
Scheduling of Vehicles in Transportation
Networks

Dariusz Kowalski1, Zeev Nutov2, and Michael Segal∗3

1 Department of Computer Science, University of Liverpool, Liverpool, UK
2 Department of Computer Science, The Open University of Israel, Raanana, Israel

3 Department of Communication Systems Engineering, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

Abstract. In this paper we consider online vehicle scheduling problems
for different network topologies under various objective functions: mini-
mizing the maximum completion time, minimizing the largest delay, and
minimizing the sum of completion times and present a number of prov-
able approximate solutions.

1 Introduction

Classical traffic scheduling and control theory has been recently compromised
by new challenges arising from green transportation, vehicular networks and au-
tomated vehicles. This paper studies vehicle scheduling algorithms in different
types of networks motivated by scheduling strategies in various types of underly-
ing network topologies and under different measures of performances, optimizing
global and local latencies, as well as simplified measure of energy consumption
(or CO2 emission). A network is represented as an undirected graph G = (V,E).
An (undirected) edge (u, v) ∈ E between two nodes u, v ∈ V represents a unit
segment (of road) between two locations u and v. A set C = {c1, . . . , ck} of k
vehicles should be routed through the network, where each vehicle has its own
source si and destination node di. The capacity of each node (in terms of the
number of vehicles it can keep at a time) is unlimited; however, each time only
one vehicle can pass an edge in either direction but not in both. We consider
scenarios in which all vehicles start their routes at the same time. We define a
completion time of a vehicle as the time measured since the beginning till the
vehicle reaches its destination. Let a delay of a vehicle be defined as a difference
between the completion time of the vehicle and the length of its route (i.e., the
number of edges in its route). Our goal is to move all the vehicles towards their
destinations along some shortest path from its source to its destination (either
given or to be chosen by the algorithm) under one or more of the following
objectives:

– (MinMakespan) Minimizing the maximum completion time, i.e., the time
when the last vehicle reaches its destination.

∗ The work by Michael Segal has been partly supported by France Telecom, European
project FLAVIA and Israeli Ministry of Industry, Trade and Labor (consortium
CORNET). Email: segal@cse.bgu.ac.il.

– (MinMax) Minimizing the largest delay of the vehicles.
– (MinSum) Minimizing the total sum of completion times over all vehicles.

The length of the scheduling path produced by some particular vehicle is the
number of edges in this path. Observe that the optimum algorithm for the Min-
Sum objective function is also the optimum solution if we replace “completion
times” by “delays” in the specification of the MinSum objective function; this is
because the sum of completion times is equal to the sum of delays plus the sum
of the lengths of the routes, and the latter is fixed and straightforward to com-
pute for a given input. We consider different graph topologies: grid, rooted tree
and bipartite thrackle (without shared endpoints). In addition, we distinguish
between the settings where, for every vehicle, the path from its source node to
its destination node is given or not; in both cases, as we noted earlier, the routes
must be shortest possible between the sources and destinations.

2 Related work

In [14], Leighton et al. showed that for any network and any set of packets whose
paths through the network are fixed and edge-simple, there exists a schedule for
routing the packets to their destinations in O(c + d) steps using constant-size
queues, where c is the congestion of the paths in the network, and d is the
length of the longest path. Mansour and Patt-Shamir [19] and also Cidon et
al. [7] showed that if packets are routed greedily on shortest paths, then all of
the k packets reach their destinations within d + k steps. These schedules may
be much longer than optimal, however, because k may be much larger than
c. Rabani and Tardos [22], and Ostrovsky and Rabani [20] extended the main
ideas used in [14] and in the centralized algorithm presented in [16] to obtain on-
line local control algorithms for the general packet routing problem that produce
near-optimal schedules. Some related result for trees can be found in [6]. Liu and
Zaks [18] studied the greedy algorithm for delivering messages with deadlines in
synchronous networks. They considered bottleneck-free networks, in which the
capacity of each edge leaving any processor is at least the sum of the capacities
of the edges entering it. For such networks where there is at most one simple
path connecting any pair of vertices, they have shown a necessary and sufficient
condition for the initial configuration to have a feasible schedule, and proved
that if this condition holds then the greedy algorithm, that chooses at each step
the most urgent messages (those with closest deadlines), determines such a fea-
sible schedule. Adler et al. [1] dealt with the time-constrained packet routing
problem when one wants to schedule a set of packets to be transmitted through
a multinode network, where every packet has a source and a destination (as in
traditional packet routing problems) as well as a release time and a deadline.
The objective is to schedule the maximum number of packets subject to deadline
constraints. The problem is known to be NP-complete even when the underlying
topology is a linear line [2]. For the buffered case, [1] provides logarithmic fac-
tor approximation algorithms for the time-constrained scheduling problem with

