
Providing Performance Guarantees in
Multipass Network Processors

Isaac Keslassy
Department of Electrical engineering

Technion – Israel Institute of Technology
Haifa 32000, Israel

isaac@ee.techion.ac.il

Kirill Kogan Gabriel Scalosub Michael Segal
Department of Communication Systems Engineering

Ben-Gurion University of the Negev
Beer-Sheva 84105, Israel

kirill.kogan@gmail.com, {sgabriel,segal}@bgu.ac.il

Abstract—Current network processors (NPs) increasingly deal
with packets with heterogeneous processing times. In such an
environment packets that require many processing cycles delay
low latency traffic, because the common approach in today’s NPs
is to employ run-to-completion processing. These difficulties have
led to the emergence of the Multipass NP architecture, where
after a processing cycle ends, all processed packets are recycled
into the buffer and re-compete for processing resources.

In this work we provide a model that captures many of
the characteristics of this architecture, and consider several
scheduling and buffer management algorithms that are specially
designed to optimize the performance of multipass network
processors. In particular, we provide analytical guarantees for the
throughput performance of our algorithms. We further conduct
a comprehensive simulation study which validates our results.

I. INTRODUCTION

A. Background

Multi-core Network Processors (NPs) are widely used to
perform complex packet processing tasks in modern high-
speed routers. NPs are able to address such diverse functions as
forwarding, classification, protocol conversion, DPI, intrusion
detection, SSL, NAT, firewalling, and traffic engineering. They
are often implemented using many processing cores. These
cores are either arranged as a pool of identical cores (e.g., the
Cavium CN68XX [23]), as a long pipeline of cores (e.g., the
Xelerated X11 [24]), or as a combination of both (e.g., the
EZChip NP-4 [25]).

These architectures are very efficient for simple traffic
mixes. However, following operator demands, packet pro-
cessing needs are becoming more heterogeneous and rely
on a growing number of more complex features, such as
advanced VPN encryption (like IPsec-VPN and SSL-VPN),
LZS decompression, VoIP SBC, video CAC, per-subscriber
queueing, and hierarchical classification for QoS [15], [23],
[26], [27].

These features are increasingly challenging for traditional
architectures, posing implementation, fairness, and benchmark-
ing issues. First, longer and more complex features require
either deeper pipeline lengths (e.g., 512 PISC processor cores
in the Xelerated HX3XX series [24]) or longer processing
times in run-for-completion cores. Second, a few packets with
many features can delay, and even temporarily starve, the
later packets. In fact, given limited high-speed buffering, this

might lead to large drop rates upon congestion. This was il-
lustrated in the Christmas tree packet DoS (Denial-of-Service)
attack, in which each packet “lights up” several IP options
processing bits [15]. Finally, and maybe more significantly,
typical benchmarking tests used to rely on a simple stream of
minimum-sized packets with only a basic IP forwarding service
to measure the “worst-case throughput” of an NP [15], [18].
As benchmarking tests start to measure throughput given more
advanced processing features, the impact of these features will
be even more highlighted.

In view of the increasing impact of the packets with heavy
features, another NP architecture has emerged as a leading
alternative in the industry: the Multipass NP architecture. In
this architecture, the processing time of a packet is divided
into several time intervals, called passes or cycles. Intuitively,
when a packet arrives to the NP, it is sent to a processing core.
Then, after the core completes its processing pass, the packet
is recycled into the set of packets awaiting processing. And so
on, until all the packet passes are completed.

In practice, another appeal of the multipass architecture is
that it does not require the NP designer to define a large
pipeline length in advance. This is especially useful for NPs
with different possible markets. In addition, note that in mul-
tipass NPs, actually recycling packets would involve complex
interconnections and large buffers. Therefore, to decrease the
cost of recycling, packets practically stay buffered and small
control messages go through recycling instead.

This NP architecture with recycling has for instance been
implemented in the recent Cisco QuantumFlow NP [26]. Form-
ing the heart of Cisco’s most recent ASR 1000 edge routers,
this 40-core NP might become the most widespread among
high-speed routers. Also, although not strictly multipass NP
architectures, several NP architectures in the literature already
allow for recycling of complex packets, such as [19] for IP
control packets.

Given a heterogeneous set of packet processing times,
the scheduler plays a significant role in the multipass NP
architecture. This is because it should make sure that heavy
packets with many passes do not monopolize the cores and
starve packets with fewer passes.

To the best of our knowledge, despite the emergence of the
multipass NP architecture, there has not yet been any analysis

2

of its scheduler performance in the literature. In particular, NP
schedulers are typically designed for the worst-case throughput
to support a guaranteed wire rate (see Section 2.2 in [18]).
But little is known regarding the worst-case throughput of the
various possible multipass NP schedulers.

The goal of this paper is to offer designs with proven
performance guarantees for the multipass-NP scheduler. Our
solutions enable dealing with the various requirements posed to
the scheduler (such as delay, throughput, and implementation
complexity), and illustrate tradeoffs as to the scheduler’s ability
to fulfill these requirements. Our analysis also makes it possi-
ble for the designer of future multipass NPs to have analytical
worst-case guarantees on the NP performance, including for
traffic with complex processing needs.

B. Our Contributions

In this paper, we analyze the performance of scheduling
and buffer management policies in multipass NPs, and provide
guarantees as to their worst-case throughput.

We consider settings where each arriving packet requires
some number of processing passes, and study the interplay of
three factors:
• The scheduling policy: we study both FIFO buffers, and

Priority Queues (where priority is determined by the
number of remaining passes required).

• The buffer management policy: we design and evaluate
both preemptive policies (where packets residing in the
buffer can be discarded), and non-preemptive policies.

• The implementation cost: Our model allows for a copying
cost of packets into the the buffer which reflects the
impact multiple accesses to the buffer have system’s
throughput.

