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Abstract. We consider the p-piercing problem for axis-parallel rectangles.
We are given a collection of axis-parallel rectangles in the plane, and wish to
determine whether there exists a set of p points whose union intersects all
the given rectangles. We present efficient algorithms for finding a piercing set
(i.e., a set of p points as above) for values of p = 1,2, 3,4, 5. The result for 4
and 5-piercing improves an existing result of O(nlog®n) and O(nlog* n) to
O(nlog n) time, and is applied to find a better rectilinear 5-center algorithm.
We improve the existing algorithm for general (but fixed) p, and we also
extend our algorithms to higher dimensional space. We also consider the
problem of piercing a set of rectangular rings.

1 Introduction

Let R be a set of n axis-parallel rectangles in the plane, and let p be a positive integer.
R is called p-pierceable if there exists a set of p piercing points which intersects every
member in R. Our problem, thus, is to determine whether R is p-pierceable, and, if
80, to produce a set of p piercing points.

There are several papers in which the p-piercing problem for axis-parallel rect-
angles was investigated; let us mention only the very recent papers. The 1-piercing
problem was easily solved in linear time using the observation that 1-piercing prob-
lem for rectangles is equivalent to finding whether the intersection of rectangles
empty or not. In Sharir and Welzl [7] 2- and 3-piercing problems in the plane are
solved in linear time, while they reach only O(nlog3 n) bound for the 4-piercing
problem and O(nlog4 n) bound for the 5-piercing problem. Katz and Nielsen [2]
present a linear time algorithm for d-dimensional boxes (d > 2), when p = 2. In
this paper we present a new technique which allows to obtain simple linear time
algorithms for p = 1,2, 3, and obtain an O(nlogn) time solution for p = 4,5, thus
improving the previous results of [7]. We improve the existing algorithm of [7] for
general (but fixed) p, and we extend our algorithms to higher dimensional space. We
also consider the problem of piercing the set of rectangular rings. The boundary of
a rectangular ring consists of two concentric rectangles, where the inner rectangle is
fully contained in the outer one, however, the vertical and horizontal widths of the
ring, are not necessarily equal.

This paper is organized as follows. We first demonstrate our technique (Section
2) in the case of p = 1. We then describe this method (Section 3) for the case
of p = 2,3. In Section 4 an O(nlogn) time algorithm for 4-piercing is given. In
Section 5 we present an O(nlogn) time algorithm for the case of p = 5 and describe



generalizations of the problem. Section 6 deals with piercing sets of rectangular rings.
We conclude in Section 7.

2 Rectilinear 1-piercing

We are given a set R of n axis-parallel rectangles in the plane; The goal is to decide
whether their intersection is empty or not. We begin with an observation due to
Samet [5].

Let P be the set of 4 dimensional points representing the parameters of R. Let
P, = {p7,...,p%} be the projections of the z-intervals of R into the plane (¢g, dy),
and let P, = {p¥,...,p%} be the projections of the y-intervals of R into the plane
(cy ) dy)'

If a shape R is described by k parameters, then this set of parameter values
defines a point in a k-dimensional space assigned to the class of shapes. Such a point
is termed a representative point. Note, that a representative point and the class to
which it belongs completely define all of the topological and geometric properties of
the corresponding shape.

The class of two-dimensional axis-parallel rectangles in the plane is described by
a representative point in four dimensional space. One choice for the parameters is
the  and y coordinates of the centroid of the rectangle, denoted by c;, ¢y, together
with its horizontal and vertical extents (i.e. the horizontal and vertical distances
from the centroid to the relevant sides), denoted by dy, dy. In this case a rectangle is
represented by the four-tuple (¢;, ds, ¢y, dy) interpreted as the Cartesian product of a
horizontal and a vertical one-dimensional interval : (cq, ds) and (¢, dy), respectively.
A query that asks which rectangles contain a given point is easy to implement (see
Figure 1).
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Fig.1. (a) There are 3 rectangles, and P is a query point. All intervals containing P are in
the shaded regions. Intervals appearing in the shaded regions of both (b) and (c) correspond
to rectangles that contain P.

