
Geometri Appliations of Posets�Mihael Segal Klara KedemDepartment of Mathematis and Computer Siene,Ben-Gurion University of the Negev, Beer-Sheva 84105, IsraelOtober 28, 1999AbstratWe show the power of posets in omputational geometry by solvingseveral problems posed on a set S of n points in the plane: (1) �ndthe n� k� 1 retilinear farthest neighbors (or, equivalently, k nearestneighbors) to every point of S (extendable to higher dimensions), (2)enumerate the k largest (smallest) retilinear distanes in dereasing(inreasing) order among the points of S, (3) given a distane Æ > 0,report all the pairs of points that belong to S and are of retilineardistane Æ or more (less), overing k � n2 points of S by retilinear(4) and irular (5) onentri rings, and (6) given a number k � n2deide whether a query retangle ontains k points or less.Keywords: Algorithms, posets, nearest neighbors, optimization, distanes.1 Introdution1.1 ProblemsGiven a set S of n points in the plane and an integer k we solve the followingproblems in this paper:�Work by Klara Kedem has been supported by a grant from the U.S.-Israeli BinationalSiene Foundation. 1

1. Find the the n�k�1 farthest retilinear neighbors (under L1 metri)to all points of S, where n2 � k � n� 1. Thus we impliitly �nd (butdo not report) the k nearest retilinear neighbors to all points of S.2. Enumerate the k largest (smallest) retilinear distanes in dereasing(inreasing) order.3. Given a distane Æ > 0, report all the pairs of points of S whih are ofretilinear distane Æ or less (more).4. Find the smallest \retangular" axis-aligned (onstrained or not on-strained) ring that ontains k (k � n2) points of S. A retangular ringis two onentri retangles, the inner retangle fully ontained in theexternal one. As a measure we take the maximum width or area of thering. By onstrained we mean that the enter of the ring is one of thepoints of S.5. Find the smallest onstrained irular ring (or a setor of a onstrainedring) that ontains k (k � n2) points of S.6. Given a number k � n2 , deide whether a query retangle ontains kpoints or less.1.2 BakgroundMost of the problems mentioned above have been onsidered in previous pa-pers [7, 8, 9, 11, 18℄. We summarize our and previous results in Table 1.Dikerson et al. [7℄ present an algorithm for the �rst problem whih runsin time O(n logn + nk log k), and works for any onvex distane funtion.Eppstein and Erikson [11℄ solve the �rst problem on a random aess ma-hine model in time O(n logn + kn) and O(n logn) spae. In the algebrai2

Pbm Previous results Our results1 O(n logn+ kn) [9℄ O(n logn + (n� k)n)2 O(n logn+ k log k log nlog log n) (expeted) [8℄ O(n+ k logn)3 O(n logn+ k) [9℄ O(n logn + k)4 open, onstrainedopen, non onstrained O(n(n� k) log (n� k)O(n(n� k)4 logn)5 open O(n2 + n(n� k) logn)6 Preproess: O(n logn)Query: O(logn) [4℄ O(n+ (n� k) logn)O(log (n� k))Table 1: Summary of best previous results and our resultsdesiion tree model their time bound inreases by a fator of O(log logn).Flatland and Stewart [12℄ present an algorithm for the �rst problem whihruns in time O(n logn + kn) in the algebrai deision tree model. Finally,a reent paper of Dikerson and Eppstein [9℄ desribes an O(n logn + kn)time and O(n) spae algorithm for the �rst problem, it works for any metriand is extendable to higher dimensions. For our best knowledge only twopapers, one by Dikerson and Shugart [8℄ and one by Katoh and Iwano[14℄ present an algorithm for the seond problem (for the largest k dis-tanes). The algorithm in [8℄ works for any metri, and requires O(n + k)spae with expeted runtime of O(n logn + k log k log nlog log n). The paper of Katohand Iwano [14℄ presents an algorithm for the seond problem for L2 met-ri with running time O(min(n2; n logn + k4=3 logn=(log k)1=3)) and spaeO(n + k4=3=(log k)1=3 + k logn). Their algorithm is based on the k nearestneighbor Voronoi diagrams. Dikerson et al. [7℄ present an algorithm forthe problem: enumerate all the k smallest distanes in S in inreasing order.Their algorithm works in time O(n logn+ k log k) and uses O(n+ k) spae.Lenhof et al. [18℄, Salowe [19℄, Dikerson and Eppstein [9℄ also solved thisproblem but they just report the k losest pairs of points without sorting the3

distanes, spending O(n logn + k) time and O(n + k) spae. An algorithmfor solving the seond problem (for the smallest k distanes) is also presentedin [9℄, spending O(n logn + k log k) time and using O(n+ k) spae. Diker-son and Eppstein [9℄ also onsidered the third problem: �nd all the pairs ofpoints of S separated by distane Æ or less. They give an O(n logn+ k) timeand O(n) spae algorithm, where k is the number of distanes not greaterthan Æ.Problem 6 is a variant of the orthogonal range searh where we are givena set S of n points and want to �nd whih points are enlosed by the queryretangle. This problem was eÆiently solved by Bentley [4℄ in O(logn+m)query time, where m is the number of points ontained in the given queryretangle, using the range searh tree and with preproessing time and spaeO(n logn).Some variations of problems 4 and 5 have been onsidered in previouspapers. Efrat et al.[10℄ onsider the problem of enlosing k points withina minimal area irle and pose an open problem of overing k points by aring. They gave two solutions for the smallest k-enlosing irle. When usingO(nk) storage, the problem an be solved in time O(nk log2 n). When onlyO(n logn) storage is allowed, the running time is O(nk log2 n log nk). Theproblem of omputing the roundness of a set of points, whih is de�ned asthe minimum width onentri annulus that ontains all points of the setwas solved in [2, 16, 21℄. The best known running time is O(n 32+�), givenin [2℄, where � > 0 is an arbitrary small onstant. The paper of Barequetet al. [3℄ presents algorithms for several variants of the polygon annulusplaement problem: given an input polygon P and a set S of points, �nd anoptimal plaement of P that maximizes the number of points in S that fall ina ertain annulus region de�ned by P and some o�set distane Æ > 0. Segal4

