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Abstract

Security-sensitive applications, such as patient health monitoring and credit card transactions, are increasingly uti-
lizing wireless communication systems, RFIDs, wireless sensor networks, and other wireless communication systems.
The use of interference-emitting jammers to protect these sensitive communications has been recently explored in
the literature, and has shown high potential. In this paper we consider optimization problems relating to the
temporal distributions of jammers’ activity, and the suitable coding regimes used for communication. Solving the
joint problem optimally enables comprehensive security in space, at a low power consumption and low communi-
cation overhead. The joint optimization of jamming in space and time is driven by a new framework that uses
the bit-error probability as a measure of communication quality. Under this framework, we show how to guarantee
information-theoretic security within a geographic region, and with increased flexibility to tailor the coding regime
to the problem’s geometry. We present efficient algorithms for different settings, and provide simulations for vari-
ous scenarios using the bit-error probability functions. These simulations demonstrate the efficiency of the scheme.
We believe that our scheme can lead to practical, economical and scalable solutions for providing another layer of
protection of sensitive data, in cases where encryption schemes are limited or impractical.

1. Introduction

More and more, highly sensitive and private information is being transferred via wireless communication. Exam-
ple systems include contactless smart cards [11], military sensor networks [1], emergency response systems employ-
ing wireless networks [19], and ambient living-assistance systems [24]; these systems use wireless communication to

1Extended abstracts of this paper appeared as parts in [2] and [3].
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transmit banking/financial data, military intelligence, sensory patient health data, and other private information.
The open nature of the wireless medium mandates that precautions be taken to protect the privacy of information,
e.g., from potential eavesdropping. Unprotected communication, e.g. within sensor networks, also opens the door
for various types of attacks on the network, such as sensor impersonation, sybil attacks and wormhole attacks.

Communication devices, such as RFID devices in smart cards, have limited computational capabilities, making
cryptographic techniques impossible. Further limitations may come from application constraints, in which, e.g.,
emergency personnel are unable to enter passwords or use authentication methods to secure data transfer. To make
the situation more complex, there may be multiple types of communication nodes, utilizing different frequencies,
and the nodes may be changing over time, as nodes are removed or added or become mobile; thus, we are motivated
to pursue security techniques that are impervious to variations in the structure of the system or the network.

Wireless jamming has been explored as a means of achieving security from eavesdroppers through the selective
introduction of artificial noise [23, 34]. In addition to making sure the eavesdropper’s channel quality is degraded
sufficiently, the quality of legitimate channels must not be compromised. This additional constraint marks a contrast
between friendly jamming and traditional offensive jamming.

Sensitive communication may be on single or multiple frequencies and it is often imperative to secure all fre-
quencies. In such scenarios, channel degradation at eavesdroppers may be achieved through several jamming tech-
niques [27]. Some examples are barrage jamming, which transmits noise on all frequencies continuously, narrowband
jamming, which is restricted to a single frequency, and pulse jamming, which sends periodic bursts of noise.

In many cases, legitimate communication is restricted to within a geographic region such as a warehouse, hospital
or bank and must be protected from eavesdroppers outside this region. For example, in a hospital, one might desire
to protect sensors’ data, at least from tapping from outside the patient’s room, while assuming that tapping from
within the same room is much more noticeable and daring. The communication inside the region may be highly
dynamic, i.e., nodes may be mobile or may be added/removed and thus, jammers may only use minimal information
about the communication taking place in order to intelligently configure themselves. In addition, the existence of
only minimal information implies that jammers must be proactive rather than reactive, i.e., they cannot synchronize
themselves with legitimate transmissions, nor with each other. Moreover, jammers do not need to have a (common)
clock, and synchronization is not required. These assumptions render a collections of such jammers highly dynamic
and easily adaptable to changes in the environment they protect. However, we do assume (and actually take
advantage of) that jammers could produce noise for some portion of the time (affecting only a subset of the bits
in a transmitted message), and burst distributions could be controlled by the user. These temporal jammers fall
under the category of pulse jammers in [27].

We argue that temporal jamming has multiple advantages over continuous jamming in eavesdropping mitigation:
1. Randomness: The inherent randomness of the duration and timing of the bursts indicates the difficulties in

studying their behavior (limited only by our ability to obtain a source of ‘true randomness’).
2. Energy savings: Guaranteed jamming can be achieved with low operation duty cycles.
3. Simplicity: Jammers can be fixed-power, and flexibly placed in space.
4. Spatial separation: A single-radio jammer can be active on different frequencies at different times, thus being

able to secure multi-frequency communications.
5. Robustness: Temporal jamming is significantly more difficult to cancel at the eavesdropper’s receiver, due to

their bursty nature.
6. Feasibility: There are examples where successful jamming that provides full privacy (in the formal meaning

defined below) is not possible with a given set of continuous jammers, and yet, with random temporal jamming,
it is possible.

A central benefit of temporal jamming we explore in this paper is the possibility to employ advanced uncon-
ditionally secure coding techniques. Operating the jammers in the time domain allows us to reason about their
effect on the most fundamental information unit: a single bit. Therefore, existing jamming optimization techniques
can be complemented by coding performed on the transmitted information. When designed together, coding and
geometric jammer layout can simultaneously provide reliable communication for legitimate nodes and unconditional
privacy from eavesdropping.

Problems Statement. In this paper, we adopt the above approach and consider the combined problem: How
should one select the fractions of time in which temporal jammers are active sending noise to secure the commu-
nication, and at which coding regime information needs to be communicated. The solution to this problem relies
upon three important elements: a new framework for modeling temporal jamming using bit-error probabilities, a
geometric optimization algorithm, and information theoretic definitions of reliable and secure communication. The
geometric optimization problem aims at minimizing the total jamming power required to achieve reliability and
secrecy constraints given the problem’s geometry. It is important to note that the output of this optimization is
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some set of minimal activity fractions for all jammers, whose deployment does not require coordination between
jammers on when to transmit.

We consider different aspects of the optimization problem that addresses how to optimize (temporal or fixed-
duration) jammers effectiveness via improving their placements. We believe that this would pave the way to global
all-parameters optimizations.

Contributions.
1. We consider two communication models in this paper for complete-duration and temporal jammers respectively:

(i) a static model in which channel quality is measured using the signal-to-interference ratio (SIR), and (ii) a
model which measures the temporal effect of jamming by modeling channel quality using the bit-error probability
(BEP), which is a fundamental measure able to capture any specific scenario governing the physical layer. The
latter characterization of the jamming signals allows to improve the jamming quality via information-security
codes tailored for the specific geometric setup. In particular, we present an algorithm that given a geometric
and physical-layer setup finds the coding parameters that guarantee private reliable communication. To the best
of our knowledge, this is the first time in jammer optimization where the optimal code parameters are found
jointly with the assignment of the jammers’ activity. The BEP framework is introduced in Section 2, and further
developed in Section 3. In Section 4 we show that given the problem geometry it is possible to translate infeasible
jamming specifications to a feasible specification by changing the coding parameters, without loss of security,
reliability or communication rate. We then translate this possibility to efficient polynomial-time algorithms for
computing optimal jammer parameters to meet the specifications, while minimizing energy requirements. The
validity and efficiency of our scheme is shown through simulations in Section 7.

2. Given a discrete set of potential eavesdropper locations and a geographic domain comprised of a discrete set of
communication regions (such as buildings in a warehouse complex), we highlight the hardness of the placement
problem. Specifically, even if all jammers have equal power and characteristics, and each point is effected only by
nearest jammer (NJ-model), it is NP-hard to minimize the number of jammers necessary to protect the domain.
However, given similar assumptions, we present, for any fixed ε > 0, a polynomial-time (1 + ε)-approximation
algorithm (i.e., a polynomial-time approximation scheme (PTAS)) for placing a minimum cardinality set of
fixed-power jammers in the NJ-interference model.

3. Given a continuous geographic domain where eavesdroppers may be located, we present a “pruning” method
which reduces this to a discrete set of potential eavesdropper locations so that the solution to this “reduced”
problem closely approximates the solution to the original problem. This allows us to obtain more efficient
solutions, by decreasing the number of constraints needed in integer linear programming (ILP) solutions to
optimal jammer placement problems. For example, in the Full-interference model, it is shown in [28, 29] that
the problem of either (i) finding a subset of equal-power jammers (taken from a discrete subsets A of possible
locations), or (ii) assigning powers to each jammer for a given set of jammer locations, can be solved using ILP
for the former problem and LP for the latter one. With the “pruning” approach, we show that the number of
constraints in these is independent of the area of the geographic domain.

Related Work. The wire-tap channel [41] has been considered within information theory [17, 23, 34, 39]: a single
eavesdropper attempts to listen in on a legitimate communication between a pair of nodes. It is shown that perfect
secrecy is possible when the eavesdropper’s channel is worse than the legitimate channel. Prior work has considered
the use of jammers to degrade the eavesdroppers’ channel and has analyzed the channel capacity under various
scenarios, such as cooperating or independent jammers, multiple eavesdroppers, etc. Within this same model of
eavesdroppers, game-theoretic approaches for optimizing power consumption of jammers have been studied [10],
as has the problem of designating regions where eavesdroppers cannot be located. Most of these prior works do
not explore the geometry of the problem and are primarily of theoretical interest because of the simple scenarios
considered.