A query point P is represented by a four-tuple (ps,0, py, 0). We transform the
rectangles (A,B,C) in Figure 1(a) into the points in two 2-dimensional spaces ((¢5, d)
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and (¢y,dy)) (Figure 1(b) and 1(c)). There are two points representing P in these
2-dimensional spaces. (pg, 0) in (cz, dy)-space, and (py, 0) in (¢, dy)-space. It is easy
to see that all the rectangles that contain P must be transformed into two cones in
these spaces respectively (the shades cones in Figure 1). These cones have apexes
on the (py,0) and (py, 0) respectively and are of slope 45° and 135°. In Figure 1, A
and B are in both cones and thus P is in these rectangles.

In order to find whether the set R 1s 1-pierceable, we find in each 2-dimensional
space the rightmost intersection point R, (Ry) of the 45° lines through the points of
P, (P,) with axis ¢, (¢y), and the leftmost intersection point (L, and L, respectively)
of the 135° lines with through P, and P, respectively, axes ¢, and ¢, respectively.
If the intervals [R,, L] and [R,, Ly] exist (are not empty) then a point P whose
projections are in these intervals is a piercing point.

Thus, we can conclude by the following theorem:

Theorem 1. We can find whether a set of n axis-parallel rectangles is 1-pierceable
in O(n) time, and give a solution, if it exists, in the same runtime.

3 Rectilinear 2- and 3-piercing

We begin with the 2-piercing problem. Similarly to the previous section, we have to
find whether there exist four cones C1,C5 € (¢g, dy) and Cs, Cy € (¢y, dy) such that:

1. ChL Uy covers P,.

2. C3U 4y covers Py.

3. Denote by [C;] the set of all the points of P that corresponded to the points of
P, (or Py) covered by Cj.

At least one of the following two conditions is true:

(1) ([C1] N [C5]) U([C2] N [C4]) contains all the points of P. This will imply that the
apexes of C7, (s define one piercing point and apexes of Cy, (4 define the other
plercing point.

(i) ([C1]N[C) U ([C2] N [C5]) contains all the points of P. This will imply that the
apexes of C, 'y define one piercing point and apexes of Cy, (s define the other
plercing point.

We can constrain the locations of the cones C7,Cs, Cs,Cy. They are defined by
minimal and maximal points of intersection of the 45° and 135° lines with the
horizontal axes in the two planes (¢q, dy) and (c¢y, dy) respectively. It is easy to see
that in order for the rectangles to be 2-pierceable, we put, wlog, the apex of (7 on
Ry, Cy on Ly, C3 on Ry and Cy on Ly. Clearly, if these cones cover all the points
then the set R is 2-pierceable.

In the case of 3-piercing, we have to find six cones C;, 1 < ¢ < 6, which will define
three piercing points with the following properties:

1. C1 UCyU (3 covers P,.
2. C4UC5UCg covers Fy.



3. For i, k,z € {1,2,3}, pairwise disjoint and j,[, h € {4,5,6}, pairwise disjoint
[((GIn[ChuC NG U(C]IN[Ca)] = n

for at least one combination of i, k, z (there are at most 6 combinations), where
the union is taken is without repetitions.

W.l.o.g., we can find the constrained cones C4, Cs, (4, Cs as in the algorithm for
2-piercing. Namely, the left boundary of C; (C4) is constrained by the leftmost 135°
line through the points of Py (P,), and the right boundary of Cs (Cs) is constrained
by the rightmost 45° line through the points of P, (Py).

To fulfill condition (3) we look at each combination: [C1] N [C4] or [C1] N [C)
or [C5] N [C4] or [C5] N [Ce] and for these four possibilities we check in linear time,
whether the rest the points is 2-pierceable. Thus we conclude:

Theorem 2. We can check in linear teme whether set of n azxis-parallel rectangles
15 2- or 3-pierceable and give a solution, if exists, in the same runtime.

4 Rectilinear 4-piercing

Now we have to find eight cones C;, 1 < i < 8 with the following properties:

1. CLuCyUC3U Cy covers P,

2. Cs UCs U Cr U Cy covers Py.

3. For some pair of cones C;, C;,i € {1,2,3,4},5 € {5,6,7,8} the set of all rectan-
gles without those covered by [C;] N [C}] is 3-pierceable.

