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Abstract

A wireless ad-hoc network is a collection of transceivers positioned in the plane. Each transceiver

is equipped with a limited, non-replenishable battery charge. The battery charge is then reduced after

each transmission, depending on the transmission distance. One of the major problems in wireless

network design is to route network traffic efficiently so as to maximize the network lifetime, i.e., the

number of successful transmissions. This problem is known to be NP-Hard for a variety of network

operations. In this paper we are interested in two fundamental types of transmissions, broadcast and

data gathering.

We provide polynomial time approximation algorithms, with guaranteed performance bounds, for

the maximum lifetime problem under two communication models, omnidirectional and unidirectional

antennas. We also consider an extended variant of the maximum lifetime problem, which simultane-

ously satisfies additional constraints, such as bounded hop-diameter and degree of the routing tree, and

minimizing the total energy used in a single transmission.
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1 Introduction

Wireless networks gained much appreciation in recent years due to massive use in a large variety of do-

mains, from life threatening situations, such as battlefield or rescue operations, to more civil applications,

like environmental data gathering for forecast prediction.

A wireless ad-hoc network is composed of a set of transceivers (nodes) V which are located in the

plane and communicate by radio. A transmission between two nodes is possible if the receiver is within

the transmission range of the transmitter. The underlying physical topology of the network is dependent

on the distribution of the wireless nodes (location) as well as the transmission power (range) assignment

of each node. Since the nodes have only a limited, non-replenishable initial power charge (battery),

energy efficiency becomes a crucial factor in wireless networks design.

The transmission range rv of node v is determined by the power assigned to that node, denoted by

p(v). It is customary to assume that the minimal transmission power required to transmit to distance

d is dα , where the distance-power gradient α is usually between 2 and 4 (see [18]). Thus, node v

receives transmissions from u if p(u) ≥ d(u,v)α , where d(u,v) is the Euclidean distance between u and

v. There are two possible models: symmetric and asymmetric. In the symmetric settings, also referred

to as the undirected model, there is an undirected communication link between two nodes u,v ∈ V , if

p(u) ≥ d(u,v)α and p(v) ≥ d(v,u)α , that is, node u can reach node v and node v can reach node u.

The asymmetric variant allows directed (one way) communication links between two nodes. Krumke et

al. [15] argued that the asymmetric version is harder than the symmetric one. This paper addresses the

asymmetric model.

Ramanathan and Hain [20] initiated the formal study of controlling the network topology by adjusting

the transmission range of the nodes. Intuitively, an increase to the transmission range assignment allows

more distant nodes to receive transmissions. But at the same time, it causes a quicker battery exhaustion,

which results in a shorter network lifetime. We are interested in maximizing the network lifetime (the

number of successful transmissions) under two basic transmission protocols, data broadcasting and data

gathering. Data broadcasting, or in short broadcast, is a network task when a source node s wishes to

transmit a message to all the other nodes in the network. Data gathering - a less popular, nevertheless

important network task, is also known as convergecast. Opposite to broadcast, there is a destination node

d, and all the other nodes wish to transmit a message to it. We consider data gathering with aggregation.

In this paradigm, data from different transceivers is combined to eliminate redundant transmissions. The

sensors are allowed to perform in-network aggregation of data packets, such that only one packet is sent
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toward d from each node, combining the information of it and its descendants.1 In [14], the authors argue

that this paradigm shifts the focus from address-centric approaches (finding routes between pairs of end

nodes) to a more data-centric approach (finding routes from multiple sources to a destination that allows

in-network consolidation of data).

Each node v, has an initial battery charge b(v). The battery charge decreases with each transmis-

sion. The network lifetime is the time from network initialization to the first node failure due to battery

depletion. It is possible to look at two formulations of the maximum network lifetime problem. In the

discrete version, node v can transmit at most bb(v)/dαc times to distance d. Whereas, the fractional

variant states that a transmission from node v to distance d is valid for b/dα time units. For example,

for b(v) = 15, d = 2, and α = 2, the discrete version of the problem would allow b15/4c = 3 separate

transmissions, while the fractional formulation determines that node v can have a valid transmission for

15/4 = 3.75 time units. Most of the previous research addresses the fractional formulation. The discrete

version was introduced by Sahni and Park [19]. They provided a number of heuristics without guaranteed

performance bounds. This paper studies the discrete version, which seems to be more challenging.

An additional consideration in wireless networks design, is the type of the antenna used for commu-

nication. In this paper we consider two types of communication antennas, omnidirectional and unidirec-

tional. For a node u ∈V equipped with an omnidirectional antenna, a single message transmission to the

most distant node in a set of nodes X is sufficient so that all the nodes in X receive the message. On the

other hand, if u uses a unidirectional antenna, then it has to transmit to each of the nodes in X separately.

The paper is organized as follows. In the rest of the section, we introduce our system settings, discuss

previous work and outline our contribution. In Sections 2 and 3 we present our results for the omnidirec-

tional and unidirecitonal antenna types, respectively. Finally, we conclude our work and discuss future

research in Section 4.

1.1 System settings

In this section we present some graph related notations, followed by the network model and problems

definition.

1.1.1 Graph notations

Here we provide some graph theory related definitions used in this paper.

• For any graph H, let V (H) and E(H) be the node and edge sets of H, respectively.

1The packets are assumed to be unit size.
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• In a directed graph H, let δH(v) be the set of outgoing edges from v in V (H).

