈ T throughout the optimal coverage algorithm.

2.2 Query point computation

The following O(n2) time preprocessing algorithm, based on the algorithm for the optimal

coverage problem, enables a query point computation in O(log n) time.

Preprocessing: We construct the (2n − 1) × (2n − 1) matrix M , whose rows (skipping

row 0) correspond to [xi, xi+1), 1 ≤ i ≤ 2n − 1, and whose columns (skipping column 0)

correspond to [yj, yj+1), 1 ≤ j ≤ 2n − 1. Each entry Mi,j of M contains the total cover

value of [yj, yj+1) at any point in [xi, xi+1). Note that the total cover value of [yj, yj+1)

does not change along [xi, xi+1). We initialize each entry of M to 0. Let T be the same

segment tree as presented in Section 2.1. At each event xi, a full scan of T , consists of

three phases, is performed. The first two phases are similar to Phase 1 and Phase 2-(a).

At the third phase, the scan “moves” from each of the nodes updated at the second phase

towards the leaves and keeps on summing the total cover profits and the total cover costs

of nodes along each path. When the scan arrives at a leaf v who’s range [yj, yj+1), the

algorithm updates the entry Mi,j to be∑
u∈Av∪{v}

tcp(u)−
∑

u∈Av∪{v}

tcc(u),

where Av is the set of all the ancestors of v. Observation 1 confirms that this value is

indeed the total cover value of v at any point in [xi, xi+1). Clearly, this scan requires

O(n) time which yields that the preprocessing algorithm requires O(n2) time.

Query computing: For a given point (x, y) ∈ Q, we use a binary search to find the entry

Mi,j such that (x, y) ∈ [xi, xi+1)× [yj, yj+1) in O(log n) time. Thus, computing the total

cover value of (x, y) requires O(log n) time.

11

Example 1 (continued) The following matrix is obtained by running the preprocessing

algorithm with the given data:

M =

0 0 0 −1 −1 −1 −1
3 3 3 2 2 −1 −1
3 3 8 7 7 4 −1
3 1 6 5 7 4 −1
0 −2 3 2 4 4 −1
0 −2 −2 −3 −1 −1 −1
0 0 0 −1 −1 −1 −1

.

We now present an O(n log2 n) time preprocessing algorithm which enables a query

point computation in O(log2 n) time. We define the life time of a rectangle Ri, 1 ≤ i ≤
n, to be the horizontal line segment defined by its horizontal side. Each node v ∈ T

maintains a set of life times of rectangles that their vertical side cover the range of v and

don’t cover the range of its parent.

Preprocessing: The optimal coverage algorithm is performed with the following slight

variation. At each insertion event of a rectangle Ri, 1 ≤ i ≤ n, the algorithm stores its

life time at each node w ∈ Ai (indicating that the range of each w ∈ Ai is covered by

the vertical side of Ri at each point along the life time of Ri). Since each Ai, 1 ≤ i ≤ n,

contains O(log n) nodes, at the end of this extension of the optimal coverage algorithm

there are O(n log n) life times of the Ri’s stored at the nodes of T . The preprocessing

continues by constructing at each node v ∈ T a segment tree Tlt(v) out of the set of life

times stored at v. Let the set of the y-coordinates of the life times at v be the events of

Tlt(v). The leaves of Tlt(v) contains elementary segments [xi, xj), 1 ≤ i < j ≤ 2n, in their

range field, where xi and xj are two consecutive x-coordinates of endpoints of life times

stored at v. The range of each inner node in Tlt(v) contains the union of the ranges in

the nodes of its children. Each node in Tlt(v) maintains the same fields as the nodes of

T . The preprocessing continues by executing the optimal coverage algorithm with each

Tlt(v), v ∈ T , and the set of life times stored at v. For each node v ∈ T , computing Tlt(v)

and executing the optimal coverage algorithm with it requires O(m log m) time, where m

is the number of the life times stored at v. Since the total number of life times stored at

the nodes of T is O(n log n), the preprocessing algorithm requires O(n log2 n) time.

