
Coordination of Mobile Mules via Facility Location
Strategies

Danny Hermelin, Michael Segal, and Harel Yedidsion

Ben-Gurion University of the Negev, Beer-Sheva, Israel,
hermelin, segal, yedidsio @bgu.ac.il

Abstract. In this paper, we study the problem of wireless sensor network (WSN)
maintenance using mobile entities called mules. The mules are deployed in the
area of the WSN in such a way that would minimize the time it takes them to reach
a failed sensor and fix it. The mules must constantly optimize their collective
deployment to account for occupied mules.
The objective is to define the optimal deployment and task allocation strategy for
the mules, so that the sensors’ downtime and the mules’ traveling distance are
minimized.
Our solutions are inspired by research in the field of computational geometry and
the design of our algorithms is based on state of the art approximation algorithms
for the classical problem of facility location.
Our empirical results demonstrate how cooperation enhances the team’s perfor-
mance, and indicate that a combination of k-Median based deployment with
closest-available task allocation provides the best results in terms of minimiz-
ing the sensors’ downtime but is inefficient in terms of the mules’ travel distance.
A k-Centroid based deployment produces good results in both criteria.

1 Introduction

Wireless Sensor Networks (WSN) have recently become a prevalent technology used in
a wide range of environmental monitoring applications such as temperature, pollution
and wildlife monitoring. Typically a WSN is composed of a large number of sensor
nodes (n) coupled with short range radio transceivers. The sensors transfer their sensed
data to a central hub via multi-hop communication. A communication tree is formed
based on physical proximity and must be maintained through technical failures such as
battery drainage or memory overload. The root of such a tree is usually a special node
having significant power and communication abilities (for example, it is able to send an
alert message to the control center which is far away from the actual sensors’ location).
In case some sensor in the communication tree fails, it not only stops monitoring its
environment but, it might also disconnect the communication from other parts of the
network.

We study the use of mobile agents called mules which have the ability to reach
failed nodes, fix them and temporarily replace their role in the task of data collection
and transfer. The mules are used to maintain and improve the networks resiliency and
reliability.

We aim to optimize the mules’ deployment and to design the cooperation protocol
between them as to minimize the duration of failures and the mules’ travel distance.
The decision on which exact objective function to measure involves some conflicting
considerations.

By limiting the maximal downtime that any sensor may experience we can make
sure that there is no loss of data for longer than a certain period of time. This guarantee
is important for WSNs where data is sensed or transmitted periodically. On the other
hand, minimizing the average downtime minimizes data loss in WSNs where sensors
constantly sense and transmit data.

As for the mules’ movement, since the mules are battery operated, it is important to
limit the maximal movement by any mule to prevent its total battery depletion. Nonethe-
less, minimizing the mules’ average travel distance would extend the total lifetime of
the team as a whole and would enable them to fix more failures. As a consequence, we
try to minimize both objectives (i.e., downtime and movement) under the two criteria
(i.e., average and max) while focusing on minimizing the average downtime.

We propose algorithms that differ in their positioning methods and their suggested
level of cooperation between mules. The contribution of our work lies in the novel use
of known facility location approximation algorithms for solving the mule team problem.

Definition 1 The k-Center problem is defined as follows. Given a set of n points S and
an integer k, find a set S′ of k points for which the largest euclidean distance of any
point in S to its closest point in S′ is minimum.

Definition 2 The k-Median problem is defined as follows. Given set of n points S and
an integer k, find a set S′ of k points for which the sum of euclidean distances of any
point in S to its closest point in S′ is minimum.

Definition 3 The centroid of a set of points S is the arithmetic mean of their coordi-
nates.

Definition 4 A Voronoi diagram is a partitioning of a plane into regions based on dis-
tance to a given set of points S. For each point in S there is a corresponding region
consisting of all points in the plane closer to that point than to any other point in S.
These regions are called Voronoi cells.