and Kedem [20℄ onsidered the problem of enlosing k (k � n2) points in thesmallest axis parallel retangle. Their algorithm runs in time O(n+k(n�k)2)and uses O(n) spae. Their method and algorithm are one of the tools usedin this paper, and we review it below. It is based on posets (partially orderedsets) [1℄.Segal and Kedem [20℄ desribe how to onstrut a poset suh that a subsetR of S ontains the n�k elements of S with the largest x oordinates. Theyrepresent S as a tournament tree. The tournament tree an be implementedas a heap. The operations of reating R and updating the tournament treerun in times O(n+(n�k) logn) and O(logn) respetively. Spae requirementis O(n). (For more details see the full version of [20℄.) With the use of posetsthey devise an algorithm that �nds the smallest axis parallel retangle withk � n2 points in O(n+ k(n� k)2) time and O(n) spae.The runtimes ahieved in the previously desribed papers works for prob-lems 1,4 and 5 are not attrative when the k is lose to n. We show that in thisase the use of posets an signi�antly redue the runtime of the algorithms.Our algorithm for solving the �rst problem runs in time O((n�k)n) (assum-ing k � n2) and uses linear spae. For problem 2 we present two algorithms: for enumerating the largest and smallest distanes. The �rst one runs intime O(k logn+n), and uses O(n) spae. The seond algorithm runs in timeO(n logn + k logn), and uses O(n) spae. We solve both ases of problem3 by a similar tehnique. For our best knowledge the seond ase of prob-lem 3 has not been onsidered before. The runtime and spae requirementsof both algorithms for Problem 3 are as in [9℄, namely O(n logn + k) timeand O(n) spae. We solve problem 4, retangular ring ontaining k(k � n2)points for the onstrained ase in O(n(n � k) log (n� k)) time and O(n)spae, while for the non onstrained ase we present an algorithm with run-5

time O(n(n� k)4 logn) and O(n) spae. We �nd a onstrained irular ringthat overs k (k � n2) points (Problem 5) in O(n2+ n(n� k) logn) time andO(n) spae, and we �nd a setor of a onstrained irular ring that overs kpoints (k � n2) in O(n2 + nk(n � k)2) time and O(n2) spae. For the sixthproblem we obtain an algorithm with O(n+(n�k) log n) preproessing timeand spae and O(log (n� k)) query time. We also show how to extend thealgorithms of all the problems to higher dimensional spae.1.3 MotivationAnother algorithm that runs eÆiently for large k; k � n2 values was pre-sented by Matou�sek [17℄. It �nds the smallest irle enlosing all but a few(n� k) of the given n points in the plane. Given a large integer n2 � k � nhis algorithm runs in time O(n logn+ (n� k)3n") for some " > 0.A possible motivation to over all but a small number of points by oneor more objets omes from statistis. In the analysis of statistial data onewould like to get rid of outlyers in the data. Assuming n� k data points areoutlyers, one way to �nd the k \good" data points is to enlose them in asmall given shape (or shapes).2 Retilinear nearest neighbors (Problem 1)Problem: Find the the n� k� 1 farthest retilinear neighbors to all pointsof S, where n2 � k � n� 1. Thus we impliitly �nd (but do not report) thek nearest retilinear neighbors to all points of S. We will use the tehniqueof [20℄.We de�ne the nearest x-neighbor of a point pi 2 S as point q 2 S, suhthat jx(pi) � x(q)j = minfjx(pi) � x(p)j; p 2 S; p 6= pig, where x(p) is the6

n-k-1largest
smallestn-k-1 A'

A"x(x(vA v))21
Figure 1: Poset for n� k � 1 largest and n� k � 1 smallest values.x-oordinate of p. First we �nd the k nearest x-neighbors for eah point of S.To solve this subproblem we �nd the points with the n� k� 1 smallest andthe n� k� 1 largest x-oordinates by posets [1℄. Let A0 (respetively A00) bethe set of the n� k� 1 points of S with the smallest (largest) x-oordinates.Note that from the tehnique in [1℄ it follows that A0 and A00 are sorted. LetA be the set of points of S with x-oordinates between those of the points ofA0 and A00 (A = S � A0 � A00) (see Figure 1).The number of points in A is 2k + 2 � n. Sine n2 � k < n, for a everypoint pi 2 S all the points of A are among the k nearest x-neighbors of pi,and the n� k � 1 farthest x-neighbors of pi an be only in A0 [A00. For thesame reason, for a point pi 2 A0 we will look for the farthest x-neighbors inA00 and among all the points in A0 whose x-oordinate is smaller than x(pi).Symmetrially, if pi 2 A00 we will look for the farthest x-neighbors in A0 andamong all the points in A00 whose x-oordinate is greater than x(pi). Assumepi 2 A. Then by a simple merge on A0 and A00 we an �nd the n � k � 17