Query computing: Given a point (x, y) ∈ R, the algorithm finds the leaf v ∈ T such that

y lies inside its range, and computes the path pv from the root of T to v in O(log n)

time. Clearly, the set of all life times stored at nodes along pv is the set of all life times of

rectangles who’s vertical sides cover the range of v (and therefore cover y) at each point

along their life times. For each node w along pv, the algorithm finds the leaf u ∈ Tlt(w)

such that x lies inside its range, and computes the total cover value of (x, y) with respect

12

to Tlt(w) in O(log n) time. Once the algorithm completes these computations, it returns

the total of the computed values which is the required tcv((x, y)). Thus, computing the

total cover value of (x, y) requires O(log2 n) time.

The extension required to support the dynamic query point computation employs a

dynamic segment tree for T [1] as follows. In the case of an additional point pn+1, in-

serting the vertical side of the corresponding rectangle Rn+1 into T and the life time of

Rn+1 into each Tlt(w), w ∈ An+1, requires O(log2 n) amortized time. In the case of an

absent point pj, 1 ≤ j ≤ n, deleting the vertical side of the corresponding rectangle Rj

from T and the life time of Rj from each Tlt(w), w ∈ Aj, requires O(log2 n) amortized

time. In both cases, the query computing remains unchanged and thus requires O(log2 n)

amortized time.

Example 1 (continued) Once the extended optimal coverage algorithm terminates,

v6 contains the life time of R1, which is a horizontal line segment with endpoints at (1, 1)

and (9, 1), and the life time of R2, which is a horizontal line segment with endpoints at

(5, 2) and (11, 2). Figure 3 shows the corresponding initial segment tree Tlt(v6). The

four zeros at each node w ∈ Tlt(v6) indicates the initial values of tcp(w), tcc(w), tcv(w)

and mtcvs(w), respectively. Table 2 presents the values of these fields throughout the

execution of the preprocessing algorithm with respect to Tlt(v6) and the two life times.

��
��

w1
0, 0, 0, 0

[0, 11)�������

XXXXXXX

��
��

w2
0, 0, 0, 0

[0, 5)

��
��

w3
0, 0, 0, 0

[0, 1) ��
��

w4
0, 0, 0, 0

[1, 5)

@
@@

�
��

��
��

w5
0, 0, 0, 0

[5, 11)

��
��

w6
0, 0, 0, 0

[5, 9) ��
��

w7
0, 0, 0, 0

[9, 11)

@
@@

�
��

Figure 3: The initial segment tree Tlt(v6)

3 The Euclidean model

As with the rectilinear case, the formulation of the problem implies that each pull point

pi, 1 ≤ i ≤ k, defines a pull circular region

Ci =
{
x ∈ R2|w′

id(x, pi) < K ′
i

}
, (5)

where c should better reside, and each push point pi, k+1 ≤ i ≤ n, defines a push circular

region

Ci =
{
x ∈ R2|w′′

i d(x, pi) < K ′′
i

}
, (6)

13

R1 insertion at y = 1 R2 insertion at y = 2

w1 0, 0, 0, 3 0, 0, 0, 8

w2 0, 0, 0, 3 0, 0, 0, 3

w3 0, 0, 0, 0 0, 0, 0, 0

w4 3, 0, 3, 0 3, 0, 3, 0

w5 0, 0, 0, 3 5, 0, 5, 3

w6 3, 0, 3, 0 3, 0, 3, 0

w7 0, 0, 0, 0 0, 0, 0, 0

Table 2: The values of the fields at each w ∈ Tlt(v6) throughout the execution of the
optimal coverage algorithm with Tlt(v6).

where c better not reside. Consider the same definitions of cover, cover profit, cover cost

and total cover value, as presented in Section 2, with respect to the disks C1, . . . , Cn

instead of the rectangles R1, . . . , Rn. The total cover value of any point r ∈ R2 (alterna-

tively, any segment r ⊂ R2) is given by

tcv(r) =
∑

Ci covers r
1≤i≤k

c′i −
∑

Ci covers r
k+1≤i≤n

c′′i . (7)