As before, assume wlog that C7,Cy, Cs, Cys are constrained, so condition (3) when
we choose i € {1,4} and j € {5,8} is easily checked in linear time, because we
can find the location of C, (4, Cs, Cs in linear time and then answer the 3-piercing
problem in linear time. If ¢ € {2,3} and j € {6,7} then there exist ¢/ € {1,4} and
J" € {5, 8} such that if the set of rectangles is 4-pierceable then one piercing point
must be determined by the cones Cj and Cj:. So this case is also computed in O(n)
time. The worst (and the more interesting) case is when each constrained cone in
one plane corresponds to a non-constrained cone in the other plane. Let us look at
one such pair (there is a finite number of such pairs), wlog, C3 in (¢p, dy) and Cs in
(¢y,dy). The analysis for all other such pairs is almost identical.

We sort all the 45° (135°) lines determined by Py in (¢g, dy;) plane, and do the
same to the lines determined by P, in (¢,,d,) plane. Clearly, the apex of C3 is
between the apexes of €y and C4s. So, we fix the apex of (5 to coincide with the
apex of Cy and begin to move it rightwards towards C. We define an event when
a point of P, is inserted or deleted from Cj5. Initially, we compute the set of points
A C P covered by [C5] N [Cs] (when the apex of Cj is determined by the leftmost
135° line through the point of Py) and apply the 3-piercing algorithm for the rest
of the points S = P — A, allowing, only this time, C; to move freely. If we have a
positive answer, we are done; otherwise we continue.

We move Cj rightwards to the next event and change S accordingly (as in Figure
2). The first next event is when the leftmost point of P, is deleted from C5. Then
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Fig.2. Moving apex of C5 from apex of C; towards apex of Cj.

we run again the 3-piercing algorithm for S. Here, too, if S is 3-pierceable then we
are done. Clearly, from now on the location of the apexes of Cy, Cs and Cg will not
change during the whole algorithm because these cones are defined by the extreme
points of P, and P, that will never appear in both C3 and Cs. Let C’; be the leftmost
cone covering S in (¢y, dy). The location of C; will change since C7 will move towards
Cs and back to cover points. But once C; moves back from Cg it will never move
towards Cg again. This is because C'5 1s constrained and C'7, the second cone from
the left, moves back to cover points that got out of A. Since the leftmost point has
to be covered in order to have 4-piercing, once C'; got back to its leftmost position,
it will never move to the right again. Thus, the number of changes that we perform
on C7 is O(n). Our goal is to determine the location of the cones Cs in (¢, dy) and
Cs in (¢y, dy). We will check the possible combinations of pairing the cones to create
piercing points. Assuming the cones (3 and Cy describe a piercing point, we have
the following combinations for the rest of the piercing points:

(a) (01’ 07)’ (02’ 06)’ (04’ CS)’ (b) (01’ 07)’ (02’ CS)’ (04’ 06)’

(C) (01’ CS)’ (02’ 07)’ (04’ 06)’ (d) (01’ CS)’ (02’ 06)’ (04’ 07)’

(e) (04’ 07)’ (01’ 06)’ (02’ CS)’ (f) (04’ CS)’ (01’ 06)’ (02’ 07)'

Observation 3 The combinations of the cones at each step of the 4-piercing algo-
rithm are independent, meaning that we check 3-pierceability for each fixed com-
bination of the cones throughout all the steps of the 4-piercing algorithm. If we get
a negative answer for a combination, we check the other combinations. If there is a
solution it will be found by the algorithm in one of the steps of one combination.

According to observation 3, because we have finite number of combinations, we can
perform the 4-piercing algorithm for each one of the combinations separately. For
each of the combinations, the 4-piercing algorithm is slightly different. Denote by
Ci; = [Gi]N[C;]NS. Recall that S = P— A, A being the points covered by (Cs, C5).
We present a skeleton of the algorithm and then give the additional technical
details.
For every combination of cones the following events happen during the 4-piercing
algorithm: (exemplified by C5 and C as a piercing point and the 3-piercing combi-
nations (a)-(f) as above):



1. Initially the left boundary point ¢ of C is getting out of C5. If ¢ € A, we re-run
the 3-piercing algorithm, otherwise no update is needed, since ¢ did not belong
to A, it was, and remains, in S..