• For a weighted graph H, with a weight function w, we alternately use the notation w(e) and w(u,v),

to specify the weight of edge e = (u,v)∈E(H). The weight of H is given by W (H) = ∑e∈E(H) w(e).

• The weight function w of graph H is said to be uniform, if ∀e ∈ E(H), w(e) = w0, for some non-

negative value w0.

• The cube of graph H, denoted H3, contains an edge (u,v) if there is a path from u to v in H with at

most 3 edges.

• A Hamiltonian circuit h = (u1,u2, . . . ,u|V (H)|+1 = u1) in graph H, where ui ∈ V (H) for 1 ≤ i ≤

|V (H)|, is a graph cycle that visits each node in V (H) exactly once. The weight of h is given by

W (h) = ∑|V (H)|
i=1 w(ui,ui+1), where w is the weight function of H.

• Given an undirected graph H, let MST (H) be a minimum weight spanning tree of H.

• An arborescence is a directed, rooted tree in which all edges point away from the root.

• A reversed arborescence is a directed, rooted tree in which all edges point toward the root.

• The longest edge of graph H, or Hamiltonian circuit h, is the edge with the maximum weight in H

or h, respectively.

1.1.2 Network model

We have n nodes V positioned in a Euclidean plane. The wireless network is then modeled by a complete,

weighted, and undirected graph GV with a weight function w : V ×V → R, w(u,v) = d(u,v)α . It is easy

to verify that the weight function obeys the weak triangle inequality with coefficient 2α−1, i.e., for any

u,v,w ∈V , w(u,w)≤ 2α−1(w(u,v)+w(v,w)).

Both types of messages, broadcast or convergecast, are propagated by using a directed spanning

tree of GV , called a transmission tree. A broadcast message, originating in s ∈ V , is propagated by

an arborescence Ts rooted at s, also called a broadcast tree. In the case of a convergecast to d ∈ V ,

the messages from all nodes are propagated by a reversed arborescence Td rooted at d, also called a

convergecast tree. In the case of a broadcast message, node v may be required to transmit it to multiple

recipients (its children in the broadcast tree), while a convergecast message, which is a combination of

the messages sent by the children of v, is transmitted only to its parent in the convergecast tree. Note that

the described paradigm for convergecast messages assumes data gathering with aggregation.
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We assume that all the nodes share the same frequency band, and time is divided into equal size slots

that are grouped into frames. Thus, the study is conducted in the context of TDMA. In TDMA wireless

ad-hoc networks, a transmission scenario is valid if and only if it satisfies the following three conditions:

1. A node is not allowed to transmit and receive simultaneously.

2. A node cannot receive from more than one neighboring node at the same time.

3. A node receiving from a neighboring node should be spatially separated from any other transmitter

by at least some distance D.

However, if nodes use unique signature sequences (i.e., a joint TDMA/CDMA scheme), then the sec-

ond and third conditions may be dropped, and the first condition only characterizes a valid transmission

scenario. Thus, our MAC layer is based on TDMA scheduling [8, 10, 26], such that collisions and inter-

ferences do not occur.

Every node v ∈ V has an initial battery charge b(v). After each message propagation, its residual

energy decreases. The energy decrease depends on the recipient nodes location, as well as the antenna

type used, either omnidirectional or unidirectional. Formally, the power consumption of v ∈ V due to a

transmission tree T is,

βT (v) =















max
e∈δT (v)

w(e), omnidirectional,

∑
e∈δT (v)

w(e), unidirectional.

Note that the reverse of a broadcast tree is a convergecast tree. Due to this symmetry property, and in

an attempt to keep the definitions simple, from this point, we refer to the broadcast transmission protocol

only. Although there is symmetry in definitions, nevertheless not all the results work well for both cases.

We provide explicit statements whenever the results are relevant for convergecast as well. In this paper

we assume α = 2 for simplicity, though our results can be easily extended to any constant value of α .

1.1.3 Problems definition

The general maximum lifetime broadcast (MLB) problem is defined as follows. The input to the

MLB problem is graph GV , initial battery charges b : V → R, and a sequence of m source nodes S =

{s1,s2, . . . ,sm}, where si ∈ V , for 1 ≤ i ≤ m. Each of the source nodes has one broadcast message to

transmit to all the other nodes. The output is a sequence of broadcast trees TB = {T1,T2, . . . ,Tk}, where

Ti is rooted at si, for 1≤ i≤ m, so that for all v ∈V , ∑k
i=1 βTi(v)≤ b(v). Our objective is to maximize k.

Intuitively, given a sequence of source nodes, we wish to maximize the number of successful broadcast
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message propagations, while satisfying the battery constraint. That is, all the nodes have enough battery

charge to support message propagation in a sequence of broadcast trees.

There are two possible relaxations of the general maximum lifetime broadcast problem. The first

relaxation is to set si = s, for all si ∈ S, that is one source node s generates all broadcast messages. The

second relaxation is to require that all the broadcast trees would be an orientation of one undirected tree.

In this paper we consider the following three problems.

Problem 1.1. [Single Source Maximum Lifetime Broadcast (SSMLB)]

Input: Graph GV , initial battery charges b : V → R, and a source node s ∈V .

Output: A sequence of broadcast trees TB = {T1,T2, . . . ,Tk}, so that Ti, 1≤ i≤ k, is rooted at s, and for

all v ∈V , ∑k
i=1 βTi(v)≤ b(v).

Objective: Maximize k.

Problem 1.2. [Single Source & Topology Maximum Lifetime Broadcast (SSTMLB)]

Input: Graph GV , initial battery charges b : V → R, and a source node s ∈V .

