
Optimal Facility Location under Various Distance Functions

�

Sergei Bespamyatnikh

1

, Klara Kedem

2;3

and Michael Segal

2

1

Department of Computer Science

University of British Columbia, Vancouver, B.C. Canada V6T 1Z4

2

Department of Mathematics and Computer Science

Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

3

Computer Science Department

Cornell University, Upson Hall, Cornell University, Ithaca, NY 14853

May 5, 1999

Abstract

We present e�cient algorithms for two problems of facility location. In both problems we

want to determine the location of a single facility with respect to n given sites. In the �rst we

seek a location that maximizes a weighted distance function between the facility and the sites,

and in the second we �nd a location that minimizes the sum (or sum of the squares) of the

distances of k of the sites from the facility.

1 Introduction

Facility location is a classical problem of operations research that has also been examined in the

computational geometry community. The task is to position a point in the plane (the facility) such

that a distance between the facility and given points (sites) is minimized or maximized.

Most of the problems described in the facility location literature are concerned with �nding

a \desirable" facility location: the goal is to minimize a distance function between the facility

(e.g., a service) and the sites (e.g., the customers). Just as important is the case of locating an

\undesirable" or obnoxious facility. In this case instead of minimizing the largest distance between

the facility and the destinations, we maximize the smallest distance. Applications for the latter

version are, e.g., locating garbage dumps, dangerous chemical factories or nuclear power plants.

The latter problem is unconstrained if the domain of possible locations for the facility is the entire

plane. Practically the location of the facility should be in a bounded region R, whose boundary

may or may not have a constant complexity.

In this paper we consider the following two problems:

�

Work by S. Bespamyatnikh was done while visiting Ben-Gurion University. K. Kedem was supported by a grant

from the Israel Science Foundation founded by The Israel Academy of Sciences and Humanities, by a grant from the

U.S.-Israeli Binational Science Foundation and by the Mary Upson Award from the College of Engineering at Cornell

University. E-mail: besp@cs.ubc.ca, kedem@cs.cornell.edu, segal@cs.bgu.ac.il.

1



1. Undesirable location. Let S be a set of n points in the plane, enclosed in a rectangular

region R. Let each point p of S have two positive weights w

1

(p) and w

2

(p). Find a point

c 2 R which maximizes

min

p2S

fmaxfw

1

(p) � d

x

(c; p); w

2

(p) � d

y

(c; p)gg;

where d

x

(c; p) de�nes the distance between the x coordinates of c and p, and d

y

(c; p) de�nes

the distance between the y coordinates of c and p.

2. Desirable location. Given a set S of n points and a number 1 � k � n � 1 �nd a point p

such that sum of the L

1

(L

1

) distances from p to all the subsets of S of size k is minimized.

For this problem we consider two cases: the discrete case { where p 2 S, and the continuous

case where p is any point in the plane.

The �rst problem is concerned with locating an obnoxious facility in a rectangular region R

under the weighted L

1

metric, where each site has two weights, one for each of the axes. An

application for two-weighted distance is, e.g., an air pollutant which is carried further by south-

north winds than by east-west winds. For the unweighted case of this problem, where R is a

simple polygon with up to n vertices and under the Euclidean metric, Bhattacharya and Elgindy

[4] present an O(n logn) time algorithm. For weighted sites one can construct the Voronoi diagram

and look for the optimal location either on a vertex of this diagram or on the boundary of the region

R. Unfortunately, for weighted sites, the Voronoi diagram is known to have quadratic complexity

in the worst case, and it can be constructed in optimal O(n

2

) time [2]. Thus, the optimal location,

using the Voronoi diagram, can be found in O(n

2

) time [9]. The �rst subquadratic algorithm for

the weighted problem under L

1

metric and a rectangular R region was presented by Follert et al.

[10]. Their algorithm runs in O(n log

4

n) time. In this paper we present two algorithms for the

two-weighted L

1

metric problem in a rectangular region.. The �rst one has O(n log

3

n) running

time and it is based on the parametric searching of Megiddo [11] which combines between the

sequential and the parallel algorithms for the decision problem in order to solve the optimization

problem. The second algorithm has O(n log

2

n) running time, and uses the di�erent optimization

approach that is described by Megiddo and Tamir [12].

