
On Piercing Sets of Axis-Parallel Rectangles andRingsMichael SegalDepartment of Mathematics and Computer Science,Ben-Gurion University of the Negev, Beer-Sheva 84105, IsraelAbstract. We consider the p-piercing problem for axis-parallel rectangles.We are given a collection of axis-parallel rectangles in the plane, and wish todetermine whether there exists a set of p points whose union intersects allthe given rectangles. We present e�cient algorithms for �nding a piercing set(i.e., a set of p points as above) for values of p = 1; 2; 3; 4; 5. The result for 4and 5-piercing improves an existing result of O(n log3 n) and O(n log4 n) toO(n log n) time, and is applied to �nd a better rectilinear 5-center algorithm.We improve the existing algorithm for general (but �xed) p, and we alsoextend our algorithms to higher dimensional space. We also consider theproblem of piercing a set of rectangular rings.1 IntroductionLetR be a set of n axis-parallel rectangles in the plane, and let p be a positive integer.R is called p-pierceable if there exists a set of p piercing points which intersects everymember in R. Our problem, thus, is to determine whether R is p-pierceable, and, ifso, to produce a set of p piercing points.There are several papers in which the p-piercing problem for axis-parallel rect-angles was investigated; let us mention only the very recent papers. The 1-piercingproblem was easily solved in linear time using the observation that 1-piercing prob-lem for rectangles is equivalent to �nding whether the intersection of rectanglesempty or not. In Sharir and Welzl [7] 2- and 3-piercing problems in the plane aresolved in linear time, while they reach only O(n log3 n) bound for the 4-piercingproblem and O(n log4 n) bound for the 5-piercing problem. Katz and Nielsen [2]present a linear time algorithm for d-dimensional boxes (d � 2), when p = 2. Inthis paper we present a new technique which allows to obtain simple linear timealgorithms for p = 1; 2; 3, and obtain an O(n logn) time solution for p = 4; 5, thusimproving the previous results of [7]. We improve the existing algorithm of [7] forgeneral (but �xed) p, and we extend our algorithms to higher dimensional space. Wealso consider the problem of piercing the set of rectangular rings. The boundary ofa rectangular ring consists of two concentric rectangles, where the inner rectangle isfully contained in the outer one, however, the vertical and horizontal widths of thering, are not necessarily equal.This paper is organized as follows. We �rst demonstrate our technique (Section2) in the case of p = 1. We then describe this method (Section 3) for the caseof p = 2; 3. In Section 4 an O(n logn) time algorithm for 4-piercing is given. InSection 5 we present an O(n logn) time algorithm for the case of p = 5 and describe

generalizations of the problem. Section 6 deals with piercing sets of rectangular rings.We conclude in Section 7.2 Rectilinear 1-piercingWe are given a set R of n axis-parallel rectangles in the plane; The goal is to decidewhether their intersection is empty or not. We begin with an observation due toSamet [5].Let P be the set of 4 dimensional points representing the parameters of R. LetPx = fpx1 ; : : : ; pxng be the projections of the x-intervals of R into the plane (cx; dx),and let Py = fpy1; : : : ; pyng be the projections of the y-intervals of R into the plane(cy; dy).If a shape R is described by k parameters, then this set of parameter valuesde�nes a point in a k-dimensional space assigned to the class of shapes. Such a pointis termed a representative point. Note, that a representative point and the class towhich it belongs completely de�ne all of the topological and geometric properties ofthe corresponding shape.The class of two-dimensional axis-parallel rectangles in the plane is described bya representative point in four dimensional space. One choice for the parameters isthe x and y coordinates of the centroid of the rectangle, denoted by cx; cy, togetherwith its horizontal and vertical extents (i.e. the horizontal and vertical distancesfrom the centroid to the relevant sides), denoted by dx; dy. In this case a rectangle isrepresented by the four-tuple (cx; dx; cy; dy) interpreted as the Cartesian product of ahorizontal and a vertical one-dimensional interval : (cx; dx) and (cy; dy), respectively.A query that asks which rectangles contain a given point is easy to implement (seeFigure 1). 45oo45(a) (b) (c)O 10 20 30 4010304020 O 10 20 30 4010304020OY X10 20 30 4010304020 CA B P C ABP ABCPD C D CX X Y YFig. 1. (a) There are 3 rectangles, and P is a query point. All intervals containing P are inthe shaded regions. Intervals appearing in the shaded regions of both (b) and (c) correspondto rectangles that contain P .A query point P is represented by a four-tuple (px; 0; py; 0). We transform therectangles (A,B,C) in Figure 1(a) into the points in two 2-dimensional spaces ((cx; dx)

