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tWe show the power of posets in 
omputational geometry by solvingseveral problems posed on a set S of n points in the plane: (1) �ndthe n� k� 1 re
tilinear farthest neighbors (or, equivalently, k nearestneighbors) to every point of S (extendable to higher dimensions), (2)enumerate the k largest (smallest) re
tilinear distan
es in de
reasing(in
reasing) order among the points of S, (3) given a distan
e Æ > 0,report all the pairs of points that belong to S and are of re
tilineardistan
e Æ or more (less), 
overing k � n2 points of S by re
tilinear(4) and 
ir
ular (5) 
on
entri
 rings, and (6) given a number k � n2de
ide whether a query re
tangle 
ontains k points or less.Keywords: Algorithms, posets, nearest neighbors, optimization, distan
es.1 Introdu
tion1.1 ProblemsGiven a set S of n points in the plane and an integer k we solve the followingproblems in this paper:�Work by Klara Kedem has been supported by a grant from the U.S.-Israeli BinationalS
ien
e Foundation. 1



1. Find the the n�k�1 farthest re
tilinear neighbors (under L1 metri
)to all points of S, where n2 � k � n� 1. Thus we impli
itly �nd (butdo not report) the k nearest re
tilinear neighbors to all points of S.2. Enumerate the k largest (smallest) re
tilinear distan
es in de
reasing(in
reasing) order.3. Given a distan
e Æ > 0, report all the pairs of points of S whi
h are ofre
tilinear distan
e Æ or less (more).4. Find the smallest \re
tangular" axis-aligned (
onstrained or not 
on-strained) ring that 
ontains k (k � n2 ) points of S. A re
tangular ringis two 
on
entri
 re
tangles, the inner re
tangle fully 
ontained in theexternal one. As a measure we take the maximum width or area of thering. By 
onstrained we mean that the 
enter of the ring is one of thepoints of S.5. Find the smallest 
onstrained 
ir
ular ring (or a se
tor of a 
onstrainedring) that 
ontains k (k � n2 ) points of S.6. Given a number k � n2 , de
ide whether a query re
tangle 
ontains kpoints or less.1.2 Ba
kgroundMost of the problems mentioned above have been 
onsidered in previous pa-pers [7, 8, 9, 11, 18℄. We summarize our and previous results in Table 1.Di
kerson et al. [7℄ present an algorithm for the �rst problem whi
h runsin time O(n logn + nk log k), and works for any 
onvex distan
e fun
tion.Eppstein and Eri
kson [11℄ solve the �rst problem on a random a

ess ma-
hine model in time O(n logn + kn) and O(n logn) spa
e. In the algebrai
2



Pbm Previous results Our results1 O(n logn+ kn) [9℄ O(n logn + (n� k)n)2 O(n logn+ k log k log nlog log n ) (expe
ted) [8℄ O(n+ k logn)3 O(n logn+ k) [9℄ O(n logn + k)4 open, 
onstrainedopen, non 
onstrained O(n(n� k) log (n� k)O(n(n� k)4 logn)5 open O(n2 + n(n� k) logn)6 Prepro
ess: O(n logn)Query: O(logn) [4℄ O(n+ (n� k) logn)O(log (n� k))Table 1: Summary of best previous results and our resultsdesi
ion tree model their time bound in
reases by a fa
tor of O(log logn).Flatland and Stewart [12℄ present an algorithm for the �rst problem whi
hruns in time O(n logn + kn) in the algebrai
 de
ision tree model. Finally,a re
ent paper of Di
kerson and Eppstein [9℄ des
ribes an O(n logn + kn)time and O(n) spa
e algorithm for the �rst problem, it works for any metri
and is extendable to higher dimensions. For our best knowledge only twopapers, one by Di
kerson and Shugart [8℄ and one by Katoh and Iwano[14℄ present an algorithm for the se
ond problem (for the largest k dis-tan
es). The algorithm in [8℄ works for any metri
, and requires O(n + k)spa
e with expe
ted runtime of O(n logn + k log k log nlog log n ). The paper of Katohand Iwano [14℄ presents an algorithm for the se
ond problem for L2 met-ri
 with running time O(min(n2; n logn + k4=3 logn=(log k)1=3)) and spa
eO(n + k4=3=(log k)1=3 + k logn). Their algorithm is based on the k nearestneighbor Voronoi diagrams. Di
kerson et al. [7℄ present an algorithm forthe problem: enumerate all the k smallest distan
es in S in in
reasing order.Their algorithm works in time O(n logn+ k log k) and uses O(n+ k) spa
e.Lenhof et al. [18℄, Salowe [19℄, Di
kerson and Eppstein [9℄ also solved thisproblem but they just report the k 
losest pairs of points without sorting the3