weighted packets on trees and meshes. Leung et al. [17] considered a problem of
routing unit-length, -time messages in different types of networks under various
restrictions of four parameters: source node, destination node, release time, and
deadline. Peis et al. [21] considered different routing problems for fixed and vari-
able paths for the grid topology. In [13], a line topology has been considered in
the setting similar to this work: for directed lines optimal local algorithms have
been designed, while for undirected lines no local algorithm is optimal, for each
of the three objective functions. Instead, 2-approximation local solutions have
been proposed for the latter setting, based on the optimal solutions for directed
lines.

Many algorithms designing efficient gathering scheme in the context of wire-
less networks have been considered before, see e.g. [3–5, 11, 23]. The aim is to
minimize the number of steps (makespan) needed to send all messages to the
base station. Opposite to our model, a node cannot both receive and transmit
simultaneously. Moreover, during a step only non interfering transmissions can
be done.

This paper is organized as follows. First we consider grid network topology.
Next, at Section 4, we turn our attention to the rooted tree networks. Finally,
we consider bipartite thrackle networks. We conclude the paper at Section 6.

3 Grid networks

We start by considering the grid version of the problem. We are given a unit-
sized grid of size n× n. We assume that all of the paths for the routing vehicles
are given, the vehicles are located in the bottom left quarter of the grid and all
the paths are dimension order paths (as in [1]). Dimension order routing, which
is commonly used on the mesh, requires that each vehicle travels along its source
row to the correct column and then along that column to the correct row, or
vise versa.

3.1 Optimizing MinMakespan objective

First, we notice that if every two shortest paths have different origin and destina-
tion nodes, then the approximation ratio for MinMakespan will be 2, since each
path of length l can have at most l− 1 intersections points with other paths. In
the general grid problem, the total number of delays can be as large as Ω(n2),
and applying the longest-remaining-distance-first strategy, as was efficient for
linear networks [13], might not work. In order to see this, suppose that we have
k = n/2 vehicles starting at the same time and having the same distance to go
for their destinations, as deployed at Figure 1. When two of them meet then one
of them is delayed by 1. Then the same vehicle that caused this delay (by itself
it is not delayed) meets another vehicle, which becomes delayed by 1, and so on.
At the end of this part, there is one non-delayed vehicle and n/2 − 1 vehicles
delayed by 1. If we apply the same procedure to these n/2 − 1 vehicles we get
n/2−2 vehicles delayed by 2 and so on. Thus, at the end of this algorithm some
of the vehicles may suffer a linear (in n) time delay. On the other hand, the

s2

s1

s3

s4

d3

d2

d4

d1

Fig. 1. A scenario producing many delays in a grid when longest-remaining-distance-
first strategy is implemented. The number of vehicles/paths is n/2.

optimum solution for the example in Figure 1 has MinMakespan of at most the
distance-to-go plus one, as this makespan can be obtained for example when in
case of collision a priority is always given to a vehicle going up in the grid. In
fact, Figure 1 provides a lower bound of 1.5 approximation ratio for any greedy
strategy that can be applied in order ro resolve collisions between the vehicles,
since the greedy strategy will produce the solution of at least the distance-to-go
plus the distance-to-go divided by 2.