The second problem deals with locating a desirable facility under the min-sum criterion. Some

applications for this problem are locating a component in a VLSI chip or locating a welding robot in

an automobile manufacturing plant. Elgindy and Keil [8] consider a slight variation of the problem

under the L

1

metric: Given a positive constant D, locate a facility c that maximizes the number

of sites whose sum of distances from c is not greater than D. They also consider the discrete

and continuous cases. The runtimes of their algorithms are O(n log

4

n) for the discrete case and

O(n

2

logn) for the continuous case. Our algorithm for the discrete case runs in time O(n log

2

n),

and for the continuous case in O((n� k)

2

log

2

n + n logn) time.

It is well known that the metrics L

1

and L

1

are dual in the plane, in the sense that nearest

neighbors under L

1

in a given coordinate system are also nearest neighbors under L

1

in a 45 degrees

rotated coordinate system (and vice versa). The distances, however, are di�erent by a multiplicative

factor of

p

2. In what follows we alternate between these metrics to suit our algorithms.

An outline of the paper is as follows. In Section 2 we present two algorithm for solving the

�rst problem. Section 3 describes a data structure and an algorithm for solving the discrete case

of Problem 2. Using this data structure and some more observations, we show in Section 4 how to

solve the continuous case of Problem 2.

2



2 Undesirable facility location

In this section we �rst present a sequential algorithm that answers a decision query of the form:

given d > 0, determine whether there exists a location c 2 R whose x-distance from each point

p

i

2 S (the distance between the x coordinates of c and p

i

) is � d �w

1

(p

i

), and whose y-distance to

the points of S is � d �w

2

(p

i

). We will use this sequential algorithm in order to obtain two di�erent

algorithms for solving our problem.

The �rst is based on the parametric search optimization scheme [11] and, tus, we provide a

parallel version of the decision algorithm in order to use it. Let T

s

denote the runtime of the

sequential decision algorithm, and T

p

, resp. P , the time and number of processors of the parallel

algorithm; then the optimal solution (a point c that maximizes d) can be computed in sequential

time O(PT

p

+ T

s

T

p

logP ) [11].

The second uses another optimization approach, proposed in [12]. The main idea is to represent

a set of potential solutions in a compact, e�cient way, use a parallel sorting scheme and then look

for our solution by some kind of a binary search. The running time of the algorithm is O(T

s

logn).

2.1 The sequential algorithm

The formulation of the decision problem above implies that each point p

i

2 S de�nes a forbidden

rectangular region

R

i

= fr 2 R

2

jd

x

(r; p

i

) < d � w

1

(p

i

); d

y

(r; p

i

) < d � w

2

(p

i

)g

where c cannot reside. Denote by U

R

the union of all the R

i

. An admissible location for c exists

if and only if R \ U

R

6= ;. In other words, we are given a set of n rectangles R

i

and want to �nd

whether U

R

covers R. When each point has the same weight in both axes then the combinatorial

complexity of the boundary of U

R

is linear. In our case the boundary of U

R

has O(n

2

) vertices in

the worst case.

The problem of �nding whether a set of n rectangles covers a rectangular region R has been

solved in O(n logn) time using the segment tree T [13]. We outline this well known sequential

algorithm for the sake of clarity of our parallel algorithm.

Denote by L = fx

1

; : : :x

2n

g the x coordinates of the endpoints of the horizontal sides of the

rectangles. We call the elements of L the instances of T . Similarly, let M = fy

1

; : : : y

2n

g be the

list of y coordinates of the endpoints of the vertical sides of the rectangles. Assume each list is

sorted in ascending order. The leaves of the segment tree T contain elementary segments [y

i

; y

i+1

),

i = 1; : : : ; 2n� 1, in their range �eld. The range at each inner node in T contains the union of the

ranges in the nodes of its children.

