Geometric Applications of Posets®

Michael Segal Klara Kedem
Department of Mathematics and Computer Science,
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

October 28, 1999

Abstract

We show the power of posets in computational geometry by solving
several problems posed on a set S of n points in the plane: (1) find
the n — k — 1 rectilinear farthest neighbors (or, equivalently, k nearest
neighbors) to every point of S (extendable to higher dimensions), (2)
enumerate the k largest (smallest) rectilinear distances in decreasing
(increasing) order among the points of S, (3) given a distance ¢ > 0,
report all the pairs of points that belong to S and are of rectilinear
distance 0 or more (less), covering k > & points of S by rectilinear
(4) and circular (5) concentric rings, and (6) given a number & > 4
decide whether a query rectangle contains k£ points or less.

Keywords: Algorithms, posets, nearest neighbors, optimization, distances.

1 Introduction

1.1 Problems

Given a set S of n points in the plane and an integer k& we solve the following

problems in this paper:

*Work by Klara Kedem has been supported by a grant from the U.S.-Israeli Binational
Science Foundation.

1. Find the the n — k —1 farthest rectilinear neighbors (under L., metric)
to all points of S, where & <k <n — 1. Thus we implicitly find (but

do not report) the k nearest rectilinear neighbors to all points of S.

2. Enumerate the k largest (smallest) rectilinear distances in decreasing

(increasing) order.

3. Given a distance 6 > 0, report all the pairs of points of S which are of

rectilinear distance § or less (more).

4. Find the smallest “rectangular” axis-aligned (constrained or not con-
strained) ring that contains k (k > %) points of S. A rectangular ring
is two concentric rectangles, the inner rectangle fully contained in the
external one. As a measure we take the maximum width or area of the
ring. By constrained we mean that the center of the ring is one of the

points of S.

5. Find the smallest constrained circular ring (or a sector of a constrained

ring) that contains k£ (k > %) points of S.

6. Given a number k > 7, decide whether a query rectangle contains k

points or less.

1.2 Background

Most of the problems mentioned above have been considered in previous pa-
pers [7, 8,9, 11, 18]. We summarize our and previous results in Table 1.
Dickerson et al. [7] present an algorithm for the first problem which runs
in time O(nlogn + nklogk), and works for any convex distance function.
Eppstein and Erickson [11] solve the first problem on a random access ma-

chine model in time O(nlogn + kn) and O(nlogn) space. In the algebraic

‘ Pbm ‘ Previous results ‘ Our results ‘

1 | O(nlogn+ kn) [9] O(nlogn + (n — k)n)

2 | O(nlogn + %%5—") (expected) [8] | O(n + klogn)

3 | O(nlogn+ k) [9] O(nlogn + k)

4 open, constrained O(n(n —k)log (n — k)
open, non constrained O(n(n — k)*logn)

5 | open O(n? +n(n — k) logn)

6 Preprocess: O(nlogn) O(n+ (n—k)logn)
Query: O(logn) [4] O(log (n —k))

Table 1: Summary of best previous results and our results

desicion tree model their time bound increases by a factor of O(loglogn).
Flatland and Stewart [12] present an algorithm for the first problem which
runs in time O(nlogn + kn) in the algebraic decision tree model. Finally,
a recent paper of Dickerson and Eppstein [9] describes an O(nlogn + kn)
time and O(n) space algorithm for the first problem, it works for any metric
and is extendable to higher dimensions. For our best knowledge only two
papers, one by Dickerson and Shugart [8] and one by Katoh and Iwano
[14] present an algorithm for the second problem (for the largest k dis-
tances). The algorithm in [8] works for any metric, and requires O(n + k)
space with expected runtime of O(nlogn + %%giﬁ). The paper of Katoh
and Iwano [14] presents an algorithm for the second problem for L, met-
ric with running time O(min(n?, nlogn + k**logn/(logk)'/?)) and space
O(n + k*3/(logk)'/? + klogn). Their algorithm is based on the k nearest
neighbor Voronoi diagrams. Dickerson et al. [7] present an algorithm for
the problem: enumerate all the & smallest distances in S in increasing order.
Their algorithm works in time O(nlogn + klog k) and uses O(n + k) space.
Lenhof et al. [18], Salowe [19], Dickerson and Eppstein [9] also solved this
problem but they just report the k closest pairs of points without sorting the

distances, spending O(nlogn + k) time and O(n + k) space. An algorithm
for solving the second problem (for the smallest & distances) is also presented
in [9], spending O(nlogn + klogk) time and using O(n + k) space. Dicker-
son and Eppstein [9] also considered the third problem: find all the pairs of
points of S separated by distance § or less. They give an O(nlogn + k) time
and O(n) space algorithm, where & is the number of distances not greater
than ¢.

Problem 6 is a variant of the orthogonal range search where we are given
a set S of n points and want to find which points are enclosed by the query
rectangle. This problem was efficiently solved by Bentley [4] in O(logn + m)
query time, where m is the number of points contained in the given query
rectangle, using the range search tree and with preprocessing time and space
O(nlogn).