points farthest from pi. If pi 2 A0(A00) then we perform a similar merge onA00(A0) and the set ontaining all the points in A0(A00) whose x-oordinate issmaller (greater) than x(pi).Returning to the two-dimensional problem, we store all the points of Sin an array T . We reate separate posets for the x and y axes. We all themthe x-poset and the y-poset. Entry i for point pi in T will ontain 2 pointers:one to the leaf in the x-poset ontaining pi, and one to the leaf in the y-poset.Our goal is to �nd for every point pi 2 S all the n�k� 1 farthest retilinearneighbors.We reate a set L of andidate neighbors with their L1 distanes. Foreah point pi 2 S it is enough to store the entry i1 (i2) in A0 (A00) wherethe searh for the n � k farthest x-neighbors halted. Symmetrially for they-neighbors. There is a possibility that the same point appears in both theset of farthest x-neighbors and the farthest y-neighbors of pi. We go overall the n� k � 1 farthest y-neighbors of pi and hek if their orrespondingx-oordinate is in the range [1; i1℄ and [i2; n℄ in the x-poset. If the answer is\YES" then the same point, say pj, appears as the farthest neighbor of pi inboth axes, we hoose the maximum distane of the two distanes. Assume,that the maximum distane was obtained on the x-axis. Then we put intothe set L the point pj with a ag noting it x and skip in the x-poset andy-poset to the next farthest points. At the end of the proess L has l points,where (n� k � 1) � l � 2(n� k � 1). We �nd the (n� k � 1)th point in Lusing the linear time seletion algorithm of [5℄ and thus solve the problem.Considering the time omplexity. Creating the posets takes O(n+�ni=k log i)= O(n + (n � k) logn) time. The merge step over A0; A00 and the seletiontake O(n � k) time per point of S. The required storage, O(n), is used forstoring the posets, the auxiliary array T , L, and the indies. We onlude8

by the following theorem:Theorem 2.1 Given a set S of n points in the plane, we an �nd the then�k�1 retilinear farthest neighbors of all the points in S (or, equivalently,k nearest retilinear neighbors) in O(n+(n�k) log n+n(n�k)) = O((n�k)n)time, using linear spae.Remark 1 This problem an be easily extended to d-dimensional spae,d � 3. Perform, for eah axis i; 3 � i � d the same algorithm as for the yaxis in the previous algorithm. The set L has (n� k� 1) � l � d(n� k� 1)points, and the (n � k � 1)th point in L is determined by the seletion al-gorithm. So the total runtime and spae remain unhanged for a onstantdimension d.Remark 2 The algorithm desribed above still works when k < n2 . Firstwe sort all the points aording to their x and y-oordinates. Then for eahpoint we �nd the n � k � 1 farthest neighbors in both axes by the samealgorithm as before, reate L and use the seletion algorithm. In this asewe add fator of O(n logn) to the runtime of the algorithm.3 Enumerating retilinear distanes (Prob-lem 2)Problem 2: Given a set S of n distint points in the plane, let D =fd1; d2; : : : ; dNg, where N = n(n�1)2 and d1 � d2 � d3 � : : : � dN denotethe retilinear distanes determined by all the pairs of points in S. For agiven positive integer k � N , we want to enumerate all the k pairs of pointswhih realize the k largest distanes in D. For some values of k we do notneed to know the total order of the points (in x or y axis). For example, if9

k = 1 then the maximum and minimum values of the x and y oordinatessuÆe.As in the previous setion we �rst show an algorithm that enumerates allthe k pairs of points whih realize the k largest distanes on the x axis.Assume that the points of S are sorted by their x-oordinate in inreasingorder and name them by this order, namely points 1; 2; : : : ; n. For d1 weknow that the points 1 and n (aording to the sorting) realize this distane.We denote this pair by (1; n). One an also think about the interval [1; n℄ontaining the n x-onseutive points. We will use the notation (i; j) todenote both the pair of points i and j and the interval [i; j℄. The nextdistane, d2, an be realized by one of the andidate pairs (1; n� 1) or (2; n).Depending on the pair that realized d2, the distane d3 has also two andidatepairs. It is possible that the number of andidate pairs in step i will grow,if, for example, the pair (1; n� 1) realized d2 and the pair (2; n) realized d3,then the andidates for realizing d4 are the pairs (1; n� 2); (2; n� 1); (3; n).We denote the set of andidate pairs for distane i by Li. This is the set ofpairs of points that an potentially realize di, after the pair that realized di�1is known. An interval (�;) is nested in (�; �) if (�;) � (�; �). Throughoutthe algorithm we will make sure that Li does not ontain nested intervals.We say that the andidate pair (i; j), where i < j+1 bloks (i+1; j) and(i; j� 1) beause the x-distane de�ned by points i and j is greater than thedistanes de�ned by the pairs (i+ 1; j) and (i; j � 1).Claim 1: Li di�ers from Li�1, i � 2 by at most three andidate pairs : onethat is deleted from Li�1 and at most two new pairs that are inserted intoLi.Proof. For L1 we have only andidate pair (1; n). L2 onsists of the pairs(2; n) and (1; n � 1). If, wlog, the pair (1; n � 1) in L2 realizes d2, then L310