1.1 Related Work

Coordinating a team of mobile agents to perform tasks in a dynamic environment is
a fundamental problem in AI that has received much attention from researchers [29,
9, 32]. Some of the popular methods that have been used to tackle this problem in-
clude: game theory [30, 11], machine learning [2, 33], multi-agent path planning and
scheduling [8, 24], distributed constraint optimization [6, 34], economic market based
approaches and auctions [15, 20], virtual potential fields [25] and probabilistic swarm
behavior [16].

We aim to further contribute to the study of multi-agent coordination by investigat-
ing the integration of known facility location techniques into the design of the algo-
rithms which are meant to solve the mule team problem.

The term MULE (Mobile Ubiquitous LAN Extensions) was coined in [28] to refer
to mobile agents capable of short-range wireless communication that can exchange data
with a nearby sensor.1 In the field of WSN, mobile elements have been proposed to im-
prove maintenance, data collection, connectivity and energy efficiency [7]. Crowcroft
et al. [5] define the (α, β)-Mule problem, where α is the number of simultaneous node
failures and β is the number of traveling mules. Unlike our work where the topology of
the network is given, their aim is to define the topology of the network in order to mini-
mize the mules’ tours. In [17], Levin et al. study the tradeoff between the mules’ travel-
ing distance and the amount of information uncertainty caused by not visiting a subset
of nodes by the mules. The authors of [27] utilize autonomous mobile base stations
(MBSs) to automatically construct new routes to recover disconnected infrastructure,
while in [1] mobile backbone nodes (MBNs) are controlled in order to maintain net-
work connectivity while minimizing the number of MBNs that are actually deployed.
In [31], the k-Traveling Salesman Problem (TSP) approach is used to plan the data col-
lection routs of k mules. TSP with neighborhood was applied for the same purpose in
[14].

The k-Server problem proposed by [18] and researched by many others is closely
related to our problem. However, the major difference is that the objective of the k-
Server problem is to minimize the total traveling distance of the servers while in our
problem this is a secondary objective. Our main interest is finding an optimal deploy-
ment scheme for the mules as to minimize the downtime of failed sensors. Another
similar strand of work relates to the ambulance redeployment problem [19]. The dif-
ferences from our model are that in [19], the set of deployment bases is finite and in
addition to reaching the demand point, ambulances later need to reach a nearby hospi-
tal. The redeployment decision is done only for the ambulance that finished its task in
the hospital and has to decide whether to return to its initial base or to another.

The static version of a single iteration of our problem relates to the k-Center and
k-Median problems (see Definitions 1 and 2 respectively). Since both of these problems
are NP-Hard, we integrate into our algorithms known greedy heuristics for these prob-
lems that guarantee some approximation ratio of the optimal solution. These solutions
run in polynomial time and thus are suited for practical applications that require quick
responses. Specifically, Gonzalez [10] proposed the Farthest-First (FF) algorithm that
provides a 2-approximation for the k-Center problem in O(n) time. In [4] it is shown
that the reverse greedy algorithm (RGreedy) guarantees at most an approximation ratio
of O(log n) in O(n2 log n) time for the k-Median problem.

1.2 Problem Definition

Formally, the mule team problem is defined as follows: V is the set of n wireless sensor
nodes embedded in the Euclidean plane. Let M be a set of m mobile agents (mules)
that can travel anywhere in the plain and fix sensors that experience technical failures.
The sensors are subject to a set of failures F . Each failure occurs at a certain node, at a
certain time and has a predefined failure duration Fd, which is the time it takes to fix a
node from the moment a mule has reached it. The term ”downtime” of a node v, denoted

1 We use the term mules and agents interchangeably.

vd, refers to the time from when v failed until a mule reaches it. Mulem’s travel distance
is denoted mt The mules are immediately aware of any failure and can communicate
with each other. Once a mule is engaged in fixing a failed node v, experiencing failure
f , it is unable to attend to any other tasks for the time it takes to travel to v plus f ’s
specified fail duration, fd. It is assumed that the time to fix a failure is greater than the
average time between consecutive failures and much greater than the average time it
takes a mule to move to a failure.