Some variations of problems 4 and 5 have been considered in previous
papers. Efrat et al.[10] consider the problem of enclosing k& points within
a minimal area circle and pose an open problem of covering k points by a
ring. They gave two solutions for the smallest k-enclosing circle. When using
O(nk) storage, the problem can be solved in time O(nklog”n). When only
O(nlogn) storage is allowed, the running time is O(nk log2nlog%). The
problem of computing the roundness of a set of points, which is defined as
the minimum width concentric annulus that contains all points of the set
was solved in [2, 16, 21]. The best known running time is O(n3%), given
in [2], where € > 0 is an arbitrary small constant. The paper of Barequet
et al. [3] presents algorithms for several variants of the polygon annulus
placement problem: given an input polygon P and a set S of points, find an
optimal placement of P that maximizes the number of points in S that fall in

a certain annulus region defined by P and some offset distance 6 > 0. Segal

and Kedem [20] considered the problem of enclosing k (k > %) points in the
smallest axis parallel rectangle. Their algorithm runs in time O(n+k(n—k)?)
and uses O(n) space. Their method and algorithm are one of the tools used
in this paper, and we review it below. It is based on posets (partially ordered
sets) [1].

Segal and Kedem [20] describe how to construct a poset such that a subset
R of S contains the n — k elements of S with the largest x coordinates. They
represent S as a tournament tree. The tournament tree can be implemented
as a heap. The operations of creating R and updating the tournament tree
run in times O(n+(n—k) logn) and O(logn) respectively. Space requirement
is O(n). (For more details see the full version of [20].) With the use of posets
they devise an algorithm that finds the smallest axis parallel rectangle with
k > 2 points in O(n + k(n — k)?) time and O(n) space.

The runtimes achieved in the previously described papers works for prob-
lems 1,4 and 5 are not attractive when the £ is close to n. We show that in this
case the use of posets can significantly reduce the runtime of the algorithms.
Our algorithm for solving the first problem runs in time O((n —k)n) (assum-
ing k > %) and uses linear space. For problem 2 we present two algorithms
: for enumerating the largest and smallest distances. The first one runs in
time O(klogn+n), and uses O(n) space. The second algorithm runs in time
O(nlogn + klogn), and uses O(n) space. We solve both cases of problem
3 by a similar technique. For our best knowledge the second case of prob-
lem 3 has not been considered before. The runtime and space requirements
of both algorithms for Problem 3 are as in [9], namely O(nlogn + k) time
and O(n) space. We solve problem 4, rectangular ring containing k(k > %)
points for the constrained case in O(n(n — k)log(n — k)) time and O(n)

space, while for the non constrained case we present an algorithm with run-

time O(n(n — k)*logn) and O(n) space. We find a constrained circular ring
that covers k (k > 2) points (Problem 5) in O(n*+n(n — k)logn) time and
O(n) space, and we find a sector of a constrained circular ring that covers k
points (k > %) in O(n® + nk(n — k)?) time and O(n?) space. For the sixth
problem we obtain an algorithm with O(n+ (n— k) log n) preprocessing time
and space and O(log (n — k)) query time. We also show how to extend the

algorithms of all the problems to higher dimensional space.

1.3 Motivation

Another algorithm that runs efficiently for large k, k& > 7 values was pre-
sented by Matousek [17]. It finds the smallest circle enclosing all but a few
(n — k) of the given n points in the plane. Given a large integer § < k < n
his algorithm runs in time O(nlogn + (n — k)*n®) for some £ > 0.

A possible motivation to cover all but a small number of points by one
or more objects comes from statistics. In the analysis of statistical data one
would like to get rid of outlyers in the data. Assuming n — k data points are
outlyers, one way to find the £ “good” data points is to enclose them in a

small given shape (or shapes).

2 Rectilinear nearest neighbors (Problem 1)

Problem: Find the the n — k — 1 farthest rectilinear neighbors to all points
of S, where § < k < n — 1. Thus we implicitly find (but do not report) the
k nearest rectilinear neighbors to all points of S. We will use the technique
of [20].

We define the nearest z-neighbor of a point p; € S as point ¢ € S, such
that |z(p;) — z(¢)| = min{|z(p;) — z(p)|,p € S,p # p;}, where x(p) is the

n-k-1 A’
)

smallest
X(V1
x(v,)
n-k-1
largest A77

Figure 1: Poset for n — k — 1 largest and n — k — 1 smallest values.

x-coordinate of p. First we find the £ nearest x-neighbors for each point of S.
To solve this subproblem we find the points with the n — k — 1 smallest and
the n — k — 1 largest z-coordinates by posets [1]. Let A’ (respectively A") be
the set of the n —k — 1 points of S with the smallest (largest) z-coordinates.
Note that from the technique in [1] it follows that A" and A” are sorted. Let
A be the set of points of S with z-coordinates between those of the points of
A"and A" (A=S—A"— A") (see Figure 1).

The number of points in A is 2k + 2 — n. Since

n

5 < k <mn, for a every

point p; € S all the points of A are among the k nearest z-neighbors of p;,
and the n — k — 1 farthest z-neighbors of p; can be only in A" U A”. For the
same reason, for a point p; € A" we will look for the farthest z-neighbors in
A" and among all the points in A" whose z-coordinate is smaller than z(p;).
Symmetrically, if p; € A” we will look for the farthest z-neighbors in A" and
among all the points in A” whose z-coordinate is greater than x(p;). Assume

p; € A. Then by a simple merge on A" and A” we can find the n — k — 1

points farthest from p;. If p; € A’(A”) then we perform a similar merge on
A"(A") and the set containing all the points in A’(A") whose z-coordinate is
smaller (greater) than z(p;).