Output: A directed spanning tree T of GV rooted at s, and an integer k, 1≤ k ≤ m, so that for all v ∈V ,

kβT (v)≤ b(v).

Objective: Maximize k.

Problem 1.3. [Single Topology Maximum Lifetime Broadcast (STMLB)]

Input: Graph GV , initial battery charges b :V→R, and a sequence of m source nodes S = {s1,s2, . . . ,sm},

where si ∈V .

Output: An undirected spanning tree T of GV and an integer k, 1 ≤ k ≤ m, so that for all v ∈ V ,

∑k
i=1 βTi(v) ≤ b(v), where Ti, 1 ≤ i ≤ k, is a broadcast tree rooted at si, and is obtained by orienting the

edges of T .

Objective: Maximize k.

The analogous problems for convergecast, SSMLC, SSTMLC, and STMLC are defined in a similar

way.

1.2 Previous Work

Numerous studies were conducted in the area of maximizing the network lifetime under various transmis-

sion protocols. In addition to broadcast and convergecast, it is common to find references to multicast and

unicast2 as well. Different formulations of the maximum lifetime problem are due to the single/multiple
2Multicast is a more general case of broadcast. A source node is required to transmit to a set of nodes; unicast is more specific,

a source node is required to transmit to a single node.
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source/topology relaxations. These relaxations, mixed together with the antenna type, have impact on the

complexity of the problem.

As mentioned previously, to the best of our knowledge, there is no reference to the discrete version

of the maximum lifetime problem, except for [19]. Instead, we survey the state of current results for the

fractional case, grouped in accordance to the communication model used.

1.2.1 Omnidirectional Model

Orda and Yassour [17] gave polynomial-time algorithms for broadcast, multicast and unicast in the case

of single source/single topology, which improved previous results by [13]. Segal [21] improved the run-

ning time of the MLB problem for the broadcast protocol and also showed an optimal polynomial-time

algorithm for convergecast with aggregation. Additional results may be found in [1, 13]. By allowing

single source/multiple topology, the broadcast and multicast become NP-Hard [17], while convergecast

and unicast have polynomial-time optimal solutions. In [17], the authors establish an O(logn) and O(kε)

approximation algorithms for broadcast and multicast, respectively, where k is the size of the multicast

destination set and ε is any positive constant. The same paper shows an optimal solution for the unicast

case by using linear programming and max-flow algorithms. Liang and Liu [16] prove that the converge-

cast problem without aggregation is NP-Complete for general costs. An easier version, with aggregation,

does have a polynomial solution [12] in O(n15 logn) time. To counter the slowness of the algorithm, Stan-

ford and Tongngam [24] proposed a (1− ε)-approximation in O(n3 1
ε log1+ε n) time based on Garg and

Könemann [11] algorithm for packing linear programs. They also propose several heuristics and evaluate

their performance by simulation. Generally, a common approach to solving the fractional problem is to

use various LP formulations that reduce the problem to one of finding the maximum multicommodity

flow in a network. See also [7, 5, 27].

1.2.2 Unidirectional Model

The authors in [17] show that for broadcast, the problem is NP-Hard in the case of single source/single

topology and has a polynomial solution in the case of single source/multiple topology. They also show

that it is NP-Hard in both of these cases for multicast. To the best of our knowledge, this is the only paper

to address the unidirectional communication model. Note that for convergecast there is no difference

between the two models (omnidirectional and unidirectional), as the node is required to transmit to its

parent in the convergecast tree only. Therefore, the results from [21] and [12] hold.

A summary of the results for the fractional case under the omnidirectional model is given in Table 1

(OPT represents that the problem can be solved optimally). The result for single source/multiple topology

7



Table 1: Current results for the fractional case

Single Source - Omnidirectional Model

Topology Broadcast Convergecast (with agg.)

Single OPT [17, 21, 13] OPT [21]

Multiple 6(1− ε) approx. (follows from [24] and [2]) OPT [12]

Single Source - Unidirectional Model

Topology Broadcast Convergecast (with agg.)

Single NP-Hard [17] OPT [21]

Multiple OPT [17] OPT [12]

in case of broadcast is derived from the simple fact that when the Garg-Könemann (1−ε)-approximation

algorithm uses λ -approximation minimum length columns it produces a λ (1− ε) approximation to the

packing LP defined by [24] if used for broadcasting. We can choose a 6-approximation by Ambühl [2] as

the λ -approximation algorithm for the minimum energy broadcast problem. The 6-approximation can be

improved by using the result in [6].

1.3 Our contribution

We study the discrete version of the maximum lifetime problem under broadcast/convergecast transmis-

sions. We provide polynomial time approximation algorithms, with guaranteed performance bounds, for

the maximum lifetime problem under two communication models, omnidirectional and unidirectional

antennas. We also consider an extended variant of the maximum lifetime problem, which simultaneously

satisfies additional constraints. In particular, our main contributions are:

1. Under the unidirectional model, we state the NP-Hardness of the SSMLB and SSTMLB problems.

We provide an O(logn)-approximation to the SSTMLB problem. Then, for the SSMLB problem

we find a sequence of broadcast trees of optimal length k∗, so that the battery constraint is violated

by at most O(log(nk∗)) times. That is, the energy consumed by node v is at most O(log(nk∗))b(v).

