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We consider message and time efficient broadcasting and multi-broadcasting in wireless ad-hoc net-
works, where a subset of nodes, each with a unique rumor, wishto broadcast their rumors to all
destinations while minimizing the total number of transmissions and total time until all rumors arrive
to their destination. Under centralized settings, we introduce a novel approximation algorithm that
provides almost optimal results with respect to the number of transmissions and total time, separately.
Later on, we show how to efficiently implement this algorithmunder distributed settings, where the
nodes have only local information about their surroundings. In addition, we show multiple approxi-
mation techniques based on the network collision detectioncapabilities and explain how to calibrate
the algorithms’ parameters to produce optimal results for time and messages.

1 Introduction

Databroadcasting, where a rumor from a single source has to be delivered to all other nodes in the graph,
is considered one of the most studied problems in wireless ad-hoc networks [47]. In this paper, we study
a generalized version called themulti-broadcastproblem [10], where instead of a single source, a subset
of sourcesS⊆ V, each with a different rumor, have to deliver their rumors toall other nodes in the
network. WhenScontains only a single node, the problem reduces to databroadcastingproblem, and
whenScontains all the nodes, it reduces to datagossipingproblem [12].

We use the partial aggregation model, also known as thecombined message model[15, 33], where
a node can aggregate multiple messages to one by stripping message headers, using compression or
correlating data from other nodes [56]. Formally, we use thecompression factorc, which serve as an
upper bound for the number of messages that can be compressedto a single batch; note that a message
can only be compressed once. In this paper, we develop generalized algorithms which hold for any subset
S⊆V and and positive integerc∈ [1,k], and thus suitable for both broadcasting and gossiping withand
without aggregation (i.e.,c= 1).

In data dissemination, there are two important performancemetrics that directly affect the quality of
the algorithm:timeefficiency, measured by the total time until all nodes receive all rumors, andmessage
efficiency, assessed by the total number of messages that aretransmitted in the network. Most papers on
data broadcasting and gathering concentrate on optimizingthe time metric [15, 27, 12] and only provide
by-product analysis of the message metric without exact performance guarantees. However, In ad-hoc
networks, where the nodes have limited battery and the cost of sending a message is directly proportional
to the lifetime of a node [7], minimizing the number of messages is a key aspect in the overall efficiency
of the solution. In this work, we concentrate on finding both message and time efficient algorithms for
broadcasting problem and for the more general multi-broadcasting problem, with and without aggre-
gation. We separate our analysis to two types of network settings: centralizedanddistributed. In the
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centralizednetwork setting [27], we assume that each node has full knowledge about the topology of the
network, including size, distance, and the ids of all nodes.In thedistributednetwork settings [60, 16, 22],
we assume that each node has only partial information about the network; for example, the number of
neighbors it has or the total number of nodes.

Our results. For centralized network setting we show a direct relation between messages efficiency
and the size of the underlyingbackbonetopology, on which rumors propagate to their destination, and
show how to build a backbone such that the number of message transmitted is small. To handle time
efficiency, we show how to shorten the diameter of the obtained backbone, which decrease the total time
of the scheduling algorithm and ensures all rumors arrive totheir destination as soon as possible. Our
construction has minor impact on the message efficiency. Ourresults improves previous approximation
ratio by Kim et al. [42]. For the distributed network settings, we first show how to construct the backbone
on which rumors will propagate. Next, we show a message and time efficient technique for transmitting
messages using the constructed backbone structure. The technique enables calibrating the performance
of the algorithm based on time or message requirements. The novelty of our approach is by comparing
the quality of the proposed algorithms under each of the criteria, separately. In addition, as a by-product
of our work, we present an algorithm for building a connecteddominating set with short diameter.

The rest of the paper is organized as follows: in Section 2 we present the model of the network and
formulate the multi-broadcast optimization problem. Summary of related work is presented in Section 3.
We provide approximation algorithms for efficient message and time broadcast and multi-broadcast un-
der centralized setting in Section 4, and extend this work for distributed setting in Section 5. Our con-
clusions and future work are summarized in Section 6.