and (cy; dy)) (Figure 1(b) and 1(c)). There are two points representing P in these2-dimensional spaces. (px; 0) in (cx; dx)-space, and (py; 0) in (cy; dy)-space. It is easyto see that all the rectangles that contain P must be transformed into two cones inthese spaces respectively (the shades cones in Figure 1). These cones have apexeson the (px; 0) and (py; 0) respectively and are of slope 45� and 135�. In Figure 1, Aand B are in both cones and thus P is in these rectangles.In order to �nd whether the set R is 1-pierceable, we �nd in each 2-dimensionalspace the rightmost intersection point Rx (Ry) of the 45� lines through the points ofPx (Py) with axis cx (cy), and the leftmost intersection point (Lx and Ly respectively)of the 135� lines with through Px and Py respectively, axes cx and cy respectively.If the intervals [Rx; Lx] and [Ry; Ly] exist (are not empty) then a point P whoseprojections are in these intervals is a piercing point.Thus, we can conclude by the following theorem:Theorem1. We can �nd whether a set of n axis-parallel rectangles is 1-pierceablein O(n) time, and give a solution, if it exists, in the same runtime.3 Rectilinear 2- and 3-piercingWe begin with the 2-piercing problem. Similarly to the previous section, we have to�nd whether there exist four cones C1; C2 2 (cx; dx) and C3; C4 2 (cy; dy) such that:1. C1 [C2 covers Px.2. C3 [C4 covers Py.3. Denote by [Ci] the set of all the points of P that corresponded to the points ofPx (or Py) covered by Ci.At least one of the following two conditions is true:(i) ([C1]\ [C3])[([C2]\ [C4]) contains all the points of P . This will imply that theapexes of C1; C3 de�ne one piercing point and apexes of C2; C4 de�ne the otherpiercing point.(ii) ([C1]\ [C4])[([C2]\ [C3]) contains all the points of P . This will imply that theapexes of C1; C4 de�ne one piercing point and apexes of C2; C3 de�ne the otherpiercing point.We can constrain the locations of the cones C1; C2; C3; C4. They are de�ned byminimal and maximal points of intersection of the 45� and 135� lines with thehorizontal axes in the two planes (cx; dx) and (cy; dy) respectively. It is easy to seethat in order for the rectangles to be 2-pierceable, we put, wlog, the apex of C1 onRx, C2 on Lx, C3 on Ry and C4 on Ly. Clearly, if these cones cover all the pointsthen the set R is 2-pierceable.In the case of 3-piercing, we have to �nd six cones Ci; 1 � i � 6, which will de�nethree piercing points with the following properties:1. C1 [C2 [C3 covers Px.2. C4 [C5 [C6 covers Py.

3. For i; k; z 2 f1; 2; 3g, pairwise disjoint and j; l; h 2 f4; 5; 6g, pairwise disjointj([Ci] \ [Cj]) [([Ck] \ [Cl]) [([Cz] \ [Ch])j = nfor at least one combination of i; k; z (there are at most 6 combinations), wherethe union is taken is without repetitions.W.l.o.g., we can �nd the constrained cones C1; C3; C4; C6 as in the algorithm for2-piercing. Namely, the left boundary of C1 (C4) is constrained by the leftmost 135�line through the points of Px (Py), and the right boundary of C3 (C6) is constrainedby the rightmost 45� line through the points of Px (Py).To ful�ll condition (3) we look at each combination: [C1] \ [C4] or [C1] \ [C6]or [C3] \ [C4] or [C3] \ [C6] and for these four possibilities we check in linear time,whether the rest the points is 2-pierceable. Thus we conclude:Theorem2. We can check in linear time whether set of n axis-parallel rectanglesis 2- or 3-pierceable and give a solution, if exists, in the same runtime.4 Rectilinear 4-piercingNow we have to �nd eight cones Ci; 1 � i � 8 with the following properties:1. C1 [C2 [C3 [C4 covers Px.2. C5 [C6 [C7 [C8 covers Py.3. For some pair of cones Ci; Cj; i 2 f1; 2; 3; 4g; j 2 f5; 6; 7; 8g the set of all rectan-gles without those covered by [Ci]\ [Cj] is 3-pierceable.As before, assume wlog that C1; C4; C5; C8 are constrained, so condition (3) whenwe choose i 2 f1; 4g and j 2 f5; 8g is easily checked in linear time, because wecan �nd the location of C1; C4; C5; C8 in