We design and analyze algorithms which aim at maximizing
the overall value obtained by the system, which is affected by
both the packet-level throughput (considered as benefit) an the
copying cost (considered as penalty). We note that our model
can also be used to model cold-cache penalties. A detailed
description of our model is given in Section II.

For our analytical results, we use competitive analysis to
evaluate the performance of our proposed policies. For the
case where no copying cost is incurred, we design and analyze
buffer management algorithms for both FIFO- and PQ-based
environments. We show that non-preemptive architectures may
suffer form extremely large performance degradation compared
to the optimal performance possible. On the other hand, we
prove that natural buffer management policies for PQ-based
environments are optimal when preemption is allowed, and
further show that FIFO-based environments endowed with
preemption, although they are not optimal, can obtain a
reasonable guaranteed throughput compared to the optimal
performance possible, which depends only on the maximum
number of passes a packet requires. These results are presented
in Section III. For the case where the system incurs a strictly
positive copying cost, we devise competitive buffer man-
agement algorithms for PQ-based environments, and provide

an elaborate analysis of their performance guarantees. These
results are presented in Section IV.

To complete our study, we present a simulation study that
further validates our results and provides additional insights as
to the performance of multicore NPs. Specifically, our results
show that the design criteria governing our algorithms, which
are intended to optimize towards the worst-case scenario,
exhibit very good performance also for simulated average-
case traffic. In addition, our simulation study shows that the
number of available cores has a striking non-trivial effect on
the performance of the various policies we propose. These
results are presented in Section V.

Our work gives rise to a multitude of questions and possible
extensions. We discuss these further in Section VI.

We note that due to space constraints, some of the proofs
throughout the paper are omitted, and can be found in [9].

C. Related Work

As mentioned above, recycling is not new in NPs and has
previously appeared in the literature, especially for particularly
complex packets that cannot be processed using a typical
pipelining scheme [19]. However, to our knowledge, there is
no previous work in the literature that discusses the scheduling
and buffer management policies in multipass NPs. Several
other related topics have been studied in the context of NPs,
namely, task mapping and load-balancing [8], [20]. However,
none of these papers considers the impact of recycling in their
models. Moreover, no paper analyzes the impact of the packet
admission control policy on the worst-case NP performance.

There is also a long history of OS scheduling for multi-
threaded processors. A comprehensive overview of competitive
online scheduling for server systems is provided in [17]. For
instance, the SRPT (Shortest Remaining Processing Time)
algorithm always runs the job with the least amount of
remaining processing time, and it is well known that SRPT
is optimal for average response [16]. Additional objectives,
models, and algorithms have been studied extensively in this
context (e.g., [5], [13], [14], [16], to name but a few). When
comparing this body of research with the framework of NPs
one should note that OS scheduling is mostly concerned with
average response time, average slowdown, etc., while NP
scheduling is targeted at providing (worst-case) guarantees on
the throughput. In addition, NP scheduling is unique in that it
inherently has a limited-size buffer.

Another large body of research related to our work fo-
cuses on competitive packet scheduling and buffer manage-
ment, mostly for various switching architectures, such as
Output-Queued (OQ) switches (e.g., [1], [12]), shared memory
switches with OQs (e.g., [7], [11]), and merging buffers
(e.g., [10]). Some works also provide experimental studies
of these algorithms and further validate their performance [2].

II. MODEL DESCRIPTION

A. Multipass NP Architecture

Figure 1 illustrates the multipass NP architectural model
used in this paper. It is a simplified model of the Cisco

3

SM IB
(memory)

PPE1 PPE2 · · · PPEC

manage buffer/queues
and assign

packets to PPEs

memory
access

arrivals departures

recycling control messages

Fig. 1. An outline of the architecture model, as an abstraction of a standard
Multipass NP Architecture (see, e.g. [26]).

QuantumFlow NP architecture [26]. The three major modules
in our model are: (a) the Input Buffer (IB), (b) the Scheduler
Module (SM), and (c) a set of C cores or Packet Processing
Elements (PPEs).

First, the IB module is used to buffer incoming packets. The
IB holds a buffer that can contain at most B packets. It obeys
a given Buffering Model (BM), as defined later. Second, the
SM module has two main functionalities in our model: the
buffer management, as later described, and the assignment of
packets to PPEs, by binding each PPE with its corresponding
IB packet. Each PPE element is a processing core that works
on a specific packet stored in the IB for one cycle (predefined
period of time), also referred to as a time slot. For simplicity
we assume that each PPE is single threaded.

We divide time into discrete time slots, where each step
consists of four phases: (i) transmission, in which completed
packets leave the NP and incomplete control packets for those
with remaining passes are recycled, (ii) arrival, in which
the SM performs its buffer management task considering
newly arrived packets and recycled control packets (observe
that recycled control packets are admitted to IB before new
arrivals), (iii) scheduling, in which C head-of-queue packets
are designated for processing, and (iv) processing, in which
the SM assigns a designated packet to each PPE, and packet
processing takes place.

We assume arbitrary packet arrival (i.e., it is not governed by
any specific stochastic process, and may even be adversarial).
We also assume that all packets have unit size. Each arriving
packet p is further stamped with the number of passes it
requires from the NP, denoted r(p). This number is essentially
the number of times the packet should be assigned to a PPE
if it is to be successfully delivered. The availability of this
information relies on [21], which shows that “processing on an
NP is highly regular and predictable. Therefore it is possible
to use processing time predictions in admission control and
scheduling decisions.”

B. Problem Statement and Objectives

In the NP multipass architecture, new packets incur higher
costs than recycled packets. New packets admitted to the buffer
monopolize part of the memory link capacity to enter the
memory, and therefore require more capacity in the memory
access implementation of an NP. Each new packet also needs to
update many pointers and associated structures at link speeds.
These costs are substantially higher than the costs associated
with recycled control packets corresponding to packets already
stored in the buffer.