The goal is to find a continuous deployment strategy and a cooperation method for
the mules, which minimize two opposing objectives. The primary objective is to mini-
mize the nodes’ downtime and the secondary objective is to minimize the mules’ travel-
ing distance. These objectives are measured according to two criteria, namely average
and max, while our focus is on the average criterion, we also monitor the max crite-
rion. There exists a trade-off between these two objectives since minimizing downtime
requires the mules to redeploy after every failure thus increasing their travel distance.
The challenge is to design an algorithm that would produce the best results on both
objectives and according to both criteria.

The first objective is to minimize the nodes’ average downtime and is formalized
as: min(

∑
v∈V vd/|V |). The second objective is to minimize the mules’ average travel

distance: min(
∑

m∈M mt/|M |). The same objectives under the max criterion are: min-
imizing the nodes’ maximal downtime, min(maxv∈V vd), and minimizing the mules’
maximal traveling distance, min(maxm∈M mt).

2 Algorithms

2.1 Facility Location Strategies

The facility location problem is a well studied problem in computer science and opera-
tions research [26]. It has many variations which primarily deal with optimally placing
k facilities to service n given cities. Two classical variants of this problem which are
closely related to our problem are the k-Center and k-Median problems, both proven
NP-hard problems [12, 13]. Consequently, there is a significant body of work that deals
with approximation algorithms for these problems.

An optimal solution to the k-Center problem minimizes the maximal distance of
any city to its closest facility and thus, any algorithm that provides a good solution for
this problem can be useful in the design of an algorithm that would minimize the mules’
maximal movement and the sensors’ maximal downtime in the mule team problem.

The FF algorithm proposed in [10] provides a 2-approximation for the k-Center
problem in O(n) time. The algorithm greedily selects k points in the following way.
The first point is selected arbitrarily and each successive point is chosen out of the n
nodes as far as possible from the set of previously selected points.

An optimal solution to the k-Median problem minimizes the sum of distances of
all the cities from their closest facility and thus, any algorithm that provides a good
solution for this problem can be useful in the design of an algorithm that would min-
imize the mules’ average movement and the sensors’ average downtime in the mule
team problem.

The Reverse Greedy algorithm (RGreedy) proposed in [4] to solve the k-Median
problem, works as follows. It starts by placing facilities on all nodes. At each step, it
removes a facility to minimize the total distance to the remaining facilities. It stops
when k facilities remain. It runs in O(n2 log n) time.

Finally, in [21] it was proven that a centroid of a set of points P provides a 2-
approximation for the 1-median of P and a k-centroid provides a constant approxima-
tion for the k-Median problem. Table 1 summarizes these findings.

It should be mentioned that there are additional approaches to deal with variants of
k-Center and k-Median problems. So-called ε-nets [23] and Linear Programming re-
laxation [3] are just few examples. However, these approaches do not allow distributed
implementation which is essential to make our solutions feasible for real life deploy-
ments.

Name Reference Performance Bounds

FF Gonzalez 2-Apx. for k-Center

RGreedy Chrobak et al. logn-Apx. for k-Median

Centroid Milyeykovski et al. 2-Apx. for 1-Median

k-Centroid Milyeykovski et al. O(1)-Apx. for k-Median

Table 1: Summary of facility location approximation algorithms

2.2 Proposed Algorithms

The proposed algorithms differ in their approach to four main traits, i.e., the mules’
initial deployment, task allocation, continuous redeployment and cooperation methods.
Each trait can be implemented in several ways.

1. The mules’ initial deployment:
– Grid - The mules are uniformly distributed in the area of the nodes.
– Farthest-First - The mules are deployed according to the FF algorithm which

approximates the k-Center problem.
– Reverse-Greedy - The mules are deployed according to the RGreedy algorithm

which approximates the k-Median problem.
– Centroid-Adjustment - Each of the above methods can be combined with an ad-

ditional repositioning stage of centroid adjustment where each mule moves to
the centroid position of its closest nodes. This process is performed iteratively
until convergence.

2. The mules’ cooperation method:
– No cooperation - Each mule is in charge of the nodes in its Voronoi cell ac-

cording to the initial deployment. This allocation is static and does not change
as the mules move.

– Cooperation - Here there is no strict node-to-mule allocation and every mule
can fix any node even if it lies in another mule’s Voronoi cell.