distan
es, spending O(n logn + k) time and O(n + k) spa
e. An algorithmfor solving the se
ond problem (for the smallest k distan
es) is also presentedin [9℄, spending O(n logn + k log k) time and using O(n+ k) spa
e. Di
ker-son and Eppstein [9℄ also 
onsidered the third problem: �nd all the pairs ofpoints of S separated by distan
e Æ or less. They give an O(n logn+ k) timeand O(n) spa
e algorithm, where k is the number of distan
es not greaterthan Æ.Problem 6 is a variant of the orthogonal range sear
h where we are givena set S of n points and want to �nd whi
h points are en
losed by the queryre
tangle. This problem was eÆ
iently solved by Bentley [4℄ in O(logn+m)query time, where m is the number of points 
ontained in the given queryre
tangle, using the range sear
h tree and with prepro
essing time and spa
eO(n logn).Some variations of problems 4 and 5 have been 
onsidered in previouspapers. Efrat et al.[10℄ 
onsider the problem of en
losing k points withina minimal area 
ir
le and pose an open problem of 
overing k points by aring. They gave two solutions for the smallest k-en
losing 
ir
le. When usingO(nk) storage, the problem 
an be solved in time O(nk log2 n). When onlyO(n logn) storage is allowed, the running time is O(nk log2 n log nk ). Theproblem of 
omputing the roundness of a set of points, whi
h is de�ned asthe minimum width 
on
entri
 annulus that 
ontains all points of the setwas solved in [2, 16, 21℄. The best known running time is O(n 32+�), givenin [2℄, where � > 0 is an arbitrary small 
onstant. The paper of Barequetet al. [3℄ presents algorithms for several variants of the polygon annuluspla
ement problem: given an input polygon P and a set S of points, �nd anoptimal pla
ement of P that maximizes the number of points in S that fall ina 
ertain annulus region de�ned by P and some o�set distan
e Æ > 0. Segal4



and Kedem [20℄ 
onsidered the problem of en
losing k (k � n2 ) points in thesmallest axis parallel re
tangle. Their algorithm runs in time O(n+k(n�k)2)and uses O(n) spa
e. Their method and algorithm are one of the tools usedin this paper, and we review it below. It is based on posets (partially orderedsets) [1℄.Segal and Kedem [20℄ des
ribe how to 
onstru
t a poset su
h that a subsetR of S 
ontains the n�k elements of S with the largest x 
oordinates. Theyrepresent S as a tournament tree. The tournament tree 
an be implementedas a heap. The operations of 
reating R and updating the tournament treerun in times O(n+(n�k) logn) and O(logn) respe
tively. Spa
e requirementis O(n). (For more details see the full version of [20℄.) With the use of posetsthey devise an algorithm that �nds the smallest axis parallel re
tangle withk � n2 points in O(n+ k(n� k)2) time and O(n) spa
e.The runtimes a
hieved in the previously des
ribed papers works for prob-lems 1,4 and 5 are not attra
tive when the k is 
lose to n. We show that in this
ase the use of posets 
an signi�
antly redu
e the runtime of the algorithms.Our algorithm for solving the �rst problem runs in time O((n�k)n) (assum-ing k � n2 ) and uses linear spa
e. For problem 2 we present two algorithms: for enumerating the largest and smallest distan
es. The �rst one runs intime O(k logn+n), and uses O(n) spa
e. The se
ond algorithm runs in timeO(n logn + k logn), and uses O(n) spa
e. We solve both 
ases of problem3 by a similar te
hnique. For our best knowledge the se
ond 
ase of prob-lem 3 has not been 
onsidered before. The runtime and spa
e requirementsof both algorithms for Problem 3 are as in [9℄, namely O(n logn + k) timeand O(n) spa
e. We solve problem 4, re
tangular ring 
ontaining k(k � n2 )points for the 
onstrained 
ase in O(n(n � k) log (n� k)) time and O(n)spa
e, while for the non 
onstrained 
ase we present an algorithm with run-5



time O(n(n� k)4 logn) and O(n) spa
e. We �nd a 
onstrained 
ir
ular ringthat 
overs k (k � n2 ) points (Problem 5) in O(n2+ n(n� k) logn) time andO(n) spa
e, and we �nd a se
tor of a 
onstrained 
ir
ular ring that 
overs kpoints (k � n2 ) in O(n2 + nk(n � k)2) time and O(n2) spa
e. For the sixthproblem we obtain an algorithm with O(n+(n�k) log n) prepro
essing timeand spa
e and O(log (n� k)) query time. We also show how to extend thealgorithms of all the problems to higher dimensional spa
e.1.3 MotivationAnother algorithm that runs eÆ
iently for large k; k � n2 values was pre-sented by Matou�sek [17℄. It �nds the smallest 
ir
le en
losing all but a few(n� k) of the given n points in the plane. Given a large integer n2 � k � nhis algorithm runs in time O(n logn+ (n� k)3n") for some " > 0.A possible motivation to 
over all but a small number of points by oneor more obje
ts 
omes from statisti
s. In the analysis of statisti
al data onewould like to get rid of outlyers in the data. Assuming n� k data points areoutlyers, one way to �nd the k \good" data points is to en
lose them in asmall given shape (or shapes).2 Re
tilinear nearest neighbors (Problem 1)Problem: Find the the n� k� 1 farthest re
tilinear neighbors to all pointsof S, where n2 � k � n� 1. Thus we impli
itly �nd (but do not report) thek nearest re
tilinear neighbors to all points of S. We will use the te
hniqueof [20℄.We de�ne the nearest x-neighbor of a point pi 2 S as point q 2 S, su
hthat jx(pi) � x(q)j = minfjx(pi) � x(p)j; p 2 S; p 6= pig, where x(p) is the6



n-k-1largest
smallestn-k-1 A'