Regarding these definitions it is clear that any point c ∈ Q with the maximal total cover

value forms a solution to the optimal coverage problem. We define a sub-region in the

plane to be the set of points that are covered by the same set of disks out of the Ci’s. One

naive solution is to compute all the sub-regions divided by the Ci’s and then to compute

the total cover value of some point at each sub-region. Solving the problem by computing

these sub-regions may be ineffective as there exist up to O(n2) such sub-regions.

In Section 3.1 we supply the algorithms for the optimal coverage problem and its

corresponding dynamic version. In Section 3.2 we supply a preprocessing algorithm,

which is based on the algorithm for the optimal coverage problem and enables an efficient

computation of any given query point.

Remark 3 Consider the general case where each point is a pull-push point. For each

pi ∈ S, we define the resulting pull disk C ′
i associated with its cover profit c′i and the

resulting push disk C ′′
i associated with its cover cost c′′i , to be the right handsides of (5) and

(6), respectively. The statements in Remark 2 considering the disks C ′
1, C

′′
1 , . . . , C ′

n, C
′′
n

instead of the rectangles R′
1, R

′′
1, . . . , R

′
n, R

′′
n, and the algorithms presented in Sections 3.1

and 3.2 instead of those presented in Sections 2.1 and 2.2, respectively, still hold.

3.1 Optimal coverage

Our solution is based on the solution presented in [16] for the following coverage decision

problem. Let S = {s1, . . . , sn} be a set of n sensors and A be a two dimensional area.

14

Each sensor si ∈ S is located inside A and has a sensing range of ri (namely, si can

monitor any point that is within a distance of ri from its location). Given a natural

number m, the problem is to determine whether every point in A is covered by at least

m sensors. In order to solve the problem, Huang et al. [16] supply an O(n log n) time

algorithm that for a given sensor and a given integer j, determines whether every point

on the sensor’s sensing range perimeter is covered by at least j other sensors sensing

ranges. They first present an algorithm for the special case of identical ri’s and later

extend it for the general case of different ri’s. In both cases, the algorithm computes all

the intersection points of the sensor’s (sensing range) perimeter and the perimeters of

all the other relevant sensors (sensing ranges). The algorithm places these points on the

line segment [0, 2π] and then sorts them in an ascending order. Finally, the algorithm

traverses the line segment from left to right and determines the perimeter cover of the

sensor. The following lemma shows how to compute the total cover value of points lying

inside the sub-regions attached to a given arc, when the total cover value of this arc is

known.

Lemma 1 Consider any arc r, contained in the perimeter of the disk Ci, that divides a

sub-region in the plane into two sub-regions. Denote by D1 the sub-region that is outside

Ci, and by D2 the sub-region that is inside Ci. For any point x ∈ D1 ∪D2, we have

tcv(x) =

tcv(r), 1 ≤ i ≤ n, x ∈ D1

tcv(r) + c ′i , 1 ≤ i ≤ k, x ∈ D2

tcv(r)− c ′′i , k + 1 ≤ i ≤ n, x ∈ D2.

Example 2 Consider the Euclidean optimal coverage problem with the polygon Q de-

fined by the breakpoints (0.5, 2), (1.5, 4), (5, 4), (5, 3), (6, 2), and the following four points.