2. If, when we move the apex of (5 towards Cl4, a point ¢’ is inserted to C5, we
first check if the corresponding point to ¢’ in (¢y, dy) is covered by Cs. If it is
not covered, then we continue moving Cs to the next event; otherwise we have
the following cases:

2.1 If ¢’ defines the new left boundary of the middle cone Cy in (eg,dy), or
q' defines the left boundary of the left cone C7, or the left boundary of
the middle cone Cs in (¢, dy) for the combinations (a)-(d) (similarly, right
boundary for the combinations (e)-(f)), then, for the given combination we
perform the following updating scheme: we first check if ¢’ defines the left
boundary of C'7. If yes then we have to find, by binary search over S, the
new left boundary for C'7 and:

i. For combination (a). Find the new boundaries of the middle cones C5 and
Cs 1n both planes and check whether they cover the rest of the points
by simply computing and examining the set S() = § — €17 — Cus. Note
that the cones C4 and Cg are both constrained and do not move during
the whole algorithm.

ii. For combination (b) (similarly (e)). By computing and examining the set
Cy7 (Ch4) we found the new left boundaries of C3 and Cs. Only thing
we have to do now is to check whether the pairs (Cs, Cs) and (C4, Cs)
((C1,Cs)) cover the set of all points of P not covered by (Cs, Cs) and
(C1,C7) ((C4,C7)). This could be done by computing the sets S(2) =
Cas — C17 (C1s — Cy7), C} and Cf and updating 71 and T as described
below. Using the updating scheme below, we check whether Cy covers
C§, Cs covers (4, and together Cy and Cs cover 52,

iii. For combination (¢) (similarly (f)). By computing and examining the
set SB) = §— Cis — U7 we find the leftmost and rightmost points of
this set in both planes that should be covered in both planes by Cs and
(4. We find the new boundaries of C5 and Cs and check whether Cy and
C4 cover the leftmost and rightmost points in both plane that we just
found. Note that the number of updates on C in the whole algorithm is
O(n). This is because the left boundary of C4 is defined by the leftmost
point (of S) in (¢g, dy) not covered by Cis and thus Cs moves towards
and back from C}y, but when it moves back it will never move rightwards
again.

iv. For combination (d). By computing and examining the set SH =g —
Chs — C47 we find the leftmost and rightmost points of this set in both
planes that should be covered in both planes by C's and C's. We find the
new boundaries of C's and Cs and check whether Cs and Cs cover the
leftmost and rightmost points in both plane that we just found.

2.2 If ¢’ does not define a left boundary of a cones as above, then for each
combination we perform an identical updating scheme as in 2.1 but without
computing a new left boundary of the middle cones C5 and Cs.

After the updates we check whether there is a 3-piercing combination for S..

3. If, when we move apex of (3, a point ¢’ is deleted from C, then



3.11f ¢” ¢ C5 we proceed to the next event.

3.21f in the past ¢’ was the left boundary of the middle cone C in (¢z, dy), or ¢’
was the left boundary of the left cone C7, or the left boundary of the middle
cone Cy in (¢4, dy) for the combinations (a)-(d) (similarly, right boundary
for the combinations (e)-(f)), then, for the given combination we perform
the following updating scheme: If ¢’/ defines a new left boundary C'7, then
we compute a new location of (7 and:

i. For combination (a), find the new boundaries of the middle cones C and
Cs 1n both planes and compute the rightmost and leftmost points of the
set S in both planes.

ii. For combination (b), by examining the set C}7 find the new left bound-
aries of Cy and C§, compute the sets S(2) ) and C% and update T} and
Ts.

iii. For combination (¢), find the new boundaries of C3 and Cs. By exam-
ining the set S find the leftmost and rightmost points of this set in
both planes.

iv. For combination (d), find the new boundaries of C3 and Cs. By exam-
ining the set S*) we find the leftmost and rightmost points of this set
in both planes.

