# On Piercing Sets of Axis-Parallel Rectangles and Rings

Michael Segal

Department of Mathematics and Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Abstract. We consider the *p*-piercing problem for axis-parallel rectangles. We are given a collection of axis-parallel rectangles in the plane, and wish to determine whether there exists a set of *p* points whose union intersects all the given rectangles. We present efficient algorithms for finding a piercing set (i.e., a set of *p* points as above) for values of p = 1, 2, 3, 4, 5. The result for 4 and 5-piercing improves an existing result of  $O(n \log^3 n)$  and  $O(n \log^4 n)$  to  $O(n \log n)$  time, and is applied to find a better rectilinear 5-center algorithm. We improve the existing algorithm for general (but fixed) *p*, and we also extend our algorithms to higher dimensional space. We also consider the problem of piercing a set of rectangular rings.

## 1 Introduction

Let  $\mathcal{R}$  be a set of *n* axis-parallel rectangles in the plane, and let *p* be a positive integer.  $\mathcal{R}$  is called *p*-pierceable if there exists a set of *p* piercing points which intersects every member in  $\mathcal{R}$ . Our problem, thus, is to determine whether  $\mathcal{R}$  is *p*-pierceable, and, if so, to produce a set of *p* piercing points.

There are several papers in which the *p*-piercing problem for axis-parallel rectangles was investigated; let us mention only the very recent papers. The 1-piercing problem was easily solved in linear time using the observation that 1-piercing problem for rectangles is equivalent to finding whether the intersection of rectangles empty or not. In Sharir and Welzl [7] 2- and 3-piercing problems in the plane are solved in linear time, while they reach only  $O(n \log^3 n)$  bound for the 4-piercing problem and  $O(n \log^4 n)$  bound for the 5-piercing problem. Katz and Nielsen [2] present a linear time algorithm for d-dimensional boxes  $(d \ge 2)$ , when p = 2. In this paper we present a new technique which allows to obtain simple linear time algorithms for p = 1, 2, 3, and obtain an  $O(n \log n)$  time solution for p = 4, 5, thus improving the previous results of [7]. We improve the existing algorithm of [7] for general (but fixed) p, and we extend our algorithms to higher dimensional space. We also consider the problem of piercing the set of rectangular rings. The boundary of a rectangular ring consists of two concentric rectangles, where the inner rectangle is fully contained in the outer one, however, the vertical and horizontal widths of the ring, are not necessarily equal.

This paper is organized as follows. We first demonstrate our technique (Section 2) in the case of p = 1. We then describe this method (Section 3) for the case of p = 2, 3. In Section 4 an  $O(n \log n)$  time algorithm for 4-piercing is given. In Section 5 we present an  $O(n \log n)$  time algorithm for the case of p = 5 and describe

generalizations of the problem. Section 6 deals with piercing sets of rectangular rings. We conclude in Section 7.

# 2 Rectilinear 1-piercing

We are given a set  $\mathcal{R}$  of *n* axis-parallel rectangles in the plane; The goal is to decide whether their intersection is empty or not. We begin with an observation due to Samet [5].

Let P be the set of 4 dimensional points representing the parameters of  $\mathcal{R}$ . Let  $P_x = \{p_1^x, \ldots, p_n^x\}$  be the projections of the x-intervals of  $\mathcal{R}$  into the plane  $(c_x, d_x)$ , and let  $P_y = \{p_1^y, \ldots, p_n^y\}$  be the projections of the y-intervals of  $\mathcal{R}$  into the plane  $(c_y, d_y)$ .

If a shape R is described by k parameters, then this set of parameter values defines a point in a k-dimensional space assigned to the class of shapes. Such a point is termed a *representative point*. Note, that a representative point and the class to which it belongs completely define all of the topological and geometric properties of the corresponding shape.

The class of two-dimensional axis-parallel rectangles in the plane is described by a representative point in four dimensional space. One choice for the parameters is the x and y coordinates of the centroid of the rectangle, denoted by  $c_x, c_y$ , together with its horizontal and vertical extents (i.e. the horizontal and vertical distances from the centroid to the relevant sides), denoted by  $d_x, d_y$ . In this case a rectangle is represented by the four-tuple  $(c_x, d_x, c_y, d_y)$  interpreted as the Cartesian product of a horizontal and a vertical one-dimensional *interval*:  $(c_x, d_x)$  and  $(c_y, d_y)$ , respectively. A query that asks which rectangles contain a given point is easy to implement (see Figure 1).



**Fig. 1.** (a) There are 3 rectangles, and P is a query point. All intervals containing P are in the shaded regions. Intervals appearing in the shaded regions of both (b) and (c) correspond to rectangles that contain P.

A query point P is represented by a four-tuple  $(p_x, 0, p_y, 0)$ . We transform the rectangles (A,B,C) in Figure 1(a) into the points in two 2-dimensional spaces  $((c_x, d_x)$ 

and  $(c_y, d_y)$ ) (Figure 1(b) and 1(c)). There are two points representing P in these 2-dimensional spaces.  $(p_x, 0)$  in  $(c_x, d_x)$ -space, and  $(p_y, 0)$  in  $(c_y, d_y)$ -space. It is easy to see that all the rectangles that contain P must be transformed into two cones in these spaces respectively (the shades cones in Figure 1). These cones have apexes on the  $(p_x, 0)$  and  $(p_y, 0)$  respectively and are of slope 45° and 135°. In Figure 1, A and B are in both cones and thus P is in these rectangles.