Next we argue that any algorithm (resolving a contention at node in an
arbitrary way) achieves o(n) approximation ratio. In order to see this, we first
argue that if every path has at most o(n) intersections we are done. Otherwise,
assume that some path has Ω(n) intersections. If the length of this path is ω(1),
we are again done. Otherwise assume that the length of this path is constant. If
the length of some other path is ω(1), we are done (since the approximation factor
will be n/ω(1) = o(n)). Otherwise, the length of all paths is constant. Hence,
we have a situation with all path lengths being constant (possibly different for
different paths) and some path has Ω(n) intersections. In this case, the optimum
solution schedule takes Ω(n) time as any algorithm.

Centralized Greedy Longest-to-Destination algorithm with stages In order to
achieve better approximation factor we suggest another approach. Recall that all
our paths are dimension order paths. Let p be the upper bound on the number
of segments in each path (in our case p = 2). So, we first solve the problem for
vehicles going up (we freeze all the vehicles that start horizontally). We can do it
optimally for MinMakespan objective according to the following. We adopt the
smallest slack time algorithm from [17], designed in a slightly different setting
with deadlines. In this model, the goal is to maximize the number of vehicles
that arrive to their destinations within their deadlines. The algorithm in [17]
gives priority to the vehicle with the smallest maximum time span that this ve-
hicle can be delayed by without missing its deadline (i.e., that minimizes time
to the deadline minus the remaining length of the route). Since the deadlines in

this setting could be chosen arbitrarily large for all vehicles, this is equivalent to
giving priority to the vehicle whose destination node is currently farthest away
in our model; i.e., both executions — the one in the model with deadlines and
the other in our model — result in the same vehicle schedules. Leung et al. [17]
proved that this algorithm is optimal for the case of MinMakespan objective
criteria for directed graph, in the model with deadlines. By equivalency of ex-
ecutions, the corresponding Furthest-from-Destination algorithm is optimal in
our model when all vehicles travel in the same direction.

After all such vehicles arrived at their node of changing direction to the hor-
izontal one, we run the second stage in which the optimum algorithm is applied
only for horizontal vehicles (prioritizing the vehicle having largest remaining
horizontal distance). We continue this procedure until the last segment; in total,
we have at most p+ 1 stages.

We argue that the above algorithm achieves p + 1 approximation. Suppose
we are given a set of paths P, each of at most p segments. Consider stage i
of the algorithm, for 1 ≤ i ≤ p + 1. Consider a line L, either horizontal or
vertical, in a grid such that L contains at least one segment of some path in
P which is considered in stage i (i.e., either i-th segment, if the path started
with vertical segment, or (i + 1)-th segment otherwise). Observe that during
stage i propagation of vehicles along different parallel lines L are independent,
in the sense that they do not collide with each other. Let L = P|L denote the
family of sets P ∩ L, over all P ∈ P. Observe that L contains one-directional
sub-paths of L. Let OPT(P) denote the optimum solution for P, and OPT(L)
be the optimum solution for input L. By |OPT(P)| we denote the makespan
of OPT(P), and by |OPT(L)| we denote the makespan of OPT(L). Note that
|OPT(L)| is at most |OPT(P)|. Indeed, we could consider OPT(P) solution in
the time period between the first vehicle starts to traverse its segment in L (i.e.,
arrives at the beginning of its segment) till the last vehicle finishes its segment
in L (i.e., arrives at the end point of its segment in L), with respect only to
the vehicles traversing segments in L. Since we have to show the algorithm on
the input set L, we need to modify the above execution as follows. If some of
the vehicles has not yet arrived till the starting point of its segment in L during
the considered period of OPT(P), in the corresponding algorithm for input L
we assume that it stays idle in its starting point; similarly, if a vehicle leaves
its segment in L during the considered part of the execution of OPT(P), in
the corresponding algorithm for L we assume that it stays in its destination
point. Clearly, the length of this time period is at most the length of the whole
execution of OPT(P), the modified algorithm for the purpose of input L is of
the same length and it constitutes a feasible solution of vehicle scheduling for L.
This concludes the proof that each stage is of length at most |OPT(P)|. Finally,
the analysis is concluded by recalling the upper bound p + 1 on the number of
stages.
Local algorithm. In each node, the decision which vehicle should be pushed to
the next node in its path is taken according to the lexicographic order on pairs of
parameters (p+ 1− stage, segm dist) defined for vehicles residing at this node,

where stage denotes the stage number of the vehicle and segm dist stands for
the remaining distance to travel by the vehicle in the current segment. The
smallest vehicle according to this order is pushed forward to its next node. This
algorithm is clearly local, i.e., a decision about pushing a vehicle is made based on
the information carried by vehicles located at the node. Moreover, its Makespan
is not smaller than in the previous centralized algorithm, i.e., it is bigger than
the minimum Makespan by factor at most p + 1. To see this, it is enough to
observe, using a straightforward inductive argument on the number of rounds,
that at any time each vehicle is not further from its final destination than during
the centralized scheduling described before.