3.3 If ¢’ does not define a left boundary of a cones as above, then for each
combination we perform an identical updating scheme as in 3.2 but without
computing a new left boundary of the middle cones C; and Cs. Notice that
in this case (when ¢” is deleted from C5) the 4-piercing of P is not possible,
because it wasn’t possible in previous step of the algorithm.

Now we describe the technical details of the 4-piercing algorithm given above. For
combination (a) we compute Cyg at the beginning of the 4-piercing algorithm. The
cones Cy and Cy are both constrained and do not move during the whole algorithm.
For each step of the 4-piercing algorithm we maintain the set S = 8§ — 7 — Cys.
To determine whether C and C can cover S(1) we are only interested in the maxima
and minima of the 45° and 135° lines through the points of this set (S(l)) in both
planes respectively. Note that the total number of updates on Cys and on C'7 is
at most O(n), thus if we maintain the points of the dynamically changing set S
sorted according to the 45° and 135° lines we can update S() and find the maxima
and minimain both planes by a simple binary search. Consequently, in O(1) time we
check whether there exist two cones C5 and Cy with boundaries on these maximal
and minimal values that cover these points.

Combinations (b) and (e) are similar in the sense that C7 (that has O(n) updates)
is paired with a constrained cone, C in (b) and Cj in (e), and the non constrained
cones Cy and Cg are each paired with a constrained cone. For combination (b)
(similarly (e)) we compute the set Cys (Cig) at the beginning of the 4-piercing
algorithm. In each step of the 4-piercing algorithm we compute the set S(?) = Cyg —
C17(C1s — Cy7). Observe the set of all points of P not pierced by (Cs,C5) and
(C1,C7) ((Cy, C7)). They will have to be pierced by (Cs, Cs) and (Cy, Cs) ((Cy, Cs)).
Now the points in S®) should be covered by either Cy or C, whereas the points
of €y = [Cy] — S (C} = [C1] = S®)) must be covered by Cs and the points of
Cy = [Cs] — S must be covered by Co. C; and Cf7 (Cy and C7) determine the



left (right) boundary of Cs and Cg, which are found by a binary search over the
points of S — Cy7 (S — Cy7). As for combination (a) the number of updates on Cyg
(C1g), and C7 is at most O(n). The sets C} (C]) and C§ are maintained sorted
according to the lines throughout the whole algorithm. To check how S(®) is pierced,
we maintain balanced binary trees T1,75. The leaves of T1(72) contain the set S(2)
sorted according to the 45° (135°) lines in the plane (¢z,dy). Let T be Ty or Th.
Initially, the leaves of T' contain the sorted points of Cyg (C1g) in the plane (¢, dy).
After we compute Cy7 (Cyr) for the first time we empty the leaves that contain the
points that belong to C17(C47). Now T contains the sorted lines through the points
of S Let p be a point of S(2). A leaf corresponding to p contains the x value of the
point of intersection of the 45° (135°) line through p with the ¢, axis in (¢z, dy). Tt
will also contain the y value of the point of intersection of a 45° (135°) line through
p with the ¢, axis in (¢, dy). An inner node v € T will contain the maximum of the
y values corresponding to 135° lines of the leaves of the subtree rooted at v, and the
minimum of the 45° lines. During the algorithm we perform a sequence of updates,
namely insertions and deletions, on the tree 7. When a point ¢ is add to S2), then
we insert 1t into 7' in a sorted z-order and update the minimum and maximum y
values on the nodes of path from the leaf ¢ to the root of T. If a point ¢ is deleted
from 7', then we find the leaf of ¢, delete it and update the y values of the nodes on
path from the leaf to the root of T. Each update of T takes O(logn) time. We can
check, using the tree T, whether Cy together with Cs cover all the points in S(2).
For combination (¢) (similarly, (f)) at the beginning of the 4-piercing algorithm we
compute Chg. The cones €7 and Cg are constrained and do not move during the
whole algorithm. At the next step of the 4-piercing algorithm we work with the set
SB) = § — (s — Cor and find the leftmost and rightmost points in this set that
should be covered in both planes by Cs and Cy respectively. We maintain S®) by
incremental updates according to the motion of Cj.