Jamming has been considered as a possible security measure [25, 14, 13], designed to address the fact that RFID
devices are extremely limited in power, making the use of cryptography difficult. Most works address the security
of only a single RFID tag. Wireless sensor networks are another example of systems with low-capability devices;
while, in many cases, cryptography is possible here [26], the focus has been on symmetric key cryptography due
to the more resource-intensive nature of asymmetric key cryptography. Here, the primary problem occurs during
the key distribution phase [12], where eavesdropping is still possible. It is, thus, viable to consider physical layer
techniques in the context of sensor networks. On an interesting side note, [20] presents a method for securing
against impersonation attacks in sensor networks by jamming nodes that are sent impersonated packets, in order
to prevent receipt of the packets.

Only a few works consider the geography/geometry of the environment for security purposes. The model upon
which this paper is based is presented in [28], where the authors present primarily theoretical results on power
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optimization and jammer placement. In addition, several other related works where the objective is to protect
geographically restricted communication exist. Deca et al. [6] showed how to use friendly jamming to guaranty
reliable vehicle-basestation communication. Sheth et al. [32] present a method using directional antennas together
with coding packets across multiple transmitters in order to define a secure region of coverage. Here, the region
of coverage is restricted to the intersection of the ranges of the antennas. Tiwari holds a patent [36] for a method
in which jammers are placed around a wireless network to secure it. However, security is achieved through active
jamming and, thus, requires coordination between transmitters and jammers. In contrast, our methods do not
require any coordination between jammers and legitimate nodes. Finally, using a model very similar to the one in
this paper, Kim et al. [15] present an experimental study on how to create a secure zone around an access point using
multiple friendly jammers. Tippenhauer et al. [35] show that the impact of friendly jamming can be eliminated using
(carefully placed) multiple antennae; a potential advantage of our approach is to make such countermeasures less
effective. Gollakota et al. [8] have also used such a well-coordinated communication between source and jammers.
These methods have significant advantages, but require reactive jammers (i.e., jammers synchronized with other
jammers) and a flexible physical layer. We mention here that none of these assumptions are required for our work.
Vilela and Barros [38] showed that without any assumptions on jammers and eavesdroppers’ location, one could
still use other nodes as friendly jammers, as long as they avoid co-transmitting with the legitimate transmitter and
in the vicinity of a common destination. The authors show how to abstract this setting as a graph, and how to
find an optimal subset of nodes using ILP. In [40] the authors study asymptotic behavior in a stochastic setting in
which jammers and eavesdroppers are at randomly distributed locations. In particular they study the concept of
Secure Throughput, which is based on the probability that a message is successfully received only by the legitimate
receivers. The paper [31] suggested an elegant method for establishing friendly jamming where friendly nodes are
able to communicate while enemy nodes are prevented from doing so. The idea is that a signal generated according
to a secret key could appear as noise when key is not known. Finally, recently Siyari et al. [33] considered joint
optimization of artificial noise (AN) and information signals in a MIMO wiretap interference network, wherein the
transmission of each link may be overheard by several MIMO-capable eavesdroppers and tackled the problem by
game theory concepts.

2. Models and Tools

In this section we detail the settings within which the paper’s results are obtained. We first introduce the models
and tools pertaining to the geometric setup, then the communications model that drives the new temporal-jamming
framework. The geometric model we use is essentially the same as considered in [28], with some adaptations. Using
an established geometric model is a convenient choice, given that the key novelty of this paper lies in the tailoring
of a wieldy communications model to practical geometric settings.

2.1. Geometric model and tools

Modeling communication in geographically restricted locations, we consider a Storage/Fence environment model,
similar to the one in [28]. A depiction of this model is given in Fig. 1:
• We partition the region of interest into two (not necessarily connected) regions: the controlled region, C, and

its complement, the uncontrolled region, U . Eavesdroppers may exist in U but not in C. A polygonal fence F
separates U from C.

• Legitimate communication is enclosed within a polygonal region, or a set of polygonal regions, S ⊂ C, called
the storage. The reader may wish to think of the storage as a warehouse containing items emitting sensitive
information, e.g. RFID tags, sensors etc. Legitimate receivers and transmitters may be located at any point
within S. Note that S is in the controlled region.

• A set J of friendly jammers are placed in the region A = C \ S, termed the allowable region. Note that
jammers are not placed outside of the controlled area, since they could be destroyed physically, and they
cannot be placed inside the storage S, since they might interfere with legitimate communications.

We believe that this model is applicable to multiple scenarios at which some geographic buffer zone separates
the transmitting nodes from the potential eavesdroppers.

With a slight abuse of notation, we identify a node (receiver/jammer/eavesdropper) by its location p in R2.
Consider a potential eavesdropper located at a point p in the uncontrolled region U . Note that if any point q ∈ S
may contain a transmitter, then for any communication model where reception quality is inversely proportional to
distance, the highest risk of information leak heard by p is from the transmitter located at the nearest point to p
from all storage point. The closer the transmitter q is to the eavesdropper is at p, the the ‘louder’ is transmissions
are received at p. Let us denote by s(p) the closest point of S. See illustation in Fig. 1 Right. That is,
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Figure 1. Left: An example scenario with a storage (dark gray) containing the communicating nodes, and surrounded by a fence
(dotted). Jammers are placed within the controlled regions prevent eavesdroppers outside the fence from listening.1. Right: A
illustrations showing two possible locations p and p′ (resp. ) of eavesdroppers, and the nearest storage points s(p) and s(p′) (resp.)

‖p− s(p)‖ ≤ ‖p− q‖,∀q ∈ S, where ‖a− b‖ is the Euclidean distance between the two points a, b. Also assume that
a set of jammers J is placed in the allowable region A (between the storage S and the fence F).
Witness points. A major component in our toolbox is the discretization obtained by assigning only a polynomial
relatively small number of witness points with the property that if required lower (resp. upper) bounds on jamming
intensity are satisfied at these points, then the required conditions also hold for any point inside the storage (resp.
outside the fence). It is clear that the number of these witness points we consider in lieu of the entire regions of
interest affects the performance of the optimization algorithms dramatically. The operator can specify a tuning
parameter ε > 0 trading accuracy vs. number of witness points and algorithmic efficiency. Given a parameter ε,
we seek a set W = {w1 . . . wm} of witness points in U such that for every point p ∈ U , there is a witness point
wi ∈ W satisfying ‖p− s(p)‖ ≤ (1 + ε)‖wi − s(wi)‖. Moreover, ‖p− j‖ ≤ (1 + ε)‖wi − j‖ for every jammer location
j ∈ J . In other words, for every potential eavesdropper p ∈ U (within the continuous domain), there is a witness
point w ∈ W such that the distances from either p or w to their nearest legitimate transmitters are nearly equal.
An analogous condition holds for a set of witness points within the storage, whose distances to the jammers are
nearly equal to the distances between the legitimate receivers and the jammers. As shown in [28], such sets of

witness points can be found with sizes equal to {(n+ |J |) log(d)}2 where d is the ration between diam(F) and the
minimum distance between storage and fence. Such polynomial-size sets of witness points imply the possibility
to run jammer optimization algorithms on these sets with jamming guarantees on the true locations of receivers
and eavesdroppers, for any jamming function that is “well behaved”, e.g. inverse proportional to a polynomial of
distance r) in small intervals (r, r(1 + ε)). We note that all the jamming functions we consider in this paper indeed
have this smoothness property.

2.2. Communication model: temporal jamming

In this sub-section we introduce the temporal jamming model driving the jamming optimization results that
follow. Temporal jamming refers to the ability of jammers to transmit the jamming signal intermittently, in fine
time resolution of a single bit. This is in contrast with the more common complete-duration jammers, whose
signals are set to be constant in time. We note from the outset that the benefits of temporal jamming shown later
in the paper do not assume coordination between jammers, neither between jammers and transmitters. Rather,
we only assume that each jammer is able to set its activity in time to a static value that is determined by the
environment’s geometry. To link the temporal-jamming model with the main thread of existing work, we first
review the complete-duration jamming model.

Complete-Duration Jamming. When a jammer transmits a continuous signal at a certain power, it is convenient
to formulate the jamming optimization in terms of Signal to Interference Ratios (SIR) at locations within the
environment’s geometry. Successful jamming is achieved if the SIR observed at all potential eavesdropper locations
are below some specified threshold.
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Formally, we express the signal decay due to path loss as follows: for an eavesdropper pe listening to a transmitter
ps ∈ S, the received power is P̃‖ps − pe‖−γ , where P̃ is the transmitter’s signal power and γ > 0 is the path-loss
exponent. A similar formulation can be made for the received power at legitimate nodes, and for received jamming
signal power. Recalling that for an eavesdropper pe the nearest point on the storage is denoted s(pe), we have

SIR(J , pe) =
P̃‖s(pe)− pe‖−γ

maxj∈J P̂‖j − pe‖−γ
,

where P̂ is the jammer transmit power, and neglecting noise and the interference from the non-nearest jammers.
An analogous (but slightly different) expression can be given for the SIR at legitimate-receiver locations.