2 Model and Problem Formulation

Ad-hoc wireless networks consist of a set ofn mobile units, also callednodes, distributed in a two
dimensional plane and equipped with radio transmitters andreceivers. The power required to transmit
a message from a node to distancer is P = rα , wherer ∈ [1,Φ] is the transmission radius for some
physical system parameterΦ > 1 andα ∈ [2,4] is the path loss exponent [55]. Our model is made more
realistic by the incorporation of physical obstacles in thenetwork, which represent buildings, trees or
other objects that block message transmissions [61]. The transmission power of each nodeP(u) is pre-
configured, and cannot change during the course of the algorithm, and a directed edge between two nodes
u andv is formed if there is no physical obstacle and if the Euclidean distance between them,d(u,v) is
less thanα

√
Pu. In addition, we also consider the special case of Unit Disc Graphs (UDG), whereP(u) is

equal for all nodes.
Let k be the number of different rumors in the network. In our model, the cost of sending a rumor

from a node to its neighbors is fixed, but up toc rumors, 1≤ c≤ k, can be compressed to a single message,
which we refer to asbatch. Note that messages inside each batch can be rearranged in intermediate nodes
but multiple batches cannot be further compressed. We consider the following parameters of the network
graphG: its diameter,dG, the degree of each nodeδ (v)G, its maximum degree∆G andhG(u,v), the
shortest number of hops needed to route a message fromu to v in G; subscriptG is removed when it is
clear from the context.

In this paper, we study theMulti Broadcastproblem, which is defined as follows:
Input: GraphG= (V,E), setSof k source nodes each with one rumor, and compression parameterc≤ k.
Output: Multi-broadcast schedule from all nodes inS to all nodes inV.
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For abbreviation we useBroadcastwhen k = 1 andMulti Broadcastotherwise. Note that in some
related work [15, 27], whenk= n the problem is refereed to as gossiping.

We are looking for a solution to the problem under the following optimization criterion:
Message Efficiency:The objective here is to minimize the number of messages transmitted in the net-
work in the course of the algorithm. When analyzingonly the message efficiency criteria, we do not take
interferences into consideration, assuming that all messages can be scheduled by some interference-free
protocol without increasing the number of messages sent (e.g., we can partition time inton time slots,
and let nodei transmit in time slot numberedt = i modn). This assumption is removed when addi-
tional optimization criterion are considered. We definemopt as the minimum number of messages that
are transmitted in the network during the execution of the optimal solution.

Time Efficiency: The objective here is to minimize the time it takes until all rumors are received by all
nodes. When analyzing time efficiency, we adopt theprotocol interference model[31], where a com-
munication between nodesu and v is successful if no neighbor ofv (the receiver) is simultaneously
transmitting. For any subgraphT ⊆ G, let Ip(u,T) be theconflict setof u in T, which consists of nodes
that cannot be scheduled to transmit simultaneously withu because they interfere tou’s recipients. Note
that since we use omni-directional antennas we haveIp(v,T) = ∆T(∆T −1). We definesopt as the mini-
mum time required to deliver all rumors to their destinations.

When analyzing the efficiency of an algorithm, the performance is compared to the optimal solu-
tion under each specified criteria, i.e., in time and messageefficient Multi Broadcast, we ask to find a
schedule that uses at mostαmopt messages, and takes at mostβsopt time, for some parametersα ,β ≥ 1.
Approximation algorithms are used since time efficient gossip is NP-hard [9, 25] and, as we show in
Appendix A, message efficient gossip is also NP-hard.

To efficiently solveBroadcastunder both centralized and distributed settings, we also show how to
construct an underlying graph on which rumors are routed from the source to the entire graph; we refer
to this graph as the networkbackbone.

3 Previous Work

The problem of message and time efficient broadcast, multi-broadcast, and gossip(k = n) has been
studied in multiple research papers. For centralized setting, Clementi et al. [15] studied gossip with
the existence of faulted links in the networks. They proposed an algorithm with time efficiencyO(n∆)
and message efficiencyO(n2) without compression, and time efficiencyO(dG∆) and message efficiency
O(dGn) with maximum compression, i.e.,c= k. The model was extended to include radio interference
by [27], where Gasieniec et al. showed how to construct a datagathering tree for fast broadcast and
gossip. For broadcast, they proposed two algorithms, deterministic and randomized, with time efficiency
dG+O(logn3) anddG+O(logn2), respectively. It was later asymptotically improved by Kowalski and
Pelc [43], who provided a polynomial time deterministic algorithm computing broadcast protocol with
time efficienctO(dG + logn2). For gossip, Gasieniec et al. [27] also showed an algorithm with time
efficiencydG+∆ ·n+O(logn3). If the maximum degree is bounded byΩ(logn), Cicalese et al. [14]

improved the result todG +O( logn3

log logn) time efficient broadcast andO(dG + ∆ logn
log∆−loglogn) time efficient

gossip. In addition, they showed that their result is almosttight by constructing a∆-regular tree in which
the time efficiency of gossip is at leastΩ(dG+ ∆ logn

log∆ ).
For distributed setting, where the only information a node has is its coordinates, Emek et al. [22]
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studied two initialization model in Unit Disk Graphs: conditional wake up, when all stations other than
the source are initially idle, and spontaneous wake up, where all stations are initially awake. They pro-
posed aO(dGg) and a max(O(dG + g2),dG logg) time efficient algorithms, whereg is the inverse of
the minimum distance between any two nodes. In addition, they showed that the lower bound for time
efficiency for any deterministic algorithm isO(dG