A vertical line is swept over the plane from left to right stopping at the instances of T . At each

instance x, either a rectangle is added to the union or it is deleted from it. The vertical side v of

this rectangle is inserted to (or deleted from) T (v is stored in O(logn) nodes and is equal to the

disjoint union of the ranges of these nodes). The update of T at instance x involves maintaining a

cover number in the nodes. The cover number at a node counts how many vertical rectangle sides

cover the range of this node and do not cover the range of its parent. If at deleting a rectangle

the height of R is not wholly covered by all the vertical segments that are currently in T , then the

answer to the decision problem is \yes". Namely, we found a point in R which is not in U

R

, and

we are done. If the answer is \no" then we update T and proceed to the next instance. Thus

Lemma 1 Given a �xed d > 0 we can check in O(n logn) time, using O(n) space, whether there

3



exists a point c 2 R, such that for every point p

i

2 S the following holds: d

x

(c; p

i

) �w

1

(p

i

) � d and

d

y

(c; p

i

) �w

2

(p

i

) � d.

2.2 The parallel version and the optimization

Next we present the parallel algorithm which we believe is of independent interest. In order to

produce an e�cient parallel algorithm for the decision problem we add some information into the

nodes of T . This information encaptures the cover information at each node, as will be seen below.

Let L = fx

1

; x

2

; : : : ; x

2n

g be the list of instances as above. Let the projection of a rectangle

R

j

on the x axis be [x

i

; x

k

]. We associate with R

j

a life-span integer interval l

j

= [i; k]. Let v

j

be the projection of R

j

on the y axis. The integer interval l

j

de�nes the instances at which the

segment v

j

is stored in T during the sequential algorithm. We augment T by storing the life-span

of each vertical segment v

j

in the O(logn) nodes of T that v

j

updates. We further process each

node in T so that it contains a list of cover two life-ranges. This is a list of intervals consisting of

the pairwise intersections of the life-spans in the node. For example, assume that a node s contains

the life-spans [1; 7]; [3; 4] and [5; 6]. The list of cover two at s is [3; 4] and [5; 6]. If a vertical segment

is to be deleted from s at instances x

1

, x

2

or x

7

, then s will be exposed after the deletion. But if

the deletion occurs at instance x

3

, x

4

, x

5

or x

6

then, since the cover of s is 2 at this instance, s will

not be exposed by deleting v

j

.

Our parallel algorithm has two phases: phase I constructs the augmented tree T and phase II

checks whether R gets exposed at any of the deletion instances.

Phase I The segment tree T can be easily built in parallel in time O(logn) using O(n logn)

processors [1]. Unlike in Lemma 1 above, where we store in each node just the cover number, here

we store for each segment its life-span in O(logn) nodes. Thus T occupies now O(n logn) space

[13]. Adding the cover two life-span intervals is performed as follows.

We sort the list of life-spans at each node according to the �rst integer in the interval that

describes a life-span. We merge the list of life-spans at each node as follows. If two consecutive

life-spans are disjoint we do not do anything. Assume the two consecutive life-spans [k

1

k

2

] and

[g

1

; g

2

] overlap. We produce two new life-ranges:

(a) the life-range of cover at least one { [k

1

;max(k

2

; g

2

)] and

(b) the life-range of cover at least two { [g

1

;min(k

2

; g

2

)].

We continue to merge the current life-range of cover at least one from item (a) above with the

next life-span in the list till the list of life-spans is exhausted. We next merge the cover two life-

ranges into a list of disjoint intervals by taking the unions of overlapping intervals. At this stage

each node has two lists of life-ranges. But this does not su�ce for phase II. For each node we

have to accumulate the cover information of its descendants. Starting at the leaves we recursively

process the two lists of life-ranges at the nodes of T separately. We describe dealing with the list

of cover one. Assume the two children nodes of a node s contain intersecting life-ranges, then this

intersection interval is an interval of instances where all the range of s is covered. We copy the

intersection interval into the node s. When we are done copying we merge the copied list with the

node's life-span list as described above, and then merge the list of cover two with the copied list of

cover two, by unioning overlapping intervals.