A pull point p1 at (3, 2) with w′
1 = 1/2 and c′1 = 3, a pull point p2 at (1.75, 2.75) with

w′
2 = 1/2 and c′2 = 5, a push point p3 at (3, 3.5) with w′′

3 = 1 and c′′3 = 2, and a push

point p4 at (4, 2.5) with w′′
4 = 1 and c′′4 = 1. For i = 1, 2 we have K ′

i = 1, and for

i = 3, 4 we have K ′′
i = 2. Figure 4 shows the disks C1, . . . , C4 resulting from p1, . . . , p4

,respectively. Let r be the arc of the perimeter of C1 with x4 and x5 as left and right

(clockwise) endpoints. Since only C4 covers r, we have tcv(r) = −c′′4 = −1. Consider the

regions D1 and D2 touching r such that D1 is outside C1 and D2 is inside C1, as shown

in Figure 4. Any point x ∈ D1 is covered by the push disk C4 alone and thus tcv(x) =

tcv(r) = −c′′4 = −1. Any point y ∈ D2 is covered by both the pull disk C1 and the push

disk C4. Thus, tcv(y) = c′1 − c′′4 = c′1+ tcv(r) = 3− 1 = 2 .

Let D be any of the sub-regions divided by the Ci’s. By the definition of a sub-region

it is clear that the total cover value of any point in D can be computed as shown in

Lemma 1 using any of the arcs comprising its boundary.

Example 2 (continued) Let α be the intersection point of the perimeters of C3 and C4

15

1 2 3 4 5 6 7 8

1

2

3

4

5

&%
'$
C1

&%
'$

C2 &%
'$C3

&%
'$

C4

Q

�
�

�
�

@
@r

x6

rx1
rx2 rx3 rx4

r
x5

r
α D2

D1

Figure 4: The disks C1, . . . , C4 resulting from p1, . . . , p4, respectively.

that lies inside C1. Denote by r1, r3, r4 the arcs comprising the boundary of D2 such that,

r1 is the arc of the perimeter of C1 with endpoints x4 and x5, r3 is the arc of the perimeter

of C3 with endpoints α and x4, and r4 is the arc of the perimeter of C4 with endpoints

x5 and α. Note that tcv(r1) = −c′′4 = −1, tcv(r3) = c′1 − c′′4 = 2 and tcv(r4) = c′1 = 3.

Clearly, for any point x ∈ D2, we have tcv(x) = c′1 − c′′4 = 2. Using the arcs comprising

the boundary of D2, this value may also be obtained by each of the followings: (i) D2 is

inside C1 and hence tcv(x) = tcv(r1) + c′1 = −1 + 3 = 2, (ii) D2 is outside C3 and hence

tcv(x) = tcv(r3) = 2, and (iii) D2 is inside C4 and hence tcv(x) = tcv(r4)−c′′4 = 3−1 = 2.

The above stated lemma and the conclusion it yields imply that in order to find a

point in the plane with a maximal total cover value, it suffices to compute the total cover

values of arcs comprising the boundaries of the sub-regions. Moreover, in order to find

such point in Q, it suffices to compute the total cover values of only those arcs that also

intersect Q. Below we supply a solution for the special case of identical size Ci’s. The

solution for the general case of different size Ci’s is obtained by the same extension as

presented in [16, Section 3.2] for the general case of different ri’s, and has the same time

complexity.

At the preprocessing phase we construct the data structure for circular ray shooting

over the set of all the edges of Q in O(|Q| log |Q|) time [6], where |Q| is the size of this

set. We use this data structure throughout the algorithm to decide in O(log2 |Q|) time

whether a given arc r intersects Q by circular ray shooting query, which in turn yields

that the sub-regions touching r intersect Q. We perform a circular ray shooting query to

find if r intersects some edge of Q in O(log2 |Q|) time. If so, r ∩ Q 6= φ. Otherwise, we

decide as explained below whether at least one of the endpoints of r lies inside of Q. If

so, then r ⊂ Q. Otherwise, r ∩ Q = φ. For each Ci, 1 ≤ i ≤ n, the following algorithm

finds the sub-region with the maximal total cover value (namely, every point in it has

the maximal total cover value) over the set of all sub-regions touching the perimeter of

Ci that intersect Q.

16

1. Compute the intersection points of the perimeter of Ci and the perimeters of all the

other disks as presented in [16, Section 3.1]. Place these points on the line segment

[0, 2π] and then sort them in an ascending order into a list L. Mark each point as

a left or right boundary of coverage range.