3. The mules’ task allocation strategy (Only applicable for cooperative algorithms):

– Closest - Send the closest mule to each failure thus minimizing average travel
distance.

– Closest-Available - Send the closest available mule thus minimizing downtime.
– Closest-Least Traveled - Send the closest mule whose total travel distance after

tending to the current failure is the lowest, thus minimizing the maximal travel
distance.

4. The mules’ redeployment:
– No redeployment - This case has two options, either the mule that moves sim-

ply stays in its new position to minimize travel distance or it returns to its initial
position to return to a deployments that was calculated to offer good reaction
times and minimize downtime.

– Farthest-First - The available mules are redeployed according to the FF al-
gorithm and the occupied mules are disregarded. After recalculating the new
positions, the closest mule is sent to every new location as to minimize their
traveling distance during redeployment.

– Reverse-Greedy - The mules are redeployed according to the RGreedy algo-
rithm yet only (k − b) medians are calculated out of (n − b) node locations
where b is the number of busy, occupied mules. Occupied mules and nodes that
are being fixed are disregarded in the RGreedy calculation. After recalculating
the new positions, the closest mule is sent to every new location as to minimize
their traveling distance during redeployment.

– Centroid-Adjustment - Unoccupied mules perform centroid adjustment by mov-
ing to the centroid position of their closest nodes while disregarding occupied
mules.

The redeployment stage poses another interesting problem of mule’s reassignment,
i.e. which mule to assign to which location as to minimize the total traveling distance
of mules. This problem is similar to the Minimum Weight Bipartite Matching Problem
which can be solved optimally in O(n3) time, where n is the number of assignments,
using the Hungarian Algorithm, [22]. We implemented this algorithm to determine the
assignments of mules to new locations of the redeployment.

The different combinations of traits produce a large number of possible algorithms.
Although we tested many algorithms in a wide variety of settings we limit our anal-
ysis to the few algorithms that yielded the best results and in addition, provide clear
insights on the performance of the facility location techniques. Here are the proposed
algorithms:

– Basic Grid Algorithm - This algorithm is designed to be a baseline algorithm
to which we will compare the others. In our preliminary testing it provided the
best results out of the algorithms that do not perform any redeployment. It uses
uniform grid placement for the initial mules’ deployment. The closest-available
mule is assigned to a failure. No redeployment is performed.

– No Cooperation Algorithm - This algorithm is designed to compare the perfor-
mance of the non-cooperative approach to the cooperative one. It uses uniform grid
placement for the initial mules’ deployment. Each mule is assigned the nodes in its
Voronoi cell. This assignment is constant and there is no cooperation. This means

that if a failure occurs in a Voronoi cell of an occupied mule, none of its neighbors
would help out even if they are available. No redeployment is performed.

– k-Center Algorithm - This algorithm uses FF for the initial mules’ deployment
and for their redeployment. Mules cooperate and the closest-available allocation is
used.

– k-Median Algorithm - This algorithm uses RGreedy for the initial mules’ de-
ployment and for their redeployment. Mules cooperate and the closest-available
allocation is used.

– k-Centroid Algorithm - The initial deployment is done using FF but is immedi-
ately followed by a procedure called centroid-adjustment, where each mule moves
to the centroid of the nodes in its Voronoi cell. Centroid-adjustment is also used to
redeploy the mules after every movement. Here too, the closest-available mule is
sent to any failure.

– Local Search Algorithm - While approximation algorithms can provide certain
theoretical guarantees, there is no guarantee that they perform as good as local
search methods in practice. For this reason we also implemented a local search
algorithm to evaluate the overall performance of our proposed algorithms which
are based on approximation algorithms.
One of the difficulties in applying local search is the fact that the number of steps
to reach a local optimum could be exponential. Since we are dealing with low poly-
nomial time solutions, it would not be fair to compare between both approaches.
We deal with this issue is by using a limited time frame for search and an anytime
mechanism for maintaining the best achieved state during the search process. The
mules’ deployment strives to achieve the k-Median criterion. The search process is
performed in a distributed concurrent manner as each agent incrementally moves to
a nearby position that minimizes the sum of distances from it to the nodes closest
to it. The number of iterations is limited to a constant, the number of nodes n, or
until convergence thus maintaining O(n) runtime. Here too, the closest-available
mule is sent to any failure.