A"x(x(vA v ))21
Figure 1: Poset for n� k � 1 largest and n� k � 1 smallest values.x-
oordinate of p. First we �nd the k nearest x-neighbors for ea
h point of S.To solve this subproblem we �nd the points with the n� k� 1 smallest andthe n� k� 1 largest x-
oordinates by posets [1℄. Let A0 (respe
tively A00) bethe set of the n� k� 1 points of S with the smallest (largest) x-
oordinates.Note that from the te
hnique in [1℄ it follows that A0 and A00 are sorted. LetA be the set of points of S with x-
oordinates between those of the points ofA0 and A00 (A = S � A0 � A00) (see Figure 1).The number of points in A is 2k + 2 � n. Sin
e n2 � k < n, for a everypoint pi 2 S all the points of A are among the k nearest x-neighbors of pi,and the n� k � 1 farthest x-neighbors of pi 
an be only in A0 [ A00. For thesame reason, for a point pi 2 A0 we will look for the farthest x-neighbors inA00 and among all the points in A0 whose x-
oordinate is smaller than x(pi).Symmetri
ally, if pi 2 A00 we will look for the farthest x-neighbors in A0 andamong all the points in A00 whose x-
oordinate is greater than x(pi). Assumepi 2 A. Then by a simple merge on A0 and A00 we 
an �nd the n � k � 17



points farthest from pi. If pi 2 A0(A00) then we perform a similar merge onA00(A0) and the set 
ontaining all the points in A0(A00) whose x-
oordinate issmaller (greater) than x(pi).Returning to the two-dimensional problem, we store all the points of Sin an array T . We 
reate separate posets for the x and y axes. We 
all themthe x-poset and the y-poset. Entry i for point pi in T will 
ontain 2 pointers:one to the leaf in the x-poset 
ontaining pi, and one to the leaf in the y-poset.Our goal is to �nd for every point pi 2 S all the n�k� 1 farthest re
tilinearneighbors.We 
reate a set L of 
andidate neighbors with their L1 distan
es. Forea
h point pi 2 S it is enough to store the entry i1 (i2) in A0 (A00) wherethe sear
h for the n � k farthest x-neighbors halted. Symmetri
ally for they-neighbors. There is a possibility that the same point appears in both theset of farthest x-neighbors and the farthest y-neighbors of pi. We go overall the n� k � 1 farthest y-neighbors of pi and 
he
k if their 
orrespondingx-
oordinate is in the range [1; i1℄ and [i2; n℄ in the x-poset. If the answer is\YES" then the same point, say pj, appears as the farthest neighbor of pi inboth axes, we 
hoose the maximum distan
e of the two distan
es. Assume,that the maximum distan
e was obtained on the x-axis. Then we put intothe set L the point pj with a 
ag noting it x and skip in the x-poset andy-poset to the next farthest points. At the end of the pro
ess L has l points,where (n� k � 1) � l � 2(n� k � 1). We �nd the (n� k � 1)th point in Lusing the linear time sele
tion algorithm of [5℄ and thus solve the problem.Considering the time 
omplexity. Creating the posets takes O(n+�ni=k log i)= O(n + (n � k) logn) time. The merge step over A0; A00 and the sele
tiontake O(n � k) time per point of S. The required storage, O(n), is used forstoring the posets, the auxiliary array T , L, and the indi
es. We 
on
lude8



by the following theorem:Theorem 2.1 Given a set S of n points in the plane, we 
an �nd the then�k�1 re
tilinear farthest neighbors of all the points in S (or, equivalently,k nearest re
tilinear neighbors) in O(n+(n�k) log n+n(n�k)) = O((n�k)n)time, using linear spa
e.Remark 1 This problem 
an be easily extended to d-dimensional spa
e,d � 3. Perform, for ea
h axis i; 3 � i � d the same algorithm as for the yaxis in the previous algorithm. The set L has (n� k� 1) � l � d(n� k� 1)points, and the (n � k � 1)th point in L is determined by the sele
tion al-gorithm. So the total runtime and spa
e remain un
hanged for a 
onstantdimension d.Remark 2 The algorithm des
ribed above still works when k < n2 . Firstwe sort all the points a

ording to their x and y-
oordinates. Then for ea
hpoint we �nd the n � k � 1 farthest neighbors in both axes by the samealgorithm as before, 
reate L and use the sele
tion algorithm. In this 
asewe add fa
tor of O(n logn) to the runtime of the algorithm.3 Enumerating re
tilinear distan
es (Prob-lem 2)Problem 2: Given a set S of n distin
t points in the plane, let D =fd1; d2; : : : ; dNg, where N = n(n�1)2 and d1 � d2 � d3 � : : : � dN denotethe re
tilinear distan
es determined by all the pairs of points in S. For agiven positive integer k � N , we want to enumerate all the k pairs of pointswhi
h realize the k largest distan
es in D. For some values of k we do notneed to know the total order of the points (in x or y axis). For example, if9



k = 1 then the maximum and minimum values of the x and y 
oordinatessuÆ
e.As in the previous se
tion we �rst show an algorithm that enumerates allthe k pairs of points whi
h realize the k largest distan
es on the x axis.Assume that the points of S are sorted by their x-
oordinate in in
reasingorder and name them by this order, namely points 1; 2; : : : ; n. For d1 weknow that the points 1 and n (a