Returning to the two-dimensional problem, we store all the points of §
in an array T'. We create separate posets for the x and y axes. We call them
the z-poset and the y-poset. Entry i for point p; in T" will contain 2 pointers:
one to the leaf in the z-poset containing p;, and one to the leaf in the y-poset.
Our goal is to find for every point p; € S all the n —k — 1 farthest rectilinear
neighbors.

We create a set L of candidate neighbors with their L., distances. For
each point p; € S it is enough to store the entry i; (iz) in A" (A”) where
the search for the n — k farthest x-neighbors halted. Symmetrically for the
y-neighbors. There is a possibility that the same point appears in both the
set of farthest z-neighbors and the farthest y-neighbors of p;. We go over
all the n — k — 1 farthest y-neighbors of p; and check if their corresponding
x-coordinate is in the range [1,i;] and [iy, n] in the z-poset. If the answer is
“YES” then the same point, say p;, appears as the farthest neighbor of p; in
both axes, we choose the maximum distance of the two distances. Assume,
that the maximum distance was obtained on the z-axis. Then we put into
the set L the point p; with a flag noting it x and skip in the z-poset and
y-poset to the next farthest points. At the end of the process L has [points,
where (n —k — 1) <1 <2(n—k—1). We find the (n — k — 1)th point in L
using the linear time selection algorithm of [5] and thus solve the problem.

Considering the time complexity. Creating the posets takes O(n+X"_, log i)
= O(n+ (n — k)logn) time. The merge step over A’, A” and the selection
take O(n — k) time per point of S. The required storage, O(n), is used for

storing the posets, the auxiliary array 7', L, and the indices. We conclude

by the following theorem:

Theorem 2.1 Given a set S of n points in the plane, we can find the the
n—k—1 rectilinear farthest neighbors of all the points in S (or, equivalently,
k nearest rectilinear neighbors) in O(n+(n—=k) log n+n(n—=~k)) = O((n—k)n)

time, using linear space.

Remark 1 This problem can be easily extended to d-dimensional space,
d > 3. Perform, for each axis 7,3 < ¢ < d the same algorithm as for the y
axis in the previous algorithm. The set L has (n —k—1) <1 <d(n—k—1)
points, and the (n — k — 1)th point in L is determined by the selection al-
gorithm. So the total runtime and space remain unchanged for a constant

dimension d.

Remark 2 The algorithm described above still works when k < 2. First
we sort, all the points according to their x and y-coordinates. Then for each
point we find the n — k — 1 farthest neighbors in both axes by the same
algorithm as before, create L and use the selection algorithm. In this case

we add factor of O(nlogn) to the runtime of the algorithm.

3 Enumerating rectilinear distances (Prob-
lem 2)

Problem 2: Given a set S of n distinct points in the plane, let D =
{dy,ds,...,dy}, where N = 22 and d; > dy > d3 > ... > dy denote
the rectilinear distances determined by all the pairs of points in S. For a
given positive integer £ < N, we want to enumerate all the k£ pairs of points
which realize the k largest distances in D. For some values of & we do not

need to know the total order of the points (in z or y axis). For example, if

9

k = 1 then the maximum and minimum values of the z and y coordinates
suffice.

As in the previous section we first show an algorithm that enumerates all
the k pairs of points which realize the k largest distances on the x axis.

Assume that the points of S are sorted by their z-coordinate in increasing
order and name them by this order, namely points 1,2,...,n. For d; we
know that the points 1 and n (according to the sorting) realize this distance.
We denote this pair by (1,7). One can also think about the interval [1, n]
containing the n z-consecutive points. We will use the notation (7,7) to
denote both the pair of points i and j and the interval [, j]. The next
distance, dq, can be realized by one of the candidate pairs (1,n—1) or (2,n).
Depending on the pair that realized ds, the distance dz has also two candidate
pairs. It is possible that the number of candidate pairs in step ¢ will grow,
if, for example, the pair (1,n — 1) realized dy and the pair (2,n) realized dj,
then the candidates for realizing d, are the pairs (1,n —2), (2,n — 1), (3,n).
We denote the set of candidate pairs for distance ¢ by L;. This is the set of
pairs of points that can potentially realize d;, after the pair that realized d;_;
is known. An interval (¢, 1)) is nested in (&, n) if (¢,v) C (&,n). Throughout
the algorithm we will make sure that L; does not contain nested intervals.