√
g). In a follow-up work [23] the authors showed that

for grid networks, although the lower bound for broadcast staysO(dG
√

g), there is a faster algorithm

with time efficiencyO(dGg
5
6 logg). For multi-broadcast, Chlebus et al. [10] showed a distributing algo-

rithm that constructs a tree using an innovative breadth-then-depth traversal. Their algorithm has time
efficiencyO(k logn3+nlogn4) even for compressionc= 1. Another interesting model was proposed by
Chlebus et al. [11], where only sources exchange their messages. Their algorithm has time efficiency
O(maxu,v∈sd(u,v) + k+ logn2) for distributed settings with full message compression (c = k). Both
papers assumed that the network is directed.

Although its importance to network long-ability and overall energy consumption, there have been
limited research that emphasizes the importance of messageefficiency in data routing. In [8], the au-
thors have shown that multi-broadcasting problem is NP-hard when trying to minimize time or message
efficiency. They did not provide NP-hard results for generalcompression ratio and did not present any
algorithm for the problem. The problem was also studied by Berenbrink et al. [4], where the gossip and
broadcast in random and general networks were studied. For random networks, a gossip algorithm where
each node transmits at mostO(logn) messages was presented, and for general networks, a broadcast al-

gorithm where each node transmits at mostO( logn2

log n
dG

) messages was given.

The algorithms in this paper use a modified version of the connected dominating set as a compact
backbone for routing messages. The minimum connected dominating set is NP-hard [26], and approx-
imable within the factor of 2+H(∆), whereH(i) is the i-th harmonic number, for general graphs [30]
and the factor of 7.8 for Unit Disc Graphs [64]. For ad-hoc networks, Kowalski and Jurdzinski [38]
demonstrated how to construct a backbone (CDS) in SINR modelwith application to multi-broadcast.
They also showed a construction in sublinear time for radio networks [40]. To the best of our knowledge,
the only paper that made a connection between connected dominating set and message efficient gossiping
was [35], where Harary et al. demonstrated that the email gossip number, which is the minimum number
of messages required for gossiping messages fromn sources, isn−1+ |Dopt|, whereDopt is the optimal
minimum connected dominating set and|Dopt| is its size. Another interesting sub-problem that we in-
vestigate is finding a small connected dominating set with short diameter. For Unit Disk Graphs, Kim et
al. [42] found a connected dominating set with size 11.4|Dopt|+6 and with diameter 3dG+7. A related
model was proposed by Du et al. [20], where the authors showedhow to construct a CDS such that given
a parameterα the distance between two nodesu andv is at mostα ·d(u,v). Their construction provides
H(∆(∆−1)

2 )-approximation to the size of the solution for all graphsG
′ ⊆ G, such thatd

′
G(u,v) = dG(u,v).

4 Multi-Broadcast under centralized setting

In this section, we show bi-criteria approximation algorithms for message and time efficientBroadcast
and Multi Broadcast, i.e., our algorithms find a solution having cost within a factor of α from the
optimal solution with minimum number of messages and withina factor ofβ from the optimal solution
that needs minimum time to distribute all rumors. The proposed algorithms are designed for centralized
networks, where each node has knowledge about the entire network topology.
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s

(a)s is not part of MCDS,|Dopt|+1= mopt

s

(b) s is part of MCDS,|Dopt|= mopt

Figure 1: Similarity between MCDS and the optimal broadcastbackbone. The value ofmopt denotes the
size of optimal broadcast backbone,|Dopt| denotes the size of optimal minimum connected dominating
set ands is the source.

4.1 Approximation algorithm for message efficientBroadcast

In this subsection, we solve the message efficientBroadcastproblem. We show a relation between the
number of messages needed forBroadcastand the minimum connected dominating set of the graph, and
provide a constructive algorithm that uses this fact for broadcasting.

Algorithm 1: Message efficientBroadcast

1 Find a connected dominating setD in G.
2 Transmit the rumor froms to all nodes usingD as a backbone.

Let mopt be the minimum number of messages required to complete broadcast, andDopt be the size of
the optimal dominating set. Assume we have anα-approximation algorithm for findingD in Algorithm
1. We claim the following:

Lemma 1. Algorithm 1 usesαmopt+1 messages to broadcast the rumor from s.