3.2 Optimizing MinSum and MinMax objectives

In fact, any algorithm (resolving a contention at node in arbitrary way) provides
a O(

√
k)-approximation for the MinSum criteria for grid structure. For this,

suppose that the optimal algorithm (minimizing the sum of delays) schedules
all the vehicles to their destinations at maximal arrival time T . Let us look at
some vehicle c′ and estimate how many vehicles can delay c′ on its way to the
destination. Knowing that the maximal arrival time in optimal solution is T ,
we can conclude that the distance of any vehicle to its destination is at most T
and the total number of vehicles that can be located at the same source is also
T . Consequently, the maximal number of vehicles that can delay vehicle c′ is at
most O(T 2). At the other hand this number can not be more than k. Taking
T 2 = k, we obtain the required approximation bound. We note here, that this
holds for any bounded degree graph as well.

In order to deal with MinMax objective function, we first solve the decision
problem by looking at all the possible configurations of vehicles that allow all of
them to arrive to their destinations under the constant maximum delay δ. Let
us consider the example in Figure 2.

We explain our idea on linear network, though it works for any undirected
graph with n nodes. Every linear network depicted in Figure 2 represents a
possible situation in some particular moment of time. Initially some vehicle is
located at point A and wants to go to point B. At the next moment (T = 1) the
vehicle can still be delayed at A or moved one step towards B. This is shown
in a horizontal linear network at time T = 1. All consequent networks show
possible locations of the vehicle at every consequent moment of time. We also
draw the directed arrows from the current possible location of the vehicle to the
next possible location of the vehicle in the consequent moment of time. Since the
distance between A and B is 5, the length of the directed path that shows the
possible locations of the vehicle that was not suffering any delay should be 5 —
this is depicted in Figure 2 as the directed black solid path. If we would allow this
vehicle to suffer up to one delay, then we should also consider the paths defined
by the directed red edges (in addition to the directed solid black edges). In such
a way we can build, for each vehicle, all relevant edges that it can contribute
to the obtained graph under the constraint that each vehicle can suffer up to δ
delays. The question we are asking now is whether there are k vertex-disjoint

A B

B

B

B

B

B

T=6, 1-DELAY

Initial

T=1

T=5

T=4

T=3

T=2

Fig. 2. Possible configurations for the movement of the vehicle from source A to des-
tination B.

paths (we allow situations when the endpoint of one path coincides with some
node of another path) between k pairs (si, di) of sources and destinations in the
obtained directed acyclic graph?

There are several papers that studied the problem of finding k vertex-disjoint
paths in graphs. For general undirected graphs, the vertex-disjoint paths problem
is solvable in polynomial time for any fixed k [24] and is NP-complete if k is a part
of the input [12] (here we mention that the problem can be 2-approximated [15]
for minimizing the sum of the length of paths for k = 2, which can be used for
solving our scheduling problem for MinSum objective function). For general di-
rected graphs, the problem is NP-complete even when k = 2 [10]. For a directed
acyclic graph and constant k, Li et al. [15] gave two efficient pseudo-polynomial
time algorithms and Fleischer et al. [9] gave an efficient fully polynomial-time
approximation scheme. The currently best solution is due to Yu et al. [25] who
actually solve the more general problem of finding k pairwise vertex-disjoint
paths such that the maximum length of these k paths is minimized. The op-
timal algorithm requires O(nk+1Mk−1) time, and the presented approximation
scheme requires O((1/ε)k−1n2k logk−1M) time, where ε is the given approxima-
tion parameter and M is the length of the longest path in an optimal solution.
Thus in order to obtain a solution to our problem we can use the algorithms
in [25] in order to obtain a solution to the decision problem with a subsequent
binary search scheme. Below we consider the problem of finding the maximum
number of pairs from K via node-disjoint paths. We give a

√
n-approximation

algorithm for this problem, where n = |V |, and show that the problem admits
no O

(
n1/2−ε

)
-approximation, unless P=NP.