will onsist of (2; n) and (1; n � 2). This is beause (2; n) bloks (3; n) and(2; n � 1). If the distane de�ned by the pair (2; n) is always smaller thanthe distanes de�ned by the pairs (1; n � j) for 1 � j � n � 2, then Li isdi�erent from Li�1 by deleting (1; n� j) and inserting (1; n� j � 1). If forsome j; 1 � j � n � 2, the distane realized by the pair (2; n) is greaterthan the distane realized by the pair (1; n� j), then the andidate pairs forthe next stage are hanged by inserting two andidate pairs (3; n), (2; n� 1)and deleting (2; n) and (1; n � j) remains as a andidate as well. Thus, weonlude that if at some stage i there is only one pair (�; �) in Li, then atthe next stage this pair is deleted, and two new pairs (�+1; �) and (�; �� 1)(if they exist) are inserted into Li+1 as andidate pairs. If, at some stage ithere are several andidate pairs and one of them, e.g. (�; �) realizes di, thenfor the next stage this pair is deleted and (� + 1; �) and (�; � � 1) (if exist)are inserted into Li+1 unless there is exists andidate pair in Li (exept for(�; �)) that bloks them. Thus, we delete one andidate pair and insert atmost two andidate pairs.We de�ne left and right neighbors of a pair (�; �) as follows: a left neighborof (�; �) is every pair (�; �� 1); � < �. A right neighbor of (�; �) is every pair(� + 1; �); � > �.Throughout the updates of Li we do not re-insert a pair that had beenused before to realize a distane dj; j < i. Moreover, we avoid storing nestedintervals in Li. As we reah stage i � 1 we �nd whih pair of Li�1 realizesdi�1. Assume (�; �) realizes di�1. We update Li�1 to get Li. We delete (�; �)from Li�1. If Li�1 ontained a left (right) neighbor of (�; �) then we do notadd the pair (�; �� 1) ((�+1; �)) to Li. Otherwise we add these pairs to Li.This ensures that Li does not ontain nested intervals.Claim 2: If a pair (�; �) realizes di, then it will not be added as a andidate11

pair in Lj, for j > i.Proof. We prove by indution. L1 onsists of only one interval (1; n).L2 ontains two andidate pairs (1; n � 1) and (2; n) that de�ne intervalsthat overlap but are not nested. The pair (1; n) will not be inserted toLj; j > 1, sine we always derease the interval. Assume we are at stage i.By the indution hypothesis Li does not ontain nested intervals. Assumethat (�; �) 2 Li realizes di. (�; �) an donate two new overlapping intervalsto Li+1: namely, (� + 1; �) and (�; � � 1). We look at the neighbors of (�; �)in Li. If there exists a left neighbor of (�; �), then we do not add (�; ��1) toLi+1 in our algorithm (same for the right neighbor). Clearly, (�; �) will notre-appear in the next stages beause we only derease the range of intervalsand sine there is no nesting there is no interval that ontains (�; �).Corollary 3: jLij � i, i = 1; : : : ; n� 1, and jLij � n� 1, i = n; : : : ; n(n�1)2 .Following Corollary 3 we an easily solve Problem 2 for one axis. Sinethe number of andidates for eah stage does not exeed n � 1, it suÆesto �nd the updates to the andidate list Li at eah stage i, and then �ndwhih pair realizes di. Naively we an arry out one stage in O(n) time,therefore the k largest distanes are found in O(kn) time and linear spae.This runtime an be improved by using tournament trees ([1, 20℄) with n� 1leaves, eah storing a andidate pair. Initially we store only one andidatepair, namely (1; n), and the other leaves are empty. As we proeed to Li wemake at most three updates to the tree. The pair that realizes di is the winnerof the tournament. The update of the tournament tree for Li+1 proeeds asfollows: If we do not need to add anything we just empty the leaf oupiedby the winner for di and ontinue to �nd the seond best (the pair for di+1) inthe tournament tree. If we add one pair, we replae the ontents of the leafthat ontained the winner with the new pair and update the path to the root12

to �nd the pair realizing the next distane. If we add two pairs, than we putone pair instead of the winner's leaf, another pair into the urrent availableleaf (we always have one due to Corollary 3) and update two paths to theroot to �nd the next winner. We take are of not inserting a nested intervalby maintaining an array U whose i'th entry is either empty or ontains apointer to the leaf ontaining the pair (i; j) in the tournament tree for somej. (Notie that there an be only one leaf ontaining i as the �rst point,sine there is no nesting). The leaves of the tournament tree point to theirorresponding entries in U , and eah non empty entry in U points also to thelosest non empty pairs in U , bakwards and forward respetively.An update of the tree takes O(logn) time, so the runtime of this algorithmis improved from O(kn) to O(n+ k logn).Returning to the L1 metri. We perform the algorithm for the x axissimultaneously with the algorithm for the y axis. We �rst ompute the winnerin both trees and ompare the two distanes: the largest urrent x-distaneand the largest urrent y-distane. We hoose the largest between them. Wehek whether these two distanes are de�ned by the same pair of points. Ifthey are, then we hoose the largest distane, report the pair and proeedwith both the algorithms to the next step (namely, updating the tournamenttrees, and �nding the next winners). If they are not, then we hek whetherthe larger of the distanes has been reported before (in O(1) time we omputethe distane in the other axis and ompare it to the distane we have in thataxis at this stage of the algorithm). If it has been reported, we move to thenext step in this axis, and if not we report this pair of points and proeed tothe next stage.Theorem 3.1 Given a set S of n points in the plane and a number k wean enumerate the k largest retilinear distanes in noninreasing order in13