Proof. Assume we have a solution for message efficientBroadcast, and letT be the connected subgraph
along which the source message is propagated froms to all other nodes. Letl be the number of leaves
in T, andd be the number of internal nodes. By definition, internal nodes in T represent a connected
dominating set inG. In order to propagate the message to the entire tree, all internal nodes must transmit
at least one message; otherwise, we could transform the non-transmitting node to a leaf. Thus, the total
number of messages transmitted is at least:

m=

{

|D |+1 if s is a leaf
|D | otherwise.

This is illustrated in Figure 1. Clearly, we haveDopt ≤mopt. Therefore for any approximation algorithm,
we haveα ·Dopt ≤ α ·mopt. Thus, we can use MCDS approximation algorithm, attach the source node
s if it is not a part of the dominating set, and get a backbone on which we propagate the broadcast
message. The number of messages required is identical to thenumber of nodes in the solution and is at
mostα ·Dopt+1.

Combing this with the best known MCDS approximation algorithm yields the following lemma:

Lemma 2. Algorithm 1 solves Broadcast and uses at most(H(∆)+ 2)mopt + 1 messages for general
graph and7.8mopt+1 messages for UDG.
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4.2 Approximation algorithm for message efficientMulti Broadcast

In this subsection, we extend the result for message efficient Broadcastto Multi Broadcast. Note that
we neglect the effect of interference since it is not part of the optimization criteria. Let|Dopt| be the
size of the MCDS inG, mopt be the minimum number of messages required to distribute allk rumors in
Multi Broadcast, and

|Ds
opt|=

{

|Dopt|−1 if s is a leaf
|Dopt| otherwise.

We claim the following:

Lemma 3. k(|Dopt|−1)
c ≤ mopt.

Proof. Assume thatc= 1. We proved in Lemma 1 that for anys∈ S, it is optimal to propagate nodes
rumor using the MCDS. Therefore,mopt ≥ ∑s∈S|Ds

opt| ≥ k ·mins∈S|Ds
opt|.

Now assumec > 1. For eachDs
opt, we cannot compress more thanc messages per node inDs

opt.

Therefore, every nodes is accountable for at least
|Ds

opt|
c messages. Our claim follows since:

mopt ≥ ∑
s∈S

|Ds
opt|
c

≥
kmins∈S|Ds

opt|
c

≥ k(|Dopt|−1)
c

.

Before introducing our main algorithm, recall that in centralized setting each node knows in advance
the structure of the entire topology. Thus, every deterministic algorithm can be run inside each node
without incurring additional messages. Algorithm 2 is as follows:

Algorithm 2: Message efficientMulti Broadcast

Input : GraphG= (V,E) and a set of source nodesS.
Output : A gossip schedule from each nodes∈ S to all nodes inV.

1 Find a connected dominating setD in G.
2 Select the node with the lowest id as the rootr.

; /* For the next part, we assume we are provided with an
interference aware protocol. */

3 Send the messages from all source nodes tor over a path inD , aggregating messages when
possible.

4 Create a rooted arborescence fromr, and send all messages fromr to all nodes alongD , sending
exactly k

c messages by each transmitting node (internal and source).

Claim 4. k≤ mopt.

Proof. The proof follows by the fact that every nodes∈ Smust transmit at least once.

Claim 5. Line 3 in Algorithm 2 uses at most|D | · k
c +k messages.

Proof. Since we havek sources, the maximum number of messages that any node belonging to D may
send is at mostkc, and we need to add the additionalk messages to account the fact that some of the
sources may not belong to the dominating setD .

Claim 6. Line 4 in Algorithm 2 uses at most(|D |+1) · k
c messages.

Proof. For each internal node and for noder, we needk
c messages to deliver allk source messages to all

of its neighbors. Since we have|D |+1 such nodes ifr belongs toD and|D | nodes otherwise, the claim
follows.
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By combining Claims 4, 5 and 6 we get that the number of messages sent in Algorithm 2 is at most:

(|D |+1)
k
c
+ |D |k

c
+k= 2|D |k

c
+k(1+

1
c
)

We again use theα-approximation algorithm for MCDS and obtain:

2(α |Dopt|)
k
c
+k(1+

1
c
) = 2α

k(|Dopt|−1)
c

+k(
2α +1

c
+1)≤

2αmopt+mopt(
2α +1

c
+1) =

mopt(2α +1)(1+
1
c
).