ording to the sorting) realize this distan
e.We denote this pair by (1; n). One 
an also think about the interval [1; n℄
ontaining the n x-
onse
utive points. We will use the notation (i; j) todenote both the pair of points i and j and the interval [i; j℄. The nextdistan
e, d2, 
an be realized by one of the 
andidate pairs (1; n� 1) or (2; n).Depending on the pair that realized d2, the distan
e d3 has also two 
andidatepairs. It is possible that the number of 
andidate pairs in step i will grow,if, for example, the pair (1; n� 1) realized d2 and the pair (2; n) realized d3,then the 
andidates for realizing d4 are the pairs (1; n� 2); (2; n� 1); (3; n).We denote the set of 
andidate pairs for distan
e i by Li. This is the set ofpairs of points that 
an potentially realize di, after the pair that realized di�1is known. An interval (�;  ) is nested in (�; �) if (�;  ) � (�; �). Throughoutthe algorithm we will make sure that Li does not 
ontain nested intervals.We say that the 
andidate pair (i; j), where i < j+1 blo
ks (i+1; j) and(i; j� 1) be
ause the x-distan
e de�ned by points i and j is greater than thedistan
es de�ned by the pairs (i+ 1; j) and (i; j � 1).Claim 1: Li di�ers from Li�1, i � 2 by at most three 
andidate pairs : onethat is deleted from Li�1 and at most two new pairs that are inserted intoLi.Proof. For L1 we have only 
andidate pair (1; n). L2 
onsists of the pairs(2; n) and (1; n � 1). If, wlog, the pair (1; n � 1) in L2 realizes d2, then L310



will 
onsist of (2; n) and (1; n � 2). This is be
ause (2; n) blo
ks (3; n) and(2; n � 1). If the distan
e de�ned by the pair (2; n) is always smaller thanthe distan
es de�ned by the pairs (1; n � j) for 1 � j � n � 2, then Li isdi�erent from Li�1 by deleting (1; n� j) and inserting (1; n� j � 1). If forsome j; 1 � j � n � 2, the distan
e realized by the pair (2; n) is greaterthan the distan
e realized by the pair (1; n� j), then the 
andidate pairs forthe next stage are 
hanged by inserting two 
andidate pairs (3; n), (2; n� 1)and deleting (2; n) and (1; n � j) remains as a 
andidate as well. Thus, we
on
lude that if at some stage i there is only one pair (�; �) in Li, then atthe next stage this pair is deleted, and two new pairs (�+1; �) and (�; �� 1)(if they exist) are inserted into Li+1 as 
andidate pairs. If, at some stage ithere are several 
andidate pairs and one of them, e.g. (�; �) realizes di, thenfor the next stage this pair is deleted and (� + 1; �) and (�; � � 1) (if exist)are inserted into Li+1 unless there is exists 
andidate pair in Li (ex
ept for(�; �)) that blo
ks them. Thus, we delete one 
andidate pair and insert atmost two 
andidate pairs.We de�ne left and right neighbors of a pair (�; �) as follows: a left neighborof (�; �) is every pair (�; �� 1); � < �. A right neighbor of (�; �) is every pair(� + 1; �); � > �.Throughout the updates of Li we do not re-insert a pair that had beenused before to realize a distan
e dj; j < i. Moreover, we avoid storing nestedintervals in Li. As we rea
h stage i � 1 we �nd whi
h pair of Li�1 realizesdi�1. Assume (�; �) realizes di�1. We update Li�1 to get Li. We delete (�; �)from Li�1. If Li�1 
ontained a left (right) neighbor of (�; �) then we do notadd the pair (�; �� 1) ((�+1; �)) to Li. Otherwise we add these pairs to Li.This ensures that Li does not 
ontain nested intervals.Claim 2: If a pair (�; �) realizes di, then it will not be added as a 
andidate11



pair in Lj, for j > i.Proof. We prove by indu
tion. L1 
onsists of only one interval (1; n).L2 
ontains two 
andidate pairs (1; n � 1) and (2; n) that de�ne intervalsthat overlap but are not nested. The pair (1; n) will not be inserted toLj; j > 1, sin
e we always de
rease the interval. Assume we are at stage i.By the indu
tion hypothesis Li does not 
ontain nested intervals. Assumethat (�; �) 2 Li realizes di. (�; �) 
an donate two new overlapping intervalsto Li+1: namely, (� + 1; �) and (�; � � 1). We look at the neighbors of (�; �)in Li. If there exists a left neighbor of (�; �), then we do not add (�; ��1) toLi+1 in our algorithm (same for the right neighbor). Clearly, (�; �) will notre-appear in the next stages be
ause we only de
rease the range of intervalsand sin
e there is no nesting there is no interval that 
ontains (�; �).Corollary 3: jLij � i, i = 1; : : : ; n� 1, and jLij � n� 1, i = n; : : : ; n(n�1)2 .Following Corollary 3 we 
an easily solve Problem 2 for one axis. Sin
ethe number of 
andidates for ea
h stage does not ex
eed n � 1, it suÆ
esto �nd the updates to the 
andidate list Li at ea
h stage i, and then �ndwhi
h pair realizes di. Naively we 
an 
arry out one stage in O(n) time,therefore the k largest distan
es are found in O(kn) time and linear spa
e.This runtime 
an be improved by using tournament trees ([1, 20℄) with n� 1leaves, ea
h storing a 
andidate pair. Initially we store only one 
andidatepair, namely (1; n), and the other leaves are empty. As we pro
eed to Li wemake at most three updates to the tree. The pair that realizes di is the winnerof the tournament. The update of the tournament tree for Li+1 pro
eeds asfollows: If we do not need to add anything we just empty the leaf o