O(n+ k logn) time, using only O(n) spae.Remark 3 If U is implemented as a linked list, and the tournament tree isimplemented as a heap then the spae is O(min (k; n)).The seond ase of problem (2) is: enumerate the k smallest retilineardistanes in inreasing order. The idea is similar to the algorithm above.We �rst show an algorithm that enumerates all the k pairs of points whihrealize the k smallest distanes on the x axis. We assume that the pointsof S are sorted by their x-oordinate, in inreasing order. A andidate pairfor realizing d1 is either one of the neighboring pairs (�; � + 1), for � =1; : : : ; n�1, We hoose the pair that realizes the smallest distane by reatinga tournament tree of pairs. At the following step we perform similar updatesto the tournament tree, namely, delete the pair that realized d1 and insertat most two new andidate pairs, avoiding nested pairs. The algorithm thatwe apply here is almost idential to the previous one, exept that here thedistanes inrease, and we have to initially sort the oordinates of the points.Theorem 3.2 Given a set S of n points in the plane and a number k wean enumerate the k smallest retilinear distanes in nondereasing order inO(n logn+ k log k) time, using only O(n) spae.Remark 4 These enumerating problems an be extended to arbitrary, butonstant, d-dimensional spae, d � 3. Runtime and spae are hanged by amultipliative d fator .4 Reporting Æ distanes (Problem 3)In a very reent paper Dikerson and Eppstein [9℄ onsidered the followingproblem: 14

Problem 3.1: Given a set S of n distint points in d-dimensional spae,d � 2, and a distane Æ. For eah point p in S report all pairs of points (p; q)with q in S suh that the distane from p to q is less than or equal to Æ.This problem and the problem of enumerating the k smallest distanesin nondereasing order are losely related. If Æ of this problem is the uniquekth largest distane of the enumerating problem, then the two solutions areidential. The paper [9℄ solve Problem 3.1 in O(n logn + k) time and O(n)spae algorithm, where k is the number of distanes not greater than Æ, andthe distanes are not ordered. Our algorithm reports these distanes sortedin the same time and spae omplexity for L1.Another variant of this problem, that has not been onsidered before, is:Problem 3.2: Find all pairs of points in S separated by a L1 distane Æ ormore.For both Problems 3.1 and 3.2, if we want the distanes sorted, we anuse our algorithms from the previous setion to get O(n+ k logn) algorithmwith linear spae for Problem 3.1, where k is the number of distanes notgreater than Æ, and O(n logn+ k log k) time algorithm with linear spae forProblem 3.2. The only hange is that we ompare the output distanes withÆ. Notie that if we use the algorithm of [9℄ for sorting the distanes then wewould end up spending O(n+ k) spae.We want to solve �rst Problem 3.2. The tehnique is similar to the onewe used in solving Problem 1. We �rst desribe an algorithm for the x axis.Throughout the algorithm we will maintain a poset (whih is initiallyempty) that will ontain the largest and the smallest x values of the pointsthat have been enountered in the algorithm (as will be seen below). Pik anarbitrary point p1 2 S. The farthest x-neighbor of p1 an be the point withthe smallest (or largest) x oordinate. The smallest point is added to the set15

sx and the largest to the set gx. After we �nd whih point is the farthestx-neighbor of p1 (say it is pi and assume wlog pi 2 sx), we hek whetherjx(p1) � x(pi)j � Æ. If jx(p1) � x(pi)j < Æ, then we know that there is nopoint q 2 S, suh that jx(p1)� x(q)j � Æ. If jx(p1)� x(pi)j � Æ we ontinueto �nd the next farthest x-neighbor of p1 and update sx and gx aordingly.It an either be a point with x-oordinate adjaent to x(pi) in sx or the nextfarthest point in gx. The algorithm for p1 ends when on both ends of sx andgx the distane is smaller than Æ. We end up with a poset Px, where sx andgx are sorted in x order and the rest of the points in S � sx � gx are notsorted. Similarly, we work on the y distane for p1, and reate Py; sy and gy.In order to �nd the Æ L1 distanes for p1 we go over Px and Py. If thesame point, pj, appears either in x or in y sets, then we an output the pair(p1; pj) and proeed to the next points till we got all the points whose distanefrom p1 is not smaller than Æ. We repeat the proess with p2 2 S. As forp1 the x-farthest point is the point with the largest or smallest x-oordinate,but this point is already in gx or sx. So we go over Px as was reated forp1. We might add points to gx; sx, if all the distanes jp2; qj > Æ; q 2 sx orq 2 gx or not. Now we use the sets sx; gx; sy; gy omputed before and reportthe appropriate pairs that have the required distane (not smaller than Æ).There are two possibilities, (1) no points are added to sx (or sy; gx; gy), or (2)some are added. The number of elements in sx(gx; sy; gy) does not derease.Considering the time omplexity. The worst ase is when we have to knowthe total x-order and y-order of all the points in S. The worst ase runtimeis O(n logn+ k) and the spae is O(n).The algorithm for Problem 3.1 is very similar to the above algorithm.The main di�erene is that instead of starting at the farthest neighbors andonstruting Px(Py) inrementally, we now sort the x(y) oordinates of the16