linear time and then answer the 3-piercingproblem in linear time. If i 2 f2; 3g and j 2 f6; 7g then there exist i0 2 f1; 4g andj0 2 f5; 8g such that if the set of rectangles is 4-pierceable then one piercing pointmust be determined by the cones Ci0 and Cj0. So this case is also computed in O(n)time. The worst (and the more interesting) case is when each constrained cone inone plane corresponds to a non-constrained cone in the other plane. Let us look atone such pair (there is a �nite number of such pairs), wlog, C3 in (cx; dx) and C5 in(cy; dy). The analysis for all other such pairs is almost identical.We sort all the 45� (135�) lines determined by Px in (cx; dx) plane, and do thesame to the lines determined by Py in (cy; dy) plane. Clearly, the apex of C3 isbetween the apexes of C1 and C4. So, we �x the apex of C3 to coincide with theapex of C1 and begin to move it rightwards towards C4. We de�ne an event whena point of Px is inserted or deleted from C3. Initially, we compute the set of pointsA � P covered by [C3] \ [C5] (when the apex of C3 is determined by the leftmost135� line through the point of Px) and apply the 3-piercing algorithm for the restof the points S = P � A, allowing, only this time, C1 to move freely. If we have apositive answer, we are done; otherwise we continue.We move C3 rightwards to the next event and change S accordingly (as in Figure2). The �rst next event is when the leftmost point of Px is deleted from C3. Then

C3 C3 OCxDxOC C1 C CyDy CC CC5 72 4 6 8(before) (after)Fig. 2. Moving apex of C3 from apex of C1 towards apex of C4.we run again the 3-piercing algorithm for S. Here, too, if S is 3-pierceable then weare done. Clearly, from now on the location of the apexes of C1; C4 and C8 will notchange during the whole algorithm because these cones are de�ned by the extremepoints of Px and Py that will never appear in both C3 and C5. Let C7 be the leftmostcone covering S in (cy; dy). The location of C7 will change since C7 will move towardsC8 and back to cover points. But once C7 moves back from C8 it will never movetowards C8 again. This is because C5 is constrained and C7, the second cone fromthe left, moves back to cover points that got out of A. Since the leftmost point hasto be covered in order to have 4-piercing, once C7 got back to its leftmost position,it will never move to the right again. Thus, the number of changes that we performon C7 is O(n). Our goal is to determine the location of the cones C2 in (cx; dx) andC6 in (cy ; dy). We will check the possible combinations of pairing the cones to createpiercing points. Assuming the cones C3 and C5 describe a piercing point, we havethe following combinations for the rest of the piercing points:(a) (C1; C7); (C2; C6); (C4; C8), (b) (C1; C7); (C2; C8); (C4; C6),(c) (C1; C8); (C2; C7); (C4; C6), (d) (C1; C8); (C2; C6); (C4; C7),(e) (C4; C7); (C1; C6); (C2; C8), (f) (C4; C8); (C1; C6); (C2; C7).Observation 3 The combinations of the cones at each step of the 4-piercing algo-rithm are independent, meaning that we check 3-pierceability for each �xed com-bination of the cones throughout all the steps of the 4-piercing algorithm. If we geta negative answer for a combination, we check the other combinations. If there is asolution it will be found by the algorithm in one of the steps of one combination.According to observation 3, because we have �nite number of combinations, we canperform the 4-piercing algorithm for each one of the combinations separately. Foreach of the combinations, the 4-piercing algorithm is slightly di�erent. Denote byCij = [Ci]\ [Cj]\S. Recall that S = P �A, A being the points covered by (C3; C5).We present a skeleton of the algorithm and then give the additional technicaldetails.For every combination of cones the following events happen during the 4-piercingalgorithm: (exempli�ed by C3 and C5 as a piercing point and the 3-piercing combi-nations (a)-(f) as above):