The natural way to identify successful jamming is through an upper threshold, δ1, on SIR for eavesdroppers, and
a lower threshold, δ2, on SIR for legitimate receivers. Thresholds on SIR are the widely accepted “physical model”
described in [9]. Formally, any set of complete-duration jammers J needs to satisfy the following constraints

SIR(J , pe) ≤ δ1,∀pe ∈ U and (1)

SIR(J , ps) ≥ δ2,∀ps ∈ S. (2)

Temporal Jamming. Moving from complete-duration to temporal jammers, it is clear that we can no longer
use the SIR measure, as it carries no notion of temporal activity. To capture the temporal activity, we will work
with the most fundamental communication unit: a bit, and its corresponding measure of equivocation: the bit-error
probability2. Since jammers’ activity is characterized as being on/off at a single-bit resolution, it is natural to
measure the jamming quality by the bit-error probability induced upon an eavesdropper. Given a jammer active
at some bit instant, the probability that it flips a bit at an eavesdropper location will be calculated based on a
physical model considering signal and propagation characteristics. Later, this error probability will also include the
randomness of whether a jammer is on or off at a given bit instant, assuming jammer activity epochs are drawn at
random by each jammer independently.
Formally, we denote by BEP(p) the bit-error probability at point p induced by a set of active jammers. We emphasize
that the BEP(p) function captures the raw physical errors observed by the receivers, before any coding is considered,
but after factoring in all the assumptions on the physical layer (modulation, antenna type, receiver sensitivity, etc).
Clearly the function BEP(p) will depend on the number of active jammers and their position with respect to p. A
detailed discussion of the functions BEP(p) is given in Section 3. When the bit-error probability considers random
jammer activity in addition to the randomness of the communication medium, we denote it by TBEP(p). As an
example, consider a single jammer that induces a bit-error probability of BEP(p) at point p when it is active. If
this jammer is active at bit instants i.i.d. with probability η, then the effective bit-error probability at point p will
be TBEP(p) = ηBEP(p). In a similar way we can incorporate random partial-activity jamming into more involved
scenarios with more than one jammer.

3. Bit-Error Probability

In the temporal jamming communications model that we described above, we wish to induce a high bit-error
probability at eavesdropper locations, while keeping a low enough bit-error probability within the storage. To this
end we defined the bit-error probability at point p using the abstract function BEP(p). In this section we further
develop the model to discuss the properties of BEP(p) functions. The properties of a BEP(p) function will depend
on whether p is in S or in U , and on the number of jammers affecting the bit reception at p. Bit errors result from
both the decay of the signal in space, and from the incidence of the jamming signal at the receiver. For points in
S we assume below that signal decay is negligible, but this assumption is for convenience rather than necessity.
For points in U , which have larger distance from the transmitters in S, the BEP(p) functions will incorporate both
jamming and signal decay.

We now describe the BEP(p) functions from the simplest scenario of no jammers (only signal decay), followed
by the single-jammer and multiple-jammers scenarios.

2The same model extends readily from a bit to a higher-order symbol without fundamental changes.

6



3.1. No Jammers

In the absence of jamming activity, bit errors are caused by the decay of communication signals in space. For
legitimate receivers within S, since we assume that the decay is negligible, the bit-error probability without jamming
is identically zero. (We reemphasize that this assumption is only for ease of exposition, and not an essential one
for the schemes to work.) For an eavesdropper at location pe ∈ U , a message is received with bit-error probability
that depends on its distance to the transmitter. For the transmitter location we take the point in S closest to pe,
which is denoted s(pe). Then we write the jamming-free bit-error probability at pe as

BEPfree(pe) = fF (‖s(pe)− pe‖), (3)

where fF (·) is a monotone non-decreasing function. fF (·), as all the bit-error probability functions in the paper,
admits values in [0, 0.5]. Bit-error probabilities above 0.5 are clearly not practically interesting.

3.2. A Single Jammer

Here we assume that each point q is influenced by at most a single jammer which is active at q, while the effect
of other jammers are neglectable at q.

During active times for a jammer at location pj , its jamming signal introduces bit-error events in addition to
errors due to signal decay. The bit-error probability at location pe ∈ U is in this case a function combining the two
sources of bit errors

BEP(pe) = f(‖s(pe)− pe‖; ‖pj − pe‖), (4)

where f(·; ·) is monotone non-decreasing in its left argument and monotone non-increasing in its right argument.
For legitimate receivers within S we assume negligible signal decay, so for these locations the bit-error probability
is a function of jamming interference only

BEP(ps) = fI(‖pj − ps‖), (5)

where fI(d) can be regarded as a special case taking f(0; d).

3.3. Multiple Jammers

For the case of multiple jammers active at the same bit instant, a bit-error event may be caused by any of the
jammers, as well as by signal decay. To accommodate for multiple jammers, we extend the function f(·; ·) in (4) to
have multiple right arguments

BEP(pe) = f(‖s(pe)− pe‖; ‖pj1 − pe‖, ‖pj2 − pe‖, . . .). (6)

We mainly consider in this paper the case where f is symmetric in its right arguments, i.e., the bit-error probability
depends on the jammers only through their distances to pe (or ps). This assumption is equivalent to equal-power
jammers in the SIR model. At this point it is instructive to explain how the functions fF , fI , f are obtained in
practice. There are different ways to do it, and the choice depends on the design stage at which the functions
are needed. For the initial design of the system, one may use common communications models (power-decay with
AWGN noise, fading etc.) to come up with estimates on these functions given some reasonable assumptions on
the physical layer and communication medium. At a later stage when jammer activity assignments actually need
to be decided, the exact system specifications are known, and so real measurements can yield fF , fI and f with
good precision. In both cases we get an accurate characterization of the fundamental communication reliability
that is better than known coarse characterizations such as SIRs. In Section 4.1 we give an example of natural
parameterized functions for fF , fI , for which the modelling and measurement techniques mentioned above could
be used to find the values of a small number of parameters per each system.

3.4. Decompositions and bounds for the BEP functions

For some optimization tasks, we would want to decompose the function f from (6) to separable functions in
f ’s arguments. The main advantage of separability is in making f easier to measure and estimate in a deployed
system. It is much easier to obtain the bit-error probability as a function of a single variable (e.g. distance to a
single jammer) than as a complex function of multiple distances. When it is too complex to separate the effects
of the multiple arguments, we use separable functions that give upper and lower bounds on f . The upper bounds
allow to guarantee low enough error probabilities for legitimate receivers, and the lower bounds guarantee high
enough error probabilities at eavesdropper locations.
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When the bit-error probability is caused by a single active jammer, we use the interference-only function from (5)

BEPjam(pe) = fI(‖pj − pe‖), (7)

where we recall that fI(·) is a monotone non-increasing function admitting values in [0, 0.5]. Now we wish to
combine the single-jammer interference-only bit-error probability with that from signal decay given in (3). In order
for a bit to be received in error, it needs to be flipped by either signal decay or by jamming interference, but not
both. Assuming independence between the two error mechanisms, the resulting bit-error probability is

BEP(pe) = fF (1− fI) + fI(1− fF ) = fF + fI − 2fF fI , (8)

where fF and fI are short notations for fF (‖s(pe)− pe‖) and fI(‖pj − pe‖), respectively. Since for any fF , fI ≤ 0.5
we have fF + fI − 2fF fI ≥ max[fF , fI ], we get the following lower bound on the error probability

BEP(pe) ≥ max [fF (‖s(pe)− pe‖), fI(‖pj − pe‖)] . (9)

In addition to its simplicity, the max lower bound of (9) has the advantage that it is not specific to the independent
bit flipping error model assumed in (8), but can rather be justified for other physical error sources.
Similarly, we can use the max function to combine the bit-error probabilities from multiple jammers, yielding the
lower bound

BEPjam(pe) ≥ max
j∈J

fI(‖pj − pe‖). (10)

The multi-jammer error probability can again be combined with the decay error probability, obtaining the lower
bound

BEP(pe) ≥ max

[
fF (‖s(pe)− pe‖),max

j∈J
fI(‖pj − pe‖)

]
. (11)

For eavesdropper locations we are interested in bounding the combined error probability from below, such that a
jammer assignment guarantees no less than a certain amount of equivocation. Hence the right-hand side of (11) can
replace the true bit-error probability requirement without loss of correctness. In contrast, for legitimate-receiver
locations we look to bound the error probability from above, such that the actual error probability observed by
legitimate clients is not worse than some guaranteed value. Consequently, for a legitimate-receiver location ps ∈ S
we may choose the sum combining, which is an obvious upper bound on the true combined error probability

BEP(ps) = BEPjam(ps) ≤
∑
j∈J

fI(‖pj − ps‖). (12)

Here the right-hand side of (12) can replace, without loss of correctness, the true bit-error probability requirement
for legitimate receivers.

3.5. Partial-activity jammers

Now that we have set the basic formal infrastructure for calculating and bounding bit-error probabilities given
a jammer setup, we move to treat partial-activity jammers, which are the key component of the temporal-jamming
framework. A partial-activity jammer j transmits its jamming signal for an ηj ∈ [0, 1] fraction of the time. In the
remaining 1−ηj fraction of time, the jammer is idle and does not contribute to the equivocation of the eavesdroppers
and legitimate receivers. In the simplest case we assume that the jammer’s activity on bit instants is drawn as i.i.d
Bernoulli random variables with probability ηj . Consequently, a jammer is added as a right-argument to f(·; ·) at
bit instants when it is drawn active, and excluded at other time instants. An example of activity instants of two
jammers is given in Fig. 2, where Jammers 1 and 2 actively transmit for the duration of two bits at different times
during the transmission of a message.

The design problem at hand is to set the activity fractions ηj of the deployed jammers to meet the privacy
requirements induced by the system’s geometry. Note that the random selection of activity instants simplifies the
system operation, and in particular, no coordination is required between jammers.
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Time

Jammer 1

Jammer 2
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Figure 2. Jammers 1 and 2 actively transmit for the duration of two bits at different times during the transmission of a message. The
transmissions of both jammers help to achieve the required bit-error probabilities.