We say that the candidate pair (7, 7), where i < j+1 blocks (i +1,7) and
(7,7 — 1) because the z-distance defined by points i and j is greater than the
distances defined by the pairs (i + 1,7) and (i,7 — 1).
Claim 1: L; differs from L;_y, i > 2 by at most three candidate pairs : one
that is deleted from L, ; and at most two new pairs that are inserted into
L;.
Proof. For L; we have only candidate pair (1,n). Ly consists of the pairs

(2,n) and (1,n — 1). If, wlog, the pair (1,n — 1) in Ly realizes dy, then L

10

will consist of (2,n) and (1,n — 2). This is because (2,n) blocks (3,n) and
(2,n — 1). If the distance defined by the pair (2,n) is always smaller than
the distances defined by the pairs (1,n — j) for 1 < j < n — 2, then L; is
different from L; ; by deleting (1,n — j) and inserting (1,7 — j — 1). If for
some j,1 < j < n — 2, the distance realized by the pair (2,n) is greater
than the distance realized by the pair (1,n — j), then the candidate pairs for
the next stage are changed by inserting two candidate pairs (3,n), (2,n—1)
and deleting (2,n) and (1,n — j) remains as a candidate as well. Thus, we
conclude that if at some stage ¢ there is only one pair (£,7) in L;, then at
the next stage this pair is deleted, and two new pairs (£ +1,7) and (§,7—1)
(if they exist) are inserted into L;;; as candidate pairs. If, at some stage i
there are several candidate pairs and one of them, e.g. (§,n) realizes d;, then
for the next stage this pair is deleted and (£ + 1,7) and (&, 7 — 1) (if exist)
are inserted into L;,; unless there is exists candidate pair in L; (except for
(&,m)) that blocks them. Thus, we delete one candidate pair and insert at

most two candidate pairs. N1

We define left and right neighbors of a pair (£, 1) as follows: a left neighbor
of (£,n) is every pair (u,n— 1), u < £. A right neighbor of (£, n) is every pair
€+ 1,p), 1>

Throughout the updates of L; we do not re-insert a pair that had been
used before to realize a distance d;, j < i. Moreover, we avoid storing nested
intervals in L;. As we reach stage ¢ — 1 we find which pair of L; ;| realizes
d;_1. Assume (§,n) realizes d;_;. We update L;_; to get L;. We delete (£, 1)
from L; ;. If L;_; contained a left (right) neighbor of (£, n) then we do not
add the pair (§,7—1) ((£+1,7n)) to L;. Otherwise we add these pairs to L;.
This ensures that L; does not contain nested intervals.

Claim 2: If a pair (&, n) realizes d;, then it will not be added as a candidate

11

pair in Lj, for j > 1.

Proof. ~ We prove by induction. L; consists of only one interval (1,n).
L, contains two candidate pairs (1,n — 1) and (2,n) that define intervals
that overlap but are not nested. The pair (1,n) will not be inserted to
Lj,7 > 1, since we always decrease the interval. Assume we are at stage i.
By the induction hypothesis L; does not contain nested intervals. Assume
that (&,n) € L; realizes d;. (£,n) can donate two new overlapping intervals
to L;yq: namely, (£ +1,7) and (§,7 — 1). We look at the neighbors of (£,)
in L;. If there exists a left neighbor of (£, 1), then we do not add (£,7—1) to
L;;1 in our algorithm (same for the right neighbor). Clearly, (£,7) will not
re-appear in the next stages because we only decrease the range of intervals

and since there is no nesting there is no interval that contains (£,7). B

Corollary 3: |L;| <i,i=1,...,n—1,and |L]| <n—1,i=n,..., 21
Following Corollary 3 we can easily solve Problem 2 for one axis. Since
the number of candidates for each stage does not exceed n — 1, it suffices
to find the updates to the candidate list L; at each stage ¢, and then find
which pair realizes d;. Naively we can carry out one stage in O(n) time,
therefore the k largest distances are found in O(kn) time and linear space.
This runtime can be improved by using tournament trees ([1, 20]) with n —1
leaves, each storing a candidate pair. Initially we store only one candidate
pair, namely (1,n), and the other leaves are empty. As we proceed to L; we
make at most three updates to the tree. The pair that realizes d; is the winner
of the tournament. The update of the tournament tree for L;, proceeds as
follows: If we do not need to add anything we just empty the leaf occupied
by the winner for d; and continue to find the second best (the pair for d; 1) in
the tournament tree. If we add one pair, we replace the contents of the leaf

that contained the winner with the new pair and update the path to the root

12

to find the pair realizing the next distance. If we add two pairs, than we put
one pair instead of the winner’s leaf, another pair into the current available
leaf (we always have one due to Corollary 3) and update two paths to the
root to find the next winner. We take care of not inserting a nested interval
by maintaining an array U whose i’th entry is either empty or contains a
pointer to the leaf containing the pair (i, j) in the tournament tree for some
j. (Notice that there can be only one leaf containing i as the first point,
since there is no nesting). The leaves of the tournament tree point to their
corresponding entries in U, and each non empty entry in U points also to the
closest non empty pairs in U, backwards and forward respectively.

An update of the tree takes O(logn) time, so the runtime of this algorithm
is improved from O(kn) to O(n + klogn).

Returning to the L., metric. We perform the algorithm for the x axis
simultaneously with the algorithm for the y axis. We first compute the winner
in both trees and compare the two distances: the largest current x-distance
and the largest current y-distance. We choose the largest between them. We
check whether these two distances are defined by the same pair of points. If
they are, then we choose the largest distance, report the pair and proceed
with both the algorithms to the next step (namely, updating the tournament
trees, and finding the next winners). If they are not, then we check whether
the larger of the distances has been reported before (in O(1) time we compute
the distance in the other axis and compare it to the distance we have in that
axis at this stage of the algorithm). If it has been reported, we move to the
next step in this axis, and if not we report this pair of points and proceed to

the next stage.