1. Initially the left boundary point q of C3 is getting out of C3. If q 2 A, we re-runthe 3-piercing algorithm, otherwise no update is needed, since q did not belongto A, it was, and remains, in S..2. If, when we move the apex of C3 towards C4, a point q0 is inserted to C3, we�rst check if the corresponding point to q0 in (cy; dy) is covered by C5. If it isnot covered, then we continue moving C3 to the next event; otherwise we havethe following cases:2.1 If q0 de�nes the new left boundary of the middle cone C2 in (cx; dx), orq0 de�nes the left boundary of the left cone C7, or the left boundary ofthe middle cone C6 in (cy ; dy) for the combinations (a)-(d) (similarly, rightboundary for the combinations (e)-(f)), then, for the given combination weperform the following updating scheme: we �rst check if q0 de�nes the leftboundary of C7. If yes then we have to �nd, by binary search over S, thenew left boundary for C7 and:i. For combination (a). Find the new boundaries of the middle cones C2 andC6 in both planes and check whether they cover the rest of the pointsby simply computing and examining the set S(1) = S �C17�C48. Notethat the cones C4 and C8 are both constrained and do not move duringthe whole algorithm.ii. For combination (b) (similarly (e)). By computing and examining the setC17 (C14) we found the new left boundaries of C2 and C6. Only thingwe have to do now is to check whether the pairs (C2; C8) and (C4; C6)((C1; C6)) cover the set of all points of P not covered by (C3; C5) and(C1; C7) ((C4; C7)). This could be done by computing the sets S(2) =C48�C17 (C18�C47), C 04 and C 08 and updating T1 and T2 as describedbelow. Using the updating scheme below, we check whether C2 coversC08, C6 covers C 04, and together C2 and C6 cover S(2).iii. For combination (c) (similarly (f)). By computing and examining theset S(3) = S � C18 � C27 we �nd the leftmost and rightmost points ofthis set in both planes that should be covered in both planes by C6 andC4. We �nd the new boundaries of C2 and C6 and check whether C6 andC4 cover the leftmost and rightmost points in both plane that we justfound. Note that the number of updates on C2 in the whole algorithm isO(n). This is because the left boundary of C2 is de�ned by the leftmostpoint (of S) in (cx; dx) not covered by C18 and thus C2 moves towardsand back from C4, but when it moves back it will never move rightwardsagain.iv. For combination (d). By computing and examining the set S(4) = S �C18 � C47 we �nd the leftmost and rightmost points of this set in bothplanes that should be covered in both planes by C6 and C2. We �nd thenew boundaries of C2 and C6 and check whether C6 and C2 cover theleftmost and rightmost points in both plane that we just found.2.2 If q0 does not de�ne a left boundary of a cones as above, then for eachcombination we perform an identical updating scheme as in 2.1 but withoutcomputing a new left boundary of the middle cones C2 and C6.After the updates we check whether there is a 3-piercing combination for S..3. If, when we move apex of C3, a point q00 is deleted from C3, then

3.1 If q00 =2 C5 we proceed to the next event.3.2 If in the past q00 was the left boundary of the middle cone C2 in (cx; dx), or q0was the left boundary of the left cone C7, or the left boundary of the middlecone C6 in (cy; dy) for the combinations (a)-(d) (similarly, right boundaryfor the combinations (e)-(f)), then, for the given combination we performthe following updating scheme: If q00 de�nes a new left boundary C7, thenwe compute a new location of C7 and:i. For combination (a), �nd the new boundaries of the middle cones C2 andC6 in both planes and compute the rightmost and leftmost points of theset S(1) in both planes.ii. For combination (b), by examining the set C17 �nd the new left bound-aries of C2 and C6, compute the sets S(2); C 04 and C 08 and update T1 andT2.iii. For combination (c), �nd the new boundaries of C2 and C6. By exam-ining the set S(3) �nd the leftmost and rightmost points of this set inboth planes.iv. For combination (d), �nd the new boundaries of C2 and C6. By exam-ining the set S(4) we �nd the leftmost and rightmost points of this setin both planes.3.3 If q0 does not de�ne a left boundary of a cones as above, then for eachcombination we perform an identical updating scheme as in 3.2 but withoutcomputing a new left boundary of the middle cones C2 and C6. Notice thatin this case (when q00 is deleted from C3) the 4-piercing of P is not possible,because it wasn't possible in previous step of the algorithm.Now we describe the technical details of the 4-piercing algorithm given above. Forcombination (a) we compute C48 at the beginning of the 4-piercing algorithm. Thecones C4 and C8 are both constrained and do not move during the whole algorithm.For each step of the 4-piercing algorithm we maintain the set S(1) = S �C17�C48.To determine whether C2 and C6 can cover S(1) we are only interested in the maximaand minima of the 45� and 135� lines