points of S (so we do not need the posets). For eah point pi we go over its x(and y) nearest neighbors in left (up) and right (down) diretions and reportthe distanes (similar to algorithm 3.2) as long as they are less than Æ.Theorem 4.1 Given a set S of n points in the plane and a distane Æ > 0we an report all the pairs of points of S whih are of retilinear distane Æor more (less) in O(n logn + k) time, using only O(n) spae.Note that in the theorem above k is the number of L1 distanes for the aseof \more than Æ", and k is the number of distanes measured along x and yaxes for the ase of \less than Æ".5 Retangular rings (problem 4)In this setion we solve problem 4: Given a set S of n points in the plane, �ndthe smallest retangular axis-aligned ring (onstrained or non-onstrained)that ontains k; k � n2 points of S. As a measure we take the width (foronstrained ring) or area (for non-onstrained ring) of the ring.5.1 Constrained retangular ringThis problem an be translated to the following one:For every point pi 2 S �nd the n � k nearest and n � k farthest retilinear(under L1 metri) neighbors. We an use our algorithm from Setion 2 to�nd the n� k � 1 farthest retilinear neighbors for eah point of S, and thealgorithm of [9℄ to �nd the n � k � 1 nearest neighbors. Given the set ofthe n � k � 1 nearest neighbors Ni of pi 2 S and the set of the n � k � 1farthest neighbors Fi, we sort Ni and Fi aording to their L1 distane frompi. There are exatly n� k � 1 rings entered in pi and ontaining k points.17

The rings j = 1; : : : ; n�k�1 are determined by the j'th points in the sortedNi and Fi respetively, where the j'th point from Fi determines the outerretangle and the j'th point from Ni determines the inner retangle.The runtime of the algorithm in [9℄, as well as for our algorithm (Setion2) is O(n� k) for one point pi 2 S (after O(n logn) time for preproessing).We spend O((n � k) log (n� k)) time for sorting Ni and Fi for eah pointpi 2 S, and then go over the orresponding retangles. Therefore,Theorem 5.1 Given a set S of n points in the plane, we an �nd the smallestretangular axis-aligned onstrained ring that ontains k; k � n2 points of Sin O(n logn+ n(n� k) log (n� k)) time, using O(n) spae.Remark 5 This problem an be easily extended to arbitrary, but onstant,d-dimension spae, d � 3, the runtime hanges by multipliative d fator.5.2 Non-onstrained retangular ringWe �nd the smallest retangular ring that ontains k; k � n2 of given npoints by �rst omputing all the retangles whih ontain k + p points (p =1; : : : ; n � k). Eah suh retangle de�nes a enter for whih we �nd thelargest retangle entered at that ontains p points. In [20℄ an algorithmfor �nding the smallest axis-aligned retangle that ontains k; k � n2 pointsis presented. The outline of algorithm from [20℄ is as follows: initially �x theleftmost point of the retangle to be the leftmost point of S. At the nextstage the leftmost point of the retangle is �xed to be the seond left pointof S, et. Within one stage, of a �xed leftmost retangle point, r, we pikthe rightmost point of the retangle to be the q'th x-onseutive point of S,for q = k + r � 1; : : : ; n. For �xed r and q the x boundaries of the retangleare �xed, and we go over a small number of possibilities to hoose the upper18

Figure 2: Hyperbolae de�ne the lous of retangles with given areaand lower boundaries of the retangle so that it will enlose k points. Thisalgorithm runs in time O(n + (n � k)3). We use it for omputing all theretangles whih ontain k + p points (p = 1; : : : ; n � k). We denote theexternal retangle by R.We modify the problem of �nding the smallest retangle with a givenenter, that ontains p points, to �nd the largest retangle with a givenenter, that ontains p points. Notie that the external retangle R de�nesthe range of boundaries for the internal retangle. Our algorithm goes overall the possible retangles with the given enter that ontain p points andhooses the largest among them as follows. Let Q be an inner retangle thatontains p points. We extend its boundaries until it almost meets, but doesnot ontain another point of S, within the boundaries of R.The naive approah for �nding the largest retangle with a given enterthat ontains p points is to go over all pairs of points that together with theenter de�ne a retangle, hek whether this retangle ontains p pointsand �nd the largest retangle among those that do. The total running timeis O(n3). 19

Another approah to this problem is to de�ne the following deision prob-lem: For a given area A does there exist a retangle entered at that oversexatly p points and whose area is A. For the deision algorithm we sort thepoints of S aording to their x and y oordinates respetively. Four hyper-bolae de�ne the lous of all retangles with a given area A, entered at (seeFigure 2). Observe the halfspae de�ned by the hyperbola H that ontainsthe origin. We onsider all the points of S whih are inside the intersetionof the four halfspaes that orrespond to the four hyperbolae. Denote thisset by S 0 � S. Eah point s 2 S 0 de�nes two retangles with enter and thegiven area: where s either determines the width of the retangle, or its height.For the time being we look at the retangle whose width is determined by s.Let s be the point that determines the widest retangle Q and assume thats is to the left of .We shrink the width of the retangle, keeping its orners in the orre-sponding hyperbolae until an event happens. (the height of a retangle growswhen the width shrinks) An event is when a point is added or deleted fromthe retangle during the width shrinking. We hek if the newly obtainedretangle ontains p points. If the obtained retangle does ontain p points,we are done; otherwise we ontinue to shrink the retangle until the nextevent. We perform the same ations for the height as well.For speeding up the running time of this algorithm we de�ne four subsetsU;D;R; L of S 0 orresponding to the halfplanes that bound Q. R is the setof all the points of S 0 ontained in the halfplane to the right of the left side ofQ and are within the interior of the hyperbolae. L (U;D) is the set of pointsto the left (up, down) of the right (upper, lower) side of the retangle Q. Wede�ne pr(pl) to be the point x-losest to Q in R(L) and pu(pd) to be the pointy-losest to Q in U(D). Assume that the number of points ontained in Q is20