Using the approximation algorithm for MCDS from [30] for general graphs and [64] for UDG yields:
Theorem 7. Algorithm 2 is a(2H(∆) + 5)(1+ 1

c)-approximation algorithm for general graphs and
15.6(1+ 1

c)-approximation algorithm for UDG for message efficient Multi Broadcast.

4.3 Combining Time Efficiency

Algorithm 1 is optimized to reduce the message complexity ofthe gossiping scheme. However, the
criterion of providing optimal results for time efficiency (i.e., minimizing the time until allk rumors
are received by all nodes) is still not satisfied. Letsopt be the minimum time required to distribute all
k rumors to all nodes. Clearly,sopt ≥ dG, since each rumor must propagate over the diameter. Thus,
the rumor distribution time of any algorithm that uses a connected dominating setD as a backbone is
bounded bydD +2 (e.g., when sender and receivers are leafs inD). If dD is relatively small, we can use
one of the interference aware scheduling algorithms on top of Algorithm 2, and produce a time and mes-
sage efficient distribution scheme. Therefore reducing thediameter of the resulting dominating set will
necessarily improve the time efficiency of the algorithm. Note that this task is not always trivial, since
for some instances the diameter of the minimum connected dominating set isO(n) times the optimal
diameter, see example Figure 2.

In this section, we first present Algorithm 3 for the problem of finding a minimum connected dom-
inating set with bounded diameter, where we aim to find a dominating setD of small size and small
diameter, with respect to|Dopt| and dG. Once the backbone is constructed, we analyze the cost of
scheduling messages over it and incorporate the effect of interference.

Algorithm 3: Compute Minimum Diameter Connected Dominating Set

Input : GraphG= (V,E)
Output : Connected dominating setD

1 Find a connected dominating setD .
2 Let r be the node with minimum id inD .
3 Run a DFS traversalDFS, from r onD and partitionD to clusters,C1,C2, ...,Ck, each with

diameterdG (a nodev∈ D will belong to clusterj =
⌊

hd f s(r,v)
dG

⌋

; a node that is traversed more than

once can choose the dominating cluster arbitrarily). The value hd f s(r,v) stands for the distance
betweenr andv in DFS tree.

4 Let ci be the node with minimal id in clusterCi; Setci as the cluster leader.
5 Connect all cluster leaders tor using shortest paths in graphG.
6 Add to setD all nodes that belong to the found shortest paths.

We state the following.
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(a) Input graphG with dG = 4 (b) MCDS with |Dopt|= 16 anddD = 15

Figure 2: Instance where the optimal MCDS does not yield optimal time efficiency. The diameter of the
input graph is always 4, but the diameter of the chosen minimum dominating set is equal to the size of
the outer ring (and equalsn−1

2 ).

Lemma 8. dD ≤ 4·dG.

Proof. Given u ∈ Ci andv ∈ Cj , the length of the path fromu to v is equal tohD (u,ci)+ hD (ci , r) +
hD (r,c j )+hD (c j ,u) ≤ 4 ·dG, wherehD (u,v) defines the length of the path betweenu andv in D . The
last inequality holds since, by the definition of the diameter, for anyu,v∈V, hD (u,v) ≤ dG.

Assume we have an algorithm that finds a dominating set with sizeα |Dopt| in line 1 of Algorithm 3,
then we have:

Lemma 9. |D | ≤ 3(α |Dopt|).
Proof. Since we perform a DFS traversal, each edge is traversed at most twice, and the number of clusters
is at most 2α |Dopt|

dG
. The number of nodes that are added to connect each cluster isat mostdG. Thus, the

new size of the dominating set is at mostα |Dopt|+2α |Dopt|
dG

·dG = 3α |Dopt|.
To conclude, using [30] and [64] for approximating MCDS in general and UDG networks, respec-

tively, we get the following theorem:

Theorem 10. Algorithm 3 computes a connected dominating set of size at most 3(2+H(∆))|Dopt| for
general graphs and of size at most15.6|Dopt| for unit disk graphs, and has diameter of at most4dG.

We are ready to analyze the time efficiency of Algorithm 2 overthe backbone constructed in Algo-
rithm 3. We begin by analyzing the algorithm under no interference assumption; later we will show how
to incorporate the interferences in the model. We additionally assume that a node starts forwarding a
batch of messages once it hask

c messages.
The following lemma gives a lower bound for anyMulti Broadcastalgorithm:

Claim 11. The time efficiency of any algorithm for MultiBroadcast is at leastkc +dG−1.