upiedby the winner for di and 
ontinue to �nd the se
ond best (the pair for di+1) inthe tournament tree. If we add one pair, we repla
e the 
ontents of the leafthat 
ontained the winner with the new pair and update the path to the root12



to �nd the pair realizing the next distan
e. If we add two pairs, than we putone pair instead of the winner's leaf, another pair into the 
urrent availableleaf (we always have one due to Corollary 3) and update two paths to theroot to �nd the next winner. We take 
are of not inserting a nested intervalby maintaining an array U whose i'th entry is either empty or 
ontains apointer to the leaf 
ontaining the pair (i; j) in the tournament tree for somej. (Noti
e that there 
an be only one leaf 
ontaining i as the �rst point,sin
e there is no nesting). The leaves of the tournament tree point to their
orresponding entries in U , and ea
h non empty entry in U points also to the
losest non empty pairs in U , ba
kwards and forward respe
tively.An update of the tree takes O(logn) time, so the runtime of this algorithmis improved from O(kn) to O(n+ k logn).Returning to the L1 metri
. We perform the algorithm for the x axissimultaneously with the algorithm for the y axis. We �rst 
ompute the winnerin both trees and 
ompare the two distan
es: the largest 
urrent x-distan
eand the largest 
urrent y-distan
e. We 
hoose the largest between them. We
he
k whether these two distan
es are de�ned by the same pair of points. Ifthey are, then we 
hoose the largest distan
e, report the pair and pro
eedwith both the algorithms to the next step (namely, updating the tournamenttrees, and �nding the next winners). If they are not, then we 
he
k whetherthe larger of the distan
es has been reported before (in O(1) time we 
omputethe distan
e in the other axis and 
ompare it to the distan
e we have in thataxis at this stage of the algorithm). If it has been reported, we move to thenext step in this axis, and if not we report this pair of points and pro
eed tothe next stage.Theorem 3.1 Given a set S of n points in the plane and a number k we
an enumerate the k largest re
tilinear distan
es in nonin
reasing order in13



O(n+ k logn) time, using only O(n) spa
e.Remark 3 If U is implemented as a linked list, and the tournament tree isimplemented as a heap then the spa
e is O(min (k; n)).The se
ond 
ase of problem (2) is: enumerate the k smallest re
tilineardistan
es in in
reasing order. The idea is similar to the algorithm above.We �rst show an algorithm that enumerates all the k pairs of points whi
hrealize the k smallest distan
es on the x axis. We assume that the pointsof S are sorted by their x-
oordinate, in in
reasing order. A 
andidate pairfor realizing d1 is either one of the neighboring pairs (�; � + 1), for � =1; : : : ; n�1, We 
hoose the pair that realizes the smallest distan
e by 
reatinga tournament tree of pairs. At the following step we perform similar updatesto the tournament tree, namely, delete the pair that realized d1 and insertat most two new 
andidate pairs, avoiding nested pairs. The algorithm thatwe apply here is almost identi
al to the previous one, ex
ept that here thedistan
es in
rease, and we have to initially sort the 
oordinates of the points.Theorem 3.2 Given a set S of n points in the plane and a number k we
an enumerate the k smallest re
tilinear distan
es in nonde
reasing order inO(n logn+ k log k) time, using only O(n) spa
e.Remark 4 These enumerating problems 
an be extended to arbitrary, but
onstant, d-dimensional spa
e, d � 3. Runtime and spa
e are 
hanged by amultipli
ative d fa
tor .4 Reporting Æ distan
es (Problem 3)In a very re
ent paper Di
kerson and Eppstein [9℄ 
onsidered the followingproblem: 14



Problem 3.1: Given a set S of n distin
t points in d-dimensional spa
e,d � 2, and a distan
e Æ. For ea
h point p in S report all pairs of points (p; q)with q in S su
h that the distan
e from p to q is less than or equal to Æ.This problem and the problem of enumerating the k smallest distan
esin nonde
reasing order are 
losely related. If Æ of this problem is the uniquekth largest distan
e of the enumerating problem, then the two solutions areidenti
al. The paper [9℄ solve Problem 3.1 in O(n logn + k) time and O(n)spa
e algorithm, where k is the number of distan
es not greater than Æ, andthe distan
es are not ordered. Our algorithm reports these distan
es sortedin the same time and spa
e 
omplexity for L1.Another variant of this problem, that has not been 
onsidered before, is:Problem 3.2: Find all pairs of points in S separated by a L1 distan
e Æ ormore.For both Problems 3.1 and 3.2, if we want the distan
es sorted, we 
anuse our algorithms from the previous se
tion to get O(n+ k logn) algorithmwith linear spa
e for Problem 3.1, where k is the number of distan
es notgreater than Æ, and O(n logn+ k log k) time algorithm with linear spa
e forProblem 3.2. The only 
hange is that we 
ompare the output distan
es withÆ. Noti
e that if we use the algorithm of [9℄ for sorting the distan
es then wewould end up spending O(n+ k) spa
e.We want to solve �rst Problem 3.2. The te
hnique is similar to the onewe used in solving Problem 1. We �rst des
ribe an algorithm for the x axis.Throughout the algorithm we will maintain a poset (whi
h is initiallyempty) that will 
ontain the largest and the smallest x values of the pointsthat have been en
ountered in the algorithm (as will be seen below). Pi
k anarbitrary point p1 2 S. The farthest x-neighbor of p1 
an be the point withthe smallest (or largest) x 
oordinate. The smallest point is added to the set15