The Two Nearest Jammer (2NJ) model. For solving various optimization problems addressed in this paper, we use
either the NJ model (nearest jammer) or the 2NJ model (two nearest jammers). In 2NJ, the jamming impact of
the third jammer and beyond on a point p could be neglected. This assumption is justified by the rapid decay of
power with distance. Let ds(p) , ‖s(p) − p‖, i.e., the distance from p to the nearest point on S. The combined
bit-error probability from two partial-activity jammers j1, j2 affecting p is calculated as

TBEP(p, j1, j2) =

(1− ηj1)(1− ηj2) · fF (ds(p)) (13)

+ηj1(1− ηj2) · f(ds(p); ‖pj1 − p‖) (14)

+ηj2(1− ηj1) · f(ds(p); ‖pj2 − p‖) (15)

+ηj1ηj2 · f(ds(p); ‖pj1 − p‖, ‖pj2 − p‖). (16)

Note that the expressions in (13)–(16) correspond to disjoint time instants within the transmission block. Hence
combining with a sum is without loss of correctness. When p = ps is a location in the storage, we have ds(ps) = 0,
and the left argument of each of the f functions in (14)–(16) is not applied while (13) is identically zero.
The motivation to stop at two nearest jammers, besides the decay of received power, is the decreasing probability
ηj1ηj2ηj3 · · · to have a large number of simultaneous active jammers.

To achieve successful jamming, we need to satisfy the following constraints simultaneously

TBEP(pe, j1(pe), j2(pe)) ≥ τ1, ∀pe ∈ U , (17)

TBEP(ps, j1(ps), j2(ps)) ≤ τ2, ∀ps ∈ S, (18)

where j1(p), j2(p) are the two nearest jammers to p, and τ1 (resp. τ2) is the lower threshold (resp. upper bound)
of bit-error probability in U (resp. S) locations. The solution should be given as an assignment to η1, . . . , η|J |
satisfying (17)–(18), with minimal total activity

∑|J |
j=1 ηj .

4. Algorithms for Jammer Activity Assignment

The purpose of this section is to provide constructive tools to find jammer activity assignments that satisfy the
requirements of (17)–(18). The first such tool is called threshold shifting, which allows choosing ”the best” pair
of thresholds τ1, τ2 from all pairs that are equivalent in terms of the communication rate. The second tool are
algorithms to solve the activity assignment problem for the NJ and the 2NJ models.

4.1. Threshold shifting through information-theoretic security

The principal benefit of working with the bit-error probability measure is its fundamental relations with infor-
mation theory. These relations allow to cleverly employ information coding to aid the feasibility and efficiency of
friendly jamming in a given geometric setup. In the sequel we show that geometric setups that do not admit a
feasible assignment of ηj activity values to jammers, may be solved by shifting the lower and upper thresholds τ1, τ2
to values that are more favorable in terms of the geometric setup. Building on coding techniques, we are able to
perform such a shift while allowing the same communication rate between legitimate nodes in the storage.

To see how coding fits in the solution, we examine the bit-error probability constraints in (17)–(18). While the
left-hand side TBEP functions in the constraint inequalities are governed by the geometric setup of the problem, the
right-hand side thresholds τ1, τ2 originate from informational – and not physical – features of reliable communication.
In other words, the claim that τ1 and τ2 are sufficient thresholds must be backed by a code that provably guarantees
that legitimate nodes can communicate reliably, while eavesdroppers gain no information from their received signals.
As a corollary to that, it is possible to change the thresholds τ1, τ2 by changing the code used for communications.
We call this operation threshold shifting. Suppose we have a code that gives the correct guarantees given a threshold
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pair τ1, τ2. Then we run an optimization algorithm to find ηj ’s that satisfy these thresholds. It may be the case
that there is no feasible assignment to ηj ’s given τ1, τ2. Then we may look for an alternate pair τ ′1, τ

′
2, for which a

different code with the same rate exists, and solve a different optimization problem, with better success this time.
We briefly sketch the information-theoretic principles underlying threshold shifting and the associated code

design problem. A detailed constructive treatment is deferred to future work. In information-theoretic terminology,
communication between a transmitter and a legitimate receiver in location ps in the storage is done over a binary
symmetric channel (BSC) with parameter TBEP(ps) given in (5). A BSC with parameter γ flips any bit i.i.d. with
probability γ. Similarly, the communication between a transmitter and an eavesdropper in location pe is done over
a BSC with parameter TBEP(pe) given in (6). The BSC is the most fundamental channel model, and a heavily
studied one in information theory. For a BSC with parameter γ, it is known [30] that a communication rate of
1− h(γ) is achievable using coding, and also optimal, where h(·) is the binary entropy function. This limiting rate
1− h(γ) is called the capacity of the BSC. The scenario of a legitimate receiver communicating over one BSC with
an eavesdropper communicating over another (worse) BSC is also a well studied problem in information theory
called the wire-tap channel [41]. It is well known [37] that it is possible to communicate reliably with a legitimate
receiver, while leaving the eavesdropper in complete equivocation, at a rate that is at most the difference

∆ = Capacity(TBEP(ps))− Capacity(TBEP(pe)). (19)

In other words, we can change the bit-error probabilities of the legitimate receiver and the eavesdropper, and main-
tain the same communication rate so long as the difference between the respective channel capacities is maintained.
Since both bit-error probabilities go in the same direction (either both upward or both downward), we refer to this
operation as threshold shifting. To fit this into the jammer-activity optimization problem, we replace the individual
TBEP values in (19) with the thresholds τ1 (for pe), and τ2 (for ps). The following example shows the potential of
threshold shifting.
Example. Assume a simple configuration of a single legitimate node (denoted s), a single jammer (denoted j), and
a single eavesdropper (denoted e) given in the Fig. 3. The distance between s and j is d1, and the distance between

d1 d2

d3s

j

e

Figure 3. The geometric layout of the legitimate node (s), the jammer (j), and the eavesdropper (e) in the example.

j and e is d2. Suppose the f functions governing the bit-error probabilities are given as follows. Bit error-probability
due to signal decay at distance x from the source is given by

fF (x) =
1

2

[
1− e−αF xγF

]
. (20)

Bit error-probability due to interference at distance y from the jammer is given by

fI(y) =
1

2
e−αIy

γI
.

The constants αF , γF , αI , γI allow fitting the functions to measured values in the particular system. For any choice
of these parameters we have the desired properties that fF (0) = 0, fI(0) = 0.5, reflecting, respectively, no errors at
the source and complete equivocation at the jammer. At the limit of distances going to infinity the behaviors are
inverted, where fF is tending to 0.5 and fI is tending to 0. For the legitimate receiver s we assume to only have
bit-error probability contribution from fI (recall that s is located in a relatively small storage, hence very proximate
to the transmitter). For the eavesdropper location e we have contributions from both functions, which we combine
with the max function, as shown in (9). Altogether, assuming a jamming signal active at a η fraction of time, we
have

TBEP(s, j) = ηfI(d1) =
1

2
ηe−αId

γI
1

and

TBEP(e, j) = (1− η)fF (d3) + ηmax [fF (d3), fI(d2)]

= fF (d3) + ηmax [fI(d2)− fF (d3), 0]

=
1

2

[
1− e−αF d

γF
3 + ηmax

[
e−αId

γI
2 + e−αF d

γF
3 − 1, 0

]]
.
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Now with the closed-form expressions for TBEP(s, j) and TBEP(e, j) above, the jammer needs to set the activity
factor η to guarantee that TBEP(e, j) is above some specified threshold τ1 and TBEP(s, j) is below some specified
threshold τ2. The jammer’s selection of η is best explained with a concrete numerical example. Suppose the
measured parameters for propagation and jamming are found to be αF = 0.1, γF = 2, αI = 3, γI = 2. In addition,
the distances of the problem are d1 = 0.8, d2 = 0.6, d3 = 0.9. Then we can substitute these values into the
fI and fF functions, and obtain in Fig. 4 the values of TBEP(s, j) (solid diagonal line) and TBEP(e, j) (dashed
diagonal line) as a function of η. Given specified TBEP thresholds τ1 = 0.1, τ2 = 0.03, the solid vertical line in

0.0 0.2 0.4 0.6 0.8 1.0 h

0.05

0.10

0.15

TBEP

Figure 4. TBEP(s, j) (solid) and TBEP(e, j) (dashed) as a function of η. Shaded regions represent η values that satisfy TBEP(s, j) ≤ τ2
(bottom-left) and TBEP(e, j) ≥ τ1 (top right). The intersection between allowed η values is empty.

Fig. 4 marks the upper boundary of η values that satisfy TBEP(s, j) ≤ τ2 (these values are marked by the shaded
region on the bottom left). Similarly, the dashed vertical line marks the lower boundary of η values that satisfy
TBEP(e, j) ≥ τ1 (these values are marked by the shaded region on the top right). It is clear from the figure that
the intersection between the η values of the left and right regions is empty, hence there is no η that can satisfy
both constraints, and jamming is impossible with these parameters. Now we show that using the threshold shifting
technique, jamming will become possible without any loss in information rate. We choose the alternative thresholds
τ ′1 = 0.163, τ ′2 = 0.07 which satisfy

Capacity(τ ′2)− Capacity(τ ′1) = h(τ ′1)− h(τ ′2) = 0.275.

This difference is identical to

Capacity(τ2)− Capacity(τ1) = h(τ1)− h(τ2) = 0.275.