Proof. Consider a star withk peripheral nodes and attach a path of lengthd to the center of the star. Let
r be the farthest node from the center. The optimal solution isto transmit allk messages to the center
simultaneously and then directly send them tor. This scheduling takeskc +dG−1 (without considering
interference).

For Algorithm 3 we have the following upper bound:
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Lemma 12. Ignoring interferences, the time efficiency of Algorithm 2 over any dominating set is at most
2(4sopt +1).

Proof. Assume we have a nodeu with k messages. Ignoring interferences, sending a message fromu to
v∈V takes at leastkc −1+d(u,v), sinceu has to transmitkc time to move all the messages to the first hop
neighbors, and additionald(u,v)−1 time until the last message propagates from the first hop neighbors
to v. Optimally, r belongs toD , and sod(r,v) for the k sources is at mostdD + 1. The algorithm is
composed from two scheduling steps: converging all messages towardsr and disseminating them fromr
overD . Thus, we get that the time efficiency is:

2(
k
c
−1+dD +1) = 2(dD +

k
c
)≤ 2(4dG+

k
c
)≤ 2(4sopt +1).

Before incorporating interferences to the model, we state the following lemma:

Lemma 13 ([46]). Any deterministic scheduling algorithm on a spanning tree Tthat ends after t rounds
can be transformed to a collision free algorithm with|Ip(u,T)| · t rounds until completion.

Algorithm 2 uses spanning trees for the convergecast and broadcast operations, so the algorithm
from [46] can be used to perform the collision free scheduling, multiplying the scheduling time by
max|Ip(u,T)| ≤ ∆2

D
.

Combining Lemma 12, Lemma 13, Theorem 10, and by changing theapproximation ratio for MCDS
from α to 3α in Theorem 7 we get:

Theorem 14. Algorithm 2 on the connected dominating set constructed by Algorithm 3 has time effi-
ciency∆2

D
2(4sopt + 1), message efficiency3(2H(∆) + 5)(1+ 1

c)mopt for general graphs and message
efficiency15.6mopt for unit disk graphs.

5 Multi-Broadcast under distributed setting

In this section, we focus on distributed network setting, where each node has only partial information
about the network when the algorithm starts. First, in Subsection 5.1 we show how to distributively
construct the network backbone. We emphasize that the efficiency of the construction is of less interest
as we focus on finding a backbone on which distributed multi-broadcasting is efficient with respect
to time and messages. Later, in Subsection 5.2, we show an efficient message and time scheduling
routine, which is used to route the rumors on top of the obtained backbone and explain how to apply the
distributed versions of Algorithm 2 and Algorithm 3.

5.1 Constructing the network backbone in the interference-free settings

In this step of developing distributed algorithms, we assume that all nodes have unique ids, and are aware
of their local neighborhood (i.e., each node knows the nodesthat are in specific hop distance from it)
and the diameter of the graph. In addition, the network is assumed to be signal interference-free. The
required steps to implement Algorithm 2 under distributed setting are to construct a CDS, select a leader
r, route all rumors from allk sources tor and fromr to the entire graph along the found CDS. For CDS
construction, we use the distributed algorithm from [17], which constructs a CDS with size 2H(∆)Dopt

usingO(n|dG|) messages andO(|D |(∆+dD )) time for general graphs, or the distributed algorithm from
[62], which constructs a CDS with size at most 8Dopt usingO(nlogn) messages andO(n) time for Unit
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Disc Graphs. We use these algorithms in such a way that a node can send a message batch once it hasc
rumors in its queue but not later thandG time from the previous transmission.

The backbone constructed by Algorithm 3 extends the CDS by dividing it to clusters using a depth-
first-traversal, finding the shortest path from each clusterto r and adding those paths to the constructed
CDS. After the CDS is constructed using one of the distributed routines, we findhd f s(r,v) for each node
v ∈ D by selecting a leaderr, and running the distributed depth-first-traversal algorithm from [49]. In
each clusterCi , the nodes locally select a cluster leaders using the leaderselection algorithm from [41]
and discover the shortest path tor using the routine from [2]. All nodes in the shortest paths are then
added to the CDS. The message complexity of this step isO(|E|+ n · dG) and the time complexity is
O(n).

5.2 Efficient message and time routine for spreading a rumor in the distributed setting
with interference

In this subsection, we present multiple time and message efficient rumor distribution routines, which will
later be used to implementMulti Broadcastusing the distributed algorithm proposed in Subsection 5.1.