To reflect the value of throughput, we assume that each
departed packet has unit value. However, to reflect the cost
of admitting new packets, each newly admitted packet is also
assumed to incur a fixed copying cost cost of α ∈ [0, 1) for
copying it to IB. Finally, we measure the final value as the
total throughput value minus the total copying cost.

Any specific architecture corresponding to our model can
be summarized by a 4-tuple (B,BM,α,C), where B denotes
the buffer size available for IB, BM is the buffering model
(in this paper it will usually be PQ or FIFO), α is the copying
cost, and C is the number of available PPEs.

Our objective is the following: given a (B,BM,α,C)-
architecture, and given some finite arrival sequence, maximize
the value of successfully delivered packets.

For the case where α = 0, the overall value of success-
fully delivered packets is equal to the system’s packet-level
throughput. For the case where α > 0 the overall value of
successfully delivered packets equals the throughput minus the
overall copying cost incurred by admitting packets to IB.

Our goal is to provide performance guarantees for various
scheduling and buffer management algorithms. We use compet-
itive analysis [4], [22] to evaluate the performance guarantees
provided by online algorithms. An algorithm ALG is said to
be c-competitive (for some c ≥ 1) if for any arrival sequence
σ, the overall value of packets successfully delivered by ALG
is at least 1/c times the overall value of packets successfully
delivered by an optimal solution (denoted OPT), obtained by
a possibly offline clairvoyant algorithm.

C. Further Notation and Algorithmic Framework

We will define a greedy buffer management policy as a
policy that accepts all arrivals whenever there is available
buffer space (in the IB). Throughout this paper we only look
at work-conserving schedulers, i.e. schedulers that never leave
a processor idle unnecessarily.

We will say that an arriving packet p preempts a packet q that
has already been accepted into the IB module iff q is dropped
and p is admitted to the buffer instead. A buffer management
policy is called preemptive whenever it allows for preemptions.

For any algorithm ALG and any time-slot t, we define
IBALGt as the set of packets stored in IB of algorithm ALG
at time t.

We assume that the original number of passes required by
any packet is in a finite range {1, . . . , k}. The value of k will
play a fundamental role in our analysis. We note, however, that
none of our algorithms need know k in advance.

4

The number of residual passes of a packet is key to several
of our algorithms. Formally, for every time t, and every packet
p currently stored in IB, its number of residual passes, denoted
rt(p), is defined to be the number of processing passes it
requires before it can be successfully delivered.

Most of our algorithms will take the general form depicted
in Algorithm 1, where the specific subroutine determining
whether or not preemption takes place will depend on the
algorithm. We note that we will distinguish between the various
embodiments of our algorithms also depending on the BM they
employ in the IB. More specifically, we will focus our attention
on two natural BMs:

1) FIFO: In this policy packets are serviced in FIFO order,
i.e. the C head-of-line packets are chosen for assignment
to the PPEs. Upon completion of a processing round by
the PPEs, all the packets that have been processed in
this round and still require further processing passes are
queued at the tail of the IB queue.

2) Priority Queueing (PQ): In this policy packets are serviced
in non-increasing order of residual passes, i.e., C packets
with the minimum number of residual passes are chosen
for assignment to the PPEs in every time slot.

We assume that the queue order is also maintained according
to the BM preference order.

The generic algorithmic setting for the buffer management
policy of the SM is defined in Algorithm 1. The specific
algorithms discussed in the following sections will differ
according to the decision made by the DECIDEIFPREEMPT
procedure, which decides which packet to discard in case of
overflow.

Algorithm 1 ALG: Buffer Management Policy
1: upon the arrival of packet p:
2: if the buffer is not full then
3: accept packet
4: else
5: DECIDEIFPREEMPT(ALG,p)
6: end if

III. BUFFER MANAGEMENT WITH NO COPYING COST
(α = 0)

A. Non-preemptive Policies
In this section we consider non-preemptive greedy buffer

management policies. Essentially, the subroutine DECIDEIF-
PREEMPT for such policies simply rejects the pending packet.
The following theorem provides a lower bound on the perfor-
mance of such non-preemptive policies for FIFO schedulers
(we remind that omitted proofs can be found in [9]).

Theorem 1. The competitive ratio of any non-preemptive
greedy buffer management policy (B,FIFO,C, 0)-system is
at least kB

C , where k is a maximal number of passes required
by any packet.

The following theorem provides a similar lower bound for
PQ schedulers.

Theorem 2. The competitive ratio of any non-preemptive
greedy buffer management policy (B,PQ,C, 0)-system is at
least kBC , where k is a maximal number of passes required by
any packet.

As demonstrated by the above results, the simplicity of non-
preemptive greedy policies does have its price. In the following
sections we explore the benefits of introducing preemptive poli-
cies, and provide an analysis of their guaranteed performance.

B. Preemptive Policies
For the case where α = 0, we focus our attention on the

intuitive rule for preemption which states that a newly arrived
packet p should preempt a buffered packet q at time t if rt(p) <
rt(q). This rule is formalized in Algorithm 2, which gives
a formal definition of the DECIDEIFPREEMPT procedure of
Algorithm 1.

Algorithm 2 DECIDEIFPREEMPT(ALG,p)
1: i← first packet in IBALGt s.t. rt(pi) = maxi′ {rt(pi′)}
2: . first in the order implied by the BM
3: if r(p) < rt(pi) then
4: drop pi and accept p
5: else
6: reject p
7: end if

In what follows we consider the performance of the above
preemption rule for two specific BMs, namely: ALG ∈
{PQ,FIFO}.

1) Preemptive Priority Queueing: In this section we study
the performance of a BM implementing PQ, where priorities
are set in accordance with the non increasing order of residual
passes.1 We refer to this algorithm as PQ1.2 The following
theorem provides some guarantee as to its performance.