In other words, the goal is to find a maximum size set of pairs

K ′ = {(s1, d1), . . . , (sk′ , dk′)} ⊆ K

and a collection {P1, . . . , Pk′} of pairwise node-disjoint paths in G, such that
each Pi is an sidi-path, i.e., a path from si to di. In the other version of the
problem, the paths are required to be only pairwise internally-disjoint, so the
end node of one path can be located in another path. We call this version the
Internally-Disjoint Paths problem.

Theorem 1. Node-Disjoint Paths and Internally-Disjoint Paths admit a
√
n-approximation

algorithm.

Proof. Given a graph G = (V,E) and K ⊆ V × V , let ΠG(K) be a set of paths
obtained by picking the shortest sd-path in G for every (s, d) ∈ K. The algorithm
is a standard greedy algorithm, parameterized by `, eventually set to ` =

√
n.

Algorithm for Node-Disjoint Paths
Initialization: K ′ ← ∅, P ← ∅.
While there is P ∈ ΠG(K) with at most ` nodes do:

Let (s, d) ∈ K be the pair that P connects.
Add P to P, move (s, d) from K to K ′,
and remove P from G.

EndWhile
If there is P ∈ ΠG(K), add P to P and add to K ′

the pair (s, d) ∈ K that P connects.

It is clear that the algorithm runs in polynomial time and computes a feasible
solution to the problem. Let P ′ be the set of paths in P added during the while-
loop, and note that every path in P ′ has at most ` nodes. Let opt be the optimal
solution value to the problem, and let opt′ be the optimal solution to the residual
problem after the end of the while-loop. Clearly, opt′ ≤ n/` . Whenever a path
P is added to P, the optimum solution value has decreased by at most the
number of nodes in P . Hence opt − opt′ ≤ ` · |P ′| . We claim that |P| ≥ opt/`
for ` ≥

√
n, hence Theorem 1 follows by substituting ` =

√
n. To see this,

consider two cases. If opt′ = 0 then |P| = |P ′| ≥ opt/` . If opt′ ≥ 1 then

|P| = |P ′|+ 1 ≥ opt
` −

opt′

` + 1 ≥ opt
` −

n
`2 + 1 . In both cases, we have |P| ≥ opt/`

for ` ≥
√
n, as claimed.

The algorithm for Internally-Disjoint Paths is similar, except that a path P is
added to the partial solution P if it has at most ` internal nodes, and then we
remove only the internal nodes of P from G. The proof of the approximation
ratio is identical to the one of the Node-Disjoint Paths case. The theorem follows.

Theorem 2. For any ε > 0, Node-Disjoint Paths and Internally-Disjoint Paths
admit no O

(
n1/2−ε

)
-approx-imation algorithm, unless P=NP.

To prove Theorem 2, we reduce the problem to the Edge-Disjoint Paths prob-
lem, which has approximation threshold |E|1/2−ε for instances with |E| ≥ |V |.
This is done by a standard reduction that converts node-disjoint paths into
edge-disjoint paths.

Given an instance < G = (V,E),K > of Edge-Disjoint Paths, define an
instance < G′ = (V ′, E′),K ′ > of Node-Disjoint Paths as follows. The graph
G′ is obtained from G by replacing every node v ∈ V by the two nodes vin, vout

and the edge (vin, vout), and then replacing every edge (u, v) ∈ E by the edge
(uout, vin). The set of pairs K ′ is defined by K ′ = {(sin, dout) : (s, d) ∈ K}. Every
solution to the Edge-Disjoint Paths problem for input < G,K > corresponds to
some solution to the Node-Disjoint Paths problem for the corresponding input
< G′,K ′ > of the same size, and vice versa. Moreover, given one of the solutions
the other can be computed in polynomial time.