3 Experimental Evaluation

In order to compare the performance of the different algorithms, we developed a soft-
ware simulator, representing a WSN with failures and a team of mobile mules. The area
of the simulated problem is an X over Y plane. Any number of nodes (N), and mules
(M) can be positioned in the area. Within the total duration of the experiment (Et), we
can randomly induce any number of failures (F) on the nodes either in uniform or in
non-uniform distribution. The nodes which fail are randomly chosen from N and the
start time of each failure is randomly chosen from (0, Et). For each experimental set-
ting we test several values of failure durations (Fd), which is the time it takes to fix a
failure from the time a mule has reached it.

In each experiment the specific values for N,M,Et, F, Fd are chosen differently to
demonstrate the algorithms’ behavior in different scenarios. We ran several tests to find
a combination of parameters that gives a good separation in the algorithms performance
and that adhere to natural assumptions of such a practical system. The parameter setting

in general follows these assumptions: N > M , and Failure duration � Average time
between failures � Average travel time to reach a failed node. Each reported result
represents an average of 50 random experiments. In each experiment the initial mule
locations, node locations, failure location and start times are randomly selected. We
used the same set of random seeds so that each algorithm is presented with the same
50 randomly generated problems. To analyze the statistical significance of the results,
we performed T-Tests to validate the difference between the algorithms’ performances.
We state verbally in the text whether the difference between the results are statistically
significant (i.e. p-value < 0.05) or not. For sake of readability, we refrain from adding
error bars to the figures.

In the following subsections we analyze specific representative cases.

3.1 Comparing Cooperative vs. Non-Cooperative Algorithms

In this subsection we analyze the differences between the performance of non-cooperative
algorithms where the node-to-mule assignment is static, to cooperative algorithms where
any mule can attend to any failure even if it is not the closest mule to this failure. To
this end we use the No-Cooperation algorithm to represent non cooperative behavior. It
uses grid initial deployment and static task allocation, the mules do not return to their
initial position as this strategy proved better than returning to the initial position on both
objectives.

The experimental setting included problems with 10 mules and 100 nodes that were
randomly deployed in a X = 100 over Y = 100 area. 100 failures were generated with
Fd = 0, 100, ..., 1000 and Et = 10000. Failure distribution is uniform i.e, each sensor
has the same probability of failing.

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

D
ow

nt
im

e

Failure Duration

Average Downtime Per Failure

Basic Grid

k-Center

k-Centroid

k-Median

Local Search

No Cooperation

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000

D
ow

nt
im

e

Failure Duration

Average Downtime Per Failure

Basic Grid

k-Center

k-Centroid

k-Median

Local Search

No Cooperation

Fig. 1: Comparing cooperative vs. non-
cooperative algorithms.

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

D
ow

nt
im

e

Failure Duration

Average Downtime Per Failure

Basic Grid

k-Center

k-Centroid

k-Median

Local Search

No Cooperation

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000

D
ow

nt
im

e

Failure Duration

Average Downtime Per Failure

Basic Grid

k-Center

k-Centroid

k-Median

Local Search

No Cooperation

Fig. 2: A closer look.
‘

Figures 1 and 2 present a comparison of the average downtime per failure between
cooperative and non-cooperative algorithms. It is evident that as failure durations in-
crease, the non-cooperative algorithm’s performance worsens. The k-Median algorithm
performs significantly better than all other algorithms.

3.2 Comparison of Cooperative Algorithms

This subsection presents a comparison between the three facility location inspired algo-
rithms (i.e., k-Center, k-Median, k-Centroid) and, following the conclusions derived in

the previous subsection, we do not compare them to a non cooperative algorithm but in-
stead to the best performing cooperative algorithm that does not use any redeployment
i.e., the Basic Grid algorithm, and to the Local Search algorithm.