Phase II. Our goal in this phase is to check in parallel whether, upon a deletion instance, the

height of R is still fully covered or a point on it is exposed. We do it as follows. Assume that the

vertical segment v is deleted from T at the j

th

instance. We go down the tree T in the nodes that

4



store v and check whether the life-span lists at all these nodes contain the instance j in their list

of cover two. If they do then (the height of) R is not exposed by deleting v.

Complexity of the algorithm.

It is easy to show that the life-range lists do not add to the amount of required storage. The

number of initial life-span intervals is O(n logn). The number of initial life-ranges of cover two

cannot be greater than that. It has been shown [7] that copying the lists in the nodes in the

segment tree to their respective ancestors does not increase the asymptotic space requirement. The

augmentation of T is performed in parallel time O(logn) with O(n logn) processors as follows. We

allocate a total of O(n logn) processors to merge the life-span ranges in the nodes of T , putting

at each node a number of processors which is equal to the number of life-span ranges in the node.

Thus the sorting and merging of the life-span ranges is performed in parallel in time O(logn).

The checking phase is performed in parallel by assigning O(logn) processors to each deletion

instance. For the deletion of a vertical segment v, one processor is assigned to each node that stores

v. These processors perform in parallel a binary search on the cover two life-ranges of these nodes.

Thus the checking phase is performed in time O(logn).

Summing up the steps of the parallel algorithm, we get a total of O(logn) parallel runtime

with O(n logn) processors and O(n logn) space. Plugging this algorithm to the parametric search

paradigm [11] we get

Theorem 2 Given a set S of n points in the plane, enclosed in a rectangular region R, and two

positive weights w

1

(p) and w

2

(p) for each point p 2 S, we can �nd, in O(n log

3

n) time, a point

c 2 R which maximizes

min

p2S

fmaxfw

1

(p) � d

x

(c; p); w

2

(p) � d

y

(c; p)gg:

2.3 Another approach

By carefully looking at the respective Voronoi diagram we have the following crucial observation.

Observation 3 Assume that the optimal solution is not attained on the boundary of the rectangle.

Then, w.l.o.g., there is an optimal point c, and two points p and q such that either

w

1

(p)d

x

(c; p) = w

1

(q)d

x

(c; q) = optimalvalue;

or

w

2

(p)d

y

(c; p) = w

2

(q)d

y

(c; q) = optimalvalue:

The above observation with a given assumption implies that the optimal value is an element in one

of the following four sets:

S

1

= f(p

x

+ q

x

)=(1=w

1

(p) + 1=w

1

(q)) : p; q 2 Sg, S

2

= f(p

x

� q

x

)=(1=w

1

(p)� 1=w

1

(q)) : p; q 2 Sg,

S

3

= f(p

y

� q

y

)=(1=w

2

(p)� 1=w

2

(q)) : p; q 2 Sg, S

4

= f(p

y

+ p

y

)=(1=w

2

(p) + 1=w

2

(q)) : p; q 2 Sg.

Megiddo and Tamir [12] describe how to search for the optimal value r

�

within a set of the

form: S

0

= f(a

i

+ b

j

)=(c

i

+d

j

) : 1 � i; j � ng. Thus there will be given 4n numbers a

i

; b

j

; c

i

; d

j

(1 �

i; j � n), and we will have to �nd two elements s; t 2 S

0

such that s < r

�

� t and no element of S

0

is strictly between s and t. We briey describe their [12] approach.

Set S

0

consists of the points of intersection of straight lines y = (c

i

x � a

i

) + (d

j

x � b

j

) with

the x-axis. The search will be conducted in two stages. During the �rst stage we will identify an

interval [s

1

; t

1

] such that s

1

< r

�

� t

1

and such that the linear order induced on f1; : : : ; ng by the

numbers c

i

x� a

i

is independent of x provided x 2 [s

1

; t

1

]. The rest of work is done in Stage 2.