Theorem 3.1 Given a set S of n points in the plane and a number k we

can enumerate the k largest rectilinear distances in nonincreasing order in

13

O(n + klogn) time, using only O(n) space.

Remark 3 If U is implemented as a linked list, and the tournament tree is
implemented as a heap then the space is O(min (k, n)).

The second case of problem (2) is: enumerate the k smallest rectilinear
distances in increasing order. The idea is similar to the algorithm above.
We first show an algorithm that enumerates all the £ pairs of points which
realize the k smallest distances on the x axis. We assume that the points
of S are sorted by their x-coordinate, in increasing order. A candidate pair
for realizing d; is either one of the neighboring pairs (£,& + 1), for £ =
1,...,n—1, We choose the pair that realizes the smallest distance by creating
a tournament tree of pairs. At the following step we perform similar updates
to the tournament tree, namely, delete the pair that realized d; and insert
at most two new candidate pairs, avoiding nested pairs. The algorithm that
we apply here is almost identical to the previous one, except that here the

distances increase, and we have to initially sort the coordinates of the points.

Theorem 3.2 Given a set S of n points in the plane and a number k we
can enumerate the k smallest rectilinear distances in nondecreasing order in

O(nlogn + klogk) time, using only O(n) space.

Remark 4 These enumerating problems can be extended to arbitrary, but
constant, d-dimensional space, d > 3. Runtime and space are changed by a

multiplicative d factor .

4 Reporting ¢ distances (Problem 3)

In a very recent paper Dickerson and Eppstein [9] considered the following

problem:

14

Problem 3.1: Given a set S of n distinct points in d-dimensional space,
d > 2, and a distance §. For each point p in S report all pairs of points (p, q)
with ¢ in S such that the distance from p to ¢ is less than or equal to 9.

This problem and the problem of enumerating the k& smallest distances
in nondecreasing order are closely related. If § of this problem is the unique
k' largest distance of the enumerating problem, then the two solutions are
identical. The paper [9] solve Problem 3.1 in O(nlogn + k) time and O(n)
space algorithm, where £ is the number of distances not greater than ¢, and
the distances are not ordered. Our algorithm reports these distances sorted
in the same time and space complexity for L.

Another variant of this problem, that has not been considered before, is:
Problem 3.2: Find all pairs of points in S separated by a L, distance ¢ or
more.

For both Problems 3.1 and 3.2, if we want the distances sorted, we can
use our algorithms from the previous section to get O(n + klogn) algorithm
with linear space for Problem 3.1, where k is the number of distances not
greater than ¢, and O(nlogn + klogk) time algorithm with linear space for
Problem 3.2. The only change is that we compare the output distances with
d. Notice that if we use the algorithm of [9] for sorting the distances then we
would end up spending O(n + k) space.

We want to solve first Problem 3.2. The technique is similar to the one
we used in solving Problem 1. We first describe an algorithm for the z axis.

Throughout the algorithm we will maintain a poset (which is initially
empty) that will contain the largest and the smallest x values of the points
that have been encountered in the algorithm (as will be seen below). Pick an
arbitrary point p; € S. The farthest x-neighbor of p; can be the point with

the smallest (or largest) = coordinate. The smallest point is added to the set

15

s, and the largest to the set g,. After we find which point is the farthest
x-neighbor of p; (say it is p; and assume wlog p; € s,), we check whether
|z(p1) — z(p;)| > d. If |z(p1) — z(p;)| < 0, then we know that there is no
point ¢ € S, such that |z(p;) — z(q)| > 0. If |z(p1) — z(p;)| > we continue
to find the next farthest z-neighbor of p; and update s, and g, accordingly.
It can either be a point with x-coordinate adjacent to z(p;) in s, or the next
farthest point in g,. The algorithm for p; ends when on both ends of s, and
g, the distance is smaller than 6. We end up with a poset P,, where s, and
g, are sorted in x order and the rest of the points in S — s, — g, are not
sorted. Similarly, we work on the y distance for p;, and create P, s, and g,.

In order to find the § L., distances for p; we go over P, and P,. If the
same point, p;, appears either in z or in y sets, then we can output the pair
(p1,p;) and proceed to the next points till we got all the points whose distance
from p; is not smaller than §. We repeat the process with p, € S. As for
p1 the z-farthest point is the point with the largest or smallest z-coordinate,
but this point is already in g, or s,. So we go over P, as was created for
p1. We might add points to g, s, if all the distances |ps,q| > 0,9 € s, or
q € g, or not. Now we use the sets s, g5, sy, g, computed before and report
the appropriate pairs that have the required distance (not smaller than ¢).
There are two possibilities, (1) no points are added to s, (or sy, g,), or (2)
some are added. The number of elements in s,(gs, sy, g,) does not decrease.

Considering the time complexity. The worst case is when we have to know
the total xz-order and y-order of all the points in S. The worst case runtime
is O(nlogn + k) and the space is O(n).

The algorithm for Problem 3.1 is very similar to the above algorithm.
The main difference is that instead of starting at the farthest neighbors and

constructing P,(P,) incrementally, we now sort the x(y) coordinates of the

16

points of S (so we do not need the posets). For each point p; we go over its x
(and y) nearest neighbors in left (up) and right (down) directions and report

the distances (similar to algorithm 3.2) as long as they are less than .