sx and the largest to the set gx. After we �nd whi
h point is the farthestx-neighbor of p1 (say it is pi and assume wlog pi 2 sx), we 
he
k whetherjx(p1) � x(pi)j � Æ. If jx(p1) � x(pi)j < Æ, then we know that there is nopoint q 2 S, su
h that jx(p1)� x(q)j � Æ. If jx(p1)� x(pi)j � Æ we 
ontinueto �nd the next farthest x-neighbor of p1 and update sx and gx a

ordingly.It 
an either be a point with x-
oordinate adja
ent to x(pi) in sx or the nextfarthest point in gx. The algorithm for p1 ends when on both ends of sx andgx the distan
e is smaller than Æ. We end up with a poset Px, where sx andgx are sorted in x order and the rest of the points in S � sx � gx are notsorted. Similarly, we work on the y distan
e for p1, and 
reate Py; sy and gy.In order to �nd the Æ L1 distan
es for p1 we go over Px and Py. If thesame point, pj, appears either in x or in y sets, then we 
an output the pair(p1; pj) and pro
eed to the next points till we got all the points whose distan
efrom p1 is not smaller than Æ. We repeat the pro
ess with p2 2 S. As forp1 the x-farthest point is the point with the largest or smallest x-
oordinate,but this point is already in gx or sx. So we go over Px as was 
reated forp1. We might add points to gx; sx, if all the distan
es jp2; qj > Æ; q 2 sx orq 2 gx or not. Now we use the sets sx; gx; sy; gy 
omputed before and reportthe appropriate pairs that have the required distan
e (not smaller than Æ).There are two possibilities, (1) no points are added to sx (or sy; gx; gy), or (2)some are added. The number of elements in sx(gx; sy; gy) does not de
rease.Considering the time 
omplexity. The worst 
ase is when we have to knowthe total x-order and y-order of all the points in S. The worst 
ase runtimeis O(n logn+ k) and the spa
e is O(n).The algorithm for Problem 3.1 is very similar to the above algorithm.The main di�eren
e is that instead of starting at the farthest neighbors and
onstru
ting Px(Py) in
rementally, we now sort the x(y) 
oordinates of the16



points of S (so we do not need the posets). For ea
h point pi we go over its x(and y) nearest neighbors in left (up) and right (down) dire
tions and reportthe distan
es (similar to algorithm 3.2) as long as they are less than Æ.Theorem 4.1 Given a set S of n points in the plane and a distan
e Æ > 0we 
an report all the pairs of points of S whi
h are of re
tilinear distan
e Æor more (less) in O(n logn + k) time, using only O(n) spa
e.Note that in the theorem above k is the number of L1 distan
es for the 
aseof \more than Æ", and k is the number of distan
es measured along x and yaxes for the 
ase of \less than Æ".5 Re
tangular rings (problem 4)In this se
tion we solve problem 4: Given a set S of n points in the plane, �ndthe smallest re
tangular axis-aligned ring (
onstrained or non-
onstrained)that 
ontains k; k � n2 points of S. As a measure we take the width (for
onstrained ring) or area (for non-
onstrained ring) of the ring.5.1 Constrained re
tangular ringThis problem 
an be translated to the following one:For every point pi 2 S �nd the n � k nearest and n � k farthest re
tilinear(under L1 metri
) neighbors. We 
an use our algorithm from Se
tion 2 to�nd the n� k � 1 farthest re
tilinear neighbors for ea
h point of S, and thealgorithm of [9℄ to �nd the n � k � 1 nearest neighbors. Given the set ofthe n � k � 1 nearest neighbors Ni of pi 2 S and the set of the n � k � 1farthest neighbors Fi, we sort Ni and Fi a

ording to their L1 distan
e frompi. There are exa
tly n� k � 1 rings 
entered in pi and 
ontaining k points.17



The rings j = 1; : : : ; n�k�1 are determined by the j'th points in the sortedNi and Fi respe
tively, where the j'th point from Fi determines the outerre
tangle and the j'th point from Ni determines the inner re
tangle.The runtime of the algorithm in [9℄, as well as for our algorithm (Se
tion2) is O(n� k) for one point pi 2 S (after O(n logn) time for prepro
essing).We spend O((n � k) log (n� k)) time for sorting Ni and Fi for ea
h pointpi 2 S, and then go over the 
orresponding re
tangles. Therefore,Theorem 5.1 Given a set S of n points in the plane, we 
an �nd the smallestre
tangular axis-aligned 
onstrained ring that 
ontains k; k � n2 points of Sin O(n logn+ n(n� k) log (n� k)) time, using O(n) spa
e.Remark 5 This problem 
an be easily extended to arbitrary, but 
onstant,d-dimension spa
e, d � 3, the runtime 
hanges by multipli
ative d fa
tor.5.2 Non-
onstrained re
tangular ringWe �nd the smallest re
tangular ring that 
ontains k; k � n2 of given npoints by �rst 
omputing all the re
tangles whi
h 
ontain k + p points (p =1; : : : ; n � k). Ea
h su
h re
tangle de�nes a 
enter 
 for whi
h we �nd thelargest re
tangle 
entered at 
 that 
ontains p points. In [20℄ an algorithmfor �nding the smallest axis-aligned re
tangle that 
ontains k; k � n2 pointsis presented. The outline of algorithm from [20℄ is as follows: initially �x theleftmost point of the re
tangle to be the leftmost point of S. At the nextstage the leftmost point of the re
tangle is �xed to be the se
ond left pointof S, et
. Within one stage, of a �xed leftmost re
tangle point, r, we pi
kthe rightmost point of the re
tangle to be the q'th x-
onse
utive point of S,for q = k + r � 1; : : : ; n. For �xed r and q the x boundaries of the re
tangleare �xed, and we go over a small number of possibilities to 
hoose the upper18