2. Traverse the line segment [0, 2π] by visiting each element in the sorted list L from

left to right. Denote by x the current element of L, by rprev the arc of the perimeter

of Ci defined by the previous element of L and x, by rnext the arc of the perimeter

of Ci defined by x and the next element of L, and by Cj, j 6= i, the disk that its

perimeter intersect the perimeter of Ci at x. Compute tcv(rnext) by

tcv(rnext) =

tcv(rnext) = tcv(rprev) + c ′j , 1 ≤ j ≤ k, x is a left point
tcv(rnext) = tcv(rprev)− c ′j , 1 ≤ j ≤ k, x is a right point
tcv(rnext) = tcv(rprev)− c ′′j , k + 1 ≤ j ≤ n, x is a left point
tcv(rnext) = tcv(rprev) + c ′′j , k + 1 ≤ j ≤ n, x is a right point.

If rnext ∩ Q = φ, continue with the next element of L (go to Phase 2). Otherwise,

the two sub-regions attached with rnext are candidates for the optimal coverage

location. Hence,

(a) If 1 ≤ i ≤ k, then the sub-region that is inside Ci is a candidate with the value

tcv(rnext) + c′i. Compare it with the global maximum and return a location

pointer accordingly.

(b) If k +1 ≤ i ≤ n, then the sub-region that is outside Ci is a candidate with the

value tcv(rnext). Compare it with the global maximum and return a location

pointer accordingly.

As we already mentioned, using the algorithm for a circular ray shooting presented

in [6], any polygon of size m can be preprocessed in O(m log m) time such that a cir-

cular ray shooting query computation requires O(log2 m) time. Boland et al. [6] also

show that the constants associated with the runtimes of the preprocessing and the query

computation are equal and smaller than 5. We denote both these constants by α0. For

any polygon Q of constant size m and any point p ∈ R2, deciding if p ∈ Q is done by

simply drawing a horizontal line, starting from p, and checking whether the number of

edges of Q intersecting this line is odd. This requires m computational steps. Notice,

however, that this bound can be improved to O(log m) for a convex polygon of size m by

the binary search slicing procedure. We present the analysis below for the constant size

convex polygon.

Assuming Q is a polygon of size m, the preprocessing phase requires O(m log m)

time, and checking whether any given arc intersects Q requires O
(
max(log2 m, log m)

)
=

O(log2 m) time. Moreover, the constants associated with runtimes of these computations

17

are α0 and α1 = max(α0, 2), respectively, and both are smaller than 5. The computa-

tion of the intersection points of any two disks requires a single comparison of the disks

in general. Thus, the computation of the set of all the intersection points of each disk

with all the other disks, requires less than n such comparisons. For each disk, the size

of this set is at most 2n, and hence computing and sorting this set at Phase 1 requires

O(n log n) time, where the constant associated with this runtime dependant solely on

that of the sorting algorithm. Let α2 be the constant associated with the runtime of

an efficient sorting algorithm such as the merge sort or the heap sort. Employing this

sorting algorithm, Phase 1 requires O(n log n) time and the constant associated with its

runtime is α2. For each disk Ci, 1 ≤ i ≤ n, the size of L is at most 2n and thus the

number of the arcs examined at Phase 2 is at most 2n. Applying the above complexity

considerations, we conclude that Phase 2 requires O(n log2 m) time where the constant

associated with its runtime is 2α1 < 10. This yields that the above algorithm requires

O
(
n max

(
log n, log2 m

))
time and the constant associated with its runtime is given by

max(2α1, α2). Thus, our solution for the Euclidean optimal coverage problem requires

O
(
max

(
m log m, n2 max(log n, log2 m)

))
time and the constant associated with its run-

time is given by max(2α1, α2). This proves Theorem 1 for the Euclidean case and shows

the efficiency of our solution in practice assuming Q is a constant size polygon. For ease of

presentation and to improve the paper’s readability, we regard this case only throughout

the rest of this paper and hence omit any complexity consideration that may arise due

to the size of Q, i.e., log2 m ∈ O(1).