Theorem 4.1 Given a set S of n points in the plane and a distance § > 0
we can report all the pairs of points of S which are of rectilinear distance §

or more (less) in O(nlogn + k) time, using only O(n) space.

Note that in the theorem above k is the number of L., distances for the case
of “more than ¢”, and k is the number of distances measured along x and y

axes for the case of “less than §”.

5 Rectangular rings (problem 4)

In this section we solve problem 4: Given a set S of n points in the plane, find
the smallest rectangular axis-aligned ring (constrained or non-constrained)
that contains k,k > % points of S. As a measure we take the width (for

constrained ring) or area (for non-constrained ring) of the ring.

5.1 Constrained rectangular ring

This problem can be translated to the following one:

For every point p; € S find the n — k nearest and n — k farthest rectilinear
(under L., metric) neighbors. We can use our algorithm from Section 2 to
find the n — k — 1 farthest rectilinear neighbors for each point of S, and the
algorithm of [9] to find the n — k& — 1 nearest neighbors. Given the set of
the n — k — 1 nearest neighbors N; of p; € S and the set of the n — k — 1
farthest neighbors F;, we sort N; and F; according to their L., distance from

p;. There are exactly n — k — 1 rings centered in p; and containing & points.

17

The rings j = 1,...,n—k —1 are determined by the j’th points in the sorted
N; and F; respectively, where the j’th point from F; determines the outer
rectangle and the j’th point from N; determines the inner rectangle.

The runtime of the algorithm in [9], as well as for our algorithm (Section
2) is O(n — k) for one point p; € S (after O(nlogn) time for preprocessing).
We spend O((n — k)log (n — k)) time for sorting NN; and F; for each point

p; € S, and then go over the corresponding rectangles. Therefore,

Theorem 5.1 Given a set S of n points in the plane, we can find the smallest
rectangular azis-aligned constrained ring that contains k,k > 3 points of S

in O(nlogn + n(n — k)log (n — k)) time, using O(n) space.

Remark 5 This problem can be easily extended to arbitrary, but constant,

d-dimension space, d > 3, the runtime changes by multiplicative d factor.

5.2 Non-constrained rectangular ring

We find the smallest rectangular ring that contains k,k > & of given n
points by first computing all the rectangles which contain k& + p points (p =
1,...,n — k). Each such rectangle defines a center ¢ for which we find the
largest rectangle centered at ¢ that contains p points. In [20] an algorithm
for finding the smallest axis-aligned rectangle that contains k, k > 5 points
is presented. The outline of algorithm from [20] is as follows: initially fix the
leftmost point of the rectangle to be the leftmost point of S. At the next
stage the leftmost point of the rectangle is fixed to be the second left point
of S, etc. Within one stage, of a fixed leftmost rectangle point, r, we pick
the rightmost point of the rectangle to be the ¢'th z-consecutive point of S,
forq=k+r—1,...,n. For fixed r and ¢ the x boundaries of the rectangle

are fixed, and we go over a small number of possibilities to choose the upper

18

Figure 2: Hyperbolae define the locus of rectangles with given area

and lower boundaries of the rectangle so that it will enclose k points. This
algorithm runs in time O(n + (n — k)3). We use it for computing all the
rectangles which contain k + p points (p = 1,...,n — k). We denote the
external rectangle by R.

We modify the problem of finding the smallest rectangle with a given
center, that contains p points, to find the largest rectangle with a given
center, that contains p points. Notice that the external rectangle R defines
the range of boundaries for the internal rectangle. Our algorithm goes over
all the possible rectangles with the given center that contain p points and
chooses the largest among them as follows. Let () be an inner rectangle that
contains p points. We extend its boundaries until it almost meets, but does
not contain another point of S, within the boundaries of R.

The naive approach for finding the largest rectangle with a given center
that contains p points is to go over all pairs of points that together with the
center ¢ define a rectangle, check whether this rectangle contains p points

and find the largest rectangle among those that do. The total running time
is O(n?).

19

Another approach to this problem is to define the following decision prob-
lem: For a given area A does there exist a rectangle centered at ¢ that covers
exactly p points and whose area is A. For the decision algorithm we sort the
points of S according to their z and y coordinates respectively. Four hyper-
bolae define the locus of all rectangles with a given area A, centered at ¢ (see
Figure 2). Observe the halfspace defined by the hyperbola H that contains
the origin. We consider all the points of S which are inside the intersection
of the four halfspaces that correspond to the four hyperbolae. Denote this
set by S’ C S. Each point s € S’ defines two rectangles with center ¢ and the
given area: where s either determines the width of the rectangle, or its height.
For the time being we look at the rectangle whose width is determined by s.
Let s be the point that determines the widest rectangle () and assume that
s is to the left of c.

We shrink the width of the rectangle, keeping its corners in the corre-
sponding hyperbolae until an event happens. (the height of a rectangle grows
when the width shrinks) An event is when a point is added or deleted from
the rectangle during the width shrinking. We check if the newly obtained
rectangle contains p points. If the obtained rectangle does contain p points,
we are done; otherwise we continue to shrink the rectangle until the next
event. We perform the same actions for the height as well.