Figure 2: Hyperbolae de�ne the lo
us of re
tangles with given areaand lower boundaries of the re
tangle so that it will en
lose k points. Thisalgorithm runs in time O(n + (n � k)3). We use it for 
omputing all there
tangles whi
h 
ontain k + p points (p = 1; : : : ; n � k). We denote theexternal re
tangle by R.We modify the problem of �nding the smallest re
tangle with a given
enter, that 
ontains p points, to �nd the largest re
tangle with a given
enter, that 
ontains p points. Noti
e that the external re
tangle R de�nesthe range of boundaries for the internal re
tangle. Our algorithm goes overall the possible re
tangles with the given 
enter that 
ontain p points and
hooses the largest among them as follows. Let Q be an inner re
tangle that
ontains p points. We extend its boundaries until it almost meets, but doesnot 
ontain another point of S, within the boundaries of R.The naive approa
h for �nding the largest re
tangle with a given 
enterthat 
ontains p points is to go over all pairs of points that together with the
enter 
 de�ne a re
tangle, 
he
k whether this re
tangle 
ontains p pointsand �nd the largest re
tangle among those that do. The total running timeis O(n3). 19



Another approa
h to this problem is to de�ne the following de
ision prob-lem: For a given area A does there exist a re
tangle 
entered at 
 that 
oversexa
tly p points and whose area is A. For the de
ision algorithm we sort thepoints of S a

ording to their x and y 
oordinates respe
tively. Four hyper-bolae de�ne the lo
us of all re
tangles with a given area A, 
entered at 
 (seeFigure 2). Observe the halfspa
e de�ned by the hyperbola H that 
ontainsthe origin. We 
onsider all the points of S whi
h are inside the interse
tionof the four halfspa
es that 
orrespond to the four hyperbolae. Denote thisset by S 0 � S. Ea
h point s 2 S 0 de�nes two re
tangles with 
enter 
 and thegiven area: where s either determines the width of the re
tangle, or its height.For the time being we look at the re
tangle whose width is determined by s.Let s be the point that determines the widest re
tangle Q and assume thats is to the left of 
.We shrink the width of the re
tangle, keeping its 
orners in the 
orre-sponding hyperbolae until an event happens. (the height of a re
tangle growswhen the width shrinks) An event is when a point is added or deleted fromthe re
tangle during the width shrinking. We 
he
k if the newly obtainedre
tangle 
ontains p points. If the obtained re
tangle does 
ontain p points,we are done; otherwise we 
ontinue to shrink the re
tangle until the nextevent. We perform the same a
tions for the height as well.For speeding up the running time of this algorithm we de�ne four subsetsU;D;R; L of S 0 
orresponding to the halfplanes that bound Q. R is the setof all the points of S 0 
ontained in the halfplane to the right of the left side ofQ and are within the interior of the hyperbolae. L (U;D) is the set of pointsto the left (up, down) of the right (upper, lower) side of the re
tangle Q. Wede�ne pr(pl) to be the point x-
losest to Q in R(L) and pu(pd) to be the pointy-
losest to Q in U(D). Assume that the number of points 
ontained in Q is20



r and we are shrinking Q in x dire
tion until the next event. Assume that thex-
losest neighbor of pr(pl) in R(L) is phr (phl ) and the y-
losest neighbor ofpu(pd) in U(D) is pvu(pvd). Thus, our event is when one of phr ; phl or pvu; pvd entersor exists the re
tangle Q. If Q 
ontained r points and the next event is apoint from R or L, then the new re
tangle will 
ontain r�1 points, otherwiser + 1. We update pr; pl; pu; pd (and also the subsets U;D;R; L). When werea
h a re
tangle with p points we �rst extend its boundaries with R until italmost tou
hes the p + 1'th point and then we move to the next step (withthe same 
enter). During the pro
ess for this 
enter we keep the largest areainner re
tangle en
ountered so far. The algorithm for solving the de
isionproblem works in time O(n) after prepro
essing of O(n logn), be
ause we
an 
arry ea
h step in 
onstant time, ex
ept for the �rst step where we haveto 
ompute the points that lie in the interior of the hyperbolae.In order to solve the optimization problem, we apply the optimizationte
hnique of Frederi
kson and Johnson [13℄. We de�ne the matrix of distan
esas follows: one dimension of the matrix 
ontains the sorted x-distan
es fromthe 
enter (multiplied by 2) , and the other dimension 
ontains the sorted y-distan
es from the 
enter (multiplied by 2). The matrix values are potentialarea values of the re
tangle. We perform a binary sear
h on the matrix to�nd the optimal area. Sin
e the rows and 
olumns of the matrix are sorted,we 
an use the linear time sele
tion algorithm of [13℄ to �nd the largest axis-parallel re
tangle 
entered at 
 and 
ontaining p points in O(n logn) time.The analysis follows this of [20℄: There are O((n�k)4) external re
tangles,and for ea
h of them we apply an O(n logn) algorithm for �nding the largestinternal re
tangle. So, the total runtime is O(n(n � k)4 logn) with linearspa
e. We 
on
lude by the following theorem:Theorem 5.2 Given a set S of n points in the plane, we 
an �nd the small-21