In order to find whether the set  $\mathcal{R}$  is 1-pierceable, we find in each 2-dimensional space the rightmost intersection point  $R_x$   $(R_y)$  of the 45° lines through the points of  $P_x$   $(P_y)$  with axis  $c_x$   $(c_y)$ , and the leftmost intersection point  $(L_x \text{ and } L_y \text{ respectively})$  of the 135° lines with through  $P_x$  and  $P_y$  respectively, axes  $c_x$  and  $c_y$  respectively. If the intervals  $[R_x, L_x]$  and  $[R_y, L_y]$  exist (are not empty) then a point P whose projections are in these intervals is a piercing point.

Thus, we can conclude by the following theorem:

**Theorem 1.** We can find whether a set of n axis-parallel rectangles is 1-pierceable in O(n) time, and give a solution, if it exists, in the same runtime.

## 3 Rectilinear 2- and 3-piercing

We begin with the 2-piercing problem. Similarly to the previous section, we have to find whether there exist four cones  $C_1, C_2 \in (c_x, d_x)$  and  $C_3, C_4 \in (c_y, d_y)$  such that:

- 1.  $C_1 \cup C_2$  covers  $P_x$ .
- 2.  $C_3 \cup C_4$  covers  $P_y$ .
- 3. Denote by  $[C_i]$  the set of all the points of P that corresponded to the points of  $P_x$  (or  $P_y$ ) covered by  $C_i$ .

At least one of the following two conditions is true:

- (i) ([C<sub>1</sub>] ∩ [C<sub>3</sub>]) ∪ ([C<sub>2</sub>] ∩ [C<sub>4</sub>]) contains all the points of P. This will imply that the apexes of C<sub>1</sub>, C<sub>3</sub> define one piercing point and apexes of C<sub>2</sub>, C<sub>4</sub> define the other piercing point.
- (ii)  $([C_1] \cap [C_4]) \cup ([C_2] \cap [C_3])$  contains all the points of P. This will imply that the apexes of  $C_1, C_4$  define one piercing point and apexes of  $C_2, C_3$  define the other piercing point.

We can constrain the locations of the cones  $C_1, C_2, C_3, C_4$ . They are defined by minimal and maximal points of intersection of the 45° and 135° lines with the horizontal axes in the two planes  $(c_x, d_x)$  and  $(c_y, d_y)$  respectively. It is easy to see that in order for the rectangles to be 2-pierceable, we put, wlog, the apex of  $C_1$  on  $R_x, C_2$  on  $L_x, C_3$  on  $R_y$  and  $C_4$  on  $L_y$ . Clearly, if these cones cover all the points then the set  $\mathcal{R}$  is 2-pierceable.

In the case of 3-piercing, we have to find six cones  $C_i$ ,  $1 \le i \le 6$ , which will define three piercing points with the following properties:

1.  $C_1 \cup C_2 \cup C_3$  covers  $P_x$ . 2.  $C_4 \cup C_5 \cup C_6$  covers  $P_y$ . 3. For  $i, k, z \in \{1, 2, 3\}$ , pairwise disjoint and  $j, l, h \in \{4, 5, 6\}$ , pairwise disjoint

 $|([C_i] \cap [C_j]) \cup ([C_k] \cap [C_l]) \cup ([C_z] \cap [C_h])| = n$ 

for at least one combination of i, k, z (there are at most 6 combinations), where the union is taken is without repetitions.

W.l.o.g., we can find the constrained cones  $C_1, C_3, C_4, C_6$  as in the algorithm for 2-piercing. Namely, the left boundary of  $C_1$  ( $C_4$ ) is constrained by the leftmost 135° line through the points of  $P_x$  ( $P_y$ ), and the right boundary of  $C_3$  ( $C_6$ ) is constrained by the rightmost 45° line through the points of  $P_x$  ( $P_y$ ).

To fulfill condition (3) we look at each combination:  $[C_1] \cap [C_4]$  or  $[C_1] \cap [C_6]$  or  $[C_3] \cap [C_4]$  or  $[C_3] \cap [C_6]$  and for these four possibilities we check in linear time, whether the rest the points is 2-pierceable. Thus we conclude:

**Theorem 2.** We can check in linear time whether set of n axis-parallel rectangles is 2- or 3-pierceable and give a solution, if exists, in the same runtime.

#### 4 Rectilinear 4-piercing

Now we have to find eight cones  $C_i, 1 \le i \le 8$  with the following properties:

- 1.  $C_1 \cup C_2 \cup C_3 \cup C_4$  covers  $P_x$ .
- 2.  $C_5 \cup C_6 \cup C_7 \cup C_8$  covers  $P_y$
- 3. For some pair of cones  $C_i, C_j, i \in \{1, 2, 3, 4\}, j \in \{5, 6, 7, 8\}$  the set of all rectangles without those covered by  $[C_i] \cap [C_j]$  is 3-pierceable.