through the points of this set (S(1)) in bothplanes respectively. Note that the total number of updates on C48 and on C7 isat most O(n), thus if we maintain the points of the dynamically changing set S(1)sorted according to the 45� and 135� lines we can update S(1) and �nd the maximaand minima in both planes by a simple binary search. Consequently, in O(1) time wecheck whether there exist two cones C2 and C6 with boundaries on these maximaland minimal values that cover these points.Combinations (b) and (e) are similar in the sense that C7 (that has O(n) updates)is paired with a constrained cone, C1 in (b) and C4 in (e), and the non constrainedcones C2 and C6 are each paired with a constrained cone. For combination (b)(similarly (e)) we compute the set C48 (C18) at the beginning of the 4-piercingalgorithm. In each step of the 4-piercing algorithm we compute the set S(2) = C48�C17(C18 � C47). Observe the set of all points of P not pierced by (C3; C5) and(C1; C7) ((C4; C7)). They will have to be pierced by (C2; C8) and (C4; C6) ((C1; C6)).Now the points in S(2) should be covered by either C2 or C6, whereas the pointsof C 04 = [C4] � S(2) (C 01 = [C1] � S(2)) must be covered by C6 and the points ofC08 = [C8] � S(2) must be covered by C2. C1 and C7 (C4 and C7) determine the

left (right) boundary of C2 and C6, which are found by a binary search over thepoints of S � C17 (S � C47). As for combination (a) the number of updates on C48(C18), and C7 is at most O(n). The sets C 04 (C 01) and C 08 are maintained sortedaccording to the lines throughout the whole algorithm. To check how S(2) is pierced,we maintain balanced binary trees T1; T2. The leaves of T1(T2) contain the set S(2)sorted according to the 45� (135�) lines in the plane (cx; dx). Let T be T1 or T2.Initially, the leaves of T contain the sorted points of C48 (C18) in the plane (cx; dx).After we compute C17 (C47) for the �rst time we empty the leaves that contain thepoints that belong to C17(C47). Now T contains the sorted lines through the pointsof S(2). Let p be a point of S(2). A leaf corresponding to p contains the x value of thepoint of intersection of the 45� (135�) line through p with the cx axis in (cx; dx). Itwill also contain the y value of the point of intersection of a 45� (135�) line throughp with the cy axis in (cy; dy). An inner node v 2 T will contain the maximum of they values corresponding to 135� lines of the leaves of the subtree rooted at v, and theminimum of the 45� lines. During the algorithm we perform a sequence of updates,namely insertions and deletions, on the tree T . When a point q is add to S(2), thenwe insert it into T in a sorted x-order and update the minimum and maximum yvalues on the nodes of path from the leaf q to the root of T . If a point q is deletedfrom T , then we �nd the leaf of q, delete it and update the y values of the nodes onpath from the leaf to the root of T . Each update of T takes O(logn) time. We cancheck, using the tree T , whether C2 together with C6 cover all the points in S(2).For combination (c) (similarly, (f)) at the beginning of the 4-piercing algorithm wecompute C18. The cones C1 and C8 are constrained and do not move during thewhole algorithm. At the next step of the 4-piercing algorithm we work with the setS(3) = S � C18 � C27 and �nd the leftmost and rightmost points in this set thatshould be covered in both planes by C6 and C4 respectively. We maintain S(3) byincremental updates according to the motion of C3.For combination (d) we perform a scheme almost identical to that of (c), butwith the di�erence that at each step of the 4-piercing algorithm we work with theset S(4) = S �C18�C47 and �nd the leftmost and rightmost points that should becovered in both planes by C6 and C2. Again, we update S(4) at each motion of C3in logarithmic time.From the analysis of this algorithm it follows that we have O(n) updates in thewhole algorithm and we can perform each update in logarithmic time. Thus,Theorem4. We can determine whether set of n axis-parallel rectangles is 4-pierceableor not in O(n logn) time, and give the solution (if it exists) in the same runtime.5 Rectilinear 5-piercingNow we have to �nd ten cones Ci; 1 � i � 10 with the following properties:1. C1 [C2 [C3 [C4 [C5 covers Px.2. C6 [C7 [C8 [C9 [C10 covers Py.3. For some pair of cones Ci; Cj; i 2 f1; 2; 3; 4;5g; j 2 f6; 7; 8; 9;10g the set of allrectangles without those covered by [Ci]\ [Cj] is 4-pierceable.