Clearly, |E′| = |E|+|V |. Now suppose to the contrary that there exists an ap-
proximation algorithm for the Edge-Disjoint Paths problem with ratio |E′|1/2−ε,
which by definition must hold for every input < G′,K ′ >. This implies that
there exists an approximation algorithm for the the Node-Disjoint Paths prob-

lem with ratio (|E|+ |V |)1/2−ε ≤ (2|E|)1/2−ε ≤
√

2|E|1/2−ε, by considering the
correspondence between inputs < G′,K ′ > and < G,K > for the Edge-Disjoint
Paths and the Node-Disjoint Paths problems, respectively. For |E| large enough,
this implies approximation |E|1/2−δ for some δ > 0. This contradicts the ap-
proximation threshold for the Edge-Disjoint Paths problem.

At this stage we are able to provide an O(
√
n) approximation to the number

of vehicles that arrive to their destination and suffer no more than δ delay.
The question is how the delay will change if we allow all the vehicles to reach
their destinations. For this, we apply O(

√
n) approximation algorithm explained

above a number of times. After the first time we obtain a number of paths
for vehicles that allow them to reach their destinations with δ delay. Call this
paths 1st schedule group. Next, we remove all of these paths, and repeat the
algorithm by finding the paths obtained at second run (2nd schedule group). We
continue this procedure until no paths for vehicles can be produced and all the
vehicles arrived to their destination. Notice, that this process can be repeated no
more than

√
n log n times. It means that we obtained

√
n log n schedule groups.

In order to schedule all the vehicles, we divide the time slots into
√
n log n

sets corresponding to
√
n log n schedule groups. The ith schedule group receives

(i mod
√
n log n)th time slot to schedule the vehicles on their paths. In such

way, we guarantee that all vehicles arrive at their destinations after each vehicle
experiences at most δ

√
n log n delays.

We mention here that in order to solve the problem under MinMax delay
performance measure, we can follow the same approach as presented above for
linear networks, by obtaining 3-dimensional directed acyclic graph and running
algorithm for finding k vertex-disjoint paths between sources and destinations.

4 Rooted trees

In the rooted tree version problem, the vehicles should go from theirs sources
to their destinations by their shortest paths. Since we have a tree, every path is
defined uniquely, i.e., it can be either either vertically upward, vertically down-
ward or upward-downward: go up to the least common ancestor of source and

destination and then downward. For our problem on rooted tree we can use ap-
proach similar to the one for grids: we first push only vehicles going up until all
of them arrive to their highest point and then looking at the vehicles only going
down. In such a way we achieve 3 approximation for this case for MinMakespan
criterion.

In order to show the approximation ratio for MinSum criteria we apply short-
est remaining distance first algorithm. In this algorithm we always give a priority
to the vehicle with the shortest remaining distance to go, where ties are broken
arbitrary. For this, suppose that the optimal algorithm (minimizing the sum of
delays) schedules all the vehicles to their destinations at maximal arrival time
T . Let us look at some vehicle c′ and ask a question about how many vehicles
can delay c′ on its way to destination. Knowing that the maximal arrival time
in optimal solution is T , we can conclude that the distance of any vehicle to
its destination is at most T and therefore, there are at most 3T vehicles that
can delay c′ on every path’s segment (upward or downward) (T vehicles from
behind and 2T vehicles ahead of c′). We notice that, in general, some vehicle
c′′ following the same direction as c′ can delay c′ more than once; however, in
this case c′′ should also be delayed by some other vehicle. Moreover, each such
”repeated” delay can be charged to the vehicle from the set of 2T vehicles that
will never delay c′. It follows that the total number of delays is at most 6T (3T
downward and 3T upward), which leads to 7-approximation proof.

5 Bipartite thrackle network

A topological graph G is a graph drawn in the plane with vertices as points and
edges as curves connecting its endpoints such that any two edges have at most
one point in common. G is called a thrackle if every pair of edges intersects.
Suppose, we are give a bipartite thrackle (see Figure 3).

B1 B3B2 BnB4

A2A1 A3 AnA4

Fig. 3. Bipartite thrackle with switching paths.