2. Under the omnidirectional model, we develop two approximation algorithms for the STMLB prob-

lem. We assume uniform initial battery charges and present a 2-approximation algorithm by us-

ing the MST (G) as the broadcast tree. This immediately yields constant bounds for the total en-

ergy consumed in a single transmission and the maximum degree. We then construct a broadcast
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Table 2: Our contribution in the discrete case

Single Source - Unidirectional Model

Topology Approx. Remarks

Single O(logn)

Multiple 1 battery violation by O(log(nk∗)), k∗ is OPT

Multiple Source - Omnidirectional Model

Topology Approx. Remarks

Single 2 with additional properties

Multiple O(ρ2) with n/ρ + logρ hop-diameter, and additional properties

tree which is a O(ρ2)-approximation to the problem. In addition, it has a bounded hop-diameter

n/ρ + logρ , where 1 ≤ ρ ≤ n, a constant maximum degree, and the energy consumed in a single

transmission is at most ρ times the optimum for a broadcast transmission.

3. Finally, we show that the results for the STMLB problem, can be applied for the STMLC problem

as well.

To the best of our knowledge, these are the first theoretic results for the discrete formulation of the

problem. Our results are summarized in Table 2.

2 Omnidirectional Communication Model

In this section we consider the omnidirectional model. This model defines that the transmission of some

node v∈V is received by all the nodes within the transmission range of v. Therefore, the power consump-

tion of node v ∈V due to a single message transmission, in a directed tree T , is βT (v) = maxe∈δT (v) w(e).

We assume uniform initial battery charges, that is for all v ∈ V , b(v) = B. Without loss of generality we

may assume B = 1.

Recall the STMLB problem. We look for a spanning tree T of GV , so that the number of broadcast

messages routed by using its orientations is maximized. We call T the broadcast backbone. In this section

we show two different constructions of T , each satisfying additional multi-criteria constraints. In the end,

we state that T can be used for convergecast (the STMLC problem) as well.

We are given a weighted, undirected graph GV , and a sequence S of m source nodes. Let 〈T ∗,k∗〉

be an optimal solution for the STMLB problem. Let e∗ = (u,v) be the longest edge in T ∗. We start by
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deriving an upper bound on k∗.

Lemma 2.1. k∗ ≤ 2/w(e∗).

Proof. Let Ti, 1≤ i≤ k∗, be a broadcast tree rooted at si, and obtained by orienting the edges of T ∗. Note

that either u transmits to v ((u,v) ∈ E(Ti)) or v transmits to u ((v,u) ∈ E(Ti)), but not both. Out of the

k∗ broadcast trees, let ku be the number of trees in which u transmits to v. Without loss of generality, let

ku ≥ k∗/2. Since e∗ is the longest edge in T ∗, a lower bound on the total power consumption of u is

k∗

∑
i=1

βTi(u)≥ kuw(e∗)≥ w(e∗)k∗/2.

Due to the power consumption constraint, ∑k∗
i=1 βTi(u)≤ B = 1. As a result, k∗ ≤ 2/w(e∗).

2.1 Multi-Criteria Broadcast Backbone

In this section we show that if we take T to be MST (GV ), then we obtain a 2-approximation algorithm

for the STMLB problem, as well as some additional multi-criteria properties.

Lemma 2.2. Let k be the maximum value, so that for all v ∈ V , ∑k
i=1 βTi(v) ≤ b(v), where Ti, 1 ≤ i ≤ k,

is a broadcast tree rooted at si, and is obtained by orienting the edges of T = MST (GV ). Then k ≥ k∗/2.

Proof. Let e′ = (u′,v′) be the longest edge in T . It is well known that the longest edge in any minimum

spanning tree is less than or equal to the longest edge of any spanning tree, therefore w(e′) ≤ w(e∗).

Clearly, nodes u′,v′ have the largest possible power consumption w(e′) in any broadcast tree Ti, 1≤ i≤ k.

Therefore, k > 1/w(e′). From Lemma 2.1, k∗ ≤ 2/w(e∗). We conclude k ≥ k∗/2.

Note that using MST (GV ) as the broadcast backbone, also provides some additional valuable multi-

criteria guarantees, as concluded in the next theorem.

Theorem 2.3. Given a weighted, undirected graph GV , and a sequence of m source nodes S. Setting

T = MST (GV ); (i) provides us with k successful broadcast message propagations, where k ≥ k∗/2; (ii)

T has a bounded degree of 6; (iii) the total energy consumption in one broadcast tree is at most c times

of the optimum, where 6≤ c≤ 12.

Proof. (i) From Lemma 2.2, k ≥ k∗/2; (ii) the maximum degree of T is at most 6, since the minimum

spanning tree of GV is identical to the Euclidean minimum spanning tree on the node set V , and the latter

has a bounded degree of 6; (iii) in [25] the authors prove that for any node set in the plane, the total energy

required by broadcasting from any node is at least 1
c ∑e∈E(T ) w(e), where 6≤ c≤ 12. Therefore the total

energy consumption in one broadcast tree is of a constant factor from the best possible.
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2.2 Bounded Hop-Diameter Multi-Criteria Broadcast Backbone

Our construction is based on a Hamiltonian circuit. Sekanina [22] showed that the cube of any tree T ,

with |V (T )| ≥ 3, is Hamiltonian. Andrea and Bandelt [3] give a linear time algorithm for the construction

of the Hamiltonian circuit h in T 3, given T . They also show that

W (h)≤W (T ) · (
3
2

τ2 +
1
2

τ),

where τ is the weak triangle inequality parameter. Note that τ = 2α−1 = 2 under our assumption that

α = 2. Moreover, it can be shown that the weight of the longest edge in h is at most O(1) times the

weight of the longest edge in T . The following theorem applies the above on T = MST (GV ).