Due to the duality relation between our analysis and that in [7] (see Section 7) wefollow the case analysis in [7]. Assume, wlog, that C1; C5; C6; C10 are constrainedand the order of the cones is from left to right. We may also assume that one of thefollowing situations occurs:(a) There is one pair of constrained cones Ci; Cj, i 2 f1; 5g and j 2 f6; 10g. We tryall of these possibilities, �nd the set of rectangles not covered by the given pairof cones, and test whether this set is 4-pierceable, using the preceding algorithm.This takes O(n logn) time.(b) Every constrained cone is paired with a non-constrained cone. Since there arefour constrained cones there are two pairs with the same constrained cones. Weproceed as follows. First, we guess a unique constrained cone, say C1, which ispaired with a non-constrained, say C7. Then we proceed as in 4-piercing algo-rithm, i.e. slide C7 from left to right, starting at the apex of C6 and stoppingwhen we reach the apex of C10. In each move, we check whether the set of therest of the rectangles is 4-pierceable using the following observation by Sharirand Welzl [7]. They observe that the 4-piercing problem (that is solved at eachmove of C7) has always a pair of two constrained cones in its solution. In ourcase they are either C2 and C6, or C2 and C10 (C2 becomes constrained aftercomputing S�C17). We process each of these cases separately. Assume, wlog, weprocess C2 and C6. Then at each move of C7 we update C26 and check whetherthe rest of rectangles is 3-pierceable as in the update step in the 4-piercing al-gorithm. Omitting the easy missing details, we obtain a procedure that runs inO(n logn) time.(c) There is some pair of the cones, where an unconstrained cone is paired withanother unconstrained cone. Assume, wlog, the cones are C4 and C8. We alsoassume wlog that we have paired C6 and C3, C10 and C2, C1 and C7, C5 and C9(a constrained cone with an unconstrained cone). Then, as was observed in [7],either at least one of the cx-coordinates of the apexes of C2 and C3 is smallerthen the the cx-coordinate of the apex of C4 or at least one of the cx-coordinatesof the apexes of C2 and C3 is larger than the cx-coordinate of the apex of C4.Suppose one of them is smaller than C4. Then we slide C7 (that is paired withC1) from left to right, starting at the apex of C6 and stopping when we reachthe apex of C10. In each move, we check whether the set of the rest of rectanglesis 4-pierceable. As was claimed in [7] again in each move of C7 it has to be thatC2 is paired with either C6 or C10. Thus we have a situation identical to case(b). This can be computed as in case (b) above, implying that the computingfor case (c) can also be done in O(n logn) time. Hence we obtain:Theorem5. We can determine whether set of n axis-parallel rectangles is 5-pierceable or not in O(n logn) time, and give the solution (if it exists) in thesame runtime.The result for 5-piercing improves an existing result of [7] that runs in O(n log4 n)time, and can be applied to �nd a better rectilinear 5-center algorithm in timeO(n log2 n).Higher dimensions and p > 4.