As before, assume wlog that  $C_1, C_4, C_5, C_8$  are constrained, so condition (3) when we choose  $i \in \{1, 4\}$  and  $j \in \{5, 8\}$  is easily checked in linear time, because we can find the location of  $C_1, C_4, C_5, C_8$  in linear time and then answer the 3-piercing problem in linear time. If  $i \in \{2, 3\}$  and  $j \in \{6, 7\}$  then there exist  $i' \in \{1, 4\}$  and  $j' \in \{5, 8\}$  such that if the set of rectangles is 4-pierceable then one piercing point must be determined by the cones  $C_{i'}$  and  $C_{j'}$ . So this case is also computed in O(n)time. The worst (and the more interesting) case is when each constrained cone in one plane corresponds to a non-constrained cone in the other plane. Let us look at one such pair (there is a finite number of such pairs), wlog,  $C_3$  in  $(c_x, d_x)$  and  $C_5$  in  $(c_y, d_y)$ . The analysis for all other such pairs is almost identical.

We sort all the 45° (135°) lines determined by  $P_x$  in  $(c_x, d_x)$  plane, and do the same to the lines determined by  $P_y$  in  $(c_y, d_y)$  plane. Clearly, the apex of  $C_3$  is between the apexes of  $C_1$  and  $C_4$ . So, we fix the apex of  $C_3$  to coincide with the apex of  $C_1$  and begin to move it rightwards towards  $C_4$ . We define an *event* when a point of  $P_x$  is inserted or deleted from  $C_3$ . Initially, we compute the set of points  $A \subseteq P$  covered by  $[C_3] \cap [C_5]$  (when the apex of  $C_3$  is determined by the leftmost 135° line through the point of  $P_x$ ) and apply the 3-piercing algorithm for the rest of the points S = P - A, allowing, only this time,  $C_1$  to move freely. If we have a positive answer, we are done; otherwise we continue.

We move  $C_3$  rightwards to the next event and change S accordingly (as in Figure 2). The first next event is when the leftmost point of  $P_x$  is deleted from  $C_3$ . Then



**Fig. 2.** Moving apex of  $C_3$  from apex of  $C_1$  towards apex of  $C_4$ .

we run again the 3-piercing algorithm for S. Here, too, if S is 3-pierceable then we are done. Clearly, from now on the location of the apexes of  $C_1, C_4$  and  $C_8$  will not change during the whole algorithm because these cones are defined by the extreme points of  $P_x$  and  $P_y$  that will never appear in both  $C_3$  and  $C_5$ . Let  $C_7$  be the leftmost cone covering S in  $(c_y, d_y)$ . The location of  $C_7$  will change since  $C_7$  will move towards  $C_8$  and back to cover points. But once  $C_7$  moves back from  $C_8$  it will never move towards  $C_8$  again. This is because  $C_5$  is constrained and  $C_7$ , the second cone from the left, moves back to cover points that got out of A. Since the leftmost point has to be covered in order to have 4-piercing, once  $C_7$  got back to its leftmost position, it will never move to the right again. Thus, the number of changes that we perform on  $C_7$  is O(n). Our goal is to determine the location of the cones  $C_2$  in  $(c_x, d_x)$  and  $C_6$  in  $(c_y, d_y)$ . We will check the possible combinations of pairing the cones to create piercing points. Assuming the cones  $C_3$  and  $C_5$  describe a piercing point, we have the following combinations for the rest of the piercing points: (a)  $(C_1, C_7), (C_2, C_6), (C_4, C_8), (b) (C_1, C_7), (C_2, C_8), (C_4, C_6),$ 

(c)  $(C_1, C_8), (C_2, C_7), (C_4, C_6), (d) (C_1, C_8), (C_2, C_6), (C_4, C_7), (C_4, C_7), (C_6, C_8), (C_7, C_8), (C_8, C_$ 

(e)  $(C_4, C_7), (C_1, C_6), (C_2, C_8), (f) (C_4, C_8), (C_1, C_6), (C_2, C_7).$ 

**Observation 3** The combinations of the cones at each step of the 4-piercing algorithm are **independent**, meaning that we check 3-pierceability for each fixed combination of the cones throughout all the steps of the 4-piercing algorithm. If we get a negative answer for a combination, we check the other combinations. If there is a solution it will be found by the algorithm in one of the steps of one combination.

According to observation 3, because we have finite number of combinations, we can perform the 4-piercing algorithm for each one of the combinations separately. For each of the combinations, the 4-piercing algorithm is slightly different. Denote by  $C_{ij} = [C_i] \cap [C_j] \cap S$ . Recall that S = P - A, A being the points covered by  $(C_3, C_5)$ .

We present a skeleton of the algorithm and then give the additional technical details.