r and we are shrinking Q in x diretion until the next event. Assume that thex-losest neighbor of pr(pl) in R(L) is phr (phl) and the y-losest neighbor ofpu(pd) in U(D) is pvu(pvd). Thus, our event is when one of phr ; phl or pvu; pvd entersor exists the retangle Q. If Q ontained r points and the next event is apoint from R or L, then the new retangle will ontain r�1 points, otherwiser + 1. We update pr; pl; pu; pd (and also the subsets U;D;R; L). When wereah a retangle with p points we �rst extend its boundaries with R until italmost touhes the p + 1'th point and then we move to the next step (withthe same enter). During the proess for this enter we keep the largest areainner retangle enountered so far. The algorithm for solving the deisionproblem works in time O(n) after preproessing of O(n logn), beause wean arry eah step in onstant time, exept for the �rst step where we haveto ompute the points that lie in the interior of the hyperbolae.In order to solve the optimization problem, we apply the optimizationtehnique of Frederikson and Johnson [13℄. We de�ne the matrix of distanesas follows: one dimension of the matrix ontains the sorted x-distanes fromthe enter (multiplied by 2) , and the other dimension ontains the sorted y-distanes from the enter (multiplied by 2). The matrix values are potentialarea values of the retangle. We perform a binary searh on the matrix to�nd the optimal area. Sine the rows and olumns of the matrix are sorted,we an use the linear time seletion algorithm of [13℄ to �nd the largest axis-parallel retangle entered at and ontaining p points in O(n logn) time.The analysis follows this of [20℄: There are O((n�k)4) external retangles,and for eah of them we apply an O(n logn) algorithm for �nding the largestinternal retangle. So, the total runtime is O(n(n � k)4 logn) with linearspae. We onlude by the following theorem:Theorem 5.2 Given a set S of n points in the plane, we an �nd the small-21

est area retangular axis-aligned ring that ontains k; k � n2 points of S inO(n(n� k)4 logn) time, using O(n) spae.Remark 6 This problem an be extended to 3-dimension spae. Usingthe algorithm of [20℄ and tehnique of [13℄ for 3-dimension spae we obtainalgorithm with runtime O(n2(n� k)6 logn) time.6 Constrained irular ring (Problem 5)In this setion we solve the following problems: Given a set S of n points, �ndthe smallest onstrained irular ring (or a setor of a onstrained irularring) that ontains k points (k � n2) of S. We �rst desribe an algorithmthat �nd the smallest width irular ring ontaining k points (k � n2), andentered at some point pi 2 S. We need to know the sorted order of the n�klosest points to pi and n�k farthest points from pi and then proeed as in thealgorithm for �nding a onstrained retangular ring. The time for omputingthe n�k losest and n�k farthest points for pi is O(n+(n�k) logn). Thuswe an onlude byTheorem 6.1 Given a set S of n points in the plane, we an �nd the smallestwidth onstrained ring that ontains k; k � n2 points of S in O(n2 + n(n �k) logn)) time, using O(n) spae.Now we desribe how to �nd minimal area setor of a onstrained ringthat ontains k; k � n2 , points. We �rst desribe an algorithm that �ndsthe smallest area setor of a ring ontaining k points (k � n2) entered atpoint O(0; 0). We start with �nding for O(0; 0) the ordering of S points withrespet to the polar angle around the origin. We use the algorithm in [20℄to solve our problem in the following way: apply the algorithm in [20℄ for a22

smallest axis-aligned retangle with k points using a polar oordinate system(�; �). This yields the smallest area setor of a ring entered at the origin andontaining k points of S. We proeed as in the algorithm of [20℄. The runningtime of this algorithm is O(n+k(n�k)2). We an use this ring-algorithm asa subroutine to solve the following problem: Find the smallest area setor ofa onstrained ring (entered on an input point) ontaining k points. We anperform an angular sort of all the points in O(n2) time and spae [15℄ andapplying this algorithm to eah point we get O(n2 + nk(n� k)2) time.Theorem 6.2 Given a set S of n points in the plane, we an �nd the smallestarea setor of a onstrained ring that ontains k points (k � n2) points of Sin O(n2 + nk(n� k)2) time using O(n2) spae.7 Query retangle (Problem 6)Problem: Given a set S of n points in the plane and a number k (n2 � k � n)we want to preproess the points in order to answer eÆiently whether k ormore points are enlosed by a query retangle. The naive approah to thisproblem is to build a range tree [4℄ on the set S. When a query retangleR is given, we an answer how many points are inside of R in O(logn) timeusing the frational asading tehnique of [6℄. The preproessing time andspae is O(n logn). Notie that we did not use the parameter k at all. Inorder to improve the preproessing time and spae and also the query timewe use the following observation.Observation 7.1 In order for the query retangle to ontain at least k points,the vertial strip de�ned by the vertial sides l1; l2 of the query retangle Rmust be loated between the n� k smallest and n� k largest x values of thepoints of S and the horizontal strip de�ned by the horizontal sides l3; l4 of23