Example 2 (continued) Figure 5 shows the interval [0, 2π] resulting by the execu-

tion of the above algorithm with C1 (starting from the leftmost point of C1). Denote by

r1, . . . , r6 the arcs of C1 defined by the pairs of successive (clockwise) intersection points

(x1, x2), (x2, x3), (x3, x4), (x4, x5), (x5, x6) and (x6, x1), respectively. Each rj, 1 ≤ j ≤ 6,

is associated with two numbers. The first number is tcv(rj) and the second number is its

value as a candidate for the global maximum. However, the algorithm does not consider

r5 for the global maximum computation as r5∩Q = φ. Hence, the second value associated

with r5 is “none”.

0 2π
x1 x2 x3 x4 x5 x6

5, 8 3, 6 −2, 1 −3, 0 −1, 2 0, none 5, 8

C2 C2

C3

C4

Figure 5: The interval [0, 2π] associated with C1.

18

To solve the dynamic optimal coverage problem we consider two cases:

i. An additional point pn+1. Applying the above algorithm on Cn+1, we get the sub-

region with the maximal total cover value touching the perimeter of Cn+1 over the

set of all the sub-region that intersect Q. By the algorithm execution we also achieve

the intersection points (if any) of Cn+1 and each of the Ci’s. We apply the above

algorithm on each Ci, 1 ≤ i ≤ n, with the following slight variation. At the first

phase we just perform a sorted insertion of the intersection points of Ci and Cn+1

into the list L, and hence L remain sorted. The second phase remains the same.

ii. An absent point pj, 1 ≤ j ≤ n. We apply the above algorithm on each Ci, i 6= j

with the following slight variation. At the first phase we just remove the intersection

points of Ci and Cj from L, and hence L remain sorted. The second phase remains

the same.

Since an insertion to a sorted L and a removal from a sorted L both require linear time,

the algorithm for the dynamic problem takes O(n2) time. In order to improve this time

complexity, we change the optimal coverage algorithm as follows. For each Ci, 1 ≤ i ≤ n,

we compute at the first phase the set of arcs defined by the two intersection points of Ci

and Cj, j 6= i, and then place their corresponding straight line segments (the straightened

arcs) on the line segment [0, 2π] as shown in Figure 5. At the second phase we construct

a dynamic segment tree Ti out of the set of these line segments [1], and execute the

algorithm for the rectilinear optimal coverage problem with Ti in a similar way we did

for each Tlt(v), v ∈ T , in Section 2.2. Actually we execute an extension of this algorithm

which considers only those nodes in Ti that the arcs defining their ranges intersect Q. By

that we obtain a point in [0, 2π] with the maximal total cover value. This completes the

preprocessing algorithm which requires O(n2 log n) amortized time.

Consider the case of an additional point pn+1. We apply the improved optimal coverage

algorithm with Cn+1 and get the sub-region with the maximal total cover value touching

the perimeter of Cn+1 in O(n log n) amortized time. For each 1 ≤ i ≤ n, denote by li be

the straight line segment resulting by straightening the arc defined by the two intersection

points of Ci and Cn+1. Inserting li into Ti we obtain the sub-region with the maximal

total cover value touching the perimeter of Ci in O(log n) amortized time. Applying this

observation to each Ci, 1 ≤ i ≤ n, that intersects Cn+1, we compute the global maximum

in O(n log n) amortized time.

Consider the case of an absent point pj, 1 ≤ j ≤ n. By deleting from each Ti, i 6= j,

the straight line segment corresponding to the straightened arc defined by the intersection

points of Ci and Cj, and omitting the result obtained at Tj, we get the global maximum

in O(n log n) amortized time. This completes the proof for Theorem 1.