For every combination of cones the following events happen during the 4-piercing algorithm: (exemplified by  $C_3$  and  $C_5$  as a piercing point and the 3-piercing combinations (a)-(f) as above):

- 1. Initially the left boundary point q of  $C_3$  is getting out of  $C_3$ . If  $q \in A$ , we re-run the 3-piercing algorithm, otherwise no update is needed, since q did not belong to A, it was, and remains, in S..
- 2. If, when we move the apex of  $C_3$  towards  $C_4$ , a point q' is inserted to  $C_3$ , we first check if the corresponding point to q' in  $(c_y, d_y)$  is covered by  $C_5$ . If it is not covered, then we continue moving  $C_3$  to the next event; otherwise we have the following cases:
  - 2.1 If q' defines the new left boundary of the middle cone  $C_2$  in  $(c_x, d_x)$ , or q' defines the left boundary of the left cone  $C_7$ , or the left boundary of the middle cone  $C_6$  in  $(c_y, d_y)$  for the combinations (a)-(d) (similarly, right boundary for the combinations (e)-(f)), then, for the given combination we perform the following updating scheme: we first check if q' defines the left boundary of  $C_7$ . If yes then we have to find, by binary search over S, the new left boundary for  $C_7$  and:
    - i. For combination (a). Find the new boundaries of the middle cones  $C_2$  and  $C_6$  in both planes and check whether they cover the rest of the points by simply computing and examining the set  $S^{(1)} = S C_{17} C_{48}$ . Note that the cones  $C_4$  and  $C_8$  are both constrained and do not move during the whole algorithm.
    - ii. For combination (b) (similarly (e)). By computing and examining the set  $C_{17}$  ( $C_{14}$ ) we found the new left boundaries of  $C_2$  and  $C_6$ . Only thing we have to do now is to check whether the pairs ( $C_2, C_8$ ) and ( $C_4, C_6$ ) (( $C_1, C_6$ )) cover the set of all points of P not covered by ( $C_3, C_5$ ) and ( $C_1, C_7$ ) (( $C_4, C_7$ )). This could be done by computing the sets  $S^{(2)} = C_{48} C_{17}$  ( $C_{18} C_{47}$ ),  $C'_4$  and  $C'_8$  and updating  $T_1$  and  $T_2$  as described below. Using the updating scheme below, we check whether  $C_2$  covers  $C'_8$ ,  $C_6$  covers  $C'_4$ , and together  $C_2$  and  $C_6$  cover  $S^{(2)}$ .
    - iii. For combination (c) (similarly (f)). By computing and examining the set  $S^{(3)} = S C_{18} C_{27}$  we find the leftmost and rightmost points of this set in both planes that should be covered in both planes by  $C_6$  and  $C_4$ . We find the new boundaries of  $C_2$  and  $C_6$  and check whether  $C_6$  and  $C_4$  cover the leftmost and rightmost points in both plane that we just found. Note that the number of updates on  $C_2$  in the whole algorithm is O(n). This is because the left boundary of  $C_2$  is defined by the leftmost point (of S) in  $(c_x, d_x)$  not covered by  $C_{18}$  and thus  $C_2$  moves towards and back from  $C_4$ , but when it moves back it will never move rightwards again.
    - iv. For combination (d). By computing and examining the set  $S^{(4)} = S C_{18} C_{47}$  we find the leftmost and rightmost points of this set in both planes that should be covered in both planes by  $C_6$  and  $C_2$ . We find the new boundaries of  $C_2$  and  $C_6$  and check whether  $C_6$  and  $C_2$  cover the leftmost and rightmost points in both plane that we just found.
  - 2.2 If q' does not define a left boundary of a cones as above, then for each combination we perform an identical updating scheme as in 2.1 but without computing a new left boundary of the middle cones  $C_2$  and  $C_6$ .
  - After the updates we check whether there is a 3-piercing combination for S..
- 3. If, when we move apex of  $C_3$ , a point q'' is deleted from  $C_3$ , then

- 3.1 If  $q'' \notin C_5$  we proceed to the next event.
- 3.2 If in the past q'' was the left boundary of the middle cone  $C_2$  in  $(c_x, d_x)$ , or q' was the left boundary of the left cone  $C_7$ , or the left boundary of the middle cone  $C_6$  in  $(c_y, d_y)$  for the combinations (a)-(d) (similarly, right boundary for the combinations (e)-(f)), then, for the given combination we perform the following updating scheme: If q'' defines a new left boundary  $C_7$ , then we compute a new location of  $C_7$  and:
  - i. For combination (a), find the new boundaries of the middle cones  $C_2$  and  $C_6$  in both planes and compute the rightmost and leftmost points of the set  $S^{(1)}$  in both planes.
  - ii. For combination (b), by examining the set  $C_{17}$  find the new left boundaries of  $C_2$  and  $C_6$ , compute the sets  $S^{(2)}, C'_4$  and  $C'_8$  and update  $T_1$  and  $T_2$ .
  - iii. For combination (c), find the new boundaries of  $C_2$  and  $C_6$ . By examining the set  $S^{(3)}$  find the leftmost and rightmost points of this set in both planes.
  - iv. For combination (d), find the new boundaries of  $C_2$  and  $C_6$ . By examining the set  $S^{(4)}$  we find the leftmost and rightmost points of this set in both planes.
- 3.3 If q' does not define a left boundary of a cones as above, then for each combination we perform an identical updating scheme as in 3.2 but without computing a new left boundary of the middle cones  $C_2$  and  $C_6$ . Notice that in this case (when q'' is deleted from  $C_3$ ) the 4-piercing of P is not possible, because it wasn't possible in previous step of the algorithm.