For combination (d) we perform a scheme almost identical to that of (¢), but
with the difference that at each step of the 4-piercing algorithm we work with the
set S(4) = S — 15 — Cy7 and find the leftmost and rightmost points that should be
covered in both planes by Cs and C3. Again, we update S™) at each motion of Cs
in logarithmic time.

From the analysis of this algorithm it follows that we have O(n) updates in the
whole algorithm and we can perform each update in logarithmic time. Thus,

Theorem4. We can determine whether set of n azis-parallel rectangles s 4-pierceable
or not in O(nlogn) time, and give the solution (if it exists) in the same runtime.

5 Rectilinear 5-piercing

Now we have to find ten cones C;, 1 < ¢ < 10 with the following properties:

1. CLUuCy,UC3UCy Uy covers Py

2. CsUC7UCgUCyUChg covers Py.

3. For some pair of cones C;,Cj,4 € {1,2,3,4,5},j € {6,7,8,9,10} the set of all
rectangles without those covered by [C;] N [C;] is 4-pierceable.



Due to the duality relation between our analysis and that in [7] (see Section 7) we
follow the case analysis in [7]. Assume, wlog, that C,Cs, Cs, C1p are constrained
and the order of the cones is from left to right. We may also assume that one of the
following situations occurs:

(a) There is one pair of constrained cones C;, Cy, i € {1,5} and j € {6,10}. We try
all of these possibilities, find the set of rectangles not covered by the given pair
of cones, and test whether this set is 4-pierceable, using the preceding algorithm.
This takes O(nlogn) time.

(b) Every constrained cone is paired with a non-constrained cone. Since there are
four constrained cones there are two pairs with the same constrained cones. We
proceed as follows. First, we guess a unique constrained cone, say C7, which is
paired with a non-constrained, say C'7. Then we proceed as in 4-piercing algo-
rithm, i.e. slide C; from left to right, starting at the apex of Cs and stopping
when we reach the apex of Cg. In each move, we check whether the set of the
rest of the rectangles is 4-pierceable using the following observation by Sharir
and Welzl [7]. They observe that the 4-piercing problem (that is solved at each
move of C7) has always a pair of two constrained cones in its solution. In our
case they are either Cy and Cs, or Cz and Cpg (Cy becomes constrained after
computing S —C17). We process each of these cases separately. Assume, wlog, we
process C'5 and Cs. Then at each move of C; we update Cyg and check whether
the rest of rectangles is 3-pierceable as in the update step in the 4-piercing al-
gorithm. Omitting the easy missing details, we obtain a procedure that runs in
O(nlogn) time.

(¢) There is some pair of the cones, where an unconstrained cone is paired with
another unconstrained cone. Assume, wlog, the cones are C4 and Cg. We also
assume wlog that we have paired Cs and Cs, Cg and Cy, C7 and C7, C5 and Cy
(a constrained cone with an unconstrained cone). Then, as was observed in [7],
either at least one of the c¢.-coordinates of the apexes of Cy and C5 is smaller
then the the ¢;-coordinate of the apex of Cy or at least one of the ¢,-coordinates
of the apexes of C'; and C5 is larger than the cgy-coordinate of the apex of Cj.
Suppose one of them is smaller than C4. Then we slide C7 (that is paired with
Cy) from left to right, starting at the apex of Cs and stopping when we reach
the apex of C1g. In each move, we check whether the set of the rest of rectangles
is 4-pierceable. As was claimed in [7] again in each move of C7 it has to be that
'y 1s paired with either Cg or (9. Thus we have a situation identical to case
(b). This can be computed as in case (b) above, implying that the computing
for case (c) can also be done in O(nlogn) time. Hence we obtain:

Theorem 5. We can determine whether set of n axis-parallel rectangles is b-
pierceable or not in O(nlogn) time, and give the solution (if it exists) in the
same runtime.

The result for 5-piercing improves an existing result of [7] that runs in O(nlog®n)
time, and can be applied to find a better rectilinear 5-center algorithm in time
O(nlog®n).

Higher dimensions and p > 4.