19

3.2 Query point computation

Let V be the set of the intersection points of the perimeters of the Ci’s, and E be the set

of arcs of the Ci’s defined by these intersection points. Clearly, V contains the vertices of

the sub-regions divided by the Ci’s, and E contains the arcs comprising the boundaries

of these sub-regions. By the algorithm for the optimal coverage problem we get these

two sets such that each arc in E is associated with its total cover value. We use V and E

to design an O(n3 log n) time preprocessing that enables computing queries in O(log n)

time as follows.

Preprocessing: For each arc r ∈ E, we define l to be the straight line connecting its

endpoints, and L to be the set of all these lines. To each point v ∈ V , we attach all

the arcs and lines from E ∪ L such that v forms one of their endpoints. For each point

v ∈ V , we sort all the lines attached to v by their angles in an ascending order. Finally,

we construct the Voronoi diagram VD of V and the corresponding point location data

structure [1].

Query computing: Given a point p ∈ Q, we find the cell of VD containing p using the

point location data structure. Let v ∈ V be the intersection point defining this cell. We

first compute the straight line l connecting p and v, and then use a binary search to find

the two lines l1, l2 ∈ L, such that l lies in between them. Let r1, r2 ∈ E be the arcs

defining l1 and l2, respectively. We use tcv(r1) and tcv(r2) to compute tcv(p) according

to Lemma 1.

For each point v ∈ V , sorting its O(n) attached lines requires O(n log n) time. Con-

structing the Voronoi diagram VD of V and the corresponding point location data struc-

ture requires O(n2 log n) time. Thus, the preprocessing requires O(n3 log n) time. Note

that finding the cell of VD containing any given query point requires O(log n) time.

Example 2 (continued) Let β be the intersection point of the perimeters of C3 and

C4 that lies outside C1, r2 be the arc of C1 with x5 and x6 as left and right (clockwise)

endpoints, and r5 be the arc of C4 with β and x5 as left and right (clockwise) endpoints.

Denote by l1, l2, l4 and l5 the lines defined by the endpoints of r1, r2, r4 and r5, respec-

tively, as shown in Figure 6. Consider a query point q located at (x, y) ∈ Q, such that the

Euclidean distance between q and x5 is smaller than all the Euclidean distances between

any of the intersection points of the perimeters of C1, . . . , C4 and q. Thus, the cell of VD

containing q is the one defined by x5. Denote by l the line crossing q and x5. Using a

binary search the algorithm computes the two lines l1 and l4 such that l lies in between

them. This, in turn, yields that the point q lies inside the sub-region bounded by the

arcs r1 and r4. By Lemma 1, the total cover value of q is 2.

20

1 2 3 4 5 6 7 8

1

2

3

4

5

y

x

t t t t
t
x5

l2
hhhh

l4

e
ee

l1

E
EE

l5

�
�
�
�

β

&%
'$

&%
'$

&%
'$

&%
'$

r
A

A
A

A
A

AA

A
AA

l

Figure 6: Euclidean query point computation

4 Conclusions

In this paper we have presented a variety of problems dealing with cover value of regions,

and finding an optimal coverage location with respect to region partitions produced by

a given objective function. Our algorithms can be generalized to deal with dynamic

data sets and are able to compute solutions for given queries. One of promising future

directions is to apply our techniques to different objective functions with outliers, i.e.

taking into consideration a selective group of representative objects. Another possible

research can deal with improving the time complexity of dynamic solutions.

References

[1] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, Computational

Geometry: Algorithms and applications, Springer-Verlag, Berlin (1997).

[2] O. Berman, Z. Drezner and G. Wesolowsky, Minimum covering criterion for obnox-

ious facility location on a network, Networks 28 (1996), 1–5.

[3] O. Berman, Z. Drezner and G. Wesolowsky, The expropriation location problem,

Journal of the Operational Research Society 54 (2003), 769–776.

[4] S. Bespamyatnikh, K. Kedem, M. Segal and A. Tamir, Optimal facility location

under various distance functions, International Journal of Computational Geometry

and Applications 10 (2000), 523–534.