Theorem 2.4 ([3]). Let h = (u1,u2, . . . ,un+1 = u1), where ui ∈V for 1≤ i≤ n, be the Hamiltonian circuit

as a result of applying the construction in [3] on MST (GV ). Define e∗MST and e∗h to be the longest edges

in MST (GV ) and h, respectively. Then W (h) = O(W (MST (GV )) and w(e∗h) = O(w(e∗MST )).

Next, we describe the construction of the broadcast backbone Th, based on the Hamiltonian circuit

h = (u1,u2, . . . ,un+1 = u1) from Theorem 2.4. Let ρ be an integer parameter, 1≤ ρ ≤ n. The node set of

Th is V . We divide the sequence of nodes Uh = {u1,u2, . . . ,un} into n/ρ consecutive sequences Ui with ρ

nodes each, so that

Ui = {uρ(i−1)+1,uρ(i−1)+2, . . . ,uρi}, 1≤ i≤ n/ρ .

The center node of a sequence U = {x1,x2, . . . ,x j}, denoted c(U), is the median node with an index

b j+1
2 c. There are two types of edges in Th, E(Th) = E1 ∪E2. The first type of edges connects the center

nodes of every two adjacent node sequences, E1 = {(c(Ui),c(Ui+1))}
n/ρ−1
i=1 . The second type of edges,

E2, induces n/ρ complete binary trees B1, . . . ,Bn/ρ . Each tree Bi, 1≤ i≤ n/ρ , spans the nodes in Ui and

is rooted at c(Ui). The tree Bi is constructed recursively. The children of c(Ui) are the center nodes in

subsequences U1
i = {vρ(i−1)+1, . . . ,vρ(i−1)+ ρ−1

2
} and U2

i = {vρ(i−1)+ ρ+3
2

, . . . ,vρi}. We then continue to

construct a complete binary tree in each of the subsequences, U 1
i ,U2

i , in a similar way. Note that each

tree Bi has logρ levels.

For example, in Figure 1 we show a construction of the bounded hop-diameter broadcast back-

bone for h = (u1,u2, . . . ,u14) and ρ = 2. There are two node sequences U1 = {u1,u2, . . . ,u7} and

U2 = {u8,u2, . . . ,u14}. The center nodes of U1 and U2 are u4 and u11, respectively. Each of the trees

B1,B2 spans the corresponding nodes in U1 and U2, respectively.

Denote by e∗Th
and e∗h the longest edges in Th and h, respectively. The next lemma shows some valuable

bounds for Th.
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B1 B2

Figure 1: Bounded hop-diameter broadcast backbone for h = (u1,u2, . . . ,u14) and ρ = 2.

Lemma 2.5. The graph Th is a spanning tree of GV and has a bounded hop-diameter of O(n/ρ + logρ),

a bounded degree of 4, and it holds W (Th) = O(ρ ·W (h)) and w(e∗Th
) = O(ρ2 ·w(e∗h)).

Proof. It is easy to see that Th is a spanning tree of GV . The node set of Th is V . The binary trees Bi span

the nodes in each of the node sequences Ui and the set of edges E1 connects these trees. Any path in Th

has at most n/ρ + logρ hops, since there are logρ levels in each binary tree Bi and |E1| = n/ρ − 1. In

addition, the construction implies that all non-center nodes in each sequence, have a degree of at most 3.

The center nodes have a degree of 4.

Next, we bound the weight of Th. We split the edges in E(Th) into levels. In level 0 we put the edges

that connect the roots of the binary trees,

L0 = E1.

Level j is defined as follows,

L j = {all the edges in level j of all the binary trees Bi},

for 1 ≤ j ≤ logρ and 1≤ i≤ n/ρ . Let W j be the total weight of the edges in level j. Clearly, W (Th) =

∑logρ
j=0 W j. We can look at the edges in every level as a collection of non-empty intervals. For an edge

e = (uk,ul) ∈ L j, k < l, we say that the interval length of e is k− l. Moreover, the intervals in each

level are non-intersecting. That is, for any two edges (uk1 ,ul1),(vk2 ,vl2) ∈ L j, either k1 ≤ l1 ≤ k2 ≤ l2, or

k2 ≤ l2 ≤ k1 ≤ l1. Note that the interval length of edges in level j is ρ/2 j.

By using the Cauchy-Schwartz inequality3, we can bound the weight of an edge e = (uk,uk+ ρ
2 j

) ∈ L j

as follows,

w(e)≤
ρ
2 j ·

ρ/2 j−1

∑
l=0

w(uk+l ,uk+l+1).

Since the intervals in each level are non-intersecting, we can conclude W j ≤ (ρ/2 j)W (h). Therefore,

W (Th) =
logρ

∑
j=0

W j ≤
logρ

∑
j=0

ρ
2 j W (h) = ρW (h)

(

1+
1
2

+
1
4

+ . . .+
1

logρ

)

≤ 2ρW (h).

3The Cauchy-Schwartz inequality states that for any x1,x2, . . . ,xl ∈ R,
(

∑k
l=1 xl

)2
≤ k

(

∑k
l=1 x2

l

)

.
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Finally, we bound the weight of the longest edge in Th. Let e∗Th
= (uk,ul). The maximum interval

length is found in L0. Therefore, l− k ≤ ρ . By Cauchy-Schwartz inequality,

w(e∗Th
)≤ ρ

l−1

∑
j=k

w(u j,u j+1)≤ ρ2w(e∗h).