5



Stage 1. We search for r

�

among the points of intersections of lines y = c

i

x � a

i

with each

other. The method is based on parallel sorting scheme. Imagine that we sort the set f1; : : : ; ng by

the (c

i

x � a

i

)'s, where x is not known yet. Whenever a processor has to compare some c

i

x � a

i

with c

j

x � a

j

, we will in our algorithm compute the critical value x

ij

= (a

i

� a

j

)=(c

i

� c

j

). We

use Preparata [14] parallel sorting scheme with n logn processors and O(logn) steps. Thus, a

single step in Preparata scheme gives rise to the production of n logn points of intersection of lines

y = c

i

x� a

i

with each other. Given these n logn points and an interval [s

0

; t

0

] which contains r

�

,

we can in O(n logn) time narrow down the interval so that it will still contain r

�

but no intersection

point in its interior. This requires the �nding of medians in sets of cardinalities n logn,

1

2

n logn,

1

4

n logn; : : : plus O(logn) evaluations of the sequential algorithm for the decision problem. Since

the outcomes of the comparisons so far are independent of x in the updated interval, we can proceed

with the sorting even though x is not speci�ed. The e�ort per step is hence O(n logn) and the

entire Stage 1 takes O(n log

2

n) time.

Stage 2. When the second stage starts we can ssume w.l.o.g. that for x 2 [s

1

; t

1

] c

x

� a

i

�

c

i+1

� a

i+1

, i = 1; : : : ; n � 1. Let j(1 � j � n) be �xed and consider the set S

j

of n lines

S

j

= fy = c

i

x � a

i

+ d

j

x � b

j

; i = 1; : : : ; ng. Since S

j

is \sorted" over [s

1

; t

1

], we can �nd in

O(logn) evaluations of the sequential algorithm for the decision problem a subinterval [s

j

1

; t

j

1

] such

that s

j

1

< r

�

� t

j

1

, and that no member of S

j

intersects the x-axis in the interior of this interval.

We work on the S

j

's in parallel. Speci�cally, there will be O(logn) steps. During a typical step,

the median of the remainder of every S

j

is selected (in O(1) time) and its intersection point with

the x-axis is computed. The set of these n points is then searched for r

�

and the interval is updated

accordingly. This enablesus to discard a half from each S

j

. Clearly a single step lasts O(n logn)

time and the entire stage is carried out in O(n log

2

n) time.

At the end of second stage we have the values fs

j

1

g and ft

j

1

g; j = 1; : : : ; n. De�ning s =

max

1�j�n

fs

j

1

g and t = min

1�j�n

ft

j

1

g we obtain s < r

�

� t, and no element of S

0

is strictly between

s and t.

The case with the optimal solution attained on the boundary of the rectangle can be treated as

subcase of a previous case. Thus we conclude by a theorem.

Theorem 4 Given a set S of n points in the plane, enclosed in a rectangular region R, and two

positive weights w

1

(p) and w

2

(p) for each point p 2 S, we can �nd, in O(n log

2

n) time, a point

c 2 R which maximizes

min

p2S

fmaxfw

1

(p) � d

x

(c; p); w

2

(p) � d

y

(c; p)gg:

3 The discrete desirable facility location problem

The discrete min-sum problem is de�ned as follows. Given a set S of n points in the plane and

a number k. Find a point in S such that the sum of distances from it to its k nearest neighbors

in S is minimized. Our algorithms compute, for each point of S, the sum of distances from it to

its k nearest neighbors in S, and output a point which minimizes the sum. First we deal with the

special case of the discrete min-sum problem when k = n� 1.

3.1 The discrete min-sum problem for k = n� 1

This min-sum problem appears in [3] with an O(n

2

) trivial solution. Below we present an algorithm

that solves this problem for the L

1

metric in O(n logn) time.

6



The L

1

metric is separable, in the sense that the distance between two points is the sum of their

x and y-distances. Therefore we can solve the problem for the x and y-coordinates separately. We

regard the x coordinates part. We sort the points according to their x-coordinates. Let fp

1

; : : : ; p

n

g

be the sorted points. For each p

i

2 S we compute the sum �

x

i

of the x-distances from p

i

to the

rest of the points in S. This is performed e�ciently as follows. For the point p

1

we compute �

x

1

by

computing and summing up each of the n � 1 distances. For 1 < i � n we de�ne �

x

i

recursively:

assume the x-distance between p

i�1

and p

i

is �, then �

x

i

= �

x

i�1

+ � � (i� 1)� � � (n� i+1). Clearly

the sums �

x

i

(for i = 1; : : :n) can be computed in linear time when the points are sorted. We

compute �

y

i

analogously. Assume the point p 2 S is i

th

in the x order and j

th

in the y order. The

sum of distances from p to the points in S is �

ij

= �

x

i

+ �

y

j

. The point which minimizes this sum

is the sought solution.