Now we describe the technical details of the 4-piercing algorithm given above. For combination (a) we compute  $C_{48}$  at the beginning of the 4-piercing algorithm. The cones  $C_4$  and  $C_8$  are both constrained and do not move during the whole algorithm. For each step of the 4-piercing algorithm we maintain the set  $S^{(1)} = S - C_{17} - C_{48}$ . To determine whether  $C_2$  and  $C_6$  can cover  $S^{(1)}$  we are only interested in the maxima and minima of the 45° and 135° lines through the points of this set  $(S^{(1)})$  in both planes respectively. Note that the total number of updates on  $C_{48}$  and on  $C_7$  is at most O(n), thus if we maintain the points of the dynamically changing set  $S^{(1)}$ sorted according to the 45° and 135° lines we can update  $S^{(1)}$  and find the maxima and minima in both planes by a simple binary search. Consequently, in O(1) time we check whether there exist two cones  $C_2$  and  $C_6$  with boundaries on these maximal and minimal values that cover these points.

Combinations (b) and (e) are similar in the sense that  $C_7$  (that has O(n) updates) is paired with a constrained cone,  $C_1$  in (b) and  $C_4$  in (e), and the non constrained cones  $C_2$  and  $C_6$  are each paired with a constrained cone. For combination (b) (similarly (e)) we compute the set  $C_{48}$  ( $C_{18}$ ) at the beginning of the 4-piercing algorithm. In each step of the 4-piercing algorithm we compute the set  $S^{(2)} = C_{48} - C_{17}(C_{18} - C_{47})$ . Observe the set of all points of P not pierced by  $(C_3, C_5)$  and  $(C_1, C_7)$  ( $(C_4, C_7)$ ). They will have to be pierced by ( $C_2, C_8$ ) and ( $C_4, C_6$ ) ( $(C_1, C_6)$ ). Now the points in  $S^{(2)}$  should be covered by either  $C_2$  or  $C_6$ , whereas the points of  $C'_4 = [C_4] - S^{(2)}$  ( $C'_1 = [C_1] - S^{(2)}$ ) must be covered by  $C_6$  and the points of  $C'_8 = [C_8] - S^{(2)}$  must be covered by  $C_2$ .  $C_1$  and  $C_7$  ( $C_4$  and  $C_7$ ) determine the

left (right) boundary of  $C_2$  and  $C_6$ , which are found by a binary search over the points of  $S - C_{17}$   $(S - C_{47})$ . As for combination (a) the number of updates on  $C_{48}$  $(C_{18})$ , and  $C_7$  is at most O(n). The sets  $C'_4$   $(C'_1)$  and  $C'_8$  are maintained sorted according to the lines throughout the whole algorithm. To check how  $S^{(2)}$  is pierced, we maintain balanced binary trees  $T_1, T_2$ . The leaves of  $T_1(T_2)$  contain the set  $S^{(2)}$ sorted according to the 45° (135°) lines in the plane  $(c_x, d_x)$ . Let T be  $T_1$  or  $T_2$ . Initially, the leaves of T contain the sorted points of  $C_{48}$  ( $C_{18}$ ) in the plane ( $c_x, d_x$ ). After we compute  $C_{17}$  ( $C_{47}$ ) for the first time we empty the leaves that contain the points that belong to  $C_{17}(C_{47})$ . Now T contains the sorted lines through the points of  $S^{(2)}$ . Let p be a point of  $S^{(2)}$ . A leaf corresponding to p contains the x value of the point of intersection of the 45° (135°) line through p with the  $c_x$  axis in  $(c_x, d_x)$ . It will also contain the y value of the point of intersection of a  $45^{\circ}$  (135°) line through p with the  $c_y$  axis in  $(c_y, d_y)$ . An inner node  $v \in T$  will contain the maximum of the y values corresponding to  $135^{\circ}$  lines of the leaves of the subtree rooted at v, and the minimum of the 45° lines. During the algorithm we perform a sequence of updates, namely insertions and deletions, on the tree T. When a point q is add to  $S^{(2)}$ , then we insert it into T in a sorted x-order and update the minimum and maximum yvalues on the nodes of path from the leaf q to the root of T. If a point q is deleted from T, then we find the leaf of q, delete it and update the y values of the nodes on path from the leaf to the root of T. Each update of T takes  $O(\log n)$  time. We can check, using the tree T, whether  $C_2$  together with  $C_6$  cover all the points in  $S^{(2)}$ . For combination (c) (similarly, (f)) at the beginning of the 4-piercing algorithm we compute  $C_{18}$ . The cones  $C_1$  and  $C_8$  are constrained and do not move during the whole algorithm. At the next step of the 4-piercing algorithm we work with the set  $S^{(3)} = S - C_{18} - C_{27}$  and find the leftmost and rightmost points in this set that should be covered in both planes by  $C_6$  and  $C_4$  respectively. We maintain  $S^{(3)}$  by incremental updates according to the motion of  $C_3$ .

For combination (d) we perform a scheme almost identical to that of (c), but with the difference that at each step of the 4-piercing algorithm we work with the set  $S^{(4)} = S - C_{18} - C_{47}$  and find the leftmost and rightmost points that should be covered in both planes by  $C_6$  and  $C_2$ . Again, we update  $S^{(4)}$  at each motion of  $C_3$ in logarithmic time.