Therefore, the same rate of communication (between legitimate nodes) can be maintained with the alternative
thresholds, only changing the code used for communication. As a result, we repeat in Fig. 5 the same TBEP
functions from Fig. 4, only this time marking the allowed regions specified by τ ′1 and τ ′2. It can be observed in Fig. 5

0.0 0.2 0.4 0.6 0.8 1.0 h

0.05

0.10

0.15

TBEP

Figure 5. The same TBEP(s, j) and TBEP(e, j) functions, now with shaded regions marking η values allowed by the shifted thresholds
τ ′1 and τ ′2. The intersection between allowed η values is non-empty.

that now the bottom-left and top-right shaded regions do intersect on η values between 0 and 1; hence, jamming is
possible with these shifted thresholds.

This example can, of course, be generalized to much more complex jamming scenarios, as we see later in Section 7.

4.2. Computing (η1, . . . , η|J |) under the nearest-jammer model

Given a set of jammers J in specified locations, and a pair of threshold values τ1, τ2, we wish to set the activity
fractions η1, . . . , η|J | of the jammers to guarantee bit-error probability of at least τ1 at eavesdropper locations, and
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j1

j2

ji

ji+1

Storage S1
j|J |

S2

F

Figure 6. (a) An example of a setting in which the circular assumption holds. Squares indicate the witness points of W. Jammers are
indicated by disks. The portion of the fence and (boundary of) storage influenced by the orange jammer j2 (resp., green jammer j1)
are highlighted in orange (resp., green). The arrow indicates a fence point influenced by both jammers.

at most τ2 at locations in the storage. In addition to satisfying the bit-error probability thresholds, to save power

we wish to achieve that with the lowest possible total activity sum
∑|J |
j=1 ηj .

First we handle the nearest jammer model. That is, each point, on the storage or outside the fence, is influenced
by the nearest jammer to the point, while more remote jammers’ impact is neglected. The problem is, as above, to
determine the values ηj for each jammer j ∈ J .

1. Compute the set of witness points W as explained in Section 2.
2. Compute the Voronoi Diagram of J , in O|J | log |J |) time (see [5]) .
3. Using the Voronoi Diagram, for each point in W find the nearest jammer in log |J | time. Denote by Wj ⊆ W

the set of witness points whose nearest jammer is j ∈ J .
4. For each j ∈ J , compute Lj , the minimal ηj value that meets the TBEP ≥ τ1 threshold for all p ∈Wj ∩ U .
5. For each j ∈ J , compute Uj , the maximal ηj value that meets the TBEP ≤ τ2 threshold for all p ∈Wj ∩ S.
6. If for every j ∈ J , Lj ≤ Uj output ηj = Lj . If not, output “failure”.

4.3. Computing (η1, . . . , η|J |) under the 2-nearest jammer model

Let j1(p) (resp., j2(p)) be the first (resp., second) closest jammer to point p. Hence, {j1(p), j2(p)} = 2NJ(p).
Now we need to satisfy the constraints

TBEP(pe, j1(pe), j2(pe)) ≥ τ1, ∀pe ∈ W
⋂
U , (21)

TBEP(ps, j1(ps), j2(ps)) ≤ τ2, ∀ps ∈ W
⋂
S. (22)

We need to find an assignment to η1, . . . , η|J | satisfying (21)–(22), with minimum total activity
∑|J |
j=1 ηj . Note

that this model is more involved than the single nearest jammer model, since the values ηj depend on each other.
To overcome the computational difficulty, we use the geometric structure of the problem as follows. We assume
the problem layout satisfies the circular order assumption (Figure 6): the jammers can be ordered J = (j1, j2, . . .)
such that each TBEP constraint involves either a single jammer ji or a pair of jammers ji, jk, and furthermore, if
a witness point w ∈ W is influenced by ji (together with possibly another jammer), then no witness point w′ is
influenced by ji1 , ji2 , where i1 < i < i2. (Jammer indices wrap around, from |J | back to 1.) The implication is
that once the values of ηi, ηk are fixed, then the values of ηi+1, . . . ηk−1 (within the [i, k] interval of indices) can be
computed independently from the values of ηk+1, ηk+2 . . . ηi−1 (outside the [i, k] interval of indices).

In the 2NJ model, the circular assumption amounts to some very natural topological assumptions on the shapes
of the storage and warehouse, e.g. being simply connected. With this assumption, the region of influence of ji on
S and U may overlap with the regions of influence of ji−1 and ji+1, but no other jammers.

Under the circular assumption, the solution can be simplified greatly with the following dynamic program.
Let the η values be taken from a finite set D. For fixed value of ηi, ηj let Ii,j(η

′, η′′) be defined as TRUE if
for ηi = η′, ηj = η′′ there is an assignment of ηi+1, ηi+2 . . . ηj−1 from D such that all inequalities that involve
these indices are satisfied. (Recall that indices wrap from |J | back to 1.) Note that Iij(η

′, η′′) = TRUE and
Ijk(η′′, η′′′) = TRUE imply that Iik(η′, η′′′) = TRUE.

The algorithm first computes Ii,i+1(η′, η′′) for all η′, η′′ ∈ D and i = 1, 2, 3 . . . , then merges this data to compute
Ii,i+2(η′, η′′) for i = 1, 3, 5 . . . and so on. In each iteration the number of pairs considered is halved compared to the
preceding iteration. Therefore, the time complexity is O(|J ||D|2 log |J |). Note that the storage S does not have to
be connected, and could contain several components (S1,S2 in this example),
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5. Hardness of Optimal Jammers Placement

Next, we address the jammer placement problem, and assume other parameters of jammers (e.g. power or burst
duration) are fixed and identical for all jammers.

To fully understand the difficulty of the problem, let us assume further that the nearest jammer models is used,
and that P̃ = P̂ where P̃ is the transmitter’s signal power. Substituting δ1 = δ2 = 1 in Equations (1) and (2) leads
to the following formalization:

Opt-Placement Problem. Find a smallest cardinality set J of jammers, satisfying
1. ‖pe −NJJ (pe)‖ ≤ ‖pe − s(p)‖ for every pe ∈ U , where NJJ (pe) is the jammer of OPT which is closest to pe.
2. OPT ⊆ A

The first condition implies that for any eavesdropper positioned in U , and for every nodes in S that he tries to
tap to, there is a jammer of OPT that jams this nodes SIR-wise. The second condition implies that jammers could
be placed only on an allowable region A ⊆ R2 (for example, not too close to S, but still in the controlled region U .)

We now show hardness of Opt-Placement Problem even in the case that the storage S ⊂ R2 consists of
multiple disconnected regions. It is sufficient to show this for the case when S is a set of points, eavesdroppers can
be located only at a discrete set E ⊂ R2 of points distinct from S, and jammers can be placed anywhere in the
plane (i.e., the allowable region A = R2). Our reduction uses ideas from the NP-completeness proof of the problem
Hitting-Set-for-Planar-Unit-Disks: Given a set D of disks of equal radii in the plane and an integer k,
compute whether there is a set P ⊆ R2 such that D∩P 6= ∅ for all D ∈ D and |P | ≤ k. [21] The reduction employed
in the NP-completeness proof of Hitting-Set-for-Planar-Unit-Disks is from the problem Planar-3-SAT [7].

Theorem 1. Assume that the allowable region where jammers can be placed is A = R2. Then, given a discrete
set, S, of storage regions and a discrete set, E, of potential eavesdropper locations, disjoint from the regions S,
Opt-Placement Problem is NP-hard.

Proof. For a given instance of Planar-3-SAT, the construction used in the proof of NP-completeness of Hitting-
Set-for-Planar-Unit-Disks considers a specific set D = {D1, . . . , Dm} of unit disks in the plane, and these disks
have the following property: Each disk appears as an arc of positive length on the boundary of the union, U , of the
disks in D. To compute a hitting set for D, we can select one representative point per face of the arrangement of the
m disks; therefore, it suffices for a hitting set to be selected as a subset of points on the faces of this arrangement.

From D, we construct an instance of the problem Opt-Placement Problem as follows. First, we let E be
the set of m centerpoints of the disks D. Let U ′ denote the union of disks of radius 1 + δ, with δ > 0 chosen small
enough that U ′ has exactly the same combinatorial structure as U (the exact same arcs on each component of the
boundary of the union). Within each connected component of the set R2 \ U ′ (which consists of the “holes” in the
union U ′ of disks, as well as the unbounded face outside U ′) we construct a simple polygon, which is one of the
storage regions of the set S, that touches each of the circular arcs bounding the face. (It is easy to see that such a
polygon can be constructed having its number of vertices linear in the complexity of the face.) The set, P, of such
polygons has the property that if each member polygon is grown by δ (via Minkowski sum with a disk of radius δ),
then, with the appropriate choice of δ1, constraint (1) requires that there must be a jammer within each of the unit
disks Di centered at the points E in order to satisfy (1) at these points E . In particular, each unit disk is in contact
with the (up to 5) regions grown from polygons P corresponding to the faces to which the corresponding unit disk
contributes an arc to the boundary of U . A minimum-cardinality set of jammers, then, corresponds precisely to an
optimal hitting set for the disks D. Thus, there exists a jamming set of size k if and only if there exists a hitting
set for D of size k.

6. Jammer Placement under the Nearest-Jammer Model – Positive Results

In this section, we present results for Opt-Placement Problem in both interference models. We are given a
set, S, of storage regions and a polygonal fence F enclosing S. All jammers have fixed transmission power P̂ . We
consider two possible cases for the allowable region, A: (i) the continuous case, in which A = C \ S and we use the
NJ-interference model (Section 6.2), and (ii) the discrete case, in which A ⊂ C \ S is a discrete set of candidate
locations and we use the Full-interference model (Section 6.3). In both cases, we provide (1 + ε)-approximation
schemes.