Our technique immediately implies a linear time algorithm for 2-pierceabilityof a set of axis-parallel rectangles for arbitrary (�xed) dimension d; d � 2 (thereare only constrained cones) and an O(n logn) time algorithm for 3-pierceability ofa set of axis-parallel rectangles for dimension d; 3 � d � 5 (the same result wasobtained by [1] independently). In the later problem there is always a combinationwhere d� 1 cones are constrained and one (at most) is a non-constrained cone. Ateach step of the algorithm there is a �nite number of the d-coupling combinationsof the cones. An algorithm similar to the 4-piercing algorithm in the plane is usedto solve the piercing problem. We also obtain an improved formula for general (but�xed) p � 6 (for the plane) using our approach. The general observation is that aconstrained cone is always paired with a constrained or unconstrained cone. Thus forsolving p+1-piercing problem we have to consider two cases. In the �rst case there istwo constrained cones paired together, we can determine the rest of the (uncovered)rectangles in linear time and apply algorithm for p-piercing for the rest of rectangles.In the second case, a constrained cone is paired with a non-constrained. We movethe apex of the non-constrained cone between the apexes of the constrained cones inits plane. Thus we have O(n) steps (when a point is either inserted or deleted fromthe non-constrained cone). In each step we run the p� 4-piercing algorithm for therest of the points. Thus we improve the algorithm of [7] for p � 6 in the plane fromO(np�4 log5 n) to O(np�4 logn).6 Piercing sets of rectangular ringsA rectangular ring is a ring, de�ned by two boundaries, the outer boundary and theinner boundary. Both boundaries are axis parallel concentric rectangles, where theinner rectangle is fully contained in the outer rectangle. We do not require that thehorizontal width of the ring be identical to the vertical width. We pose the piercingquestion on a set of rectangular rings.1-piercingThe 1-piercing problem is equivalent to the question: Given a set R of n axis-parallelrectangular rings, is their intersection empty or not. This problem can be easilysolved by decomposing the rings into 4n rectangles and applying the segment tree[3] to compute the depth of the set of rectangles in O(n logn) time. Our method,that is easily extendable to higher dimensions, also uses the Klee measure (the depthand the union of a set of rectangles are examples for the Klee measure, see [3, 4]).First we use the algorithm from Section 2 to �nd whether the set Rr of theexternal rectangles de�ning the given rings is 1-pierceable. If Rr is not 1-pierceablethen neither is the set R. Otherwise, we �nd the region Q (also a rectangle) whereall the rectangles from Rr intersect. In our notations Q is determined as follows.Let P be the set of 4 dimensional points representing the parameters of Rr. LetPx = fpx1 ; : : : ; pxng be the projections of the x-intervals of Rr into the plane (cx; dx),and let Py = fpy1; : : : ; pyng be the projections of the y-intervals of Rr into the plane(cy; dy). We �nd in each plane (cx; dx) and (cy; dy) the rightmost intersection point

Rx (Ry) of the 45� lines through the points of Px (Py) with axis cx (cy), and theleftmost intersection point (Lx and Ly respectively) of the 135� lines through Px andPy respectively, with axes cx and cy respectively. The intervals [Rx; Lx] and [Ry; Ly](if they exist, namely, Rx < Lx and Ry < Ly) de�ne Q. Now we check whetherthe union of the rectangles, de�ned by the internal boundaries of the rectanglesin R, covers Q. If it does not cover Q, then R is 1-pierceable; otherwise it is not1-pierceable.In higher dimensional space Q is easily found as above in time O(dn logn). Inorder to �nd the union of the internal rectangles we use the algorithm of Over-mars and Yap [4] who solve the Klee measure problem in higher dimensions in timeO(nb d2 c logn). Thus, this is the runtime of our 1-piercing algorithm for rings ford � 2.2 and 3-piercingFor two and three pierceability problems a non-trivial but quadratic algorithm isas follows. We �rst check whether the set of the external rectangles is 2-piercable.If it is, then we continue to work with the combination of the cones that de�nethe 2-piercing points (there might be more than one combination of cones, and weconsider all of them).Assume that the combination is (C1; C3) and (C2; C4). First we check whetherthere exist points of P covered by both (C1; C3) and (C2; C4). We call such points ofP joint points. The case with no joint points is easy. We only need solve two separate1-piercing subproblems for each pair of cones, �nd the rectangular regions Q0 andQ00 (as was Q region in the 1-piercing algorithm) and check whether the internalrectangles corresponding to each subproblem cover Q0 and Q00 respectively.If there are joint points of P in (C1; C3) and (C2; C4) then we proceed as fol-lows. Initially we assign the joint points to (C1; C3), and the points not coveredby (C1; C3) we assign to (C2; C4). Similarly to the described above, we computethe intervals [Rx; Lx] and [Ry; Ly] for each pair of cones according to the pointsthey cover, the joint points belonging only to (C1; C3). We denote these intervals byIC1 ; IC2 ; IC3 ; IC4. The intervals IC1 ; IC3 de�ne the rectangular region Q0 where the�rst piercing point should be found, and the intervals IC2 ; IC4 de�ne the region Q00for the second piercing point. We now check whether the internal rectangles corre-sponding to the points assigned to (C1; C3) and (C2; C4), respectively, cover Q0 andQ00 respectively. If both Q0 and Q00 are not wholly covered by the internal rectanglesthen we are done.In the next steps we slide C1 from right to left, stopping whenever a joint point qleaves C1. The joint point q is deleted from C1 (thus, it is now assigned to (C2; C4).We compute the intervals IC1 ; IC2; IC3 ; IC4 , and check whether the correspondinginternal rectangles cover Q0 and Q00. We stop sliding C1 either when it gets to thelast of the joint points or when it gets to a point in (C1; C3) which is not a jointpoint. We call the latter event a stop event.