R l l2 R2 ll4R4vertial stripRhorizontalstrip R1 33
1

Figure 3: The strips enlose a query retangle R.the query retangle R must be loated between the n � k smallest and n � klargest y values of the points of S.Using this observation we proeed as follows. First we evaluate the small-est and the largest n� k x values of the points of S (denote by Sx) and thesmallest and the largest n � k y values of the points of S (denote by Sy).Next, by a binary searh, we �nd how many points are in the left halfplaneof l1, in the right halfplane of l2, in the upper halpfplane of l3 and in thelower halpane of l4 (See Figure 3 below).Notie that we ount twie the points in the regions Ri; 1 � i � 4 inFigure 3. We an ompute how many points are in these regions by building,at the beginning of the algorithm, a range searh tree but only for the pointswith either x-oordinate in Sx or y-oordinate in Sy. We have O(n� k) suhpoints. Thus the onstrution of the tree takes O((n � k) log (n� k)) timewith O((n�k) log (n� k)) spae. Now we an ompute how many points arein the four query retangles that orrespond to the regionsRi; 1 � i � 4 in theFigure 3. It follows that the query time for suh a retangle is O(log (n� k)).Thus, 24

Theorem 7.2 Given a set S of n points in the plane and a number k (n2 �k � n), we an preproess the points of S in O((n� k) log (n� k)) time withO((n � k) log (n� k)) spae to answer in O(log (n� k)) time whether k ormore points are enlosed by a query retangle.Referenes[1℄ M. Aigner, \Combinatorial searh", Wiley-Teubner Series in CS, JohnWiley and Sons, 1988.[2℄ P.K. Agarwal, M. Sharir, \EÆient randomized algorithms for somegeometri optimization problems", In Pro. 11th Annu. ACM Symp.Computational Geometry, 1995.[3℄ G. Barequet, A. Briggs, M. Dikerson, M. Goodrih, \O�set-polygon an-nulus plaement problems", InWorkshop on Algorithms and Data Stru-tures (WADS'97), Leture Notes in Computer Siene 1272, Springer-Verlag, 378{391.[4℄ J.L. Bentley \Deomposable searhing problems", Info. Pro. Lett. 8,244{251, 1979.[5℄ M.Blum, R.Floyd, V. Pratt, R. Rivest, R. Tarjan, \Time bounds for se-letion", Journal of Computer and System Sienes, 7(4):448{461, 1973.[6℄ B.M. Chazelle, L.J. Guibas, \Frational asading: I. A data struturingtehnique", Algorithmia, 1, 133{162, 1986.[7℄ M.T. Dikerson, R.L.S Drysdale, J-R. Sak, \Simple algorithms for enu-merating interpoint distanes and �nding k nearest neighbors", Internat.J. Comput. Geom. Appl., 2(3):221{239, 1992.[8℄ M.T. Dikerson, J. Shugart, \A simple algorithm for enumeratinglongest distanes in the plane", Inform. Proess. Lett. 45, 269{274, 1993.[9℄ M.T. Dikerson, D. Eppstein, \Algorithms for proximity problems inhigher dimensions", Computational Geometry: Theory and Appliations5, 277{291, 1996.[10℄ A. Efrat, M. Sharir, A. Ziv, \Computing the smallest k-enlosing irleand related problems", Computational Geometry 4, 119{136, 1994.25

[11℄ J. Erikson, D. Eppstein, \Iterated nearest neighbors and �nding mini-mal polytopes", Disrete Comput. Geom 11, 321{350, 1994.[12℄ R.Y. Flatland, C.H. Stewart, \Extending range queries and nearestneighbors", In Pro. 7th Canad. Conf. Comput. Geom., 267{272, 1995.[13℄ G. Frederikson, D. Johnson, \Generalized seletion and ranking: sortedmatries", SIAM J. Comput. 13, 14{30, 1984.[14℄ N. Katoh, K. Iwano, \Finding k farthest pairs and k losest/farthestbihromati pairs for points in the plane", Internat. J. Comput. Geom.Appl. 5, 37{52, 1995.[15℄ D.T. Lee, Y.T. Ching, \The power of geometri duality revised", Inf.Pro. Lett. 21, 117{122, 1985.[16℄ V.B. Le, D.T. Lee, \Out-of-roundness problem revisited", IEEE trans.Pattern Anal. Mah. Intell PAMI-13, 217{223, 1991.[17℄ J. Matoushek, \On geometri optimization with few violated on-straints", Disrete Comput. Geom.,14 (1995), 365{384.[18℄ H-P. Lenhof, M. Smid, \Sequential and parallel algorithms for the klosest pairs problem", Internat. J. Comput. Geom. Appl. 5, 273{288,1995.[19℄ J. Salowe, \Enumerating interdistanes in spae", Internat. J. Comput.Geom. Appl. 2, 49{59, 1992.[20℄ M. Segal, K. Kedem, \Enlosing k points in the smallest axis parallelretangle", In Pro. 8th Canad. Conf. Comput. Geom., 20{25, 1996.[21℄ M. Smid, R. Janardan, \On the width and roundness of a set of points inthe plane", In Pro. 7th Canad. Conf. Comput. Geom., 193{198, 1995.

26