Theorem 3. PQ1 is optimal.

The above theorem provides concrete motivation for using
a priority queuing buffering model. It also enables using PQ1

as a benchmark for optimality.
On the other hand, priority queueing has many drawbacks

in terms of the difficulty in providing delay guarantees and
in terms of implementation. For instance, low-priority packets
may be delayed arbitrarily for an arbitrarily long amount of
time due to the steady arrival of low-priority packets. Therefore
it is of interest to study BMs that ensure such scenarios do not
occur. One such predominant BM is using FIFO queueing,
which is discussed in the following section.

2) Preemptive FIFO: In this section we analyze the pre-
emptive policy depicted in Algorithm 2, where the BM imple-
ments FIFO queueing. We refer to this algorithm as FIFO1.
FIFO has many attractive features, including bounded delay,
and it is easy to implement. We first begin with providing
the counterpart to Theorem 3 which shows that as opposed to

1Packet p has a higher priority than packet q at time t if rt(p) < rt(q).
2The reason for choosing the subscript 1 would become clear in section IV.

5

priority queueing, the performance of FIFO1 can be rather
far from optimal.

Theorem 4. FIFO1 has competitive ratio Ω(log k
C) in a

(B,FIFO,C, 0)-system.

Proof: Assume for simplicity that B/C is an integer, and
further assume that k+ 1 = B

C . Consider the following arrival
sequence: for i = 0, . . . , k we have B packets with k − i
required passes arriving at time ti = iB/C.

Let us first consider the performance of FIFO1 given the
above arrival sequence. At time t0 FIFO1 accepts B packets,
each with k required passes. Call this set A. It is easy to
see that for every i = 1, . . . , k at time ti all the packets in
A are still in FIFO1’s buffer, and each has k − i residual
passes. Hence, FIFO1 never has a reason to preempt any of
the packets in A. It follows that at time tk the buffer holds B
packets with 0 residual passes and can eventually only deliver
B packets.

We now turn to consider the performance of an optimal
policy for the above arrival sequence. We first show a policy
that delivers (1 + 1

C)B − 1 packets out of the above arrival
sequence (implying a lower bound of 1 + 1

C − 1
B on the

competitive ratio). We then refine our analysis to prove the
required result. We henceforth start by considering the conser-
vative policy which for any i = 0, . . . , k − 1 accepts a single
packet at time ti, and further accepts all B packets arriving
at time tk. First note that the above policy is feasible: since
for any i, ti+1 − ti = B

C ≥ k + 1, if a policy accepts a single
packet at time ti, then we are guaranteed to have this packet
delivered by time ti+1. This implies that the buffer is empty at
time ti+1, implying in turn the feasibility of the above policy.
Since the policy accepts k = B

C −1 packets by time tk, and B
packets at time tk, we have a total throughput of (1+ 1

C)B−1
as required.

Let us now turn to refine our analysis, and present a better
policy which implies the required result, and is based upon the
simple policy just described. Recall that at time ti, the buffer
is empty, and we have B packets with k − i required passes
arriving. Our new policy accepts b B

C(k−i+1)c of these packets.
We will show that this new policy ensures that the buffer is
empty just before the arrival phase at any time ti+1. The overall
number of time steps required to deliver a set of b B

C(k−i+1)c
packets, each requiring k−i passes, is b B

C(k−i+1)c·(k−i+1) ≤
B
C = ti+1 − ti, which implies that by time ti+1 the buffer is
indeed empty. Note that since k = B

C −1, b B
C(k−i+1)c ≥ 1 for

every i = 0, . . . , k. We can now evaluate the performance of
this new policy. The overall number of packets accepted (and
delivered) by the policy is∑k

i=0b B
C(k−i+1)c ≥

∑k
i=0(B

C(k−i+1) − 1)

= B
C

∑k+1
j=1

1
j − (k + 1)

= B
C ·Hk+1 − (k + 1)

where Hn is the n-th harmonic number which satisfies Hn =
Θ(log n). Since B = Θ(k), the result follows.

We now turn to provide an upper bound on the performance
of FIFO1, as given by the following theorem.

Theorem 5. FIFO1 is 2k-competitive in a (B,FIFO,C, 0)-
system.

IV. BUFFER MANAGEMENT WITH COPYING COST (α > 0)
In this section we consider the more involved case where

each packet admitted to the buffer incurs copying cost α. For
this model, it is preferable to perform as few preemptions
as possible, since preemptions increase the costs, but do not
contribute to the overall throughput. We recall that the overall
performance of an algorithm in this model is defined as the
algorithm’s throughput, from which we subtract the overall
copying cost incurred due to admitting distinct packets to the
buffer.

A. Characterization of the Optimal Algorithm
We first note that if we consider algorithm PQ1 described

in the previous section, which is optimal for the case where
α = 0, we are guaranteed to have it produce the maximum
throughput possible given the arrival sequence. If we further
consider a slightly distorted model where PQ1 is allowed to
“pay” its copying cost only upon the successful delivery of
a packet, we essentially obtain an optimal solution also for
cases where α > 0, because in that case PQ1 never pays a
useless cost of α for a packet that it ends up dropping . This
is formalized in the following theorem:

Theorem 6. PQ1 that pays the copying cost only for trans-
mitted packets is optimal for the (B,PQ,α,C)-architecture,
for any α ∈ [0, 1).

The theorem can also be seen with a different perspective.
Intuitively, a PQ1 scheduler that would know in advance
what packets are winners and would only accept those would
be optimal. More formally, combining PQ1 with a buffer
admission control policy that would only accept the packets
that ultimately depart using a given optimum scheduling policy
can reach optimality.