Our technique immediately implies a linear time algorithm for 2-pierceability
of a set of axis-parallel rectangles for arbitrary (fixed) dimension d,d > 2 (there
are only constrained cones) and an O(nlogn) time algorithm for 3-pierceability of
a set of axis-parallel rectangles for dimension d,3 < d < 5 (the same result was
obtained by [1] independently). In the later problem there is always a combination
where d — 1 cones are constrained and one (at most) is a non-constrained cone. At
each step of the algorithm there is a finite number of the d-coupling combinations
of the cones. An algorithm similar to the 4-piercing algorithm in the plane is used
to solve the piercing problem. We also obtain an improved formula for general (but
fixed) p > 6 (for the plane) using our approach. The general observation is that a
constrained cone is always paired with a constrained or unconstrained cone. Thus for
solving p+ 1-piercing problem we have to consider two cases. In the first case there is
two constrained cones paired together, we can determine the rest of the (uncovered)
rectangles in linear time and apply algorithm for p-piercing for the rest of rectangles.
In the second case, a constrained cone is paired with a non-constrained. We move
the apex of the non-constrained cone between the apexes of the constrained cones in
its plane. Thus we have O(n) steps (when a point is either inserted or deleted from
the non-constrained cone). In each step we run the p — 4-piercing algorithm for the
rest of the points. Thus we improve the algorithm of [7] for p > 6 in the plane from
O(nP~*log® n) to O(n?~*logn).

6 Piercing sets of rectangular rings

A rectangular ring is a ring, defined by two boundaries, the outer boundary and the
inner boundary. Both boundaries are axis parallel concentric rectangles, where the
inner rectangle is fully contained in the outer rectangle. We do not require that the
horizontal width of the ring be identical to the vertical width. We pose the piercing
question on a set of rectangular rings.

1-piercing

The 1-piercing problem is equivalent to the question: Given a set R of n axis-parallel
rectangular rings, is their intersection empty or not. This problem can be easily
solved by decomposing the rings into 4n rectangles and applying the segment tree
[3] to compute the depth of the set of rectangles in O(nlogn) time. Our method,
that is easily extendable to higher dimensions, also uses the Klee measure (the depth
and the union of a set of rectangles are examples for the Klee measure, see [3, 4]).
First we use the algorithm from Section 2 to find whether the set R, of the
external rectangles defining the given rings is 1-pierceable. If R, is not 1-pierceable
then neither is the set R. Otherwise, we find the region @ (also a rectangle) where
all the rectangles from R, intersect. In our notations ) is determined as follows.
Let P be the set of 4 dimensional points representing the parameters of R,. Let
P, =1{p7,...,p2} be the projections of the z-intervals of R, into the plane (¢;, d;),
and let P, = {p¥,...,p%} be the projections of the y-intervals of R, into the plane
(¢y,dy). We find in each plane (¢;, d,) and (¢y, dy) the rightmost intersection point



R (Ry) of the 45° lines through the points of P, (F,) with axis ¢, (¢y), and the
leftmost intersection point (L, and L, respectively) of the 135° lines through P, and
P, respectively, with axes ¢, and ¢, respectively. The intervals [R,, L] and [R,, L,]
(if they exist, namely, R, < L, and Ry, < L) define Q. Now we check whether
the union of the rectangles, defined by the internal boundaries of the rectangles
in R, covers (). If it does not cover (), then R is l-pierceable; otherwise it is not
1-pierceable.

In higher dimensional space @ is easily found as above in time O(dnlogn). In
order to find the union of the internal rectangles we use the algorithm of Over-
mars and Yap [4] who solve the Klee measure problem in higher dimensions in time
O(nL%J logn). Thus, this is the runtime of our l-piercing algorithm for rings for
d> 2.

2 and 3-piercing

For two and three pierceability problems a non-trivial but quadratic algorithm is
as follows. We first check whether the set of the external rectangles is 2-piercable.
If it 1s, then we continue to work with the combination of the cones that define
the 2-piercing points (there might be more than one combination of cones, and we
consider all of them).

Assume that the combination is (Cy, C3) and (C, Cy). First we check whether
there exist points of P covered by both (Cy, C3) and (C, C4). We call such points of
P joint points. The case with no joint points is easy. We only need solve two separate
1-piercing subproblems for each pair of cones, find the rectangular regions @’ and
Q" (as was @ region in the l-piercing algorithm) and check whether the internal
rectangles corresponding to each subproblem cover ' and Q" respectively.