Theorem 5 Given a set S of n points in the plane sorted in x direction and in y directions, we

can �nd in linear time a point p 2 S which minimizes the sum of the L

1

distances to the points in

S.

We can extend this theorem to the case where the distance to be minimized is the sum of squared

L

2

distances from a point to the rest of the points of S, since the separability property holds for

this case as well. Assume we have computed f�

x

1

; : : : ; �

x

n

g above and let �

x

i

=

P

n

j=1

(x

j

� x

i

)

2

. The

recursion formula for computing all the squared x-distances is easily computed to be

�

x

i

= �

x

i�1

� 2��

x

i�1

� n�

2

where the x-distance between p

i�1

and p

i

is �.

Corollary 6 Given a set S of n points in the plane, sorted in x direction and in y direction, we

can �nd in linear time a point p of S which minimizes the sum of squared L

2

distances to the points

in S.

3.2 The general case

We turn to the discrete min-sum problem for 1 � k � n� 1. We describe the algorithm for the L

1

metric. It has two phases. In the �rst phase we �nd, for each point p

i

2 S, the smallest square

R

i

centered at p

i

which contains at least k+ 1 points of S. We also get the square size �

i

which is

de�ned as half the side length of R

i

. In the second phase we compute for each p

i

, i = 1; : : : ; n,

the sum of the distances from it to the points of S in R

i

and pick i for which this sum is minimized.

For the �rst phase we apply a simple version of parametric searching. Assume q = (q

x

; q

y

) 2 S

is the query point for which we want to �nd the smallest square R which contains at least k+1 points

of S. For a parameter �, denote by R(�) a square of size � centered at q. We test whether R(�)

contains at least k+1 points of S by applying Chazelle's [5, 6] orthogonal range counting. Namely,

given a set of n points in the plane and an orthogonal range, �nd the number of points contained

in the range. Chazelle proposes a data structure that can be constructed in time O(n logn) and

occupies O(n) space, such that a range-counting answer for a query region can be answered in time

O(logn).

Clearly the minimum value of � is the distance from the query point to its k

th

nearest neighbor.

Thus candidate values for � are jq

x

� p

x

j and jq

y

� p

y

j for all p = (p

x

; p

y

) 2 S. By performing a

binary search in the sets fp

x

j p 2 S; p

x

> q

x

g, fp

x

j p 2 S; p

x

< q

x

g, fp

y

j p 2 S; p

y

> q

y

g and

fp

y

j p 2 S; p

y

< q

y

g, we �nd the smallest � such that R(�) contains at least k + 1 points of S.

7



Lemma 7 Given a set S of n points and a positive integer k < n. We can �nd for each point

p

i

2 S the smallest square centered at p

i

that contains at least k + 1 points of S in total time

O(n log

2

n).

In the second phase we compute, for each point p

i

2 S, the sum of distances from p

i

to its k

nearest neighbors, namely, the points of S which are contained in R

i

. In order to compute e�ciently

the sums of distances in all the squares R

i

, we apply the orthogonal range searching algorithm for

weighted points of Willard and Lueker [15] which is de�ned as follows. Given n weighted points

in d-space and a query d-rectangle Q, compute the accumulated weight of the points in Q. The

data structure in [15] is of size O(n log

d�1

n), it can be constructed in time O(n log

d�1

n), and a

range query can be answered in time O(log

d

n). We show how to apply their data structure and

algorithm to our problem.