B. Optimizing Priority Queuing
Given a copying cost α < 1, we will define a value

β = β(α) ≥ 1 (the precise value of β will be derived from our
analysis below), which will be used in defining the preemption-
rule DECIDEIFPREEMPT(PQβ ,p), as specified in Algorithm 3.
The algorithm essentially preempts a packet q in favor of
a newly arrived packet p only if p has significantly fewer
required passes than q ’s originally required passes. We note
that that somewhat better performance can be obtained if one
considers the residual passes instead of the original passes,
however considering the original passes makes the analysis
simpler. We further note that had we used residual passes for
the preemption rule, the special case where β = 1 would
have coincided with algorithm PQ1 described in section III-B
(hence the subscript 1).

We now turn to analyze the performance of the algorithm
which uses PQβ-preemption. We first prove an upper bound
on the performance of the algorithm, for any value of β. We
can then optimize the value of β = β(α) so as to yield the
best possible upper bound.

6

Algorithm 3 DECIDEIFPREEMPT(PQβ ,p)

1: i← first packet in IBPQβt s.t. r(pi) = maxi′ {r(pi′)}
2: if r(p) < r(pi)

β then
3: drop pi and accept p
4: else
5: reject p
6: end if

q1 q2 · · · qi · · · q −̀1 q`

ψ(q1) = ψ(q2) ψ(q2) = ψ(q3) ψ(qi) = ψ(qi+1) ψ(q −̀1) = ψ(q`)
ψ(q`) = q`

qi1 qi2 · · · qin(qi)

φ(qi1) = qi

φ(qi2) = qi

φ(qin(qi)) = qi

at most β packets

in G

Fig. 2. Outline of mapping χ. Packet q1 is admitted to the buffer upon arrival
without preempting any packet, and henceforth packet qi preempts packet
qi−1. Mapping φ maps n(qi) ≤ β packets to qi, and mapping ψ maps all
` ≤ logβ k packets, q1, . . . , q`, to q` which is successfully delivered by G.
This gives an overall of O(β logβ k) packets in O \G mapped to any single
packet in G.

Theorem 7. PQβ is (
(β+1)(logβ k−1)(1−α)

1−α logβ k
+1)-competitive for

any (B,PQ,C, α)-system, where α < min
{

1, 1
logβ k

}
.

In the remainder of this section, we will focus on the proof
of Theorem 7. Being rather technical, we provide here only
a high-level description of the proof, whereas the full proof
can be found in [9]. We will denote by G the set of packets
successfully delivered by PQβ , and by O be the set of packets
successfully delivered by some optimal solution OPT. Consider
a partition of the set of packets O \ G = A1 ∪ A2, such that
A1 is the set of packets dropped by PQβ upon arrival, and
A2 is the remaining set of packets, consisting of packets that
were originally accepted, but at some point were preempted by
more favorable packets. It follows that O = A1∪A2∪(G∩O).

Our analysis will be based on describing a mapping of
packets in O to packets in G, such that every packet in G
piggybacks a bounded number of packets of O. Our mapping
will be devised in several steps.

First, we define a mapping φ : A1 7→ A2 ∪G such that for
every p ∈ A2 ∪ G,

∣∣φ−1(p)
∣∣ ≤ β, i.e., there are at most β

packets from A1 mapped to any single packet in p ∈ A2 ∪G
by φ. We then define a mapping ψ : A2∪G 7→ G such that for
every p ∈ G,

∣∣ψ−1(p)
∣∣ ≤ logβ k, i.e., there are at most logβ k

packets from A2 ∪ G mapped to any single packet in p ∈ G
by ψ. By composing these two mappings we obtain a mapping
χ : O\G 7→ G such that for every p ∈ G,

∣∣χ−1(p)
∣∣ ≤ β logβ k,

i.e., there are at most β logβ k packets from O \G mapped to
any single packet in p ∈ G by χ. Figure 2 gives an outline of
the resulting mapping χ.

It is important to note that this mapping is done in hindsight,

as part of the analysis, and is not part of the algorithm’s
definition. We can therefore assume that for our analysis,
we know for every packet arrival which algorithm(s) would
eventually successfully deliver this packet.

C. The Basic Mapping φ

Our goal in this section is to define a mapping φ : A1 7→
A2 ∪ G such that for every p ∈ A2 ∪ G,

∣∣φ−1(p)
∣∣ ≤ β, i.e.,

there are at most β packets from A1 mapped to any single
packet in p ∈ A2 ∪G by φ. For every time t, we will denote
the ordered set of packets residing in the buffer of PQβ at t
by pt1, p

t
2, and so on. Recall that since the buffer size is at most

B, such a sequence is of length at most B. For clarity, we will
sometimes abuse notation and omit the superscript t, when
it is clear from the context. We will further define the load
of pi at t by nt(pi) =

∣∣φ−1(pi)
∣∣, i.e. the number of packets

currently mapped to packet pi. In order to avoid ambiguity as
for the reference time, t should be interpreted as the arrival
time of a single packet. If more than one packet arrive in a
time slot, these notations should be considered for every packet
independently, in the sequence in which they arrive (although
they might share the same time slot).

The mapping will be dynamically updated at each packet
arrival as follows: Assume packet p arrives at time t. We
distinguish between 3 cases:

1) If p ∈ A2, or if it is not in both O and G (i.e., neither PQβ
nor OPT delivers them successfully), then the mapping
remains unchanged.

2) If p ∈ A1, and it is assigned to buffer slot j in the buffer
of O upon arrival, perform an (O, j)-mapping-shift (see
detailed description below).

3) If p ∈ G, and it is assigned to buffer slot i in the buffer of
G upon arrival (i.e., after its acceptance to the buffer we
have pi = p), perform a (G, i)-mapping-shift (see detailed
description below).