This rests our proof.

Note that the trade-off between the weight of the longest edge and the hop-diameter bound presented

in Lemma 2.5 is tight. Consider the unweighted n-path: any tree of hop-diameter at most D for it, contains

an edge with an interval length of at least (n−1)/D, and so its weight is at least (n−1)2/D2. Since the

longest edge of the n-path has a weight of 1, we get an increase of weight of the longest edge by a factor

of at least Ω(n2/D2). Finally, substitute D = n/ρ to obtain the weight Ω(ρ2).

Similar to the first construction, the broadcast backbone Th satisfies multiple constraints according to

Lemma 2.5. We can therefore derive the next theorem.

Theorem 2.6. Given a weighted, undirected graph GV , and a sequence of m source nodes S. Setting

T = Th; (i) provides us with k successful broadcast message propagations, where k≥ k∗/2ρ2; (ii) T has a

bounded hop-diameter of n/ρ + logρ; (iii) T has a bounded degree of 4; (iv) the total energy consumption

in one broadcast tree is at most O(ρ) times of the optimum.

Proof. Conditions (ii) and (iii) are immediate from Lemma 2.5. From the same lemma in conjunc-

tion with Theorem 2.4, w(e∗Th
) = O(ρ2w(e∗MST )). By following similar arguments as in the proof of

Lemma 2.2, we obtain (i). Combining Theorem 2.4 and Lemma 2.5 also yields the bound W (Th) =

O(ρW (MST (GV ))). Following the same arguments as in Theorem 2.3 condition (iv) follows.

2.3 Applicability to the STMLC Problem

The two constructions for the broadcast backbone may be used for convergecast, which will result in sim-

ilar asymptotic bounds. The similarity follows from Lemma 2.1, which can be applied for convergecast

transmissions, since it does not rely on any broadcast specific characteristics. This results in the same

approximation ratios for the network lifetime (number of successful message propagations). The hop-

diameter and degree bounds follow immediately from the constructions. Finally, we have to show that the

total power consumption bound also holds. In [23], the authors showed that the total power consumption

needed for one convergecast propagation is at least W (MST ).
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3 Unidirectional Communication Model

The unidirectional model implies that each node is charged for every outgoing edge in the transmission

tree. The power consumption of v ∈ V due to a single message transmission, in a directed tree T , is

βT (v) = ∑e∈δT (v) w(e).

In this section we consider two variants of the MLB problem under the single source relaxation. First

the more general case is addressed, where multiple topologies are allowed, which is the SSMLB problem.

Then, we show that by doing slight modifications to the proposed algorithms, we establish a similar result

in the case of single topology relaxation, namely the SSTMLB problem. We slightly modify the original

problems, by allowing a violation of the battery constraint by γ . That is, we require that the energy

consumption of every v ∈V is at most γb(v).

Assuming P6=NP, both the single and the multiple topology cases cannot achieve a 1/γ-approximation

algorithm for any constant γ > 0, since deciding whether even one tranmission is possible is equivalent

to the so called Degree Constrained Arborescence problem. This implicates that the SSMLB and

SSTMLB problems are NP-Hard (take γ = 1).

Note that in the single topology case, k transmissions with initial battery charges {γb(v) : v ∈ V}

imply bk/γc transmissions for initial battery charges {b(v) : v ∈V}. Indeed, since we are using the same

arborescence, the power consumption of every node in every message propagation is identical and there

are k message propagations, then for the original charges {b(v) : v ∈V} the number of propagations is at

least bb(v)/(γb(v)/k)c= bk/γc. Unfortunately, for the multiple topology case, we do not have a method

to convert the battery violation to a standard approximation.

Although the input to the SSMLB problem, is a weighted, undirected graph GV , we can alternatively

look at the directed version G′V , i.e., for every edge e = (u,v) ∈ E(GV ), create the instances (u,v),(v,u)

in E(G′V ). The weight of the directional edge is the same as of the original one. In the rest of the section

we prove the next theorem, which summarizes our main results for the unidirectional model.

Theorem 3.1. Given a weighted, directed graph G′V and a source node s∈V , let k∗1 and k∗2 be the number

of successful message propagations in the optimal solutions of the SSTMLB and SSMLB problems, respec-

tively. Then, (i) there exists a broadcast tree T rooted at s, so that for all v ∈V , (k∗1/logn)βT (v)≤ b(v);

(ii) there exists a sequence of broadcast trees TB = {T1,T2, . . . ,Tk∗2
}, each rooted at s, and for all v ∈ V ,

∑
k∗2
i=1 βTi(v)≤ (log(nk∗2))b(v).
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3.1 Weight Scaling Reduction

We start by showing a simple scaling of weights, which allows us to manipulate the input graph G′V . If

for some node v ∈V and constant c > 0, we set b(v)← b(v)/c and for every outgoing edge e ∈ δG′V (v), set

w(e)←w(e)/c, we obtain a similar instance to our problem. Note that an instance with uniform weights4

is easily transformed into an instance with unit weights (all weights being 1), by applying the weight

scaling reduction described above.

3.2 The SSMLB problem

We start with the multiple topology case of the MLB problem under the single source relaxation and

prove part (ii) of Theorem 3.1.

A directed graph H is k-edge-outconnected from s if it contains k-edge disjoint paths from s to any

other node. By Edmond’s Theorem [9], a graph is k-edge-outconnected from s if, and only if, it contains

k edge-disjoint spanning arborescences rooted at s. Let us introduce the following decision problem.