If there are joint points of P in (C1,C3) and (Cs, C4) then we proceed as fol-
lows. Initially we assign the joint points to (Ci,C3), and the points not covered
by (Cy,Cs5) we assign to (Ca,Cy4). Similarly to the described above, we compute
the intervals [R,, L;] and [R,, L,] for each pair of cones according to the points
they cover, the joint points belonging only to (C1, C3). We denote these intervals by
Ic,, Ie,, Ic,, Ic,. The intervals I¢,, I, define the rectangular region @' where the
first piercing point should be found, and the intervals I, I, define the region "
for the second piercing point. We now check whether the internal rectangles corre-
sponding to the points assigned to (Cy, Cs) and (Ca, C4), respectively, cover Q' and
Q" respectively. If both @’ and Q" are not wholly covered by the internal rectangles
then we are done.

In the next steps we slide C; from right to left, stopping whenever a joint point ¢
leaves (1. The joint point ¢ is deleted from € (thus, it is now assigned to (Ca, Cy).
We compute the intervals I¢,, Ic,, Ic,, Ic,, and check whether the corresponding
internal rectangles cover ' and @”. We stop sliding C either when it gets to the
last of the joint points or when it gets to a point in (C1,C3) which is not a joint
point. We call the latter event a stop event.



After we finish sliding C'; we return it to its starting position. We now perform
similar steps with C3 moving from left to right and stopping at each joint point
till the end of joint points or till a point covered by just (Ca,Cy) is met by the
sliding cone C5. There are O(n) sliding steps in this algorithm. In each step we
check whether the internal rectangles cover the regions (' and Q. This can be
done in O(nlogn) time using standart sweep-line algorithm. So we conclude that
our algorithm runs in time O(n?logn).

For the 3-piercing problem we can apply a similar technique and obtain an
O(n®logn) algorithm for solving the 3-pierceability of rings. We can improve these
running time using the following observation.

Observation 6 Throughout the motion of Cy in the 2-piercing algorithm above, the
rectangular region )’ does not shrink in any dimension, while the region Q" does
not erpand in any dimension.

More precisely, at each stop of € the intervals I, and I, do not shrink, and if they
change they can only grow, while the intervals I, and I¢, can only shrink. This is
because the joint point that was deleted from € has to be covered by C5 (and also
C4) thus decreasing the freedom of movement of the apex of Cs (Cy). Moreover, the
number of internal rectangles of the rings that can cover @' (Q") does not increase
(decrease) in each step of the algorithm.

This observation provides a monotonicity to the problem and allows us to improve
the running time of our algorithm. Instead of sliding C; (C3) from right to left
stopping at each joint point, we move C1(C3) in the range of joint points (between
the rightmost joint point and the rightmost stop event) by a binary search, checking
at each such move whether both @' and Q" are covered or not by the union of the
corresponding inner rectangles. When we find a move where they are not covered
then we done. If @’ is covered C; jumps to the left. If @’ is not covered but Q" is
covered, then € jumps to the right. Thus we get a factor O(logn) instead of O(n)
for the 2-piercing algorithm, and the problem is solved in time O(n log” n).

The 3-piercing algorithm works just as we sketched above. Here, too, we can
do the motions of (7 and C4 in binary skips, and then apply the just described
2-piercing algorithm, getting us to a O(n log® n)-time algorithm.

We can solve the 2-piercing problem in higher dimensional space. We get an
O(nL%J log? n), d > 3 runtime algorithm for determining 2-pierceability of the set of
input rings using as a subroutine algorithm in [4].

7 Conclusions

In this paper we present an efficient technique for solving the p-piercing problem for
a set of axis-parallel rectangles. There is some duality between the analysis of [7]
and that of our paper. A constrained cone in our algorithms corresponds to an edge
on the boundary of the search region in [7], and two paired constrained cones in our
algorithms correspond to a corner in the search region of [7]. We are looking into



applying a similar technique for sets of triangles, rhombi, etc. The most intriguing
question is whether we can improve the runtime of the presented algorithm for p-
piercing problems where p > 5. We hope that our approach can help in to obtaining
a better solution to these problems.
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