From the analysis of this algorithm it follows that we have O(n) updates in the whole algorithm and we can perform each update in logarithmic time. Thus,

**Theorem 4.** We can determine whether set of n axis-parallel rectangles is 4-pierceable or not in  $O(n \log n)$  time, and give the solution (if it exists) in the same runtime.

#### 5 Rectilinear 5-piercing

Now we have to find ten cones  $C_i, 1 \le i \le 10$  with the following properties:

- 1.  $C_1 \cup C_2 \cup C_3 \cup C_4 \cup C_5$  covers  $P_x$ .
- 2.  $C_6 \cup C_7 \cup C_8 \cup C_9 \cup C_{10}$  covers  $P_y$ .
- 3. For some pair of cones  $C_i, C_j, i \in \{1, 2, 3, 4, 5\}, j \in \{6, 7, 8, 9, 10\}$  the set of all rectangles without those covered by  $[C_i] \cap [C_j]$  is 4-pierceable.

Due to the duality relation between our analysis and that in [7] (see Section 7) we follow the case analysis in [7]. Assume, wlog, that  $C_1, C_5, C_6, C_{10}$  are constrained and the order of the cones is from left to right. We may also assume that one of the following situations occurs:

- (a) There is one pair of constrained cones  $C_i, C_j, i \in \{1, 5\}$  and  $j \in \{6, 10\}$ . We try all of these possibilities, find the set of rectangles not covered by the given pair of cones, and test whether this set is 4-pierceable, using the preceding algorithm. This takes  $O(n \log n)$  time.
- (b) Every constrained cone is paired with a non-constrained cone. Since there are four constrained cones there are two pairs with the same constrained cones. We proceed as follows. First, we guess a unique constrained cone, say  $C_1$ , which is paired with a non-constrained, say  $C_7$ . Then we proceed as in 4-piercing algorithm, i.e. slide  $C_7$  from left to right, starting at the apex of  $C_6$  and stopping when we reach the apex of  $C_{10}$ . In each move, we check whether the set of the rest of the rectangles is 4-pierceable using the following observation by Sharir and Welzl [7]. They observe that the 4-piercing problem (that is solved at each move of  $C_7$ ) has always a pair of two constrained cones in its solution. In our case they are either  $C_2$  and  $C_6$ , or  $C_2$  and  $C_{10}$  ( $C_2$  becomes constrained after computing  $S - C_{17}$ ). We process each of these cases separately. Assume, wlog, we process  $C_2$  and  $C_6$ . Then at each move of  $C_7$  we update  $C_{26}$  and check whether the rest of rectangles is 3-pierceable as in the update step in the 4-piercing algorithm. Omitting the easy missing details, we obtain a procedure that runs in  $O(n \log n)$  time.
- (c) There is some pair of the cones, where an unconstrained cone is paired with another unconstrained cone. Assume, wlog, the cones are  $C_4$  and  $C_8$ . We also assume wlog that we have paired  $C_6$  and  $C_3$ ,  $C_{10}$  and  $C_2$ ,  $C_1$  and  $C_7$ ,  $C_5$  and  $C_9$ (a constrained cone with an unconstrained cone). Then, as was observed in [7], either at least one of the  $c_x$ -coordinates of the apexes of  $C_2$  and  $C_3$  is smaller then the the  $c_x$ -coordinate of the apex of  $C_4$  or at least one of the  $c_x$ -coordinates of the apexes of  $C_2$  and  $C_3$  is larger than the  $c_x$ -coordinate of the apex of  $C_4$ . Suppose one of them is smaller than  $C_4$ . Then we slide  $C_7$  (that is paired with  $C_1$ ) from left to right, starting at the apex of  $C_6$  and stopping when we reach the apex of  $C_{10}$ . In each move, we check whether the set of the rest of rectangles is 4-pierceable. As was claimed in [7] again in each move of  $C_7$  it has to be that  $C_2$  is paired with either  $C_6$  or  $C_{10}$ . Thus we have a situation identical to case (b). This can be computed as in case (b) above, implying that the computing for case (c) can also be done in  $O(n \log n)$  time. Hence we obtain:

**Theorem 5.** We can determine whether set of n axis-parallel rectangles is 5pierceable or not in  $O(n \log n)$  time, and give the solution (if it exists) in the same runtime.

The result for 5-piercing improves an existing result of [7] that runs in  $O(n \log^4 n)$  time, and can be applied to find a better rectilinear 5-center algorithm in time  $O(n \log^2 n)$ .

Higher dimensions and p > 4.