The experimental setting uses the following parameter values: 10 mules, 100 nodes,
X = 100 over Y = 100 area, 10 failures with Fd = 0, 1000, ..., 10000 and Et =
10000. Failure distribution is uniform.

Average Downtime Per Failure

Uniform failure distribution

Experiment 4

Parameter Total
Time Grid Mules Nodes Failures Number of fail

durations
Failure duration

increment

Value 10000 10000 10 100 10 11 1000

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
ow

nt
im

e

Failure Duration

Average Downtime Per Failure

Basic Grid

k-Center

k-Centroid

k-Median

Local Search

Fig. 3: Average downtime per failure as
a factor of increasing failure durations.

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Tr
av

el
 D

is
ta

nc
e

Failure Duration

Average Traveled Distance Per Mule

Basic Grid

k-Center

k-Centroid

k-Median

Local Search

Fig. 4: Average distance per mule as a
factor of increasing failure durations.

‘
The results depicted in Figure 3 demonstrate the advantage of the k-Median and the

k-Centroid algorithms in terms of average downtime. The difference in the results of
the k-Median algorithm to the Local Search algorithm and to the Basic Grid algorithm
is statistically significant within 5%. The k-Center algorithm performs worse than the
Basic Grid algorithm.

Figure 4 presents a comparison between the algorithms in terms of the average dis-
tance traveled per mule. The results indicate that the k-Median and k-Center algorithms
cause significantly more movement than the other algorithms. This is due to the fact that
after every movement of a mule to a failure, a new deployment is calculated according
to the occupied mules. As a result, all the available mules move with every failure as op-
posed to the Basic Grid algorithm where only one mule moves. The centroid-adjustment
phase and local search create less movement since they only fine-tune the positions of
the mules and in most cases only the mules that are very close to the one that moved
are effected. In our experiments, usually after one or two rounds no mules move and
only the nearest neighbors are effected. The reason that we see almost 10 times more
movement in redeploying algorithms compared with the Basic Grid algorithm is due
to the fact that there are 10 mules in this experiment. Another interesting phenomena
is that as failure durations increase, the average movement in k-Median and k-Center
decreases since there are less un-occupied mules to reposition.

Figure 5 presents a comparison of algorithms in terms of the maximal downtime
experienced by any node. The results show an advantage of the k-Centroid algorithms
though the differences from it to the k-Median algorithm are not statistically significant
within 5%.

Figure 6 presents a comparison between the algorithms in terms of the maximal
distance traveled per mule. As in the average traveled distance, here too the results
indicate that the k-Median and k-Center algorithms cause significantly more movement
than the Basic Grid, Local Search and the k-Centroid algorithms.

Average Max Downtime Per Failure

Experiment 4

Parameter Total
Time Grid Mules Nodes Failures Number of fail

durations
Failure duration

increment

Value 10000 10000 10 100 10 11 1000

0

10

20

30

40

50

60

70

80

90

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
ow

nt
im

e

Failure Duration

Average Max Downtime Per Failure

Basic Grid

k-Center

k-Centroid

k-Median

Local Search

Fig. 5: Maximal downtime per failure
as a factor of increasing failure dura-
tions.

Average Max Movement Per Mule

Experiment 4

Parameter Total
Time Grid Mules Nodes Failures Number of fail

durations
Failure duration

increment

Value 10000 10000 10 100 10 11 1000

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
ow

nt
im

e

Failure Duration

Average Max Movement per Mule

Basic Grid

k-Center

k-Centroid

k-Median

Local Search

Fig. 6: Maximal traveled distance of all
the mules as a factor of increasing fail-
ure durations.

‘

3.3 Non Uniform Failure Distribution

In this case the failures were not generated randomly with equal probability of any node
failing. Instead, once a node fails, the probability of failures in its vicinity is increased.

Average Downtime Per Failure Non Uniform Distribution!

High probability in the same vicinity (setFailures1)

Experiment 4

Parameter Total
Time Grid Mules Nodes Failures Number of fail

durations
Failure duration

increment

Value 10000 10000 10 100 10 11 1000

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
ow

nt
im

e

Failure Duration

Average Downtime Per Failure

Basic Grid

k-Center

k-Centroid

k-Median

Local Search

Fig. 7: Average downtime with non-uniform failure distribution.