In order to finalize the description of φ, it remains to explain
the notion of mapping-shifts. An (O, j)-mapping-shift begins
by finding the minimal index i of a packet in the buffer of G
with load at most β (i.e., nt(pi) < β) and defines φ(p) = pi
(we will show in Lemma 8 that this mapping is well defined
and there always exists such an i). The next step of the (O, j)-
mapping-shift is to adjust the mapping such that the set of
packets mapped to any pi is a subset of a contiguous block
of slots in the buffer of O, and the size of any such set
is at the maximal possible size subject to being at most β.
See Figure 3(b) for an example of an (O, j)-mapping-shift. A
(G, i)-mapping-shift is simpler and works as follows: for any
non-empty buffer-slot j > i, remap any packets mapped to pj ,
to pj−1, in sequence, starting from j = i+1. Figure 3(a) gives
an example of a (G, i)-mapping-shift.

The following lemma provides the essential properties of
mapping φ.

Lemma 8. Mapping φ is well defined, and at any time t and
for every pti ∈ IB

PQβ
t ,

∣∣φ−1(pti)
∣∣ ≤ β.

7

φ before G accepts p

O G

p1

p2

p3

p4

p5

p6

p

complete the (G, i)-mapping-shift

O G

p1

p2

p=p3

p4

p5

p6

p7

p inserted to buffer slot 3

O G

p1

p2

p

p3

p4

p5

p6

(a) (G, i)-mapping-shift (p is admitted by G to slot i = 3)

φ before O accepts q

O

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q

G

p1

p2

p3

p4

p5

p6

q inserted to buffer slot 5
and mapped to p4

O

q1

q2

q3

q4

q

q5

q6

q7

q8

q9

q10

G

p1

p2

p3

p4

p5

p6

complete the (O, j)-mapping-shift

O

q1

q2

q3

q4

q=q5

q6

q7

q8

q9

q10

q11

G

p1

p2

p3

p4

p5

p6

(b) (O, j)-mapping-shift (q ∈ A1 is admitted by O to slot j = 5)

Fig. 3. Outline of mapping-shifts. The new packet is inserted into the corresponding buffer slot, and the mapping is shifted accordingly. Cyan packets are
packets that are in A2 ∪ (O ∩G), and mapped white packets are in A1. In both examples β = 2.

D. The Mapping ψ

In this section we define a mapping ψ : A2 ∩G 7→ G such
that for every p ∈ G,

∣∣ψ−1(p)
∣∣ ≤ logβ k, i.e., there are at most

logβ k packets from A2 ∩ G mapped to any single packet in
p ∈ G by ψ.

The mapping essentially follows a preemption sequence of
packets, up to a packet that is successfully delivered by G.
Formally, it is defined by backward recursion as follows: if
p ∈ G, then ψ(p) = p. Otherwise p ∈ A2 is preempted in
favor of some packet q ∈ A2 ∪G, such that r(p) > βr(q), in
which case we define ψ(p) = ψ(q). The essential property of
ψ is given in the following lemma (proof omitted due to space
constraints).

Lemma 9. For every p ∈ G,
∣∣ψ−1(p)

∣∣ ≤ logβ k.

E. Putting it All Together

By composing the mappings φ and ψ we obtain a mapping
χ : A1 ∩ A2 7→ G such that for every p ∈ G,

∣∣χ−1(p)
∣∣ ≤

β logβ k + (logβ k − 1) = (β + 1) logβ k − 1. This follows
from the fact that every packet along the preemption sequence
piggybacks at most β packets by φ, and one should also
take into account all the packets in the preemption sequence
itself which are accounted for by ψ (save the last one, which
is successfully delivered by G). Again, see Figure 2 for an
illustration of the mapping χ.

We can now turn to finalize the proof of Theorem 7.
Assuming α < 1

logβ k
, one can see that the overall payments

made by the algorithm in any preemption sequence sum to at
most α logβ k < 1 (since payment is made only for packets in
A2∪G), and hence they do not exceed the unit profit obtained
by delivering the last packet in the sequence. It therefore
follows that

w(O)
w(G) ≤ w(O\G)

w(G) + w(G)
w(G)

≤ maxp∈G|χ−1(p)||G|(1−α)
· |G| · (1− α logβ k) + 1

≤ (β+1)(logβ k−1)(1−α)
1−α logβ k

+ 1,

which completes the proof of of the theorem.

Before we turn to describe our simulation setting and results,
it would be instructive to discuss some of the consequences of
Theorem 7. By optimizing the value of β one can obtain the
minimum value for the competitive ratio (depending on the
value of α). Table I gives an illustration of the optimal values
of β and the competitive ratio they imply for k = 10.

α 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
β 3.89 4.23 4.62 5.05 5.54 6.08 6.70 7.40

CR 7.96 8.75 9.63 10.62 11.75 13.01 14.44 16.05

TABLE I
OPTIMAL VALUES OF β , AND THE IMPLIED COMPETITIVE RATIO (CR), AS

GIVEN BY THEOREM 7, FOR k = 10.

V. SIMULATION STUDY

In this section we compare the performance of the family
of algorithms PQβ for various values of β (defined in Sec-
tion IV), as well as algorithms PQ1 and FIFO1 (defined in
Section III-B), and the non-preemptive algorithm that uses PQ
(defined in Section III-A), which we dub PQ∞ (this notation
is used to maintain consistency with our notation of PQβ).

When considering the family of algorithms PQβ , we con-
sider several values for β, and do not restrict ourselves to
the optimal values implied by our analysis. The reason for
this is that our analysis is targeted at bounding the worst case
performance, and it is instructive to evaluate the performance
of the algorithms using different values of β for simulated
traffic that is not necessarily worst-case.

Our traffic is generated using an ON-OFF Markov modu-
lated Poisson process (MMPP), which is targeted at producing
bursty traffic. The choice of parameters is governed by the
average arrival load, which is determined by the product of the
average packet arrival rate and the average number of passes
required by packets. For a choice of parameters yielding an
average packet arrival rate of λ, where every packet has its
required number of passes chosen uniformly at random within
the range [1, k], we obtain an average arrival load (in terms of
required passes) of λ · k+1

2 .
Figures 4 and 5 provide the results of our simulations.