Let q 2 S be the point for which we want to compute the sum of distances from it to its k

nearest neighbors. Let R be the smallest square found for q in the �rst phase. Clearly R can be

decomposed into four triangles by its diagonals such that the L

1

distance between all points of S

within one triangle is, wlog, the sum of x coordinates of the points of S in this triangle minus the x

coordinate of q times the number of points of S in this triangle. More precisely, let �

u

be the closed

triangle whose base is the upper side of R and whose apex is q. Denote by �

u

the sum of the L

1

distances between the points in �

u

and q, and by N

u

the number of points of S

u

= fS � qg \�

u

,

then

�

u

=

X

p

j

2S

u

p

y

j

� q

y

�N

u

:

Our goal in what follows is to prepare six data structures for orthogonal range search for weighted

points, as in [15], three with the weights being the x coordinates of the points of S and three with

the y coordinates as weights, and then to de�ne orthogonal ranges, corresponding to the triangles

in R for which the sums of x (y) coordinates will be computed.

We proceed with computing �

u

. Let l

1

be the x axis, l

2

be a line whose slope is 45

�

passing

through the origin, l

3

be the y axis and l

4

a line whose slope is 135

�

passing through the origin.

These lines de�ne wedges (see Figure 1(a)): (1) Q

1

{the wedge of points between l

1

and l

2

whose

x coordinates are larger than their y coordinates, (2) Q

2

{the wedge of points between l

2

and l

3

whose y coordinates are larger than their x coordinates, and (3) Q

3

{the wedge of points between

l

3

and l

4

whose y coordinates are larger than their x coordinates.

Each of these wedges de�nes a data structure, as in [15]. Observe, e.g., the wedge Q

1

. We

transform l

1

and l

2

into corresponding axes of an orthogonal coordinate system, and apply the

same transformation on all the points p

i

2 S. We construct the orthogonal range search data

structure for the transformed points with the original y coordinates as weights. (Similarly we

construct data structures for the points of S transformed according to Q

2

and Q

3

, respectively, for

the y sums, and another set of three data structures for the x sums.)

We denote by Q

i

(q) the wedge Q

i

translated by q. Denote by Y

i

(q) the sum of the y coordinates

of the points of S in Q

i

(q), i = 1; 2; 3. Then

X

p

j

2S

u

p

y

j

= (Y

2

(q) + Y

3

(q))� (Y

2

(q

1

) + Y

3

(q

1

))� Y

1

(q

1

) + Y

1

(q

2

);

where q

1

= (q

x

��; q

y

+�) and q

2

= (q

x

+�; q

y

+�) (see Figure 1(b)). If the segment [q

1

; q

2

] contains

points of S we de�ne q

1

and q

2

as q

1

= (q

x

� �� �; q

y

+ �+ �) and q

2

= (q

x

+ �+ �; q

y

+ �+ �) for

some su�ciently small � > 0.

8



q

q

2

Q

2

(q)Q

3

(q)

Q

1

(q)

q

1

(a)

(b)

l

1

l

2

l

3

l

4

Q

1

Q

2

Q

3

Figure 1: (a) The regions Q

i

and (b) Q

i

(q)

To compute N

u

we can use the same wedge range search scheme, but with unit weights on the

data points (instead of coordinates). In a similar way we compute the sum �

d

for the lower triangle

in R (�

l

and �

r

for the left and right triangles in R respectively) and the corresponding number of

points N

d

(N

l

and N

r

).

It is possible that R contains more than k+ 1 points { this happens when more than one point

of S is on the boundary of R. Our formula for the sum of the L

1

distances should be

D = �

u

+ �

d

+ �

l

+ �

d

� � � (N

u

+N

d

+N

l

+N

r

� k � 1):

Hence, the second phase of the algorithm, requires O(n logn) preprocessing time and space,

and then O(log

2

n) query time per point p

i

2 S to determine the sum of distances to its k nearest

points. Thus, for both phases, we conclude

Theorem 8 The discrete min-sum problem in the plane for 1 � k � n � 1 and under L

1

-metric,

can be solved in time O(n log

2

n) occupying O(n logn) space.

4 The continuous desirable facility location problem

The continuous desirable facility location problem is de�ned as follows. Given a set S of n points

and a parameter 1 � k � n � 1. Find a point c in the plane such that the sum of distances from

c to its k nearest points from S is minimized. We consider the problem where the distances are

measured by the L

1

metric.