[5] R. Blanquero and E. Carrizosa, A D.C. Biobjective location model, Journal of Global

Optimization 23 (2002), 139-154.

[6] R. P. Boland and J. Urrutia, A simpler circular ray shooting algorithm, 13th Cana-

dian Conference on Computational Geometry (2001), 37–40.

21

[7] J. Brimberg and H. Juel, A bicriteria model for locating a semi-desirable facility in

the plane, European Journal of Operational Research 106 (1998), 144–151.

[8] J. Brimberg and C. ReVelle, A multi-facility location model with partial satisfaction

of demand, Studies in Locational Analysis 13 (1999), 91-101.

[9] E. Carrizosa and F. Plastria, Undesirable facility location with minimal covering

objectives, European Journal of Operational Research 119 (1999), 158–180.

[10] E. Carrizosa, E.Conde and D. Romero Morales, Semi-Obnoxious location models: A

global optimization approach, European Journal of Operational Research 102 (1997),

295–301.

[11] E. Carrizosa and F. Plastria, Polynomial algorithms for parametric minquantile and

maxcovering planar location problems with locational constraints, TOP 6 (1998),

179-194.

[12] E. Carrizosa and F. Plastria, Location of Semi-Obnoxious Facilities, Studies in Lo-

cational Analysis 12 (1999), 1-27.

[13] Z. Drezner and G.Wesolowsky, Finding the circle or rectangle containing the mini-

mum weight of points, Location Science 2 (1994), 83-90.

[14] H. Edelsbrunner and E. P. Mücke, Simulation of simplicity: A technique to cope with

degenerate cases in geometric algorithms, ACM Transactions on Graphics, volume

9, issue 1, (1990), 66–104.

[15] J. Gordillo, F. Plastria and E. Carrizosa, Locating a Semi-Obnoxious Facility With

Repelling Polygonal Regions, Euro Winter Institute on Location and Logistics Book,

Estoril (Portugal), Ana Paias, Francisco Saldanha da Gama Editors. (2007), 166–

182.

[16] C. Huang and Y. Tseng, The coverage problem in a wireless sensor network, Mobile

Networks and Applications 10 (2005), 519–528.

[17] M. Katz, K. Kedem and M. Segal, Improved algorithms for placing undesirable

facilities, Computer and Operation Research 29 (2002), 1859–1872.

[18] M. Lorenzetti and B. Preas, Physical Design Automation of VLSI Systems, Ben-

jamin/Cummings Publishing Company, California (1988).

[19] E. Melachrinoudis and Z. Xanthopulos, Semi-obnoxious single facility location in

Euclidean space, Computers and Operations Research 30 (2003), 2191–2209.

22

[20] K. Mehlhorn, Data Structures and Algorithms 3: Multi-dimensional Searching and

Computational Geometry, Springer-Verlag (1984).

[21] J. Muñoz-Pérez and J. J. Saameño-Rodŕıguez, Location of an undesirable facility in

a polygonal region with forbidden zones, European Journal of Operational Research

114 (1999), 372-379.

[22] Y. Ohsawa, F. Plastria, and K. Tamura, Euclidean Push-Pull Partial Covering Prob-

lems, Computers and Operations Research 33 (2006), 3566-3582.

[23] Y. Ohsawa, Bicriteria Euclidean location associated with maximin and minimax

criteria, Naval Research Logistics 47 (2000), 581–592.

[24] Y. Ohsawa and K. Tamura, Efficient Location for a Semi-Obnoxious Facility, Annals

of Operations Research 123 (2003), 88–173.

[25] F. Plastria, Continuous covering location problems, in H. Hamacher and Z. Drezner,

Location analysis: theory and applications , Springer, New-York (2001), 39–83.

[26] M. Segal, Placing an obnoxious facility in geometric networks, Nordic Journal of

Computing 10 (2003), 224–237.

23