Setting with collision detection. Procedures Send-Rumor and Receive-Rumor ensure that the number
of messages and scheduling time which are needed to transmita single rumor (or a compressed batch
of rumors) from some node to its neighbors will not take too much time. We assume that all nodes
have synchronized clocks and have a collision detection mechanism. Later we show how to modify the
algorithm to support weaker scenario where, in case of a collision, no signal is heard. We also assume that
each nodev is aware of the number of neighbors it hasδ (v), and of the maximum degree (∆). This can
be accomplished by performing the neighbor discovery counting routine, using [18], which computes,
w.h.p., a constant approximation degree of each node inO(log2 n) time usingO(logn·δ (v)) messages.

ProcedureSend-Rumor
1 Selects independently and uniformly at random an

integerx∈ [1,µ∆].
2 Send rumor in slotx.
3 Wait idle for µ∆+µ∆−x slots.
4 if No error message arrive and no collision is

heard in slotµ∆+x then
5 Done
6 end
7 else
8 Collision occurred, retransmit
9 end

ProcedureReceive-Rumor
1 if Collision occurred in slot x(x≤ µ∆) then
2 Send an error message in slotµ∆+x.
3 end

Let v be the neighbor ofu, µ∆ be the number of slots,δ (u) be the number of neighbors, andXu be the
indicator variable for whetherv was the only neighbor ofu that transmitted in sloti. We have:

E [Xu] = P [Xu] =

(

µ∆
1

)

1
µ∆

(1− 1
µ∆

)δ (u)−1 ≥ (1− 1
µ∆

)∆−1 ≥ (1− 1
µ∆

)∆
.
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Therefore, the probability that allδ (v) neighbors will receive the rumor without interference is:

δ (v)

∏
i=1

(1− 1
µ∆

)∆ = (1− 1
m
)∆δ (v) ≈ e−

∆
µ∆ δ (v) = e−

δ (v)
µ .

The probability that the transmission was unsuccessful forj rounds is:

(1−e−
δ (v)

µ ) j
,

and, thus, the expected number of retransmissions until allnodes receive the rumor is at most:

∞

∑
j=1

j(1−e−
δ (v)

µ ) j ≈ e
δ (v)

µ (e
δ (v)

µ −1)≤ e2δ (v)
µ .

The expected number of error messages that all nodes send perround is:

δ (v)(1− (1− 1
µ∆

)∆)≈ δ (v)(1−e−
1
µ ).

Let α be the approximation ratio of the distributed implementation of the minimum connected dom-
inating set. By applying the procedures for sending messages in the distributed implementation of Algo-
rithm 2 we get:

Theorem 15. For setting with collision detection, there is a distributed implementation of Algorithm 2

for Multi Broadcast with message efficiencyO(αmopte
2δ (v)

µ (1+δ (v)(1−e
1
µ )) and time efficiency

O(soptµ∆e2−δ (v)
µ ).

Setting with no collision detection. As mentioned earlier, the collision detector restriction can be
removed if, in each iteration, a transmitting node selects only one of its neighbors as the receiver, and
sends the rumor directly to it in slotx. If the rumor is received by the neighbor, it responds with an
acknowledge message in slotm+ x. If no acknowledge message is received, the transmitting node
assumes collision occurred and retransmits the message. Wehave shown that the probability that a node

will receive the message without collision is at moste−
1
µ and, thus, the expected number of rounds until

a rumor is received by all neighbors of nodev is at moste
1
µ δ (v). Therefore, the time efficiency is at most

2µ∆e
1
µ δ (v) and the message efficiency is at most 2e

1
µ δ (v). To reduce the number of rounds, instead

of iterating the above routine for all neighbors,v can send a list of neighbors from which he did not
receive an acknowledge message. In order to successfully receive a message, when a neighbor nodeu
chooses a slot, this slot should not be taken by any neighbor of u and the source nodev. Hence, the

probability for a successful transmission ise−
2
µ . Let j

′
be the round after which all nodes received the

rumor and letr( j) be the expected number of nodes that did not receive the rumorafter round j. We

have,r( j) = δ (v)(1−e
−2
µ ) j . Excluding the source, the expected number of nodes that transmit in round

j is at most the expected number of remaining nodes after roundj −1, which is:

j
′

∑
j=1

r( j −1) =
j
′

∑
j=1

δ (v)(1−e−
2
µ ) j−1 ≤

∞

∑
j=1

δ (v)(1−e−
2
µ ) j = e

2
µ δ (v).
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The routine terminates whenr( j
′
)< 1 and, thus,j

′
=

log 1
∆

log1−e−
2
µ

. Thus, the expected time efficiency is at

mostµ∆ j
′
. By including the source, which transmits once per iteration, the expected message efficiency

is at moste
2
µ δ (v)+ j

′
. Combining with the distributed implementation of Algorithm 2 we get:

Theorem 16. For setting without collision detection, there is a distributed implementation of Algorithm

2 for Multi Broadcast with message efficiencyO(αmopt(e
2
µ δ (v)+ log 1

∆

log1−e−
2
µ
)) and time efficiency

O(soptµ∆ log 1
∆

log1−e−
2
µ
).