In the above settings, we first describe how to prune significant portions of F . This will aid in bounding the
running times of our algorithms. Following this, we describe our approximation schemes.
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6.1. Pruning the Fence

In this section, we show how to discard portions of F (thereby reducing the controlled region C) so that,
at any point in the discarded portions, the SIR (under any interference model) is approximated by the SIR at
some remaining location. Thus, if eavesdroppers located in the remaining portions are successfully jammed, any
eavesdropper on F , or anywhere outside C is also approximately successfully jammed. As stated, the approximation
here means that Equation (2) and Equation (1) hold, after possibly multiplying one of the sides by a factor of
(1 + ε).

We first give a few definitions. Let ∂S be the boundary of S. For two points ps, qs ∈ ∂S that belong to the same
polygon in S, let psqs denote the portion of ∂S obtained by walking counterclockwise from ps to qs. We define peqe
analogously for two points pe, qe ∈ F . Let pipi+1⊂ ∂S be a straight line edge on ∂S (that is, pi, pi+1 are consecutive
vertices of ∂S) . The generalized Voronoi region, denoted by Vor(pipi+1) is the set {p ∈ R2 | s(p) ∈ pipi+1},
where s(p) is the nearest point to p on S. Similarly define the Voronoi region of each vertex pi. The generalized
Voronoi diagram VD(S) is the subdivision of R2 induced by the Voronoi regions of edges and vertices of S. The
restricted Voronoi Diagram RVD(S,F) of S on F is the subdivision of F into segments induced by VD(S)
together with the vertices of F ; see Figure 7 for an illustration.

s1

s2

Vor(s1)

Vor(s1s2) S

F

Figure 7. Generalized and Restricted Voronoi Diagrams.

The generalized Voronoi diagram is a well-studied structure in computational geometry [16, 18] and can be
computed in O(n log n) time. Consequently, the restricted Voronoi diagram RVD(S,F) can be computed in time
O(n2).

Before describing the pruning process, let us emphasize the intuition behind its importance. Figure 8 illustrates
two extreme yet realistic scenarios, of a fence that is significantly larger than the storage (Figure 8(a)), and a fence
containing a sharp and long “spike” (Figure 8(b)). Theorem 2 (below) implies that in both cases we can solve the
optimization problem while considering a much smaller fence, whose perimeter is proportional only to the perimeter
of the storage, and does not contain such sharp angles.

S
F

S

F

(a) (b)

Figure 8. The solid lines represent the portion of the fence that needs to be considered, while the dashed lines represent portions that
can be pruned and the thin dotted lines are the edges of the Voronoi diagram of S based on which the pruning is performed. (left)
Original scenario, (middle) After pruning based on Lemma A.1, (right) After pruning based on Lemmas A.2 and A.3.

The output of the pruning process is a set, Ξ, of segments, which are edges of F . The main result is the following
theorem, whose proof is based on a series of lemmas associated with different stages of the process; see the Appendix
for the lemmas and proofs. In specifying the bounds below, we assume, for simplicity, that distances are scaled so
that the distance between the closest pair of points p ∈ S and q ∈ F is 1.

Theorem 2. Given a set, S, of storage regions, a fence F enclosing S such that eavesdroppers may lie on F , we
can generate a set of segments Ξ such that if a set J of jammers (not necessarily using the same transmission
power) satisfies constraint (1) at all locations pe ∈ ξ for ξ ∈ Ξ, then (1) is satisfied at all locations in F . Further,
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Figure 9. The forbidden region (marked in green)
and visiblity regions for the case α = 1

ξ

S

F

Figure 10. Arrangement of visibility regions

(i) Each segment ξ ∈ Ξ is a subset of F ;
(ii) Any pair of segments in Ξ is disjoint; and,

(iii)
∑
ξ∈Ξ |ξ| = O((LS + n)/ε), where |ξ| is the length of ξ, and n is the total complexity of S and F .

6.2. Placement Within a Continuous Allowable Region

In this section, we present a (1 + ε)-approximation bi-criteria approximation scheme under the NJ-interference
model when the allowable region A is a continuous (but not necessarily connected) domain consisting of all the
points in the controlled region C that are not too close to the storage S, as formalized below.

We first present a few necessary definitions. Let P̂ be the transmission power of a jammer and let P̃ be
transmission power of the legitimate communication nodes. Let D[p; r] denote a disk of radius r centered at a point
p. Also, let α = (δ1P̂ /P̃ )1/γ and β = (δ2P̂ )1/γ be two parameters useful in simplifying the exposition.

Definition 1. (i) The forbidden region ϕ(S) is the region ∪ps∈SD[ps;β]. This is essentially the Minkowski
sum [4] of S with a disk with radius β. No jammer can lie in ϕ(S) since it would cause too much interference
to possible legitimate transmissions within S.

(ii) The allowable region is A = C \ϕ(S). (Our algorithm straightforwardly generalizes to accommodate various
other assumptions on the allowable and forbidden regions.)

(iii) For a point pe ∈ E , the critical disk is the disk D(pe) = D[pe;α‖s(pe)−pe‖]. Under the NJ-interference model,
this disk must contain a jammer in order to prevent an eavesdropper at pe from listening to transmissions
within S, and, in particular, to a transmitter placed in s(pe).

(iv) For a point in pe ∈ F , the visibility region Vis(pe) is the region D(pe)
⋃

A. The vertices of Vis(pe) are the
non-differentiable points of Vis(pe). Refer to Fig. 9

As is easily observed from the above discussion, successful jamming can be obtained by a set J of jammers if
and only if for every point pe ∈ F , there is a jammer of J in Vis(pe). Note that a successful jamming might not
exist under the above constraints; for example, if β is too large (e.g. if δ2 is too small) the forbidden region might
contain essential portions of F .

Arrangements. Given a discrete set, E ′, of points outside C, let the arrangement A(E ′,S,F) denote the subdivision
of R2 induced by the set of regions Vis(E ′) = {Vis(pe) | pe ∈ E ′}. The vertices of A(E ′,S,F) are the intersection
points of the visibility regions of points in E ′, together with the vertices of the visibility regions. An edge of
A(E ′,S,F) is a portion of a visibility region between two vertices, and a face is a connected component of R2\Vis(E ′).
The complexity of an arrangement is the total number of vertices, edges and faces; see Figure 10.

We first present an optimal algorithm for a restricted case that is useful in the analysis of the (1 + ε)-
approximation scheme for the general case.
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6.2.1. An Optimal Algorithm for a Special Case

When S is a (straight-line) segment and E is another (straight-line) segment disjoint from S, we can find an
optimal set of jammers, i.e., one of minimum cardinality such that (2) and (1) are satisfied. Our algorithm is very
similar to the algorithm presented in [28, 29] for the case of convex S and convex F enclosing S, with α = 1.

Apart from being an interesting case in which optimal results can be achieved, this algorithm is used in the
analysis of our approximation algorithm for the general case (see Section 6.2.2) to bound the running time.

Let E = peqe and S = psqs. The steps of the algorithm are as follows:
1. Initialize point p = pe ∈ E .
2. For the current point p, compute the next point, p′ ∈ E , to the right of p, such that D(p) and D(p′) are

tangential.
3. If p′ ∈ E , place a jammer at D(p)

⋂
D(p′), set p to p′ and repeat steps 2 and 3.

4. If p′ /∈ E , stop.
See Figure 11 for an illustration of one step of the algorithm, and Figure 12 for an illustration and the following

step. Essentially, we compute a sequence of disks, covering E , such that any two consecutive disks are tangential
and the number of disks is at most OPT + 1, where OPT is optimal number.

pe

p′e

s(pe) s(p′e)

E

S

D(pe)

D(p′e)

j

Figure 11. One step of the algorithm for disjoint segments, where α > 1. The outer disks centered at pe and p′e are the critical disks
of pe and p′e, and their radii are α‖s(pe) − pe‖ and α‖s(p′e) − p′e‖, respectively. The algorithm places a jammer j at the intersection
point of these disks.

D(pe)
D(p′e)

D(p′′e)

s(pe) s(p′e) s(p′′e)

E

S

pe
p′e

p′′e

j1
j2

Figure 12. Two steps of the algorithm for disjoint segments, when α = 1. Critical disks centred at pe (resp. p′e,p′′e ) has radius
‖s(pe) − pe‖, (resp. ‖s(p′e) − p′e‖, ‖s(p′′e ) − p′′e ‖). The witness point p′e is located such that D[pe] and D[p′e] are tangential, and the
algorithm places the first jammer j1 at D[p′e] ∩ D[p′′e ]. The process then repeats for locating the second jammers j2 and so on.

Theorem 3. Given disjoint segments S = psqs and E = peqe, we can place a set of at most OPT + 1 jammers J
in time O(OPT) such that (i) ∀p ∈ E, SIR(J , p) < δ1 and (ii) ∀p ∈ S, SIR(J , p) > δ2.

Proof. The proof follows from the arguments in [28, cf. Section 5].

We use the property that there are at most OPT+ 1 disks constructed during the course of the algorithm in the
analysis of the approximation scheme in Section 6.2.2.

6.2.2. (1 + ε)-Approximation for the General Case

In this section, we present a bi-criteria polynomial-time approximation scheme where we allow some leeway in
both the number of jammers as well as the SIR at each point on E . The precise description of our result is given
by the following theorem.
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Theorem 4. Given storage region(s) S, fence F , thresholds δ2, δ1 and jammer power P̂ , under the NJ interference

model, we can compute locations J ⊂ A \ ϕ(S) in time O((T/εO(1))O(1/ε2)), where T = min{L2
F ,L2

S , n
2OPT2},

such that |J | ≤ (1 + ε)OPT, and if jammers of power P̂ are placed at J , then
(i) For any point pe ∈ F , SIR(J , pe) < (1 + ε)δ1.