Our technique immediately implies a linear time algorithm for 2-pierceability of a set of axis-parallel rectangles for arbitrary (fixed) dimension  $d, d \geq 2$  (there are only constrained cones) and an  $O(n \log n)$  time algorithm for 3-pierceability of a set of axis-parallel rectangles for dimension  $d, 3 \leq d \leq 5$  (the same result was obtained by [1] independently). In the later problem there is always a combination where d-1 cones are constrained and one (at most) is a non-constrained cone. At each step of the algorithm there is a finite number of the *d*-coupling combinations of the cones. An algorithm similar to the 4-piercing algorithm in the plane is used to solve the piercing problem. We also obtain an improved formula for general (but fixed) p > 6 (for the plane) using our approach. The general observation is that a constrained cone is always paired with a constrained or unconstrained cone. Thus for solving p+1-piercing problem we have to consider two cases. In the first case there is two constrained cones paired together, we can determine the rest of the (uncovered) rectangles in linear time and apply algorithm for *p*-piercing for the rest of rectangles. In the second case, a constrained cone is paired with a non-constrained. We move the apex of the non-constrained cone between the apexes of the constrained cones in its plane. Thus we have O(n) steps (when a point is either inserted or deleted from the non-constrained cone). In each step we run the p-4-piercing algorithm for the rest of the points. Thus we improve the algorithm of [7] for  $p \ge 6$  in the plane from  $O(n^{p-4}\log^5 n)$  to  $O(n^{p-4}\log n)$ .

## 6 Piercing sets of rectangular rings

A rectangular ring is a ring, defined by two boundaries, the outer boundary and the inner boundary. Both boundaries are axis parallel concentric rectangles, where the inner rectangle is fully contained in the outer rectangle. We do not require that the horizontal width of the ring be identical to the vertical width. We pose the piercing question on a set of rectangular rings.

### 1-piercing

The 1-piercing problem is equivalent to the question: Given a set R of n axis-parallel rectangular rings, is their intersection empty or not. This problem can be easily solved by decomposing the rings into 4n rectangles and applying the segment tree [3] to compute the depth of the set of rectangles in  $O(n \log n)$  time. Our method, that is easily extendable to higher dimensions, also uses the Klee measure (the depth and the union of a set of rectangles are examples for the Klee measure, see [3, 4]).

First we use the algorithm from Section 2 to find whether the set  $R_r$  of the external rectangles defining the given rings is 1-pierceable. If  $R_r$  is not 1-pierceable then neither is the set R. Otherwise, we find the region Q (also a rectangle) where all the rectangles from  $R_r$  intersect. In our notations Q is determined as follows. Let P be the set of 4 dimensional points representing the parameters of  $R_r$ . Let  $P_x = \{p_1^x, \ldots, p_n^x\}$  be the projections of the x-intervals of  $R_r$  into the plane  $(c_x, d_x)$ , and let  $P_y = \{p_1^y, \ldots, p_n^y\}$  be the projections of the y-intervals of  $R_r$  into the plane  $(c_y, d_y)$ . We find in each plane  $(c_x, d_x)$  and  $(c_y, d_y)$  the rightmost intersection point

 $R_x$   $(R_y)$  of the 45° lines through the points of  $P_x$   $(P_y)$  with axis  $c_x$   $(c_y)$ , and the leftmost intersection point  $(L_x \text{ and } L_y \text{ respectively})$  of the 135° lines through  $P_x$  and  $P_y$  respectively, with axes  $c_x$  and  $c_y$  respectively. The intervals  $[R_x, L_x]$  and  $[R_y, L_y]$  (if they exist, namely,  $R_x < L_x$  and  $R_y < L_y$ ) define Q. Now we check whether the union of the rectangles, defined by the internal boundaries of the rectangles in R, covers Q. If it does not cover Q, then R is 1-pierceable; otherwise it is not 1-pierceable.

In higher dimensional space Q is easily found as above in time  $O(dn \log n)$ . In order to find the union of the internal rectangles we use the algorithm of Overmars and Yap [4] who solve the Klee measure problem in higher dimensions in time  $O(n^{\lfloor \frac{d}{2} \rfloor} \log n)$ . Thus, this is the runtime of our 1-piercing algorithm for rings for  $d \geq 2$ .

#### 2 and 3-piercing

For two and three pierceability problems a non-trivial but quadratic algorithm is as follows. We first check whether the set of the external rectangles is 2-piercable. If it is, then we continue to work with the combination of the cones that define the 2-piercing points (there might be more than one combination of cones, and we consider all of them).

Assume that the combination is  $(C_1, C_3)$  and  $(C_2, C_4)$ . First we check whether there exist points of P covered by both  $(C_1, C_3)$  and  $(C_2, C_4)$ . We call such points of P joint points. The case with no joint points is easy. We only need solve two separate 1-piercing subproblems for each pair of cones, find the rectangular regions Q' and Q'' (as was Q region in the 1-piercing algorithm) and check whether the internal rectangles corresponding to each subproblem cover Q' and Q'' respectively.

If there are joint points of P in  $(C_1, C_3)$  and  $(C_2, C_4)$  then we proceed as follows. Initially we assign the joint points to  $(C_1, C_3)$ , and the points not covered by  $(C_1, C_3)$  we assign to  $(C_2, C_4)$ . Similarly to the described above, we compute the intervals  $[R_x, L_x]$  and  $[R_y, L_y]$  for each pair of cones according to the points they cover, the joint points belonging only to  $(C_1, C_3)$ . We denote these intervals by  $I_{C_1}, I_{C_2}, I_{C_3}, I_{C_4}$ . The intervals  $I_{C_1}, I_{C_3}$  define the rectangular region Q' where the first piercing point should be found, and the intervals  $I_{C_2}, I_{C_4}$  define the region Q''for the second piercing point. We now check whether the internal rectangles corresponding to the points assigned to  $(C_1, C_3)$  and  $(C_2, C_4)$ , respectively, cover Q' and Q'' respectively. If both Q' and Q'' are not wholly covered by the internal rectangles then we are done.