6 Conclusions and future work.

In this work, we developed algorithms for message and time efficient broadcasting and multi-broadcasting
in ad-hoc networks under centralized and distributed settings. We begin from a simple message efficient
algorithm for centralized setting without considering interference and extend it to a complex interference-
aware time and message efficient algorithm under distributed setting. Future extension of our work could
investigate the complexity of multi-broadcasting under the SINR model or explore message and time ef-
ficiency algorithms when faulty links exist. Another interesting question is to investigate the relation
between the total time required for multi-broadcast, and the maximum degree of the underlying topology
on which rumors propagate.
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Appendices

A NP-Completeness

In this section, we show that both message efficientBroadcastandMulti Broadcastare NP-Complete
under centralized setting. We use a reduction from SET-COVER, where we are given a collection of sets
U1, ....,Un, whose union isU , and a natural numberl . We then ask if there is a sub-collection of at most
l sets whose union isU . To show the reduction fromBroadcastandMulti Broadcastto SET-COVER,
we consider the following decision problem:
Instance: A graphG= (V,E), a set of source nodesS= {s1, ....,si}, andm∈ N.
Question: Is there a broadcast/gossip scheme that uses at mostm messages?

Lemma 17. Message efficient Broadcast is NP-Complete.

Proof. We show that SET-COVER≤p Broadcastby constructing a 3-tier graph from the SET-COVER
instance, where the nodes in the second tier represent the sets, and the nodes in the third tier represent the
elements. The construction is as follows: create a source nodes with one rumor to distribute, and place
it in the first tier. In the second tier, create one nodei for each setUi , and in the third tier create one node
per element in setU . Connects to all nodes in the second tier, and each node in the second tier to the
nodes from the third tier that are associated with its elements (see Figure 3). To support such network
construction in Euclidean plane, we set equal transmissionpowerPu for all nodesv in the second tier,
such thatPu ≫ d(u,v)α for any nodev,1 and a very small powerPw for all nodesw in the third tier, such
thatd(u,v)α ≫ Pw for any nodev. By doing so, an edge is created between any pair of nodes fromthe
second tier and the third tier. To prevent the propagation ofmessages from nodei to nodesv that are not
associated withUi we simply surroundv with obstacles. As for the source nodes, we place it sufficiently
far from the second tier so that no node from the second or the third tier could reach it, and associate
with it a sufficient power to reach all nodes in the second tier.

Since we use omnidirectional antennas, after one transmission, the message froms arrives to all
nodes in the second tier, and when a node from the second tier transmits, all connected nodes from the
third tier receive the message. We then ask, if there is a solution toBroadcastthat uses at mostm= l +1
messages. Clearly, in this solution, at mostl nodes from the second tier transmit, and all nodes receive
the message froms. To construct a SET-COVER withl sets fromBroadcastwith m= l +1 messages,
we select the sets that represent thel nodes that transmitted. Since there arel nodes and all elements are
covered by those nodes, they form a SET-COVER ofU .

Lemma 18. Message efficient MultiBroadcast is NP-Complete.

Proof. We use similar construction as in Lemma 17, but instead of onetransmitting node, we create a
clique of sizek in the first tier and connect each node in the clique to all second tier nodes (see Figure
3c). We then ask whether there is a solution toMulti Broadcastwith m= k · ⌈k

c⌉+k messages. Clearly,
in any optimal algorithm, allk rumors must be delivered to the intermediate nodes for future distribution
and it is not possible to aggregate them. Once we have allk rumors in the intermediate nodes, once we
can find a schedule such that onlyk intermediate nodes transmit, we can use the same arguments as in
the proof of Lemma 17 and show that SET-COVER≤p Multi Broadcast.

1Here the symbol “≫” means that the left hand side is bigger by the right hand sideby sufficiently large positive (constant)
factor.
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(a) SET-COVER instance.
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(b) TheBroadcastinstance.
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(c) TheMulti Broadcastinstance where|S|= 3.

Figure 3: The reduction from SET-COVER toBroadcastandMulti Broadcast.
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