Figure 7 presents a comparison between the algorithms in terms of the average
downtime per failure. It is interesting to see that unlike the uniform failure scenario,
here the k-Center algorithm performs very good and significantly better than the Basic
Grid algorithm. Here too the k-Median algorithm produces the best results, significantly
better than the k-Centroid algorithm.

4 Conclusion

In this paper we proposed the use of facility location approximation algorithms for the
coordination of a team of mobile agents charged with maintaining a WSN. Specifically,
we designed three algorithms based on approximation algorithms for the k-Center and
k-Median problems and compared them to two baseline algorithms. The first, Basic
Grid, is the best performing algorithm which does not use any redeployment techniques.
The second, Local Search, enables to compare the algorithms to a heuristic local search
approach. Our empirical results indicate that:

– Redeployment using the k-Median heuristic (RGreedy) paired with a task alloca-
tion strategy that sends the closest-available mule to any failure, provides the best
results in terms of minimizing the nodes’ downtime.

– Algorithms that perform redeployment using either FF or RGreedy are less efficient
in terms of mobility than using centroid adjustment or not redeploying at all.

– The k-Center algorithm performs poorly when failures are uniformly distributed
but produces good results in non-uniform failure distribution in terms of downtime.

– Cooperative strategies that enable mules to tend to failed nodes outside of their
Voronoi cells are more effective than non-cooperative ones and this advantage be-
comes more apparent with larger failure durations.

– Allocation of the closest-available mule to a failure is more effective than allocating
the closest mule in terms of downtime and performs only slightly worse in terms of
mobility. This advantage become apparent with larger failure durations.

A key contribution of this paper is the introduction of facility location approxima-
tion algorithms into the well studied AI problem of multi-agent coordination.

5 Acknowledgments

The research was been supported by the following sources: Israel Science Foundation
grant No. 1055/14 and grant No. 317/15, IBM Corporation, the Israeli Ministry of Econ-
omy and Industry, and the Helmsley Charitable Trust through the Agricultural, Biolog-
ical and Cognitive Robotics Initiative of Ben-Gurion University of the Negev.

References

1. S. Anand, G. Zusseman, and E. Modiano. Construction and maintenance of wireless mobile
backbone networks. IEEE/ACM Transactions on Networking, 17.1:239–252, 2009.

2. K. Andreas, S. Ajit, and G. Carlos. Near-optimal sensor placements in gaussian processes:
Theory, efficient algorithms and empirical studies. Journal of Machine Learning Research,
9:235–284, 2008.

3. M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys. A constant-factor approximation algo-
rithm for the k-median problem. J. Comput. Syst. Sci., 65(1):129–149, 2002.

4. M. Chrobak, C. Kenyon, and N. E. Young. The reverse greedy algorithm for the metric
k-median problem. Computing and Combinatorics Conference, pages 654–660, 2005.

5. J. Crowcroft, L. Levin, and M. Segal. Using data mules for sensor network data recovery.
Ad Hoc Networks, 40:26–36, 2016.

6. A. Farinelli, A. Rogers, and N. Jennings. Agent-based decentralised coordination for sensor
networks using the max-sum algorithm. Journal of Autonomous Agents and Multi-Agent
Systems, pages 337–380, 2013.

7. M. D. Francesco, S. K. Das, and A. Giuseppe. Data collection in wireless sensor networks
with mobile elements: A survey. ACM Transactions on Sensor Networks (TOSN), 8.1:7–38,
2011.

8. K. Genter and P. Stone. Placing influencing agents in a flock. In AAAI, 2015.
9. B. Gerkey and M.J.Matari. A formal analysis and taxonomy of task allocation in multi-robot

systems. The International Journal of Robotics Research, 23(9):939–954, 2004.
10. T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical

Computer Science, 38:293–306, 1985.
11. A. Jiang, A. Procaccia, Y. Qian, N. Shah, and M. Tambe. Defender (mis) coordination in

security games. In AAAI, 2013.