After we �nish sliding C1 we return it to its starting position. We now performsimilar steps with C3 moving from left to right and stopping at each joint pointtill the end of joint points or till a point covered by just (C2; C4) is met by thesliding cone C3. There are O(n) sliding steps in this algorithm. In each step wecheck whether the internal rectangles cover the regions Q0 and Q00. This can bedone in O(n logn) time using standart sweep-line algorithm. So we conclude thatour algorithm runs in time O(n2 logn).For the 3-piercing problem we can apply a similar technique and obtain anO(n3 logn) algorithm for solving the 3-pierceability of rings. We can improve theserunning time using the following observation.Observation 6 Throughout the motion of C1 in the 2-piercing algorithm above, therectangular region Q0 does not shrink in any dimension, while the region Q00 doesnot expand in any dimension.More precisely, at each stop of C1 the intervals IC3 and IC1 do not shrink, and if theychange they can only grow, while the intervals IC2 and IC4 can only shrink. This isbecause the joint point that was deleted from C1 has to be covered by C2 (and alsoC4) thus decreasing the freedom of movement of the apex of C2 (C4). Moreover, thenumber of internal rectangles of the rings that can cover Q0 (Q00) does not increase(decrease) in each step of the algorithm.This observation provides a monotonicity to the problem and allows us to improvethe running time of our algorithm. Instead of sliding C1 (C3) from right to leftstopping at each joint point, we move C1(C3) in the range of joint points (betweenthe rightmost joint point and the rightmost stop event) by a binary search, checkingat each such move whether both Q0 and Q00 are covered or not by the union of thecorresponding inner rectangles. When we �nd a move where they are not coveredthen we done. If Q0 is covered C1 jumps to the left. If Q0 is not covered but Q00 iscovered, then C1 jumps to the right. Thus we get a factor O(logn) instead of O(n)for the 2-piercing algorithm, and the problem is solved in time O(n log2 n).The 3-piercing algorithm works just as we sketched above. Here, too, we cando the motions of C1 and C4 in binary skips, and then apply the just described2-piercing algorithm, getting us to a O(n log3 n)-time algorithm.We can solve the 2-piercing problem in higher dimensional space. We get anO(nb d2 c log2 n); d � 3 runtime algorithm for determining 2-pierceability of the set ofinput rings using as a subroutine algorithm in [4].7 ConclusionsIn this paper we present an e�cient technique for solving the p-piercing problem fora set of axis-parallel rectangles. There is some duality between the analysis of [7]and that of our paper. A constrained cone in our algorithms corresponds to an edgeon the boundary of the search region in [7], and two paired constrained cones in ouralgorithms correspond to a corner in the search region of [7]. We are looking into

applying a similar technique for sets of triangles, rhombi, etc. The most intriguingquestion is whether we can improve the runtime of the presented algorithm for p-piercing problems where p > 5. We hope that our approach can help in to obtaininga better solution to these problems.Acknowledgements: I thank Matya Katz, Klara Kedem and Yuri Rabinovich foruseful discussions.References1. E. Assa, M. Katz, private communication.2. M. Katz, F. Nielsen, \On piercing sets of objects", In Proc. 12th ACM Symp. onComputational Geometry, 1996.3. K. Mehlhorn, Data Structures and Algorithms 3: Multi-Dimensional Searching andComputational Geometry, Springer-Verlag, 1984.4. M. Overmars, C. Yap, \New upper bounds in Klee's measure problem", In Proc. 29Annual IEEE Symp. on the Found. of Comput. Sci., 1988.5. H. Samet, \The design and analysis of spatial data structures", Addison-Wesley, 19906. M.Segal, K.Kedem, \Enclosing k points in the smallest axis parallel rectangle", 8thCanadian Conference on Computational Geometry, 1996.7. M. Sharir, E. Welzl, \Rectilinear and polygonal p-piercing and p-center problems", InProc. 12th ACM Symp. on Computational Geometry, 1996.

This article was processed using the LaTEX macro package with LLNCS style