Problem 3.2. [Bound Constrained k-Outconnected Subgraph (BCkOS)]

Input: A directed graph G with a weight function w, bounds b : V (G)→R, a source node s ∈V (G), and

a positive integer k.

Question: Does G have a k-edge-outconnected spanning subgraph H, so that for all v ∈V (G), βH(v)≤

b(v).

Given a positive integer k, the problem of finding a sequence of broadcast trees of length k in G′V can

be reduced to the BCkOS problem as follows. As an edge in E(G′V ) may be used several times, we add

k−1 copies of each edge to the graph.5 Call this graph Gk
V . Then we solve the BCkOS problem for Gk

V .

To solve the SSMLB problem, we need to search for the maximum value of k, for which the BCkOS

returns a positive answer given Gk
V . This can be done by a simple binary search in the range {1, . . . ,K},

where K = maxe∈δGV (s) b(s)/w(e). The upper bound is due to the source node battery constraint. The

BCkOS problem is NP-hard even for uniform weights and k = 1. We therefore consider the optimization

problem that seeks to minimize the factor of the weight-degree bounds violation.

Problem 3.3. [Weighted-Degree Constrained k-Outconnected Subgraph (WDCkOS)]

Input: A directed graph G with a weight function w, bounds b : V (G)→ R, a source node s ∈ V (G),

4Though graph G′V does not necessarily has uniform weights, nevertheless we use this scaling in future developments.
5Instead of adding k−1 copies of an edge, we may assign to every edge capacity k, and consider the corresponding ”capacited”

problems; this will give a polynomial algorithm, rather than a pseudo-polynomial one. For simplicity of exposition, we will present

the algorithm in terms of multigraphs, but it can be easily adjusted to the terms of capacitated graphs.
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and a positive integer k. Graph G has a k-edge-outconnected spanning subgraph H∗ satisfying, for all

v ∈V (G), βH∗(v)≤ b(v).

Output: Find a k-edge-outconnected spanning subgraph H of G, so that for all v ∈ V (G), βH(v) ≤

γ ·b(v).

Objective: Minimize γ .

Clearly, guaranteeing a factor of γ for the WDCkOS problem also guarantees a γ violation in our case.

Let the Degree Constrained k-Outconnected Subgraph (DCkOS) problem be the restriction of WDCkOS

problem to instances with unit (or uniform) weights; in this case the bounds b(v) are just the degree

constraints, and thus assumed to be integral. The following statement follows from Theorems 1 and 4 in

[4] (dH(v) is the outdegree of v in H).

Theorem 3.4 ([4]). There exists a polynomial time algorithm that given an instance of DCkOS finds a

k-edge-outconnected spanning subgraph H of G so that dH(v) ≤ b(v)+ 2 if k = 1 and dH(v) ≤ b(v)+ 4

if k ≥ 2.

It is easy to verify that DCkOS admits a 3-approximation algorithm for k = 1 and a 5-approximation

algorithm for k≥ 2. For every node v with b(v) = 0, remove from G the edges leaving v, and then compute

a k-edge-outconnected from s spanning subgraph H of G using the algorithm as in Theorem 3.4. Then

dH(v) = 0 for every v ∈V (G) with b(v) = 0. For every v ∈V with b(v)≥ 1 we have dH(v)≤ b(v)+2≤

3b(v) if k = 1, and dH(v)≤ b(v)+4≤ 5b(v) if k ≥ 2.

The following lemma, in conjunction with the O(1)-approximation to DCkOS, proves part (ii) of

Theorem 3.1.

Lemma 3.5. An α-approximation algorithm for the DCkOS problem implies an α ·O(log(kn))-approximation

algorithm for the WDCkOS problem.

Proof. Let 〈G,w,b,s,k〉 be the instance to the WDCkOS problem. Let V0 = {v ∈ V (G) : b(v) = 0}. We

may assume that the WDCkOS instance has the following properties, (i) for every v ∈ V (G), b(v) ∈

{0,2kn} and w(e) ≤ b(v) for all e ∈ δG(v), (ii) 1 ≤ w(e) ≤ 2kn for all e = (u,v) ∈ E(G) so that u ∈

V (G)−V0. Otherwise, apply the following three steps:

1. Remove every edge e = (u,v) ∈ E(G) with w(e) > b(u).

2. For every v ∈V (G)−V0 do:

w(e)← w(e) ·2kn/b(v) for every e ∈ δG(v);

b(v)← 2kn.
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3. For every e ∈ E(G) with w(e) < 1 set w(e)← 1.

Steps 1 and 2 results in an equivalent instance. In Step 1 we just remove edges that do not appear in

any feasible solution. In Step 2, for every node v ∈ V (G)−V0, we just scale both the weights of edges

in δG(v) and the degree constraint b(v) by the same factor 2kn/b(v). Clearly, after Step 2 we have

b(v) = 2kn or b(v) = 0 for all v ∈ V (G). In Step 3 we set w(e)← 1 if 0 < w(e) < 1. In any minimally

k-edge-outconnected from s graph, the number of such edges leaving a node v is at most kn, and thus

their total weight is less than kn≤ b(v)/2. This causes a loss of at most 3/2 the approximation ratio, and

thus is negligible in our context. Clearly, after Step 3 we have 1 ≤ w(e) ≤ 2kn for all e = (u,v) ∈ E(G)

so that u ∈V (G)−V0.