(ii) For any point ps ∈ S, SIR(J , ps) > δ2.

The overall idea of the algorithm is to compute a discrete set of witness points E ′ ⊂ E such that the SIR at
any point in E \ E ′ is approximated by the SIR at some point in E ′. Thus, if we ensure that any point in E ′ is
successfully jammed, we ensure that any point in E is “almost” successfully jammed, i.e., we are off the threshold
by only a factor (1 + ε).

Algorithm Description. The algorithm consists of the following stages.
Stage (i). Generate witness points. The set E ′ of witness points is constructed in two steps. First, we obtain

a set of segments Ξ from F = ∂C according to Theorem 2 and add their endpoints to E ′. For each segment
peqe in Ξ, we then place witness points as described below in Place-Witnesses. Let E ′ be the set of these
points.

Stage (ii). Generate Candidate Jammer Locations: We now compute a discrete set of candidate jammer
locations J ′ as follows: compute Vis(pe) for each pe ∈ E ′ and compute the arrangement A(E ′,S,F). For each
face of the arrangement we pick an arbitrary point and add it to J ′.

Stage (iii). Find an almost-optimal set of jammers: Given discrete sets E ′ and J ′, the problem now
transforms into the following discrete hitting set problem: Given a discrete set of critical disks centered
at points of E ′ and a discrete set of points J ′, compute a minimum cardinality subset J ⊂ J ′ such that
every critical disk contains at least one point in J . Although the minimum hitting set problem for disks is
NP-Hard, we can obtain a (1 + ε)-approximate solution using the method of Mustafa and Ray[22] in time

O(|E ′||J ′|O(1/ε2)). If there is no feasible solution to the hitting set problem, there is no feasible placement of
jammers.

pe

qe

p′e
p′′e

r(p′e)

s(pe) s(qe)

εr(p′e)

D(p′e)

Figure 13. One step of procedure Place-Witnesses

Procedure Place-Witnesses(Ξ). Let peqe be a segment in Ξ and without loss of generality, let ‖pe − s(pe)‖ <
‖qe − s(qe)‖. We place witness points along peqe, starting at pe, until we reach qe. At an intermediate step,
assume we are located at an already placed witness point p′e ∈ peqe. Let r(p′e) be the radius of the critical disk
D(p′e). We place a witness point p′′e on the portion p′eqe such that ‖p′e − p′′e‖ = ε′r(p′e), where ε′ is chosen such that
(1 + ε′)γ ≤ (1 + ε) and move to p′′e (see Figure 13). If ‖qe − p′e‖ < ε′r(p′e), we terminate the procedure. Let the set
of witness points placed for a segment peqe be denoted by E ′peqe .
Lemma 6.1. For any segment peqe and any point p′e ∈ peqe, there exists a point p′′e ∈ E ′peqe such that, for any
jammer j ∈ J ,

SIR(j, p′′e ) ≤ δ1 ⇒ SIR(j, p′e) ≤ (1 + ε)δ1.

Proof. Assuming without loss of generality that ‖pe − s(pe)‖ ≤ ‖qe − s(qe)‖, let p′′e be the point closest to p′e on
pep′e implying that ‖p′′e − p′e‖ ≤ ε′α‖p′′e − s(p′′e )‖. If, for a jammer j, SIR(j, p′′e ) ≤ δ1, then j ∈ D[p′′e ;α‖p′′e − s(p′′e )‖].
Therefore,

‖p′e − j‖ ≤ ‖p′e − p′′e‖+ α‖p′′e − s(p′′e )‖
≤ (1 + ε′)α‖p′e − s(p′e)‖,

since ‖p′e − s(p′e)‖ ≤ ‖p′′e − s(p′′e )‖. Now, since (1 + ε′)γ ≤ (1 + ε), by the choice of ε′, the lemma is proved.
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We add to E ′ all points in E ′peqe for all peqe ∈ Ξ.

Analysis. It remains to bound the number of points in E ′. Clearly, since the minimum distance between S and F
is 1, for each segment peqe, procedure Place-Witnesses places O(‖pe − qe‖/εO(1)) witness points in E ′. Thus, a
simple bound is O(LF/εO(1)).

However, from Lemma A.3, we have that for any segment peqe ∈ Ξ such that s(peqe) is a vertex of S, Place-
Witnesses places O(1/εO(1)) witness points in E ′. Combined with Theorem 2, we clearly have O(LS/εO(1)) witness
points placed by Place-Witnesses.

We can also obtain a different bound independent of perimeters of S or F by a more complicated analysis.

Lemma 6.2. For any segment peqe ∈ Ξ ⊆ F such that s(peqe) is a single segment on S, Place-Witnesses places
O(OPT/εO(1)) witness points in peqe.

Proof. Let θ = θc(peqe) be the critical angle (see Definition 2 in the Appendix) of peqe. Consider any two points
p′e, p

′′
e on peqe such that D(p′e) and D(p′′e ) are tangential to each other and ‖p′e − s(p′e)‖ ≤ ‖p′′e − s(p′′e )‖. Then,

α‖p′′e − s(p′′e )‖ = α‖p′e − s(p′e)‖(1 + sin θ)/(1− sin θ).

Now, consider the set of points {pe,0, pe,1, . . . , pe,k} such that pe,0 = p′e and

α‖pe,i − s(pe,i)‖ = α‖pe,i−1 − s(pe,i−1)‖(1 + sin θ),

and k is the largest integer such that pe,k lies in between p′e and p′′e on peqe.
Clearly, pe,i lies at the point of intersection of D(pe,i−1) and peqe. We can now see that k = O(1/ε) from the

fact that α‖p′′e − s(p′′e )‖ = α‖p′e − s(p′e)‖(1 + sin θ)/(1− sin θ) and that sin θ < 1/(1 + ε)1/γ for all segments in Ξ.
We now use the algorithm from Section 6.2.1, which computes a sequence of disks such that any two consecutive

disks are tangential. From Theorem 3, it is clear that we can compute such a sequence of at most O(OPT) disks to
cover peqe.

For any disk in this set, Place-Witnesses clearly places O(1/εO(1)) witness points. Thus, for a segment in Ξ,
the total number of witness points in E ′ is O(OPT/εO(1)).

Putting it all together, we have |E ′| = O(
√
T/εO(1)) and |J ′| = O(T/εO(1)), where T = min{L2

F ,L2
S , n

2OPT2}
thus completing the proof of Theorem 4.

6.3. Discrete Candidate Locations

In this subsection we study the usefulness of the pruning technique for jammer location under the Full-
interference model as well. Given storage region(s) S, a polygonal fence F enclosing S such that eavesdroppers may
lie on F , in [28, 29] the authors show how, given a discrete set J of candidate locations of jammers, to compute a
minimum cardinality set J ⊆ J, such that Equations (2) and (1) are satisfied, up to a factor of at most (1 + ε).

Given J, the algorithm first identifies two sets, S ′ ⊂ S and E ′ ⊂ R2 \ S, of witness points. From these sets,
an Integer Linear Program (ILP) is determined in which each witness point yields one constraint, yielding overall
O(|E ′| + |S ′|) constraints. The solution provides a bi-criteria approximation similar to our results above, which
hold for any point in S or outside of C. However, it is important to reduce the number of constraints as much as
possible, especially for the ILP whose computation cost can be very high; in this case, a decrease in the number
of constraints is achieved through a reduction in the number of witness points. Specifically, we apply our pruning
techniques from Section 6.1. Thus, we obtain the following theorem:

Theorem 5. Given storage region(s) S, fence F , discrete candidate jammer locations J , thresholds δ2, δ1 and
jammer power P̂ , under the Full interference model, we can compute a set of locations J ⊂ E by solving an integer
linear program with at most O(k(n2/εO(1))(log2(n/εO(1)) + log T )) constrains, where T = min{LF ,LF} such that
|J | ≤ (1 + ε)OPT and if jammers of power P̂ are placed at J ,

(i) For any point pe ∈ E, SIR(J, pe) < (1 + ε)δ1.
(ii) For any point ps ∈ S, SIR(J, ps) > (1− ε)δ2.

The paper [28, 29] discusses a similar algorithm for assigning power to the jammers, while having their locations
fixed. A result analogous to Theorem 5 holds for this case as well.
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Figure 14. The Storage/Fence environment used in the simulations. Jammers J are indicated by up-arrows.

7. Simulation Results

The goal of the following simulation study is to evaluate the new temporal-jamming framework in complex
realistic jamming scenarios. The results build strongly on the tools developed in Section 4: they use the efficient
algorithms for finding optimal jamming-activity assignments, and they reveal the benefits of the threshold-shifting
technique. The Storage/Fence environment model used in the study is depicted in Figure 14. In this model, eleven
friendly jammers are located along the fence (dotted) to protect the communications of nodes within the storage
(gray).

In the following, we use the 2NJ model with the fF and fI functions given in the example of Section 4.1. We fix
three of the propagation and jamming parameters to γF = γI = 2 and αI = 0.4. The fourth parameter, αF , is varied
to model different scenarios. A small αF implies slow decay of the information signals, and thus corresponds to poor
separation between the storage and the fence, while a large αF corresponds to better separation and an “easier”
jamming problem. This can be seen in Fig. 15(a), where, given an upper threshold τ2, a higher lower threshold τ1
is achieved as αF grows. Fig. 15(b) shows the delta capacity, which amounts to the achievable communication rate,
as a function of the prescribed τ2 value. This plot shows that for low αF parameters, it is beneficial to raise (shift)
τ2 sufficiently in order to reach the maximum rate. Hence, it is seen that threshold shifting may be beneficial to
overcome more challenging jamming scenarios.