12. O. Kariv and S. Hakimi. An algorithmic approach to network location problems. i: The
p-centers. SIAM Journal on Applied Mathematics, 37(3):513–538, 1979.

13. O. Kariv and S. Hakimi. An algorithmic approach to network location problems. ii: The
p-medians. SIAM Journal on Applied Mathematics, 37(3):539–560, 1979.

14. D. Kim, B. Abay, R. Uma, W. Wu, W. Wang, and A. Tokuta. Minimizing data collection
latency in wireless sensor network with multiple mobile elements. INFOCOM, 2012 Pro-
ceedings IEEE. IEEE, 2012.

15. S. Koenig, P. Keskinocak, and C. Tovey. Progress on agent coordination with cooperative
auctions. 2010.

16. S. Konur, C. Dixon, and M. Fisher. Analysing robot swarm behaviour via probabilistic model
checking. Robotics and Autonomous Systems, 60(2):199–213, 2012.

17. L. Levin, A. Efrat, and M. Segal. Collecting data in ad-hoc networks with reduced uncer-
tainty. Ad Hoc Networks, 17:71–81, 2014.

18. M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for server prob-
lems. Journal of Algorithms, 11(2):208–230, 1990.

19. M. S. Maxwell, M. Restrepo, S. G. Henderson, and H. Topaloglu. Approximate dynamic
programming for ambulance redeployment. INFORMS Journal on Computing, 22(2):266–
281, 2010.

20. M. McIntire, E. Nunes, and M. Gini. Iterated multi-robot auctions for precedence-
constrained task scheduling. In AAMAS, 2016.

21. V. Milyeykovski, M. Segal, and V. Katz. central nodes for efficient data collection in wireless
sensor networks. Computer Networks, 91:425–437, 2015.

22. J. Munkres. Algorithms for the assignment and transportation problems. Journal of the
society for industrial and applied mathematics, 5(1):32–38, 1957.

23. N. H. Mustafa and S. Ray. Improved results on geometric hitting set problems. Discrete &
Computational Geometry, 44(4):883–895, 2010.

24. J. Pita, M. Jain, F. Ordnez, C. Portway, M. Tambe, C. Western, P. Paruchuri, and S. Kraus.
Armor security for los angeles international airport. In AAAI, 2008.

25. S. Poduri and G. S. Sukhatme. Constrained coverage for mobile sensor networks. In In
Proceedings of the IEEE International Conference on Robotics and Automation, pages 165–
171, 2004.

26. C. ReVelle and H. Eiselt. Location analysis: A synthesis and survey. European Journal of
Operational Research, 165(1):1–19, 2005.

27. T. Rui, H. Li, and R. Miura. Dynamic recovery of wireless multi-hop infrastructure with the
autonomous mobile base station. IEEE Access, 4:627–638, 2016.

28. R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: Modeling and analysis of a three-
tier architecture for sparse sensor networks. Ad Hoc Networks, 1(2):215–233, 2003.

29. P. Stone, G. A. Kaminka, S. Kraus, J. S. Rosenschein, et al. Ad hoc autonomous agent teams:
Collaboration without pre-coordination. In AAAI, 2010.

30. M. Tambe. Security and game theory: algorithms, deployed systems, lessons learned. Cam-
bridge University Press, 2011.

31. O. Tedas, V. Isler, J. h. Lim, and A. Terzis. Using mobile robots to harvest data from sensor
fields. IEEE Wireless Communications, 16.1:22, 2009.

32. O. Urra, S. Ilarri, E. Mena, and T. Delot. Using hitchhiker mobile agents for environment
monitoring. In 7th International Conference on Practical Applications of Agents and Multi-
Agent Systems (PAAMS 2009), pages 557–566. Springer, 2009.

33. Y. Wang and C. de Silva. A machine-learning approach to multi-robot coordination. Engi-
neering Applications of Artificial Intelligence, 21(3):470–484, 2008.

34. R. Zivan, H. Yedidsion, S. Okamoto, R. Glinton, and K. P. Sycara. Distributed constraint
optimization for teams of mobile sensing agents. Journal of Autonomous Agents and Multi-
Agent Systems, 29:495–536, 2015.