For speeding up the running time of this algorithm we define four subsets
U,D,R,L of S’ corresponding to the halfplanes that bound Q. R is the set
of all the points of S’ contained in the halfplane to the right of the left side of
@ and are within the interior of the hyperbolae. L (U, D) is the set of points
to the left (up, down) of the right (upper, lower) side of the rectangle Q). We
define p,(p;) to be the point z-closest to @ in R(L) and p,(p4) to be the point
y-closest to @ in U(D). Assume that the number of points contained in @ is

20

r and we are shrinking () in x direction until the next event. Assume that the
x-closest neighbor of p,(p;) in R(L) is p(p}') and the y-closest neighbor of
pu(pg) in U(D) is pu(py). Thus, our event is when one of p, p}' or p?, py enters
or exists the rectangle (). If () contained r points and the next event is a
point from R or L, then the new rectangle will contain — 1 points, otherwise
r + 1. We update p,,p;, pu, pa (and also the subsets U, D, R, L). When we
reach a rectangle with p points we first extend its boundaries with R until it
almost touches the p + 1’th point and then we move to the next step (with
the same center). During the process for this center we keep the largest area
inner rectangle encountered so far. The algorithm for solving the decision
problem works in time O(n) after preprocessing of O(nlogn), because we
can carry each step in constant time, except for the first step where we have
to compute the points that lie in the interior of the hyperbolae.

In order to solve the optimization problem, we apply the optimization
technique of Frederickson and Johnson [13]. We define the matrix of distances
as follows: one dimension of the matrix contains the sorted z-distances from
the center (multiplied by 2) , and the other dimension contains the sorted y-
distances from the center (multiplied by 2). The matrix values are potential
area values of the rectangle. We perform a binary search on the matrix to
find the optimal area. Since the rows and columns of the matrix are sorted,
we can use the linear time selection algorithm of [13] to find the largest axis-
parallel rectangle centered at ¢ and containing p points in O(nlogn) time.

The analysis follows this of [20]: There are O((n—k)*) external rectangles,
and for each of them we apply an O(nlogn) algorithm for finding the largest
internal rectangle. So, the total runtime is O(n(n — k)*logn) with linear

space. We conclude by the following theorem:
Theorem 5.2 Given a set S of n points in the plane, we can find the small-

21

est area rectangular aris-aligned ring that contains k,k > 5 points of S in

O(n(n — k)*logn) time, using O(n) space.

Remark 6 This problem can be extended to 3-dimension space. Using
the algorithm of [20] and technique of [13] for 3-dimension space we obtain

algorithm with runtime O(n?(n — k)%logn) time.

6 Constrained circular ring (Problem 5)

In this section we solve the following problems: Given a set S of n points, find
the smallest constrained circular ring (or a sector of a constrained circular
ring) that contains k points (k > %) of S. We first describe an algorithm
that find the smallest width circular ring containing & points (k > %), and
centered at some point p; € S. We need to know the sorted order of the n—k&
closest points to p; and n—Fk farthest points from p; and then proceed as in the
algorithm for finding a constrained rectangular ring. The time for computing
the n —k closest and n — k farthest points for p; is O(n+ (n— k) logn). Thus

we can conclude by

Theorem 6.1 Given a set S of n points in the plane, we can find the smallest
width constrained ring that contains k,k > 5 points of S in O(n?* + n(n —

k)logn)) time, using O(n) space.

Now we describe how to find minimal area sector of a constrained ring

that contains k,k > 7, points. We first describe an algorithm that finds

the smallest area sector of a ring containing k points (k > %) centered at
point O(0,0). We start with finding for O(0,0) the ordering of S points with
respect to the polar angle around the origin. We use the algorithm in [20]

to solve our problem in the following way: apply the algorithm in [20] for a

22

smallest axis-aligned rectangle with k£ points using a polar coordinate system
(p,0). This yields the smallest area sector of a ring centered at the origin and
containing k points of S. We proceed as in the algorithm of [20]. The running
time of this algorithm is O(n+ k(n —k)?). We can use this ring-algorithm as
a subroutine to solve the following problem: Find the smallest area sector of
a constrained ring (centered on an input point) containing k points. We can
perform an angular sort of all the points in O(n?) time and space [15] and

applying this algorithm to each point we get O(n? + nk(n — k)?) time.

Theorem 6.2 Given a set S of n points in the plane, we can find the smallest
area sector of a constrained ring that contains k points (k > %) points of S

in O(n* + nk(n — k)?) time using O(n?) space.

7 Query rectangle (Problem 6)

Problem: Given a set S of n points in the plane and a number & (5 < k& < n)
we want to preprocess the points in order to answer efficiently whether &k or
more points are enclosed by a query rectangle. The naive approach to this
problem is to build a range tree [4] on the set S. When a query rectangle
R is given, we can answer how many points are inside of R in O(logn) time
using the fractional cascading technique of [6]. The preprocessing time and
space is O(nlogn). Notice that we did not use the parameter k£ at all. In
order to improve the preprocessing time and space and also the query time

we use the following observation.