The Y -axis in all figures represents the ratio between the

8

algorithms’ performance and the optimal performance possi-
ble given the arrival sequence. For the case where α = 0
the optimal performance is obtained by PQ1 (as proved in
Theorem 3), whereas for α > 0 the optimal performance is
obtained by the algorithm that incurs the copying cost only
upon transmission (as proved in Theorem 6).

We conduct two sets of simulations; one targeted at a better
understanding of the dependence on the number of recycles,
and the other targeted at evaluating the power of having
multiple cores. We note that the standard deviation throughout
our simulation study never exceeds 0.05 (deviation bars are
omitted from the figures for readability).

A. Variable Maximum Number of Required Passes

In the first set of simulations we set the average arrival
rate to be λ = 0.3. By performing simulations for variable
values of the maximum number of required passes k in the
range [4, 24], we essentially evaluate the performance of our
algorithms in settings ranging from underload (average arrival
load of 0.75) to extreme overload (average arrival load of 3.75),
which enables validating the performance of our algorithms in
various traffic scenarios. For every choice of parameters, we
conducted 20 rounds of simulation, where each round consisted
of simulating the arrival of 1000 packets. Throughout our
simulations we used a buffer of size B = 20, and restricted
our attention to the single-core case, i.e., C = 1.

For α = 0, Figure 4(a) shows that the performance of PQβ
degrades as β increases. This behavior is of course expected,
since the optimal performance is known to be obtained by
algorithm PQ1 which preempts whenever some gain can be
obtained. The non-preemptive algorithm (PQ∞) has poor per-
formance, and the performance of FIFO1 lays in between the
performance of the algorithms PQβ and the non-preemptive
algorithm. When further considering the performance of the
algorithms for increasing values of α, in Figures 4(a)-4(c),
and most notably in Figure 4(c), an interesting phenomenon
is exhibited: the performance of all algorithms (especially
FIFO1) degrades substantially, save the performance of the
non-preemptive algorithm which is maintained essentially un-
altered.

One of the most interesting aspects arising from our sim-
ulation results is the fact that they seem to imply that our
worst-case analysis has been beneficial in designing algorithms
that work well also on average. This can be seen especially
by comparing Figures 4(b) and 4(c): the results show that
when α changes, the value of β for which PQβ performs
best also changes (specifically, compare PQ1.5 and PQ2). This
change is in accordance with the value of β that optimizes the
competitive ratio, which is a worst-case bound derived from
our analysis (see, e.g., the optimal values of β appearing in
Table I for k = 10).

B. Variable Number of Cores

In this set of simulations we evaluated the performance of
our algorithms for variable values of C in the range [1, 25].
For each choice of parameters, we conducted 20 rounds of

simulation, where each round consisted of simulating the
arrival of 1000 packets. Throughout our simulations we used
a buffer of size B = 20, and used k = 16 as the maximum
number of passes required by any packet.

Figure 5(a) presents the results for a constant traffic arrival
rate of λ = 3. Not surprisingly, the performance of all algo-
rithms improves drastically as the number of cores increases.
The increase in the number of cores essentially provides the
network processor with a speedup proportional to the number
of cores (assuming the average arrival rate remains constant).

We further evaluate the performance of our algorithms for
increasing number of cores, while simultaneously increasing
the average arrival rate (set to λ = 0.3 · C, for each value of
C), such that the ratio between the speedup and the arrival
rate remains constant. The results of this set of simulations is
presented in Figures 5(b) and and 5(c), for α = 0 and α = 0.4,
respectively. Contrarily to what may have been expected, the
performance of some of the algorithms is not monotonically
non-decreasing as the number of cores increases. Furthermore,
the performance of some of the algorithms, and especially
the non-preemptive algorithm PQ∞, decreases drastically as
the number of cores increases (up to a certain point), when
compared to the optimal performance possible. Only once
the number of cores is sufficiently large (which occurs when
C ≥ 14), do all algorithms exhibit a steady improvement in
performance as the number of cores further increases. This
is due to the fact that for such a large number of cores,
almost all packets in the buffer are scheduled in every time
slot (recall that the buffer used in our simulations has a
size of B = 20). It is interesting to note that this behavior
trend is independent of the value of α for both FIFO1

and PQ∞. These results provide further motivation, beyond
the worst-case lower bounds presented in Section III-A, for
adopting preemptive buffer management policies in multi-core,
multipass NPs, and shows the vulnerability of architectures
based on FIFO buffers.

VI. DISCUSSION

The increasingly-heterogeneous packet-processing needs of
NP traffic are posing design challenges to NP architects. In
this paper we provide performance guarantees for various
algorithms within the multipass NP architecture, and further
validate these results by simulations.

Our results can be extended in several directions to reflect
current NP constraints. Our work which focuses on unit-
sized packets and homogeneous PPEs can be considered as
a first step towards solutions which more generally deal with
variable packet sizes and heterogeneous PPEs. In addition, it
would be interesting to study non-greedy algorithms which
are equipped with an admission control mechanism that aim
at maximizing the guaranteed NP throughput. Last, it would be
interesting to see the impact of moving the computation of the
number of passes needed for each packet from the entrance
of the NP to one of the PPEs during the first pass. This is
especially interesting because the first pass often corresponds

9

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 12 16 20 24

Tr
an

sm
it

te
d

 v
al

u
e

 v
e

rs
u

s
o

p
ti

m
al

Maximal number of recycles

(a) α = 0

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 12 16 20 24

Tr
an

sm
it

te
d

 v
al

u
e

 v
e

rs
u

s
o

p
ti

m
al

Maximal number of recycles

(b) α = 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 12 16 20 24

Tr
an

sm
it

te
d

 v
al

u
e

 v
e

rs
u

s
o

p
ti

m
al

Maximal number of recycles

(c) α = 0.4

Fig. 4. Performance ratio of online algorithms versus optimal for different values of α, as a function of the maximum number of passes k required by a
packet k. The results presented are for a single core (i.e., C = 1). The average arrival rate of the simulated traffic for each value of k is fixed to 0.3 (packets
per time slot).