Fig. 15(c) and Fig. 15(d) shows the correlations between prescribed τ2 value and the corresponding η values
assigned by the optimal algorithm. Fig. 15(c) shows the maximum of the ηj values among the jammer set J , and
Fig. 15(d) shows the average over J . These plots explain why Figs. 15(a,b) flatten out for large τ2 values: due to
saturation of jammer activity values, it becomes impossible to increase τ1 further, regardless of the allowable τ2.
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Figure 15. Simulation results. For different αF values, (a) presents the maximum achieved τ1 threshold given τ2. (b) presents the
delta capacity, which is equivalent to the achievable communication rate. (c-d) present the maximum jammer activity and the average
jammer activity versus τ2, respectively.
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8. Conclusion

In this paper, we considered the joint optimization problems arising out of the usage of friendly jammers for
securing communication in a flexible manner, i.e., choosing jamming parameters optimally based on space as well as
time. Our results are based on a new communication framework using the bit-error probability as a quality metric.

We first showed the benefits of temporal jamming where jammers’ activity on individual bit instants are drawn
as i.i.d Bernoulli random variables independent of other jammers. This scheme can be easily extended to the domain
of multiple jamming frequencies. Next, we showed how to transform infeasible jamming specifications to feasible
ones without any impact to security, reliability and communication rate by changing the coding parameters. Based
on this, we presented two polynomial time approximation algorithms for computing jammers’ activity parameters
with a (1 + ε)-approximation of the best achievable energy consumption. Our results demonstrate the benefits of
choosing coding parameters in conjunction with assigning jammers’ activity to efficiently manage secure reliable
communication.
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Appendix: Proof of Theorem 2

The pruning process employs the following steps. Initially, we compute RVD(S,F). For any fence segment peqe
in RVD(S,F), let s(peqe) be the set {ps ∈ S | ∃p′e ∈ peqe, s(p′e) = ps}. Let Ξv be the segments peqe ∈ RVD(S,F)
such that s(peqe) is a single vertex of S and let Ξs be the remaining segments. For each segment peqe ∈ Ξv such
that p′e is the closest point to s(peqe) on the line through pe and qe, if p′e ∈ peqe, we replace peqe with pep′e and p′eqe
in Ξv.

With the sets of segments Ξv and Ξs, we further shorten or remove segments according to the following lemmas.
The proofs hold under both interference models.

Lemma A.1. For any segment peqe ∈ Ξs, (i) s(peqe) is either a segment sese′ along the boundary of some region
in S, and (ii) for some p′e ∈ E, if the segment connecting p′e to s(p′e) intersects E at some point p′′e , then, for any
J ⊂ J ,

SIR(J, p′′e ) < δ1 ⇒ SIR(J, p′e) < δ1.

Proof. Clearly, (i) is true. The proof of (ii) follows from [28, cf. Lemma 3.1].

Lemma A.1 implies that we can shorten all segments in RVD(S,F) to portions such that for any point pe in the
remaining portions, the segment connecting pe and s(pe) does not intersect F . Let Ξs and Ξv be replaced with the
segments obtained through this shortening.

pe

qe

ps = s(pe)

θ

qs = s(qe)

pe

qe

ps = s(peqe)θ

p

(a) s(peqe) = psqs (b) s(peqe) = ps

Figure 16. Critical angle θ = θc(peqe) for a segment peqe.

Definition 2. The critical angle θc(peqe) (see Figure 16) for a segment peqe ∈ Ξ is defined as follows (assuming
without loss of generality ‖qe − s(qe)‖ ≥ ‖pe − s(pe)‖):

(i) If s(peqe) is a segment psqs, then θ(peqe) is the angle between the lines containing peqe and psqs
(ii) If s(peqe) is a vertex ps ∈ S, then θ(peqe) is the angle ∠qepsp where p is the closest point to ps on the line

containing peqe.
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θ

‖s(pe)− pe‖

‖p′e − pe‖ sin θ

≤ α‖s(pe)− pe‖ + ‖p′e − pe‖

pe

s(p′e)s(pe)

j

D(pe)

qe

p′e

Figure 17. Illustration of proof of Lemma A.2

S

S

F

S

S

F

S

S

F

(a) (b) (c)

Figure 18. The solid lines represent the portion of the fence that needs to be considered, while the dashed lines represent portions
that can be pruned and the thin dotted lines are the edges of the Voronoi diagram of S based on which the pruning is performed. (left)
Original scenario, (middle) After pruning based on Lemma A.1, (right) After pruning based on Lemmas A.2 and A.3.
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We define the grazing angle

θ̂ = sin−1

(
1

(1 + ε)
1/γ

)
.

Lemma A.2. For a segment peqe ∈ Ξs, if the critical angle θc(peqe) > θ̂, then,
(i) ‖pe − qe‖ = O( 1

ε )‖s(pe)− s(qe)‖.
(ii) For any J ⊂ J , if SIR(J, pe) < δ1, then, for any p′e ∈ peqe, SIR(J, p′e) ≤ (1 + ε)δ1.

Proof. Let θ = θc(peqe). The proof of part (i) follows from the fact that ‖pe − qe‖ = ‖s(pe) − s(qe)‖/ cos θ. We
prove part (ii) under the NJ-interference model as follows. The proof under the Full-interference models follows
from combining this with [28, cf. Lemma 3.1]. Since SIR(j, pe) ≤ δ1, j ∈ D(pe). For any p′e ∈ peqe, we have

SIR(j, p′e) ≤
P̃‖s(p′e)− p′e‖−γ
P̂‖j − p′e‖−γ

≤ P̃

P̂

( ‖p′e − pe‖+ ‖j − pe‖
‖p′e − pe‖ sin θ + ‖s(pe)− pe‖

)γ
,

since ‖s(p′e)− p′e‖ = ‖p′e − pe‖ sin θ + ‖s(pe)− pe‖ and by triangle inequality, ‖j − p′e‖ ≤ ‖p′e − pe‖+ ‖j − pe‖. See
Figure 17 for an illustration. Further,

SIR(j, p′e) ≤
P̃

P̂

(
‖p′e − pe‖+ α‖s(pe)− pe‖

‖p′e − pe‖( 1
1+ε )1/γ + ‖s(pe)− pe‖

)γ

≤ (1 + ε)αγ
P̃

P̂
≤ (1 + ε)δ1,

since ‖j − pe‖ ≤ α‖s(pe)− pe‖, α ≥ 1 and (1 + ε)1/γ ≥ 1. Thus, the lemma is proved.

Based on Lemma A.2, we then prune all segments of peqe of Ξs such that θc(peqe) > θ̂. We remove all such
segments from Ξs and keep only their lower endpoint (as a degenerate segment).

Lemma A.3. For a segment peqe ∈ Ξv, whose critical angle θ(peqe) > θ̂ let ps = s(peqe) and p′′e be the point on

peqe such that ∠p′′epsp
′
e = θ̂ where p′e is the closest point to ps on the line containing peqe. We now have,

(i) ‖pe − p′′e‖ = O( 1
ε )‖ps − pe‖.

(ii) For any set of jammers J ⊂ J , if SIR(J, p′′e ) < δ1, then, for any p′′′e ∈ p′′eqe, SIR(J, p′′′e ) < (1 + ε)δ1.

Proof. We have tan∠p′′epsp
′
e = ‖p′′e−p′e‖/‖p′e−ps‖ = O(1/ε). Since ‖p′′e−p′e‖ ≥ ‖p′′e−pe‖ and ‖p′e−ps‖ ≤ ‖pe−ps‖,

part (i) is proved. Part (ii) can be proved in a manner similar to the proof of part (ii) of Lemma A.2.

Lemma A.3 implies that we can shorten all segments that lie in the Voronoi region of a vertex of S and have a
high critical angle such that, once shortened, the critical angle is exactly θ̂. The final set Ξ is the resulting set of
segments Ξv ∪ Ξs.

Figure 18 shows the effects of this pruning process through an example. In each case, the dashed edges are the
portions of the fence that are pruned. Figure 18(a) shows the scenario where we have two storage regions in S inside
a fence F . Figure 18(b) shows the effects of pruning based on Lemma A.1 while Figure 18(c) shows the pruned
portions based on Lemmas A.2 and A.3. As can be seen, a significant portion of the fence need not be considered.

Combining Lemmas A.1, A.2 and A.3, Theorem 2 is proved. QED.

We can actually prune further using the following lemma:

Lemma A.4. Assume next that u and v are points in F . Let γ be the portion of ∂F between pe and qe, and E ⊂ ∂S
be a straight-line segment such that for every p′e ∈ γ, s(p′e) ∈ E, and p′es(p′e) ⊂ C. Refer to Fig. 19.

Assume that in addition there is a point x ∈ C such that
• pex ⊂ C \ S.
• qex ⊂ C \ S.
• s(pex) ⊂ E and s(qex) ⊂ E and

• θc(pex) > θ̂ and θc(qex) > θ̂
Then for any J ⊂ J if SIR(J, pe) < δ1, and SIR(J, qe) < δ1 then, for any p′e ∈ γ, SIR(J, p′e) ≤ (1 + ε)δ1.
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F

x

pepe

qe γ
p′e

Figure 19. The settings of Lemma A.4. Masking a connected portion of F by the two segments pex and qex (not on F), in order to
prune this portion.
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