Observation 7.1 In order for the query rectangle to contain at least k points,
the vertical strip defined by the vertical sides l1,ly of the query rectangle R
must be located between the n — k smallest and n — k largest x values of the

points of S and the horizontal strip defined by the horizontal sides l3,1, of

23

([] ° []
R e ° o
N ° 1
horizontal b 8
strip ° e o ™
[] ° ° []
([]
14
L4]
R, ° L4 .R4

vertical strip

Figure 3: The strips enclose a query rectangle R.

the query rectangle R must be located between the n — k smallest and n — k

largest y values of the points of S.

Using this observation we proceed as follows. First we evaluate the small-
est and the largest n — k x values of the points of S (denote by S,) and the
smallest and the largest n — k y values of the points of S (denote by S,).
Next, by a binary search, we find how many points are in the left halfplane
of Iy, in the right halfplane of l5, in the upper halpfplane of I3 and in the
lower halpflane of 14 (See Figure 3 below).

Notice that we count twice the points in the regions R;;1 < 7 < 4 in
Figure 3. We can compute how many points are in these regions by building,
at the beginning of the algorithm, a range search tree but only for the points
with either z-coordinate in S, or y-coordinate in S,. We have O(n — k) such
points. Thus the construction of the tree takes O((n — k)log(n — k)) time
with O((n—k)log (n — k)) space. Now we can compute how many points are
in the four query rectangles that correspond to the regions R;,1 <17 < 4 in the
Figure 3. It follows that the query time for such a rectangle is O(log (n — k)).
Thus,

24

Theorem 7.2 Given a set S of n points in the plane and a number k (3 <

k <mn), we can preprocess the points of S in O((n —k)log(n — k)) time with

O((n — k)log (n —k)) space to answer in O(log (n — k)) time whether k or

more points are enclosed by a query rectangle.

References

11

2]

3]

[4]

[5]

(6]

7]

8]

[10]

| M. Aigner, “Combinatorical search”, Wiley-Teubner Series in CS, John

Wiley and Sons, 1988.

P.K. Agarwal, M. Sharir, “Efficient randomized algorithms for some
geometric optimization problems”, In Proc. 11th Annu. ACM Symp.
Computational Geometry, 1995.

G. Barequet, A. Briggs, M. Dickerson, M. Goodrich, “Offset-polygon an-
nulus placement problems”, In Workshop on Algorithms and Data Struc-
tures (WADS’97), Lecture Notes in Computer Science 1272, Springer-
Verlag, 378-391.

J.L. Bentley “Decomposable searching problems”, Info. Proc. Lett. 8,
244-251, 1979.

M.Blum, R.Floyd, V. Pratt, R. Rivest, R. Tarjan, “Time bounds for se-
lection”, Journal of Computer and System Sciences, 7(4):448-461, 1973.

B.M. Chazelle, L.J. Guibas, “Fractional cascading: I. A data structuring
technique”, Algorithmica, 1, 133-162, 1986.

M.T. Dickerson, R.L.S Drysdale, J-R. Sack, “Simple algorithms for enu-
merating interpoint distances and finding k nearest neighbors”, Internat.
J. Comput. Geom. Appl., 2(3):221-239, 1992.

M.T. Dickerson, J. Shugart, “A simple algorithm for enumerating
longest distances in the plane”, Inform. Process. Lett. 45, 269274, 1993.

M.T. Dickerson, D. Eppstein, “Algorithms for proximity problems in
higher dimensions”, Computational Geometry: Theory and Applications
5, 277-291, 1996.

A. Efrat, M. Sharir, A. Ziv, “Computing the smallest k-enclosing circle
and related problems”, Computational Geometry 4, 119-136, 1994.

25

[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]

[19]

[20]

[21]

J. Erickson, D. Eppstein, “Iterated nearest neighbors and finding mini-
mal polytopes”, Discrete Comput. Geom 11, 321-350, 1994.

R.Y. Flatland, C.H. Stewart, “Extending range queries and nearest
neighbors”, In Proc. 7th Canad. Conf. Comput. Geom., 267-272, 1995.

G. Frederickson, D. Johnson, “Generalized selection and ranking: sorted
matrices”, STAM J. Comput. 13, 14-30, 1984.

N. Katoh, K. Iwano, “Finding k farthest pairs and k closest/farthest

bichromatic pairs for points in the plane”, Internat. J. Comput. Geom.
Appl. 5, 37-52, 1995.

D.T. Lee, Y.T. Ching, “The power of geometric duality revised”, Inf.
Proc. Lett. 21, 117-122, 1985.

V.B. Le, D.T. Lee, “Out-of-roundness problem revisited”, IEFE trans.
Pattern Anal. Mach. Intell PAMI-13, 217-223, 1991.

J. Matoushek, “On geometric optimization with few violated con-
straints”, Discrete Comput. Geom.,14 (1995), 365-384.

H-P. Lenhof, M. Smid, “Sequential and parallel algorithms for the &

closest pairs problem”, Internat. J. Comput. Geom. Appl. 5, 273288,
1995.

J. Salowe, “Enumerating interdistances in space”, Internat. J. Comput.
Geom. Appl. 2, 49-59, 1992.

M. Segal, K. Kedem, “Enclosing k points in the smallest axis parallel
rectangle”, In Proc. 8th Canad. Conf. Comput. Geom., 20-25, 1996.

M. Smid, R. Janardan, “On the width and roundness of a set of points in
the plane”, In Proc. 7th Canad. Conf. Comput. Geom., 193—-198, 1995.

26