Given an instance of WDCkOS satisfying the properties (i) and (ii) above, construct an instance of

DCkOS by doing the following for every v ∈V (G)−V0:

1. Partition the edges in δG(v) into at most ` = dlog(2kn)e sets {Ei(v) : i = 1, . . . , `} so that for every

i = 1, . . . , ` and every e ∈ Ei(v), 2i−1 ≤ w(e)≤ 2i. If w(e) = 2i for i < ` then we may set e ∈ Ei(v)

or e ∈ Ei−1(v), but not both.

2. For every i = 1, . . . , ` with Ei(v) 6= /0 do:

- add a copy vi of v with the constraint b′(vi) = b(v)/2i−1, and k edges (v,vi);

- replace the head v of every edge in Ei(v) by vi.

All the edges in the obtained DCkOS instance have unit weights. We set b′(v) = b(v) = 2kn for every

v ∈V (G)−V0, meaning that nodes in V (G)−V0 do not have degree constraints. We also set b′(v) = 2kn

for every v ∈V0, meaning that these nodes also do not have degree constraints (since all the edges leaving

them have weight zero). By ignoring the edge weights we obtain an instance 〈G′,b′,s,k〉 to DCkOS. We

claim that any γ ′-approximation for it implies a (2γ ′ · dlog(2kn)e)-approximation for the original instance

of WDCkOS. Note again that only nodes in V (G′)−V (G) (namely, the copies vi) have degree constraints.

Note that every edge in E(G) has a (unique) appearance in E(G′), and in what follows we identify

an edge in E(G) with the edge in G(E ′) corresponding to it. As the nodes in V (G) do not have degree

constraints in G′, we may assume that any feasible solution in G′ contains all edges in E(G′)−E(G).

This establishes a bijective correspondence between edge subsets I ⊆ E(G) and edge subsets I ′ ⊆ E(G′)

containing E(G′)−E(G), namely, I′ = I + (E(G′)−E(G)). Note that I is the edge set of the graph

obtained from (V (G′), I′) by contracting for every v ∈ V each copy vi of v into v. It is easy to see that

H = (V (G), I) is k-edge-outconnected from s if, and only if, H ′= (V (G′), I′) is k-edge-outconnected from

s.

The lemma follows from the following conditions. For every v∈V (G) with b(v) > 0 and any γ ,γ ′≥ 1:

17



(a) If βH(v)≤ γb(v) then |δH ′(vi)| ≤ γb′(vi) for every copy vi of v.

(b) If |δH ′(vi)| ≤ γ ′b′(vi) for every copy vi of v then βH(v)≤ 2` · γb(v), where ` = dlg(2kn)e.

(a) Assume βH(v)≤ γb(v). Suppose to the contrary that |δH ′(vi)|> γb′(vi) for some copy vi of v, namely,

that |δH ′(vi)|> γ · (b(v)/2i−1). As all the edges in δH ′(vi) appear in δH(v) and have wight at least 2i−1 in

G, we obtain a contradiction to the assumption:

βH(v)≥ βH ′(vi)≥ |δH ′(vi)| ·2i−1 > γ · (b(v)/2i−1) ·2i−1 = γ ·b(v) .

(b) Now assume that |δH ′(vi)| ≤ γ ′b′(vi) for every copy vi of v, namely, that |δH ′(vi)| ≤ γ ′ ·
(

b(v)/2i−1
)

.

As all the edges in δH ′(vi) have wight at most 2i in GV , we conclude that βH ′(vi)≤ |δH ′(vi)| ·2i ≤ 2γ ′b(v)

for any copy vi of v. Since v has at most ` copies, and since every edge in δH(v) belongs to δH ′(vi) for

some copy vi of v, we obtain that βH(v)≤ 2` · γ ′b(v).

3.3 The SSTMLB Problem

The single topology case of the MLB under the single source relaxation is to find a spanning arborescence

T of GV rooted at s, so that the number of transmissions is maximized under the battery constraints. The

problem can be reduced, similar to the multiple topology case, to that of finding a 1-edge-outconnected

from s (namely, an arborescence rooted at s) spanning subgraph H of G, satisfying the constraints k ·

βH(v)≤ b(v) for all v∈V . By setting B(v)← b(v)/k, we obtain the weighted-degree constraints βH(v)≤

B(v). This defines an instance of the WDCkOS problem with k = 1. Thus, we can compute in polynomial

time a 1-outconnected from s spanning subgraph H of G so that for every v ∈ V (G) we have βH(v) ≤

γ ·B(v) = b(v)/k, namely, k ·βH(v) ≤ γ · b(v). This means that we can guarantee k transmissions using

H with battery capacities γ ·b(v). Consequently, we can guarantee bk/γc transmissions with the original

battery capacities b(v), which proves part (i) of Theorem 3.1.

4 Conclusions and future work

We study the discrete version of the maximum lifetime problem under broadcast/convergecast transmis-

sions. We provide polynomial time approximation algorithms, with guaranteed performance bounds, for

the maximum lifetime problem under two communication models, omnidirectional and unidirectional

antennas. We also consider an extended variant of the maximum lifetime problem, which simultaneously

satisfies additional constraints.
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A natural future research would be to study the cases of multiple source under the unidirectional

model and single source under the omnidirectional model. In addition it is challenging to devise an

approximation algorithm for the SSMLB problem under the unidirectional model without violating the

batteries constraint. Dropping the uniform battery assumption under the omnidirectional model is also of

interest.
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