In the next steps we slide  $C_1$  from right to left, stopping whenever a joint point q leaves  $C_1$ . The joint point q is deleted from  $C_1$  (thus, it is now assigned to  $(C_2, C_4)$ ). We compute the intervals  $I_{C_1}, I_{C_2}, I_{C_3}, I_{C_4}$ , and check whether the corresponding internal rectangles cover Q' and Q''. We stop sliding  $C_1$  either when it gets to the last of the joint points or when it gets to a point in  $(C_1, C_3)$  which is not a joint point. We call the latter event a *stop event*.

After we finish sliding  $C_1$  we return it to its starting position. We now perform similar steps with  $C_3$  moving from left to right and stopping at each joint point till the end of joint points or till a point covered by just  $(C_2, C_4)$  is met by the sliding cone  $C_3$ . There are O(n) sliding steps in this algorithm. In each step we check whether the internal rectangles cover the regions Q' and Q''. This can be done in  $O(n \log n)$  time using standart sweep-line algorithm. So we conclude that our algorithm runs in time  $O(n^2 \log n)$ .

For the 3-piercing problem we can apply a similar technique and obtain an  $O(n^3 \log n)$  algorithm for solving the 3-pierceability of rings. We can improve these running time using the following observation.

**Observation 6** Throughout the motion of  $C_1$  in the 2-piercing algorithm above, the rectangular region Q' does not shrink in any dimension, while the region Q'' does not expand in any dimension.

More precisely, at each stop of  $C_1$  the intervals  $I_{C_3}$  and  $I_{C_1}$  do not shrink, and if they change they can only grow, while the intervals  $I_{C_2}$  and  $I_{C_4}$  can only shrink. This is because the joint point that was deleted from  $C_1$  has to be covered by  $C_2$  (and also  $C_4$ ) thus decreasing the freedom of movement of the apex of  $C_2$  ( $C_4$ ). Moreover, the number of internal rectangles of the rings that can cover Q' (Q'') does not increase (decrease) in each step of the algorithm.

This observation provides a monotonicity to the problem and allows us to improve the running time of our algorithm. Instead of sliding  $C_1$  ( $C_3$ ) from right to left stopping at each joint point, we move  $C_1(C_3)$  in the range of joint points (between the rightmost joint point and the rightmost stop event) by a binary search, checking at each such move whether both Q' and Q'' are covered or not by the union of the corresponding inner rectangles. When we find a move where they are not covered then we done. If Q' is covered  $C_1$  jumps to the left. If Q' is not covered but Q'' is covered, then  $C_1$  jumps to the right. Thus we get a factor  $O(\log n)$  instead of O(n)for the 2-piercing algorithm, and the problem is solved in time  $O(n \log^2 n)$ .

The 3-piercing algorithm works just as we sketched above. Here, too, we can do the motions of  $C_1$  and  $C_4$  in binary skips, and then apply the just described 2-piercing algorithm, getting us to a  $O(n \log^3 n)$ -time algorithm.

We can solve the 2-piercing problem in higher dimensional space. We get an  $O(n^{\lfloor \frac{d}{2} \rfloor} \log^2 n), d \geq 3$  runtime algorithm for determining 2-pierceability of the set of input rings using as a subroutine algorithm in [4].

# 7 Conclusions

In this paper we present an efficient technique for solving the *p*-piercing problem for a set of axis-parallel rectangles. There is some duality between the analysis of [7] and that of our paper. A constrained cone in our algorithms corresponds to an edge on the boundary of the search region in [7], and two paired constrained cones in our algorithms correspond to a corner in the search region of [7]. We are looking into

applying a similar technique for sets of triangles, rhombi, etc. The most intriguing question is whether we can improve the runtime of the presented algorithm for ppiercing problems where p > 5. We hope that our approach can help in to obtaining a better solution to these problems.

Acknowledgements: I thank Matya Katz, Klara Kedem and Yuri Rabinovich for useful discussions.

# References

- 1. E. Assa, M. Katz, private communication.
- 2. M. Katz, F. Nielsen, "On piercing sets of objects", In Proc. 12th ACM Symp. on Computational Geometry, 1996.
- Computational Geometry, 1996.
  K. Mehlhorn, Data Structures and Algorithms 3: Multi-Dimensional Searching and Computational Geometry, Springer-Verlag, 1984.
  M. Overmars, C. Yap, "New upper bounds in Klee's measure problem", In Proc. 29 Annual IEEE Symp. on the Found. of Comput. Sci., 1988.
  H. Samet, "The design and analysis of spatial data structures", Addison-Wesley, 1990
  M.Segal, K.Kedem, "Enclosing k points in the smallest axis parallel rectangle", 8th Canadian Conference on Computational Geometry, 1996.
  M. Sharir, E. Welzl, "Rectilinear and polygonal p-piercing and p-center problems", In Proc. 12th ACM Sump. on Computational Geometry 1996.

- Proc. 12th ACM Symp. on Computational Geometry, 1996.

This article was processed using the LATEX macro package with LLNCS style