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

Tr
an

sm
it

te
d

 v
al

u
e

 v
e

rs
u

s
o

p
ti

m
al

Number of PPEs

(a) constant rate λ = 0.3 (α = 0.4, k = 16)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21

Tr
an

sm
it

te
d

 v
al

u
e

 v
e

rs
u

s
o

p
ti

m
al

Number of PPEs

(b) α = 0 (λ = 0.3 · C, k = 16)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21

Tr
an

sm
it

te
d

 v
al

u
e

 v
e

rs
u

s
o

p
ti

m
al

Number of PPEs

(c) α = 0.4 (λ = 0.3 · C, k = 16)

Fig. 5. Performance ratio of online algorithms versus optimal for different values of α, as a function of the number of cores C. In Figure 5(a) the arrival
rate is kept constant at λ = 0.3, regardless of the number of cores C. In all other figures the average arrival rate of the simulated traffic for each value of C
is proportional to the number of cores (set to λ = 0.3 · C).

to processing features that lead to the early dropping of
packets, such as ACL.

REFERENCES

[1] W. Aiello, R. Ostrovsky, E. Kushilevitz and A. Rosen. Dynamic routing
on networks with fixed-size buffers. SODA, pp. 771–780, 2003.

[2] S. Albers and T. Jacobs. An experimental study of new and known
online packet buffering algorithms. ESA, pp. 754–765, 2007.

[3] N. Bansal, H. Chan, and K. Pruhs. Speed scaling with an arbitrary
power function. SODA, pp. 693-701, 2009.

[4] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[5] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs.
On-line weighted flow time and deadline scheduling. J. Discrete
Algorithms, 4(3):339–352, 2006.

[6] C. Chan and N. Bambos. Throughput loss in task scheduling due
to server state uncertainty. International Conference On Performance
Evaluation Methodologies And Tools, 2009.

[7] E. L. Hahne, A. Kesselman, and Y. Mansour. Competitive buffer
management for shared-memory switches. SPAA, pp. 53–58, 2001.

[8] X. Huang and T. Wolf, Evaluating dynamic task mapping in network
processor runtime systems. TPDS, 19(8):1086–1098, 2008.

[9] I. Keslassy, K. Kogan, G. Scalosub, M. Segal, Providing Performance
Guarantees in Multipass Network Processors. Technical Report TR10-
02, Comnet, Technion, Israel. [Online] http://www.ee.technion.ac.il/
∼isaac/p/tr10-02 multipass.pdf

[10] A. Kesselman, Z. Lotker, Y. Mansour, and B. Patt-Shamir. Buffer
overflows of merging streams. ESA, pp. 349–360, 2003.

[11] A. Kesselman and Y. Mansour. Harmonic buffer management policy
for shared memory switches. TCS, 324(2-3):161–182, 2004.

[12] A. Kesselman, Z. Lotker, B. Patt-Shamir. Y. Mansour, B. Schieber, and
M. Sviridenko. Buffer overflow management in QoS switches. SIAM
Journal on Computing, 33(3):563–583, 2004.

[13] S. Leonardi , D. Raz. Approximating total flow time on parallel
machines. STOC, pp.110-119, 1997.

[14] R. Motwani , S. Phillips , E. Torng. Nonclairvoyant scheduling. TCS,
130(1):17-47, 1994.

[15] J. Mudigonda, H.M. Vin, R. Yavatkar. A case for data caching in
network processors. Unpublished manuscript.

[16] S. Muthukrishnan , R. Rajaraman , A. Shaheen , J. Gehrke. Online
Scheduling to Minimize Average Stretch. FOCS, pp. 433–442, 1999.

[17] K. Pruhs. Competitive online scheduling for server systems. SIGMET-
RICS, 34(4):52–58, 2007.

[18] T. Sherwood, G. Varghese, and B. Calder, A pipelined memory
architecture for high throughput network processors. ISCA, pp. 288–
299, 2003.

[19] C. Wiseman, et al. Remotely Accessible Network Processor-Based
Router for Network Experimentation. ANCS, pp. 20–29, 2008.

[20] N. Weng and T. Wolf, Analytic modeling of network processors for
parallel workload mapping. TECS, 8(3):1–29, 2009.

[21] T. Wolf, P. Pappu, and M. A. Franklin, Predictive scheduling of network
processors. Computer Networks, 41(5):601–621, 2003.

[22] D. Sleator and R. Tarjan, “Amortized efficiency of list update and
paging rules,” Commun. ACM, 28(2):202–208, 1985.

[23] Cavium, OCTEON II CN68XX Multi-Core MIPS64 Processors,
Product Brief, 2010. [Online] http://www.caviumnetworks.com/
OCTEON-II CN68XX.html

[24] Xelerated, X11 Family of Network Processors, Product Brief, 2010.
[Online] http://www.xelerated.com/Uploads/Files/67.pdf

[25] EZChip, NP-4 Network Processor, Product Brief, 2010. [Online] http:
//www.ezchip.com/p np4.htm

[26] Cisco, The Cisco QuantumFlow Processor, Product Brief, 2010.
[Online] http://www.cisco.com/en/US/prod/collateral/routers/ps9343/
solution overview c22-448936.html

[27] Juniper, Junos Trio, White Paper, 2009. [Online] http://www.juniper.
net/us/en/local/pdf/whitepapers/2000331-en.pdf