In a bipartite thrackle every two lines are intersected in one point and no
three lines have a joint point. We assume that passing each segment by vehicle
in obtained bipartite thrackle graph takes one unit of time.

The vehicles are located at A1, . . . , An points (as shown in Figure 3) and
should arrive to B1, . . . , Bn destinations. Thus, in our case si = Ai and di = Bi.
Let us consider the properties of the paths obtained by the following algorithm.
When a vehicle wants to move from Ai to Bi, we start at Ai and move up.
Whenever we meet another intersecting line, the vehicle moves up to this line
(as shown in Figure 3 by even numbered paths). Denote by li the length of such
path between Ai and Bi in terms of number of segments in this path. First we
will make few observations regarding the obtained paths.

1. Path that starts at Ai will surely end at Bi.
2. Every segment of each line belongs to only one path.
3. Adjacent paths (say, kth and (k + 1)th) are touching by vertices, where kth

path is always to the left of (k+ 1)th path. Moreover, non-adjacent paths do
not have joint points.

In fact, if we simply rotate Figure 3 by 90◦ degrees, we get an arrangement
of n lines, where every pair intersects. The paths described above are simple
the k-level paths in the arrangement – all points on the k-th path have exactly
k-1 segments below them (that is, to their left). By Observation 3, if we take
odd (or even) numbered paths, we would not have any intersections between
them. Thus in order to schedule our vehicles to satisfy objective MinMakespan,
we apply our algorithm separately for odd numbered vehicles, and then for even
numbered vehicles.

It is well known that the upper bound for the length of the obtained paths
(in terms of the number of segments) produced by our algorithm is O(n

4
3) [8].

Claim. On the other hand, at least one of the paths produced by the optimal
solution algorithm satisfying MinMakespan criterion has at least length n.

Proof. Let us look at the middle path of order m = n+1
2 if n is odd, and of order

m = n/2 if n is even. The path An
2
Bn

2
partitions the area into 2 parts: each line

A1Bn, A2Bn−1, . . . , AnB1 starts in one part and ends at another part. It means
that, the path An

2
Bn

2
is intersected at least n− 1 times.

Following the discussion above, we get that our algorithm achieves O(n
1
3)

approximation for MinMakespan criterion.
Regarding the MinSum criteria, we note that by Observation 2 and Obser-

vation 3 we have li ≤ li−1 + li+1, where 2 ≤ i ≤ n − 1. On the other hand, it
is clear the the best possible solution is achieved when every vehicle does not
experience any delay and the total sum of completion times of all vehicles in this
case is at least

∑n
i=1 li. If we apply the same algorithm as for the MinMakespan

case, we obtain that the total sum of completion times of all vehicles is at most
3
∑n
i=1 li. Approximation 3 for the sum of completion times follows.

6 Conclusions

At this paper we have considered vehicle scheduling problems for grid, rooted
trees and bipartite thrackle networks under criteria of minimizing the maxi-
mum completion time, minimizing the largest delay, and minimizing the sum of

completion times. We obtained polynomially solved approximate solutions for
our problem. It would be interesting to generalize our scheme to more general
networks’ topologies.

References

1. M. Adler, S. Khanna, R. Rajaraman and A. Rosen, “Time-constrained scheduling
of weighted packets on trees and meshes”, Algorithmica, 36, pp. 123-152, 2003.

2. M. Adler, A. L. Rosenberg, R. K. Sitaraman and W. Unger, “ Scheduling time-
constrained communication in linear networks.”, in Proc. 10th ACM Symp. on
Parallel Algorithms and Architectures, pp. 269-278, 1998.

3. J.-C. Bermond, N. Nisse, P. Reyes and H. Rivano, “Minimum delay data gathering
in radio networks”, in Ad-Hoc, Mobile and Wireless Networks, Lecture Notes in
Computer Science 5793, pp. 69–82, 2009.

4. V. Bonifaci, R. Klasing, P. Korteweg, L. Stougie and A. Marchetti-Spaccamela,
“Data Gathering in Wireless Networks”, in Graphs and Algorithms in Communi-
cation Networks, Springer-Verlag, 2009.