est area re
tangular axis-aligned ring that 
ontains k; k � n2 points of S inO(n(n� k)4 logn) time, using O(n) spa
e.Remark 6 This problem 
an be extended to 3-dimension spa
e. Usingthe algorithm of [20℄ and te
hnique of [13℄ for 3-dimension spa
e we obtainalgorithm with runtime O(n2(n� k)6 logn) time.6 Constrained 
ir
ular ring (Problem 5)In this se
tion we solve the following problems: Given a set S of n points, �ndthe smallest 
onstrained 
ir
ular ring (or a se
tor of a 
onstrained 
ir
ularring) that 
ontains k points (k � n2 ) of S. We �rst des
ribe an algorithmthat �nd the smallest width 
ir
ular ring 
ontaining k points (k � n2 ), and
entered at some point pi 2 S. We need to know the sorted order of the n�k
losest points to pi and n�k farthest points from pi and then pro
eed as in thealgorithm for �nding a 
onstrained re
tangular ring. The time for 
omputingthe n�k 
losest and n�k farthest points for pi is O(n+(n�k) logn). Thuswe 
an 
on
lude byTheorem 6.1 Given a set S of n points in the plane, we 
an �nd the smallestwidth 
onstrained ring that 
ontains k; k � n2 points of S in O(n2 + n(n �k) logn)) time, using O(n) spa
e.Now we des
ribe how to �nd minimal area se
tor of a 
onstrained ringthat 
ontains k; k � n2 , points. We �rst des
ribe an algorithm that �ndsthe smallest area se
tor of a ring 
ontaining k points (k � n2 ) 
entered atpoint O(0; 0). We start with �nding for O(0; 0) the ordering of S points withrespe
t to the polar angle around the origin. We use the algorithm in [20℄to solve our problem in the following way: apply the algorithm in [20℄ for a22



smallest axis-aligned re
tangle with k points using a polar 
oordinate system(�; �). This yields the smallest area se
tor of a ring 
entered at the origin and
ontaining k points of S. We pro
eed as in the algorithm of [20℄. The runningtime of this algorithm is O(n+k(n�k)2). We 
an use this ring-algorithm asa subroutine to solve the following problem: Find the smallest area se
tor ofa 
onstrained ring (
entered on an input point) 
ontaining k points. We 
anperform an angular sort of all the points in O(n2) time and spa
e [15℄ andapplying this algorithm to ea
h point we get O(n2 + nk(n� k)2) time.Theorem 6.2 Given a set S of n points in the plane, we 
an �nd the smallestarea se
tor of a 
onstrained ring that 
ontains k points (k � n2 ) points of Sin O(n2 + nk(n� k)2) time using O(n2) spa
e.7 Query re
tangle (Problem 6)Problem: Given a set S of n points in the plane and a number k (n2 � k � n)we want to prepro
ess the points in order to answer eÆ
iently whether k ormore points are en
losed by a query re
tangle. The naive approa
h to thisproblem is to build a range tree [4℄ on the set S. When a query re
tangleR is given, we 
an answer how many points are inside of R in O(logn) timeusing the fra
tional 
as
ading te
hnique of [6℄. The prepro
essing time andspa
e is O(n logn). Noti
e that we did not use the parameter k at all. Inorder to improve the prepro
essing time and spa
e and also the query timewe use the following observation.Observation 7.1 In order for the query re
tangle to 
ontain at least k points,the verti
al strip de�ned by the verti
al sides l1; l2 of the query re
tangle Rmust be lo
ated between the n� k smallest and n� k largest x values of thepoints of S and the horizontal strip de�ned by the horizontal sides l3; l4 of23
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Figure 3: The strips en
lose a query re
tangle R.the query re
tangle R must be lo
ated between the n � k smallest and n � klargest y values of the points of S.Using this observation we pro
eed as follows. First we evaluate the small-est and the largest n� k x values of the points of S (denote by Sx) and thesmallest and the largest n � k y values of the points of S (denote by Sy).Next, by a binary sear
h, we �nd how many points are in the left halfplaneof l1, in the right halfplane of l2, in the upper halpfplane of l3 and in thelower halp
ane of l4 (See Figure 3 below).Noti
e that we 
ount twi
e the points in the regions Ri; 1 � i � 4 inFigure 3. We 
an 
ompute how many points are in these regions by building,at the beginning of the algorithm, a range sear
h tree but only for the pointswith either x-
oordinate in Sx or y-
oordinate in Sy. We have O(n� k) su
hpoints. Thus the 
onstru
tion of the tree takes O((n � k) log (n� k)) timewith O((n�k) log (n� k)) spa
e. Now we 
an 
ompute how many points arein the four query re
tangles that 
orrespond to the regionsRi; 1 � i � 4 in theFigure 3. It follows that the query time for su
h a re
tangle is O(log (n� k)).Thus, 24



Theorem 7.2 Given a set S of n points in the plane and a number k (n2 �k � n), we 
an prepro
ess the points of S in O((n� k) log (n� k)) time withO((n � k) log (n� k)) spa
e to answer in O(log (n� k)) time whether k ormore points are en
losed by a query re
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