We create a gridM by drawing a horizontal and a vertical line through each point of S. Assume

the points of S are sorted according to their x coordinates and according to their y coordinates.

Denote by M(i; j) the grid point that was generated by the i

th

horizontal line and the j

th

vertical

line in the y and x orders of S respectively. Bajaj [3] observed that the solution to the continuous

min-sum problem with k = n�1 should be a grid point. As a matter of fact it has been shown that

for this problem the pointM(bn=2c; bn=2c) is the required point. (Where for an even n the solution

is not unique and there is a whole grid rectangle whose points can be chosen as the solution.)

For k < n � 1, we can pick the solution from O((n � k)

2

) grid points, since the smallest x-

coordinate that c might have is x

bk=2c

, and the largest x

n�dk=2e

(similarly for y). This is true since

in the extreme case where all the k points are the lowest leftmost points then according to Bajaj

the solution to this k points problem is at M(bk=2c; bk=2c). Similarly if the k points are located

at any other corner of M . Thus we remain with (n � k + 1)

2

grid points which are candidates

for the solution c. Applying the discrete algorithm of Section 3.2, with the query points being the

candidate solutions, we obtain the following theorem.

9



Theorem 9 The continuous min-sum problem can be solved in (n logn+ (n� k)

2

log

2

n) time for

any positive k � n� 1.

References

[1] M. Attalah, R. Cole, M. Goodrich, \Cascading divide and conquer: a technique for designing

parallel algorithms", SIAM Journal on Computing, 18(3)(1989), pp. 499-532.

[2] F. Aurenhammer and H. Edelsbrunner \An optimal algorithm for for constructing the weighted

Voronoi diagram in the plane", Pattern Recognition, 17(2), 1984, pp. 251{257.

[3] C. Bajaj, \Geometric optimization and computational complexity", Ph.D. thesis, Tech. Report

TR-84-629, Cornell University, 1984.

[4] B. Bhattacharya, H. Elgindy, \An e�cient algorithm for an intersection problem and an ap-

plication", Tech. Report 86-25, Dept. of Comp. and Inform. Sci., University of Pennsylvania,

1986.

[5] B. Chazelle, \Filtering search: A new approach to query-answering", SIAM J. Comput.,

15(1986), pp. 703{724.

[6] B. Chazelle, \A functional approach to data structures and its use in multidimensional search-

ing", SIAM J. Comput., 17(1988), pp. 427{462.

[7] B. Chazelle and H. Edelsbrunner and L. Guibas and M. Sharir \Algorithms for bichromatic

line segment problems and polyhedral terrains", Algorithmica, 11 (1994), pp. 116{132.

[8] H. Elgindy, M. Keil, \E�cient algorithms for the capacitated 1-median problem", ORSA J.

Comput, 4(1982), pp. 418{424.

[9] F. Follert \Lageoptimierung nach dem Maximin-Kriterium", Diploma Thesis, Univ. d. Saar-

landes, Saarbrucken, 1984.

[10] F. Follert, E. Sch�omer, J. Sellen, \Subquadratic algorithms for the weighted maximin facility

location problem", in Proc. 7th Canad. Conf. Comput. Geom., 1-6, 1995.

[11] N. Megiddo, \Applying parallel computation algorithms in the design of serial algorithms",

Journal of ACM, 30(1983), pp. 852{865.

[12] N. Megiddo and A. Tamir \New results on the complexity of p-center problems", SIAM J.

Comput., 12(4), pp. 751{758, 1983.

[13] K. Mehlhorn, \Data Structures and Algorithms 3: Multi-dimensional Searching and Compu-

tational Geometry", Springer-Verlag, 1984.

[14] F. Preparata \New parallel-sorting schemes", IEEE Trans. Comput., C-27, pp. 669-673, 1978.

[15] D.E. Willard, G.S. Lueker, \Adding range restriction capability to dynamic data structures",

in J. ACM, 32(1985), pp. 597{617.

10