5. V. Bonifaci, P. Korteweg, A. Marchetti-Spaccamela and L. Stougie, “An approxi-
mation algorithm for the wireless gathering problem”, Oper. Res. Lett., 36(5), pp.
605–608, 2008.

6. C. Busch, M. Magdon-Ismail, M. Mavronicolas and R. Wattenhofer, “Near-Optimal
Hot-Potato Routing on Trees”, Euro-Par, pp. 820–827, 2004.

7. I. Cidon, S. Kutten, Y. Mansour and D. Peleg, ”Greedy Packet Scheduling”, SIAM
J. Comput., 24(1), pp. 148–157, 1995.

8. T. K. Dey, “ Improved Bounds for Planar k -Sets and Related Problems”, Discrete
& Computational Geometry, 19(3), pp. 373–382, 1998.

9. R. Fleischer, Q. Ge, J. Li and H. Zhu, “Efficient algorithms for k-disjoint paths
problems on dags”, in Proc. of the 3rd Int. Conf. on Algorithmic Aspects in Infor-
mation and Management, pp. 134-143, 2007.

10. S. Fortune, J.E. Hopcroft and J. Wyllie, “The directed subgraph homeomorphism
problem”, Theoret. Comput. Sci., 10, pp. 111-121, 1980.

11. L. Gargano, “Time optimal gathering in sensor networks”, in Proc. SIROCCO,
4474, pp. 7-10, 2007.

12. R.M. Karp, “On the computational complexity of combinatorial problems”, Net-
works, 5, pp. 45-68, 1975.

13. D.R. Kowalski, E. Nussbaum, M. Segal, and V. Milyeykovsky, “Scheduling
Problems in Transportation Networks of Line Topology”, 2011, manuscript.
http://www.cs.bgu.ac.il/~segal/sch.pdf.

14. F. T. Leighton, B. M. Maggs and S. B. Rao, “ Packet routing and job-shop schedul-
ing in O(congestion + dilation) steps”, Combinatorica, 14(2), pp. 167–180, 1994.

15. C.-L. Li, S.T. McCormick and D. Simchi-Levi, “The complexity of finding two
disjoint paths with min-max objective function”, Discrete Appl. Math., 26(1), pp.
105-115, 1990.

16. F. T. Leighton, B. M. Maggs, and A. Richa, “Fast algorithms for finding
O(Congestion + Dilation) packet routing schedules”, Combinatorica 19(3), pp.
375–401, 1999.

17. J. Y-T. Leung, T. Tam and G. Young, “On-line routing of real-time messages”, J.
of Paral. and Dist. Computing, 34, pp. 211–217, 1996.

18. K.-S. Liu and S. Zaks, “Scheduling in synchronous networks and the greedy algo-
rithm”, Theor. Comput. Sci., 220(1), pp. 157–183, 1999.

19. Y. Mansour and B. Patt-Shamir, “Greedy packet scheduling on shortest paths”,
Journal of Algorithms, 14, pp. 449–465, 1993.

20. R. Ostrovsky and Y. Rabani, “Universal O(congestion+dilation+log1+ε N) local
control packet switching algorithms”, in STOC, pp. 644–653, 1997.

21. B. Peis, M. Skutella and A. Wiese, “Packet routing on the grid”, in LATIN 2010,
LNCS 6034, pp. 120-130, 2010.

22. Y. Rabani and E. Tardos, “ Distributed packet switching in arbitrary networks”,
in STOC, pp. 366–375, 1996.

23. Y. Revah and M. Segal, “Improved algorithms for data-gathering time in sensor
networks II: ring, tree, and grid Topologies”, International Journal of Distributed
Sensor Networks, 5, pp. 463-479, 2009.

24. N. Robertson and P.D. Seymour, “Graph minors. XIII. The disjoint paths prob-
lem”, J. Combin. Theory Ser. B, 63(1), pp. 65-110, 1995.

25. C.-C. Yu, C.-H. Lin and B.-F. Wang, “Improved algorithms for finding length-
bounded two vertex-disjoint paths in a planar graph and minmax k vertex-disjoint
paths in a directed acyclic graph”, Journal of Computer and System Sciences, 76,
pp. 697-708, 2010.

